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Abstract
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function when the observed series is a conditionally heteroscedastic martingale di!er-
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structure of the second moments of the series. We show that this causes test statistics
based on the sample spectral distribution, such as the CrameH r von-Mises statistic, to have
heavily right skewed distributions, which will lead to over-rejection of the martingale
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is proposed to account for the conditional heteroscedasticity. We demonstrate that the
corrected version of the CrameH r von-Mises statistic has the usual limiting distribution
which would be obtained in the absence of conditional heteroscedasticity. We also
present Monte Carlo results on the "nite sample distributions of uncorrected and
corrected versions of the CrameH r von-Mises statistic. Our simulation results show that
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1. Introduction

Economic theory suggests that many "nancial and economic time series like
stock returns and exchange rate returns are uncorrelated. More speci"cally, the
concept of market e$ciency leads one to believe that future values of such series
should be unpredictable given the past. This is the famous martingale di!erence
hypothesis and it is a more serious restriction than mere absence of correlation.
It implies that there is no non-trivial function of past data, linear or non-linear,
which can be used to predict future values. Testing such a general hypothesis is
however practically impossible, since it encompasses too many possibilities.
A more realistic approach towards testing the martingale hypothesis has been
through testing for the absence of correlation under various data-generating
mechanisms.

Two popular tests for uncorrelatedness are the variance ratio test of
Cochrane (1988) and the spectral based tests of Durlauf (1991). The spectral-
based tests exploit the fact that under the null hypothesis of a martingale
di!erence, the spectral distribution function is a straight line. Thus, deviations
of the sample spectral distribution from the straight line may be used to test
for the presence of correlation. Durlauf showed that under the null hypothesis
of a martingale di!erence, a normalized version of the di!erence between
the sample and theoretical standardized spectral distribution function converges
to a Gaussian process. The asymptotic distributions of various functionals
of this di!erence can then be obtained and tests for departure from the null
of no correlation may be obtained. Durlauf (1991) obtained his limiting
distribution under conditions which ruled out conditional heteroscedasticity.
However, it is a well-accepted fact that most "nancial and economic series
which are hypothesized to be martingale di!erences show conditional hetero-
scedasticity. Thus, it is important to take this conditional heteroscedasticity into
account when studying the behaviour of the spectral-based tests of the martin-
gale di!erence hypothesis.

In this paper, we show that the spectral-based tests no longer have the usual
limiting distribution when there is conditional heteroscedasticity. As a matter of
fact, we show that, in general, the limiting distribution is heavily right skewed,
with the amount of skewness depending on the degree of persistence in the
second moments. This fact may explain why such tests tend to reject the
martingale di!erence null in favour of mean reversion. We also suggest a way to
correct these tests in a non-parametric way to account for the conditional
heteroscedasticity. For one such corrected test, we prove that the asymptotic
distribution is the same as what would be obtained in the absence of conditional
heteroscedasticity. We provide Monte Carlo simulations for some of the uncor-
rected and corrected tests and also provide an empirical application.

The layout of the paper is as follows. In Section 2, we state the assumptions we
require for our results and discuss some popular models which satisfy these
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assumptions. In Section 3, we derive the limiting distributions of spectral-based
tests for the martingale di!erence hypothesis. Modi"ed versions of the test
statistics to account for the conditional heteroscedasticity are proposed and the
limiting distribution for one of the modi"ed test statistics is obtained. In Section
4, we present Monte Carlo simulation results for some of the uncorrected and
corrected test statistics and in Section 5 apply these tests to real data. We "nish
the paper with a technical appendix containing the proofs of all our results.

2. Assumptions

We will derive the limiting behaviour of various spectral distribution tests
under the hypothesis that the time series of interest, X

t
, satis"es

X
t
"k#e

t
, (1)

where Me
t
N is a martingale di!erence sequence and k is some real number. Thus,

X
t

may be the "rst di!erence of a random walk with martingale di!erence
innovations. Our speci"cation allows the random walk to have a possible drift,
implying a non-zero mean for the observed series X

t
. The assumptions we make

about the martingale di!erence series Me
t
N in (1) are as follows:

Condition A. (i) E(e
t
DF

t~1
)"0, where F

t~1
"pMe

t~1
, e

t~2
,2N is the sigma

"eld generated by Me
t~1

, e
t~2

,2N.
(ii) E(e2

t
)"p2(R.

(iii) lim
n?=

n~1+n
j/1

E(e2
j
DF

j~1
)"p2'0 almost surely.

(iv) There exists a random variable ; with E(;4)(R such that
P(De

t
D'u))cP(D;D'u) for some 0(c(R and all t, all u*0.

(v) E(e2
t
e
t~r

e
t~s

)"p4q
rs

is "nite and uniformly bounded for all t, r*1, s*1.
(vi) lim

n?=
n~1+n

t/1
e
t~r

e
t~s

E(e2
t
DF

t~1
)"p4q

rs
almost surely for any r*1,

s*1.
(vii) For any integer q, 2)q)8, and for q non-negative integers

s
i
, E(<q

i/1
esi
ti
)"0 when at least one s

i
is exactly one and +q

i/1
s
i
)8.

(viii) E(e8
t
) is uniformly bounded for all t.

Assumptions (i)}(vi) are identical to the ones made in Hannan and Heyde
(1972) and are essential for obtaining a central limit theorem for the sample
autocorrelations. Assumptions (vii) and (viii) are required to obtain a functional
limit theorem for the sample spectral distribution function in a random function
space. This functional limit theorem then allows us to obtain the limiting
distributions of a wide variety of popular goodness-of-"t tests of zero correlation
in the frequency domain. Assumption (vii) essentially requires the product
moments of the series Me

t
N to behave similarly to those of an independent series.

Note that Condition A does not require the series Me
t
N to be strictly stationary (it

does imply covariance stationarity). It also does not impose conditional homo-
scedasticity on the series Me

t
N.
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The following two lemmas assert that two major models of conditionally
heteroscedastic martingale di!erences, viz. the stochastic volatility model and
the generalized autoregressive conditionally heteroscedastic (GARCH) model,
satisfy the assumptions of Condition A. The proofs of the lemmas are in the
technical appendix at the end.

Lemma 1. Let the series Me
t
N be generated by the stochastic volatility model

e
t
"v

t
exp(h

t
), (2)

where Mv
t
N is an independent (0, p2

v
) stationary series, Mh

t
N is a stationary zero mean

Gaussian series and Mv
t
N and Mh

t
N are independent. Assume that E(v8

t
)(R. Then

Me
t
N satisxes the assumptions of Condition A.

See Shephard (1996) for a discussion of the model (2) and its applications.
Our next lemma asserts that under some conditions the GARCH(1, 1) family

of models also satis"es Condition A. We have restricted attention to the
GARCH(1, 1) case for simplicity of exposition. The validity of Condition A for
a general GARCH(p, q) model can be demonstrated along similar lines by
referring to the work of Bougerol and Picard (1992).

Lemma 2. Let the series Me
t
N be a GARCH(1, 1) process given by

e
t
"p

t
v
t
, (3)

where p2
t
"u#bp2

t~1
#ae2

t~1
and Mv

t
N is a sequence of independent standard

normal variables. Let u'0, b*0 and a'0. Furthermore, let a and b be such
that EMlog

%
(b#av2

t
)N(0 and EM(b#av2

t
)4N(1. Then Me

t
N satisxes the assump-

tions of Condition A.

The condition EMlog
%
(b#av2

t
)N(0 in Lemma 2 is satis"ed by any pair (a, b)

in the set S"M(a, b): a#b(1N (see Nelson, 1990) while the condition
EM(b#av2

t
)4N(1 will be satis"ed by some non-empty subset of S. For example,

values of a, b extremely close to the origin will certainly satisfy the second
condition.

Assumption (viii) of Condition A, requiring the existence of at least eight
moments for the martingale di!erence series Me

t
N might seem strong considering

that "nancial and economic series seem to exhibit thick tails. However, we feel
that this assumption is essential to obtain a functional limit theorem for the
sample spectral distribution function in a random function space. Furthermore,
the existence of the eighth moment is not too restrictive if one can "nd a
transformation g( ) ) such that r

t
"g(e

t
) satis"es Condition A when Me

t
N itself

has only a "nite fourth moment. In such a situation, our results would then
apply to the series Mr

t
N, which would be the series to be analysed. One such
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transformation, suggested by one of the referees, is

r
t
"De

t
D1@2 sign(e

t
). (4)

Supposing Me
t
N were generated by the stochastic volatility model (2), where Mv

t
N

has a distribution which is symmetric around zero with only fourth moment
"nite. Then, by arguments similar to those used for Lemma 1, one can show that
Mr

t
N de"ned by (4) would satisfy Condition A.
To obtain our main results on the sample spectral distribution function of the

process MX
t
N, we need to know the limiting distribution of the sample autocorre-

lations of MX
t
N. This is stated in the following theorem which follows directly

from Theorem 2 of Hannan and Heyde (1972).

Theorem 2.1. Let assumptions (i)}(vii) of Condition A hold. Dexne

XM "n~1
n
+
t/1

X
t
,

p( 2"n~1
n
+
t/1

(X
t
!XM )2

and

o(
i
"n~1p( ~2

n~i
+
t/1

(X
t
!XM )(X

t`i
!XM ), i*1. (5)

Then, for any xnite xxed positive integer k, we have

n1@2q(
D
P N(0, W ),

where q("(o(
1
, o(

2
,2, o(

k
)@ and W"[w

ij
] is a k]k diagonal matrix with w

ii
"q

ii
.

It should be noted that the normalized sample autocorrelations are not
identically distributed under Condition A. Their asymptotic variance depends
on the covariance in the second moments of the series Me

t
N at the appropriate lag.

For example, under the stochastic volatility model in (2), it can be easily shown
that q

ii
"expM4Cov(h

t
, h

t~i
)N. Since there is no natural bound on the

covariance of a stationary series, this implies that q
ii

(and hence the variance of
o(
i
) can be arbitrarily large under such a model. This anomalous behaviour of the

sample autocorrelations arises due to the conditional heteroscedasticity that we
are allowing in the series. The normalized sample autocorrelations will however
have an asymptotic variance of 1 at all lags if the series Me

t
N has a constant

conditional variance. This can be seen from the fact that in such a case,
q
ii
"p~4E(e2

t
e2
t~i

)"p~4EMe2
t~i

E(e2
t
DF

t~i
)N"p~4EMe2

t~i
p2N"1.
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Furthermore, it should also be noted that the asymptotic independence of
(o(

r
, o(

s
) for any r's'0 in Theorem 2.1 is entirely due to assumption (vii) of

Condition A. This assumption implies that q
rs
"p~4E(e2

t
e
t~r

e
t~s

)"0 for any
r's'0.

It is of interest to compare our Condition A and Theorem 2.1 with analogous
assumptions and results in the seminal work of Durlauf (1991) regarding the
sample spectral distribution function. The assumptions made in Durlauf (1991)
are stated in his De"nition 2.1. Durlauf 's assumptions are identical to our
assumptions (i)}(vi) and assumption (viii) of Condition A, and hence allow for
conditional heteroscedasticity. Durlauf then states his Theorem 2.1, quoting
Theorem 2 of Hannan and Heyde (1972), that the normalized sample autocorre-
lations of MX

t
N are both asymptotically independent and identically distributed

with unit asymptotic variance at any lag. This application of Hannan and Heyde
(1972) is incorrect. As demonstrated above, the sample correlations have vari-
ance depending on q

ii
in the presence of conditional heteroscedasticity and

hence are not identically distributed. Furthermore, since Durlauf (1991) does not
make any assumption similar to our assumption (vii) (which implies that
E(e2

t
e
t~r

e
t~s

)"0 for any r's'0), there is no guarantee that the sample
correlations are asymptotically independent. Hence, the main results on the
sample spectral distribution that Durlauf (1991) obtains in his Theorem 2.2 and
subsequent Corollaries, which depend on his De"nition 2.1 and Theorem 2.1,
would not hold either in the presence of conditional heteroscedasticity or the
absence of some restricted form of `independencea as de"ned through our
assumption (vii).

We would also like to point out that our Theorem 2.1 requires assumption
(vii) in Condition A to hold only for any q)4. However, the stronger require-
ment that it hold for any q)8 is essential in showing the tightness of the sample
spectral distribution function to obtain our main result below.

In the next section, we study the asymptotic behaviour of the sample spectral
distribution function in the presence of conditional heteroscedasticity. Our
approach draws heavily on the work of Durlauf (1991).

3. Spectral-based tests of the martingale di4erence hypothesis

The correlation structure of a stationary time series is determined by its
standardized spectral density de"ned by

f (j)"(2p)~1
=
+

h/~=

o
h
cos jh, !p)j)p,

where o
h

is its correlation function at lag h. This theoretical standardized
spectral density can be estimated based on the observed data X

1
, X

2
,2, X

n
by
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the sample standardized spectral density given by

I
n,w

(j)"(2p)~1
(n~1)
+

j/~(n~1)

w
n
( j)o(

j
cos jj, (6)

where o(
j
is the sample autocorrelation at lag j de"ned as in (5) above and w

n
( ) ) is

an appropriate sequence of weights symmetric about zero with w
n
(0)"1. If the

form of the standardized spectral density function f (j) has been speci"ed, then
departures from it can be detected by studying the normalized cumulated
deviations given by

;
n,w

(t)"(2n)1@2P
pt

0

(I
n,w

(u)!f (u)) du, t3[0, 1]. (7)

Under some conditions on the weight sequence w
n
( ) ) and assuming that Me

t
N is

a zero mean independent series, the result of Durlauf (1991) shows that ;
n,w

(t)
converges to a Brownian bridge. This result can then be used to obtain the
limiting distributions of common goodness-of-"t test statistics like the CrameH r
von-Mises statistic, the Anderson Darling statistic, etc., which are all functionals
of ;

n,w
(t).

In this section, we show that when Me
t
N is a conditionally heteroscedastic

martingale di!erence, ;
n,w

(t) no longer converges to a Brownian bridge but to
another Gaussian process. To gain more insight into why this happens, we
observe that under the null hypothesis of a martingale di!erence, all the
correlations are zero and the standardized spectral density reduces to (2p)~1.
Thus, the normalized cumulated deviations reduce to

;
n,w

(t)"(2n)1@2P
pt

0
AIn,w (u)!

1

2pBdu

"

J2

p
n~1
+
j/1

n1@2o(
j
w
n
( j)

sin jpt

j
, t3[0, 1]. (8)

When MX
t
N is a conditionally homoscedastic martingale di!erence, we know

that n1@2o(
j
has asymptotically the same distribution as the sequence Mg

j
N, where

Mg
j
N&i.i.d. N(0, 1). Thus, assuming for now that w

n
( ) ),1, we have heuristi-

cally for large n,

;
n,w

(t)"
J2

p
n~1
+
j/1

n1@2o(
j

sin jpt

j
,

K

J2

p
n~1
+
j/1

g
j

sin jpt

j
,

K

J2

p
=
+
j/1

g
j

sin jpt

j
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which is a Brownian bridge. This result breaks down when the sample cor-
relations are asymptotically heteroscedastic, as happens in the case of a condi-
tionally heteroscedastic series Me

t
N, yielding a di!erent limiting process for

;
n,w

(t). The new limiting process is given in the following Theorem. Henceforth,
we will always assume that;

n,w
(t) is given by (8). i.e. under the null hypothesis of

a martingale di!erence.

Theorem 3.1. Assume Condition A holds. Furthermore, let the sequence of weights
w
n
( ) ) satisfy the following conditions:

(i) w
n
( j) is uniformly bounded in j and n for D jD)n.

(ii) lim
n?=

w
n
( j)"1 for all xxed j.

(iii) w
n
(0)"1 and w

n
( ) ) is symmetric around zero for all n.

Then

;
n,w

(t)
D
N;(t) on t3[0, 1],

where

;(t)"
J2

p

=
+
j/1

g
j
Jq

jj

sin jpt

j
, t3[0, 1]

and Mg
j
N&i.i.d. N(0, 1).

Note that the limiting distribution is invariant to the choice of the weight
sequence w

n
( ) ), since its e!ect washes out asymptotically. Thus, the choice of the

weights only a!ects the small sample behaviour of ;
n,w

and of any statistic
depending on ;

n,w
.

On applying the continuous mapping theorem, we get the limiting distribu-
tions of various common spectral shape tests, which we state in the following
Corollary.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have
(i) Anderson darling statistic

AD
n
"P

1

0

;2
n,w

(t)

t(1!t)
dt

D
P P

1

0

;2(t)

t(1!t)
dt.

(ii) Crame& r von-Mises statistic

C<M
n
"P

1

0

;2
n,w

(t) dt
D
P P

1

0

;2(t) dt.
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(iii) Kolmogorov}Smirnov statistic

KS
n
" sup

t|*0,1+

D;
n,w

(t)D
D
P sup

t|*0,1+

D;(t)D.

(iv) Kuiper statistic

K
n
" sup

*0xs, tx1+

D;
n,w

(t)!;
n,w

(s)D D
P sup

*0xs, tx1+

D;(t)!;(s)D.

From Corollary 3.2, it is clear that the distributions of the various test
statistics depend crucially on the sequence Mq

ii
N which is a measure of the

dependence in the second moments of the series MX
t
N. As mentioned earlier, for

the stochastic volatility model in (2), it can be easily shown that q
ii
"

expM4Cov(h
t
, h

t~i
)N. If the series Mh

t
N is such that Cov(h

t
, h

t~i
) is positive, then

the asymptotic variance of Jno(
i

will actually be bigger than 1, which is the
asymptotic variance in the absence of conditional heteroscedasticity. To see the
e!ect this has on the spectral-distribution-based test statistics, it is instructive to
consider an alternative expression for one of them, the CrameH r von-Mises
statistic. When w

n
( ) ),1, it is known (see for e.g., Anderson and You, 1996) that

the CrameH r von-Mises statistic can also be written as

C<M
n
"

1

p2

n~1
+
j/1

1

j2
[Jno(

j
]2. (9)

If the variance of Jno(
i
is bigger than 1, it is clear that the asymptotic distribu-

tion of C<M
n

will have a thicker right tail compared to that of the usual
distribution obtained in the absence of conditional heteroscedasticity. Further-
more, it is also clear that the rate of decay of Cov(h

t
, h

t~i
) to zero (and thus that

of q
ii

to 1) will a!ect the thickness of the right tail, with a slower rate of decay
leading to a thicker tail. Hence, using the usual cuto! points of the CrameH r
von-Mises statistic will lead to over-rejection of the martingale di!erence hy-
pothesis in martingale di!erence series which show strong persistence in their
second moments.

The other three test statistics in Corollary 3.2 also have distributions with
thicker right tails under conditional heteroscedasticity due to the in#ated
variance of ;

n,w
(t). The right tail of the limiting distribution of the Anderson

Darling statistic is a!ected even more seriously than the CrameH r von-Mises
statistic by conditional heteroscedasticity. This is due to the fact that in the
Anderson Darling statistic, the quantity ;2

n,w
(t), which has a larger variance

when q
ii
'1, is weighted by [t(1!t)]~1 which gets large for values of t near

0 and 1.
It is clear from the above discussion that the limiting distributions of the

spectral-based tests depend on the covariance of the second moments of
the series. Thus, the critical values of these distribution will vary, depending on
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the true parameters of the underlying process, making these tests infeasible from
the practical point of view. To avoid this problem, we suggest the following non-
parametric correction to the test statistics. To circumvent the dependence on q

ii
,

we work with the following modi"ed form of ;
n,w

(t), given by

;
n,w,C

(t)"
J2

p

n~1
+
j/1

n1@2a(
j
w
n
( j)

sin jpt

j
, t3[0, 1], (10)

where

a(
j
"p( 2o(

jC(n!j)~1
n~j
+
t/1

(X
t
!XM )2(X

t`j
!XM )2D

~1@2
. (11)

In the proof of Theorem 3.3 below, we prove that for "xed j,
p( 2[(n!j)~1+n~j

t/1
(X

t
!XM )2(X

t`j
!XM )2]~1@2 is a consistent estimator of q~1@2

jj
.

It then follows from Theorem 2.1 that for any "nite k, the collection of random
variables (a(

1
, a(

2
,2, a(

k
)@ will be asymptotically independent and normal with

zero mean and variance 1. Hence, we should expect the test statistics given in
Corollary 3.2 but based on ;

n,w,C
(t) to have the same limiting distributions as

would be obtained if MX
t
N were an independent identically distributed white

noise series. This will allow us to use tabulated critical values (see Anderson and
You, 1996) of the standard limiting distributions when carrying out tests of the
martingale hypothesis. In the following theorem, we state conditions under
which such a result holds for the CrameH r von-Mises test statistic based on
;

n,w,C
(t).

Theorem 3.3. Let ;
n,w,C

(t) be as in (10) and let the weights w
n
( ) ) satisfy the

conditions stated in Theorem 2.1. Let the assumptions of Condition A hold and
assume that

limsup
n?=

sup
1xjxn

nE(a( 2
j
)(R. (12)

Then

C<M
n,C

,P
1

0

;2
n,w,C

(t) dt D
P P

1

0

B2(t) dt,

where B(t) is a Brownian bridge of [0, 1].

The next Corollary shows that under some conditions on the dependence in
the second moments, Theorem 3.3 holds for the stochastic volatility model given
in (2).

Corollary 3.4. Let the series Me
t
N satisfy

e
t
"v

t
exp(h

t
),
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where Mv
t
N is a sequence of independent (0, p2

v
) variables with E(v8

t
)(R. Let

h
t
"+=

j/0
a
j
u
t~j

, where Mu
t
N is a sequence of normally distributed (0, p2

u
) vari-

ables. Furthermore, let the coezcients a
j

satisfy Da
j
D)Ajj for some positive

constant A and some 0(j(1 and let the series Mu
t
N and Mv

t
N be independent.

Then

C<M
n,C

,P
1

0

;2
n,w,C

(t) dt D
P P

1

0

B2(t) dt,

where B(t) is a Brownian bridge on [0, 1].

The condition that we have imposed on the coe$cients Ma
j
N in Corollary 3.4

above will be satis"ed if the series Mh
t
N is a stationary autoregressive moving

average (ARMA). However, the condition is not satis"ed if Mh
t
N is a stationary

autoregressive fractionally integrated moving average (ARFIMA) or some ana-
logous long-memory series. Furthermore, we have had to assume the "niteness
of eight moments for the result to hold. Though this assumption allows for fairly
thick-tailed distributions, it rules out in"nite variance stochastic volatility mod-
els like those studied by de Vries (1991) and Deo (1997).

It is interesting to compare the CrameH r von-Mises statistic given in Eq. (9)
above with the Box}Ljung}Pierce statistic, which is another statistic commonly
used to test for the presence of correlation. The Box}Ljung}Pierce statistic is
given by

B¸K
n
"

K
+
j/1

(Jno(
j
)2 (13)

for some predetermined "xed positive integer K. If the underlying process is
a conditionally homoscedastic martingale di!erence, then B¸K

n
has asymp-

totically a s2 distribution with K degrees of freedom. However, the choice of the
integer K naturally plays an important part in how well the "nite sample
distribution of the statistic approximates the limiting distribution and will
generally result in a trade-o! between the size and the power of the test. The
CrameH r von-Mises statistic has an advantage in this regard, since it takes into
account all the n!1 sample autocorrelations which can be computed. From
Eq. (9) above, it can be seen that the CrameH r von-Mises statistic assigns the
weight j~2 to the normalized sample autocorrelation at lag j. It is this declining
set of weights which allow the CrameH r von-Mises statistic to have a non-
degenerate limiting distribution in spite of using all n!1 sample correlations.
On the other hand, the Box}Ljung}Pierce statistic assigns the constant weight
1 to the normalized sample correlations at lag j, as seen from Eq. (13). As a result,
the number of sample correlations used, K, must remain "xed as the sample size
increases for the Box}Ljung}Pierce statistic to have a non-degenerate limiting
distribution.
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The fact that the CrameH r von-Mises statistic uses all available n!1 sample
correlations might also be to its advantage in detecting long-memory time series.
Long-memory series are those in which the correlations decay at a hyperbolic
rate, as opposed to an exponential rate in short-memory time series. However, in
a long-memory series, the individual correlations might all be small in magni-
tude, though decaying slowly to zero. Hence, one might expect the CrameH r
von-Mises statistic, which takes into account all sample correlations, to have
superior power to the Box}Ljung}Pierce statistic in such cases. A similar
comparison, naturally, can be made between the two test statistics when correc-
ted for conditional heteroscedasticity. The corrected version of the Box}
Ljung}Pierce statistic will be given by

B¸K
n,C

"

K
+
j/1

(Jna(
j
)2,

where the a(
j
are given by Eq. (11) above. It is clear that under the assumptions of

Condition A, for a "xed positive integer K, B¸K
n,C

will have an asymptotic
s2 distribution with K degrees of freedom.

In the next section, we present Monte Carlo simulation results for both
corrected and uncorrected versions of some of the test statistics considered
above.

4. Simulation results

We conducted a simulation study to examine the size and power performance
of some of the spectral based test statistics studied above. For both sample sizes
n"100 and 500, we generated 1000 realizations of the stochastic volatility
model

X
t
"v

t
exp(h

t
),

h
t
"ah

t~1
#0.5u

t
,

where DaD(1 and (u
t
, v

t
) are a sequence of independent bivariate normal random

variables with zero mean and covariance matrix given by diag(p2
u
, 1). Note that

this model is a martingale di!erence and satis"es the conditions of Corollary 3.4.
The values of the pair (a, p

u
) that we used were (0.936, 0.424) and (0.951, 0.314).

These are values which Shephard (1996, Table 1.6) obtained by "tting the above
stochastic volatility model to real exchange rate data and thus re#ect a practical
situation. For each parameter con"guration and sample size, we computed
corrected and uncorrected versions of three test statistic. These were:

(i) The CrameH r von-Mises statistic. The uncorrected version is denoted by
C<M

n
and the corrected version by C<M

n,C
.
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Table 1
Empirical sizes for uncorrected test statistics

n Test SV AR(1) SV AR(1) Gaussian white noise

a"0.936 p"0.424 a"0.951 p"0.314
5% 10% 5% 10% 5% 10%

C<M
n

0.132 0.216 0.099 0.173 0.042 0.081
100 B¸5

n
0.179 0.265 0.137 0.208 0.039 0.080

B¸15
n

0.148 0.216 0.123 0.186 0.036 0.067

C<M
n

0.288 0.391 0.215 0.313 0.045 0.094
500 B¸5

n
0.405 0.500 0.325 0.414 0.053 0.100

B¸15
n

0.472 0.586 0.398 0.496 0.047 0.092

(ii) The Box}Ljung}Pierce statistic with K"5. The uncorrected version is
denoted by B¸5

n
and the corrected version by B¸5

n,C
.

(iii) The Box}Ljung}Pierce statistic with K"15. The uncorrected version is
denoted by B¸15

n
and the corrected version by B¸15

n,C
.

In addition to the conditionally heteroscedastic data, we also studied the
performance of these test statistics when the data was actually Gaussian white
noise. This is necessary to see how the corrected statistics behave when the data
is actually homoscedastic and the correction is unnecessary.

In Table 1, we compare the empirical sizes of the uncorrected versions of the
statistics. The sizes were computed by comparing C<M

n
, B¸5

n
and B¸15

n
with

the asymptotic 5% and 10% critical values of the CrameH r von-Mises, the s2
5

and
the s2

15
distributions, respectively. As is to be expected, the tests based on the

uncorrected statistics are oversized when the data is a conditionally hetero-
scedastic martingale di!erence. This in#ation in size can be quite severe and is
greater for the larger sample size. It is interesting to note that among the three
statistics, the CrameH r von-Mises statistic su!ers the least from the problem of
size in#ation. When the data are Gaussian white noise and therefore homo-
scedastic, all three statistics maintain approximately their nominal size, though
B¸15

n
is somewhat undersized when n"100. This might explain why the size

in#ation in B¸15
n

is lower than that in B¸5
n

when n"100 but higher when
n"500.

In Table 2, we compare the sizes of the corrected versions of the statistics. As
earlier, the sizes were computed by comparing C<M

n,C
, B¸5

n,C
, and B¸15

n,C
with

the asymptotic 5% and 10% critical values of the CrameH r von-Mises, the s2
5

and
the s2

15
distributions, respectively. As can be seen from the table, the corrected

statistics maintain their nominal size even under conditional heteroscedasticity
though B¸15

n,C
is somewhat undersized when n"100. Furthermore, it is reassur-

ing to note that the corrected statistics retain the nominal size when the data is
actually Gaussian white noise and the correction is unnecessary.
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Table 2
Empirical sizes for corrected test statistics

n Test SV AR(1) SV AR(1) Gaussian white noise

a"0.936 p"0.424 a"0.951 p"0.314
5% 10% 5% 10% 5% 10%

C<M
n,C

0.036 0.083 0.038 0.087 0.041 0.087
100 B¸5

n,C
0.030 0.065 0.028 0.064 0.048 0.085

B¸15
n,C

0.029 0.062 0.031 0.065 0.041 0.065

C<M
n,C

0.048 0.090 0.057 0.092 0.038 0.094
500 B¸5

n,C
0.049 0.085 0.052 0.086 0.054 0.095

B¸15
n,C

0.056 0.084 0.049 0.092 0.049 0.093

Table 3
Empirical power for uncorrected test statistics

n Test ARFIMA(0, d, 0) ARFIMA(0, d, 0) White noise#
di!erenced AR(l)

d"!0.10 d"0.10
5% 10% 5% 10% 5% 10%

C<M
n

0.138 0.231 0.151 0.233 0.074 0.120
100 B¸5

n
0.067 0.146 0.103 0.168 0.055 0.103

B¸15
n

0.055 0.101 0.076 0.115 0.014 0.077

C<M
n

0.578 0.716 0.672 0.773 0.134 0.232
500 B¸5

n
0.416 0.571 0.581 0.679 0.132 0.236

B¸15
n

0.233 0.367 0.453 0.566 0.105 0.192

In Tables 3 and 4, we compare the empirical power of the uncorrected and
corrected versions of the three statistics, respectively. The power calculations
were made when the data was generated by the following two alternative
models:

(i) A fractionally integrated model (ARFIMA(0, d, 0)) given by
(1!B)dX

t
"u

t
, where Mu

t
N are i.i.d. N(0, 1). For the simulations, we chose two

values of d, !0.1 and 0.1.
(ii) The sum of white noise and the "rst di!erence of a stationary autoregres-

sive process of order one. i.e. X
t
"v

t
#>

t
!>

t~1
, where >

t
"0.85>

t~1
#u

t
.

The vector (u
t
, v

t
) was chosen to be a sequence of independent bivariate normal

random variables with mean zero and variance covariance matrix given by
diag(p2

u
, 1). The value of p2

u
was chosen such that the share of the variance

of X
t

due to the mean reverting component >
t
!>

t~1
, given by

2p2
u
M(1#0.85)#2p2

u
N~1, was 1

2
.
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Table 4
Empirical power for corrected test statistics

n Test ARFIMA(0, d, 0) ARFIMA(0, d, 0) White noise#
di!erenced AR(l)

d"!0.10 d"0.10
5% 10% 5% 10% 5% 10%

C<M
n,C

0.117 0.204 0.158 0.247 0.056 0.117
100 B¸5

n,C
0.073 0.147 0.110 0.168 0.063 0.112

B¸15
n,C

0.059 0.099 0.077 0.130 0.047 0.075

C<M
n,C

0.550 0.698 0.691 0.787 0.140 0.245
500 B¸5

n,C
0.382 0.545 0.606 0.695 0.134 0.250

B¸15
n,C

0.225 0.369 0.451 0.559 0.112 0.207

From Table 4 it is seen that among the three statistics, the corrected CrameH r
von-Mises statistic almost always has the highest power against all the three
alternatives studied here. The gain in power for the CrameH r von-Mises statistic is
the most, however, against the fractionally integrated series, being as high as
17% when the sample size is 500. As discussed earlier, this was to be expected,
since, for such models, the individual correlations are small in magnitude
even though they decay very slowly to zero. Surprisingly, against the frac-
tionally integrated alternative, the Box}Ljung}Pierce statistic at lag 15 has
lower power than that at lag 5, even though it uses information from correla-
tions upto a greater number of lags. Again, this might be due to the small
magnitude of the individual correlations. When the alternative is the sum of
white noise and the "rst di!erence of a stationary autoregressive process, both
C<M

n,C
and B¸5

n,C
have comparable power, which is slightly higher than that of

B¸15
n,C

.
By comparing Tables 3 and 4, we also see that the power of the uncorrected

and corrected versions of the statistics is virtually the same for the three
alternatives considered. Thus, using the corrected statistics does not result in
a loss of power when the data is conditionally homoscedastic.

From this small Monte Carlo study, it is clear that correcting the CrameH r
von-Mises statistic is essential when the data are conditionally hetero-
scedastic martingale di!erences. Failure to account for the conditional
heteroscedasticity can result in serious distortions in the size of the tests.
Furthermore, there does not seem to be any distortion in either size or
power, when using the corrected statistics for conditionally homoscedastic
data. In addition, the corrected CrameH r von-Mises statistic has much higher
power than the Box}Ljung}Pierce statistic against fractionally integrated
processes.
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Table 5
Tests for weekly CRSP returns (1962}1985)

C<M
n

C<M
n,C

Value-weighted 0.857 0.533
Equal-weighted 11.213 5.988

Asymptotic critical values
5% 0.46
1% 0.74

5. Application to stock prices

In this section, we apply our results to some time series of stock returns. The
series that we analyse are weekly #uctuations for two CRSP NYSE-AMEX
aggregate porfolios and also monthly returns on the CRSP-NYSE. Both of these
data sets were analyzed in Durlauf (1991).

The "rst data sets consists of 1216 weekly returns on value-weighted and
equal-weighted CRSP NYSE-AMEX portfolios from September 6, 1962 to
December 26, 1985. Following Durlauf (1991), the weekly returns were com-
puted using closing Wednesday prices. If the exchange was closed on a Wednes-
day, the Thursday price was used and if the exchange was also closed on
Thursday, the previous Tuesday price was used. An examination of the sample
autocorrelations of the squared returns (not presented here) showed that condi-
tional heteroscedasticity is present in both the series. In Table 5 we report values
of the C<M test statistic (C<M

n
) as well as the corrected C<M statistic

(C<M
n,C

) for both these series. As can be seen from the table, we can reject the
null hypothesis of zero correlation at the 1% level of signi"cance for both the
series, based upon the C<M statistic. The evidence is overwhelming in the case
of the equal weighted returns. However, the corrected C<M statistics for both
the series are much smaller. We are no longer able to reject the null hypothesis at
the 1% level of signi"cance for the value weighted returns. As a matter of fact,
using the tables provided in Anderson and You (1996), one "nds that the p-value
for the corrected C<M statistic is between 2.5% and 5%. There is still strong
evidence against the null for the equal-weighted returns however.

The second data set consisted of 780 monthly returns on the CRSP-NYSE
value-weighted and equal-weighted portfolios from January 1926 to December
1990. As before, examination of the sample autocorrelations of the squared
returns (not presented here) showed the presence of conditional heteroscedastic-
ity in both the series. In Table 6, we report values of the C<M test statistic as
well as the corrected C<M statistic for these series. The uncorrected C<M
statistic leads to rejection of the null hypothesis at the 1% level of signi"cance
for both the series. However, as before, the corrected C<M statistics are much
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Table 6
Tests for monthly CRSP returns (1926}1990)

C<M
n

C<M
n,C

Value-weighted 1.022 0.348
Equal-weighted 2.237 0.563

Asymptotic critical values
5% 0.46
1% 0.74

smaller and we can no longer reject the null hypothesis at the 5% level for the
value-weighted returns. There is some evidence against the null for the equal-
weighted returns, though the associated p-value obtained from Anderson and
You (1996) is greater than 2.5%.

6. Conclusions

We have shown that the distribution of the sample spectral distribution
function for a white noise series is a!ected by the presence of conditional
heteroscedasticity. The asymptotic distribution depends on the covariance
structure of the second moments of the series. This causes test statistics based on
the sample spectral distribution, such as the CrameH r von-Mises statistic, to have
heavily right skewed distributions, which will lead to over-rejection of the
martingale hypothesis in favour of mean reversion. This phenomenon is con-
"rmed by Monte Carlo simulations. A non-parametric correction to the test
statistics is proposed to account for the conditional heteroscedasticity. The
corrected version of the CrameH r von-Mises statistic is shown to have an
asymptotic distribution una!ected by conditional heteroscedasticity. A Monte
Carlo study of the corrected version of the CrameH r von-Mises statistic shows
that the "nite sample distribution behaviour is quite satisfactory for samples as
small as a 100 observations. An empirical application to stock returns shows
that evidence against the null hypothesis of the random walk can be consider-
ably weakened after using the corrected test and accounting for conditional
heteroscedasticity.
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Appendix. (Technical)

Proof of Lemma 1. Since Mh
t
N is a Gaussian stationary series with zero mean, it

can be expressed as h
t
"+=

j/0
a
j
u
t~j

, where +=
j/0

a2
j
(Rand Mu

t
N is a sequence

of independent standard normal variables. Furthermore, Mu
t
N and Mv

t
N will also

be independent. It is trivial to check that Me
t
N is a martingale di!erence and thus

satis"es (i) of Condition A. Furthermore, by using the fact that EMexp(a>)N"
expM0.5a2<ar(>)N for a zero mean Gaussian random variable >, we get
p2
0
,E(e2

t
)"p2

v
expM2+=

j/0
a2
j
N(R, thus verifying condition (ii). Now, by

Lemma 3.5.8 and Theorem 3.5.8 of Stout (1974), z
t
,E(e2

t
DF

t~1
)"

p2
v
exp(2a2

0
) exp(2+=

j/1
a
j
u
t~j

) is an ergodic sequence with mean E(z2
t
)"

p2
0
(R. Hence, by Theorem 3.5.7 of Stout (1974), lim

n?=
n~1+n

t/1
z
t
"

lim
n?=

n~1+n
t/1

E(e2
t
DF

t~1
)"p2

0
, thereby satisfying (iii). Since Me

t
N is a station-

ary sequence, (iv) is satis"ed with c"1 and ;"e
1
. The stationarity of Me

t
N

coupled with the existence of its eighth moment also guarantees (v). By Lemma
3.5.8 and Theorem 3.5.8 of Stout (1974), e

t~r
e
t~s

E(e2
t
DF

t~1
)"e

t~r
e
t~s

z
t
is a sta-

tionary ergodic series for any r*1, s*1 and hence by Theorem 3.5.7 of Stout
(1974), assumption (vi) is also satis"ed. The fact that Mv

t
N is an independent zero

mean series with "nite eighth moment and also independent of Mh
t
N guarantees

that assumptions (vii) and (viii) are met. Hence, the stochastic volatility model (2)
satis"es Condition A.

Proof of Lemma 2. Under the conditions of Lemma 2, it follows by Theorem 2
and the Corollary to Theorem 3 of Nelson (1990), that e

t
is a stationary ergodic

martingale di!erence with "nite eighth moments. Thus, Me
t
N immediately satis-

"es assumptions (i), (ii), (iv), (v) and (viii) of Condition A. By Theorem 2 of
Nelson (1990), p2

t
is stationary and ergodic and can be expressed as

p2
t
"uC1#

=
+
k/1

k
<
i/1

(b#av2
t~i

)D. (A.1)

Hence, by Theorem 3.5.7 of Stout (1974), assumptions (iii) and (vi) of Condition
A are also satis"ed. It remains now to show that assumption (vii) of Condition
A also holds for this model. For any q, 2)q)8, consider E(<q

i/1
esi
ti
), where

the s
i

are non-negative integers such that at least one s
i

is exactly one and
+

i
s
i
)8. We assume without loss of generality that t

1
't

2
'2't

q
. Then,

there is some p, 1)p)q, such that s
i
"2j

i
for 1)i(p and s

p
"2j

p
#1,

where j
i
are non-negative integers. Thus,

EA
q

<
i/1

esi
tiB"EAG

q
<

i/p`1

esi
tiHEC

p
<
i/1

esi
ti

DF
tp~1

]B. (A.2)
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But

EC
p
<
i/1

esi
ti

D F
tp~1

]"ECA
p~1
<
i/1

e2ji
ti Be2jp`1

tp KFtp~1D
"p2jp`1

tp
ECA

p~1
<
i/1

e2ji
ti Bv2jp`1

tp
DF

tp~1
]. (A.3)

From (A.1) and (A.3) it is clear that every term in (<p~1
i/1

e2ji
ti

)v2jp`1
tp

consists of an
odd power of v

tp
multiplied by some function of all the other v

t
. Each such term

has an expectation of zero since the process Mv
t
N is independent and symmetric

around zero. Furthermore, the conditional expectation of all such terms is still
zero by independence. Hence, E[<p

i/1
esi
ti

D F
tp~1

]"0, which by (A.2) implies
that (vii) of Condition A holds.

Proof of Theorem 3.1. Since ;
n,w

( ) ) is location and scale invariant, we will
assume henceforth, without loss of generality, that E(X

t
)"0 and <ar(X

t
)"1.

Note that ;
n,w

can be written as

;
n,w

(t)"
1

p( 2
J2

p
n~1
+
j/1

n1@2c(
j
w
n
( j)

sin jpt

j
, t3[0, 1],

where c(
j
"p( 2o(

j
. We will "rst prove the weak convergence of p( 2;

n,w
(t) to ;(t).

Since p lim
n?=

p( 2"1, the result will then also hold for ;
n,w

(t).
Expanding c(

j
for every j, we can express p( 2;

n,w
as

p( 2;
n,w

(t)"
4
+
p/1

¹
n,p

(t), t3[0, 1], (A.4)

where

¹
n,p

(t)"
J2

p

n~1
+
j/1

n1@2c(
j,p

w
n
( j)

sin jpt

j

and c(
j,1

"n~1+n
t/j`1

X
t
X

t~j
, c(

j,2
"n~1XM +n

t/j`1
X

t
, c(

j,3
"n~1XM +n~j

t/1
X

t
and

c(
j,4

"n~1(n!j)XM 2. Our "rst step is to prove the weak convergence of ¹
n,1

(t) to
;(t). In order to do this, it is su$cient (see Theorems 8.1 and 8.2 of Billingsley,
1968) to establish the following three conditions:

(i) For any d'0, & m'0 such that P(D¹
n,1

(0)D'd)(m ∀n*1.
(ii) (¹

n,1
(t
1
),¹

n,1
(t
2
),2,¹

n,1
(t
k
)) DP (;(t

1
),;(t

2
),2,;(t

k
)) for any "nite set

(t
1
, t

2
,2, t

k
).

(iii) For every c' and g'0, &e3(0, 1) and an integer N
0

such that
P(sup

@p~t@:e D¹n,1
(t)!¹

n,1
(p)D'c)(g for all n'N

0
.
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Condition (i) holds trivially. We will demonstrate condition (ii) only for k"1
since the argument for general k follows by applying the CrameH r}Wold device.
To prove condition (ii), we write ¹

n,1
(t) as

¹
n,1

(t)"
J2

p

s
+
j/1

n1@2c(
j,1

w
n
( j)

sin jpt

j
#

J2

n
n~1
+

j/s`1

n1@2c(
j,1

w
n
( j)

sin jpt

j

,¹s
n,1

(t)#Rs
n,1

(t) (A.5)

for some integer s. From Theorem 2.1 and the fact that w
n
( j)P1 for "xed j, it

follows that for any "xed s,

¹s
n,1

(t) D
P ¹s

1
(t),

J2

p

s
+
j/1

g
j
Jq

jj

sin jpt

j
. (A.6)

Furthermore, though the series MX
t
N is not independent, assumption (vii) of

Condition A and the boundedness of w
n
( ) ) allow us to exactly retrace the steps

of Theorem 1 of Grenander and Rosenblatt (1957, p. 188) and conclude that for
su$ciently large s, Rs

n,1
(t) is small in probability uniformly in n and t. More

speci"cally, given d'0 and g'0, there exists an s and an N
0

such that for all
n'N

0
,

PA sup
t|*0,1+

DRs
n,1

(t)D'dB(g. (A.7)

Finally, we also have

¹s
1
(t) D
P;(t) (A.8)

as sPR. Eqs. (A.5)}(A.8) allow us to apply Proposition 6.3.9 of Brockwell and
Davis (1991) and conclude that condition (ii) is satis"ed. To prove condition (iii),
we note that

PA sup
@p~t@:e

D¹
n,1

(t)!¹
n,1

(p)D'cB
)PA sup

@p~t@:e
D¹s

n,1
(t)!¹s

n,1
(p)D'cB

#PA sup
@p~t@:e

DRs
n,1

(t)!Rs
n,1

(p)D'cB. (A.9)

Given c'0 and g'0, it follows from Eq. (A.7) that there exists an s su$ciently
large and an N

1
such that the second term on the right-hand side of (A.9) is less

than g/2 for all n'N
1
. For this "xed s, the sequence of probability measures
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associated with ¹s
n,1

( ) ) is tight and hence the "rst term on the right-hand side of
(A.9) can be made smaller than g/2 for all n'N

2
, for some N

2
. Thus, condition

(iii) holds for all n'max(N
1
,N

2
) and it follows that

¹
n,1

(t)N;(t), t3[0, 1]. (A.10)

We now proceed to prove that for 2)p)4, ¹
n,p

(t) converges weakly to zero.

Since JnXM "O
1
(1), it su$ces to prove the result for n~1@2XM ~1¹

n,p
(t). We will

only demonstrate the proof for p"2 since the same method applies in the other
cases. The result is obtained by verifying the three conditions stated earlier.
Condition (i) is again trivially satis"ed. As before, we will prove condition (ii)
only for k"1 since the general result follows by applying the CrameH r}Wold
device. For some integer s, we can write Q

n
(t)"n~1@2XM ~1¹

n,2
(t) as

Q
n
(t)"

J2

p
s
+
j/1

n~1@2bK
j
w
n
( j)

sin jpt

j
#

J2

p
n~1
+

j/s`1

n~1@2bK
j
w
n
( j)

sin jpt

j

,Qs
n
(t)#Rs

n
(t),

where bK
j
"n~1@2+n

t/j`1
X

t
. Since bK

j
"O

1
(1), it follows that for any "xed s,

p lim
n?=

Qs
n
(t)"0. (A.11)

Also, assumption (vii) of Condition A implies that E(bK 4
j
)"O(1). This fact and

the Cauchy}Schwarz inequality imply that

E(bK
i
bK
j
bK
k
bK
l
)"O(1)"O(n) (A.12)

for any i, j, k, l. Once again we can retrace the steps in Theorem 1 of Grenander
and Rosenblatt (1957, p. 188) and using (A.12) and the boundedness of w

n
( ) )

conclude that (A.7) holds for Rs
n
(t). By using Proposition 6.3.9 of Brockwell and

Davis (1991), we conclude that p lim
n?=

Q
n
(t)"0. Finally, condition (iii) can be

shown for Q
n
(t) in a manner similar to the one used for ¹

n,1
(t). Thus, we have the

weak convergence of Q
n
(t) (and hence of ¹

n,2
(t)) to zero.

Proof of Theorem 3.3. It is possible (see Anderson and You, 1996) to express
C<M

n,C
as

C<M
n,C

"

2

p2

n~1
+
j/1

n
a( 2
j
w2

n
( j)

j2
"

2

p2

s
+
j/1

n
a( 2
j
w2
n
( j)

j2
#

2

p2

n~1
+

j/s`1

n
a( 2
j
w2
n
( j)

j2

,¹s
n
#Rs

n
,

where s is sone integer. By assumptions (iii) and (iv) of Condition A, we have
p lim

n?=
p( 2"p2. See Tanaka (1996, pp. 81, 82). A similar argument, used in
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conjunction with assumptions (iv) and (vi) also gives, for "xed j,
p lim

n?=
(n!j)~1+n~j

t/1
(X

t
!XM )2(X

t`j
!XM )2"E(e2

t
e2
t`j

). Using these results,
it follows from Theorem 2.1 and the fact that w

n
( j)P1 for "xed j, that for "xed s,

¹s
n

D
P

2

p2

s
+
j/1

g2
j

j2
,

where Mg
j
N&i.i.d. N(0, 1). Also,

2

p2

s
+
j/1

g2
j

j2
D
P

2

p2

=
+
j/1

g2
j

j2

as sPR. Furthermore, it follows from (12) and the boundedness of w
n
( ) ), that

for any d'0

P(DRs
n
D'd))

2

p2

n~1
+

j/s`1

nE(a( 2
j
)
w2

n
( j)

j2
)M

n~1
+

j/s`1

j~2

for some constant M. Hence,

lim
s?=

lim
n?=

P(DRs
n
D'd)"0.

From Proposition 6.3.9 of Brockwell and Davis (1991), we thus get

C<M
n,C

D
P

2

p2

=
+
j/1

g2
j

j2
.

However

2

p2

=
+
j/1

g2
j

j2
"P

1

0

B2(t) dt

with probability 1, where B( ) ) is a Brownian bridge on [0, 1]. See Eq. (3.8) of
Anderson (1993).

Proof of Corollary 3.4. Since the test statistic is location and scale invariant, we
will assume throughout this proof, without loss of generality, that E(X

t
)"0 and

<ar(X
t
)"1. By Lemma 1, the assumptions of Condition A are satis"ed by this

model. To prove the result, we thus have to only verify that (12) of Theorem 3.3

holds for the process. For n!Jn(j)n!1, we get upon applying the
Cauchy Schwarz inequality

na( 2
j
"

n!j

n

[+n~j
t/1

(X
t
!XM )(X

t`j
!XM )]2

+n~j
t/1

(X
t
!XM )2(X

t`j
!XM )2

)

n!j

n
(n!j))1.

Thus, we have

sup
n~Jn:jxn~1

nE(a( 2
j
)(1. (A.13)
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The theorem is proved if

sup
1xjxn~Jn

nE(a( 2
j
)(M(R (A.14)

for some constant M, which we show next. To do this, we verify that the
conditions of Theorem 5.4.3 of Fuller (1996) hold. We can write na( 2

j
as

na( 2
j
"(n!j) f (Z

j,n
,>

j,n
), (A.15)

where f (x, y)"y~1x2 for x2)y,

Z
j,n

"

1

Jn(n!j)

n~j
+
t/1

(X
t
!XM )(X

t`j
!XM )

and

>
j,n

"

1

n!j

n~j
+
t/1

(X
t
!XM )2(X

t`j
!XM )2.

Note that by the Cauchy}Schwarz inequality, f (Z
j,n

,>
j,n

) is a bounded function.
By expanding the product in the numerator of Z

j,n
, noting that

E(+l
t/1

X
t
)2"O(l) and applying the Cauchy}Schwarz inequality, it follows that

E(Z2
j,n

)"OA
1

n!jB (A.16)

for 1)j)n!Jn.
Expanding the squared term in the numerator of >

j,n
and letting

q
j
"E(X2

t
X2

t~j
), we can write >

j,n
!q

j
as

>
j,n

!q
j
"

1

n!j

n~j
+
t/1

(X2
t
X2

t`j
!q

j
)#R

j,n
,

where

R
j,n

"

1

n!j

]G
XM 2+n~j

t/1
X2

t
!2XM +n~j

t/1
X2

t
X

t`j
#XM 2+n~j

t/1
X2

t`j
!2XM 3+n~j

t/1
X

t`j

#XM 4(n!j)!2XM +n~j
t/1

X
t
X2

t`j
!2XM 3+n~j

t/1
X

t
#4XM 2+n~j

t/1
X

t
X

t`jH
is the remainder term. We "rst demonstrate that

E(R2
j,n

)"OA
1

n!jB. (A.17)
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By assumption (vii) of Condition A, it follows that both E(+n~j
t/1

X2
t
X

t`j
)2 and

E(+n~j
t/1

X
t
X2

t`j
)2 are O(n!j). By assumption (viii) of Condition A, it follows

that both E(+n~j
t/1

X2
t`j

)2 and E(+n~j
t/1

X2
t
)2 are O((n!j)2) Also, E(XM 2s)"O(n~s)

for 1)s)4. These facts together with the Cauchy}Schwarz inequality imply
Eq. (A.17). We next show that

EA
1

n!j

n~j
+
t/1

(X2
t
X2

t`j
!q

j
)B

2
"OA

1

n!jB. (A.18)

We have

EA
1

n!j

n~j
+
t/1

(X2
t
X2

t`j
!q

j
)B

2

"OA
1

n!jB
#

2

(n!j)2
n~j~1

+
t/1

n~j
+

l/t`1

E(X2
t
X2

t`j
X2

l
X2

l`j
!q2

j
). (A.19)

It can be easily shown that under the assumed model, q
j
"p4

v
exp(4p2

h
#4c

j
),

where p2
v
"<ar(v

t
), p2

h
"<ar(h

t
) and c

j
"Cov(h

t
, h

t~j
). Furthermore, one can

also show that

E(X2
t
X2

t`j
X2

l
X2

l`j
)"p8

v
exp(8p2

h
#8c

j
#8c

l~t
#4c

@l~t~j@
#4c

l~t`j
).

Thus,

DE(X2
t
X2

t`j
X2

l
X2

l`j
!q2

j
)D

"p8
v
exp(8p2

h
#8c

j
) D exp(8c

l~t
#4c

@l~t~j@
#4c

l~t`j
)!1D

)M
1
D8c

l~t
#4c

@l~t~j@
#4c

l~t`j
D

"O(jl~t)#O(j@l~t~j@)#O(jl~t`j) (A.20)

for some constant M
1
, where the last inequality follows from the assumption

that a
j
"O(jj) for some 0(j(1. Using the bound (A.20) in Eq. (A.19) gives us

EA
1

n!j

n~j
+
t/1

(X2
t
X2

t`j
!q

j
)B

2
"OA

1

n!jB
which in conjunction with (30) proves that

E(>
j,n

!q
j
)2"OA

1

n!jB. (A.21)

From Eqs. (A.16) and (A.21), it follows that condition (i) of Theorem 5.4.3 of
Fuller (1996) is satis"ed with a

n,j
"(n!j)~1@2, a"1 and s"2. Since
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q
j
"p4

v
exp(4p2

h
#4c

j
), we have 0(C

1
(inf

jw1
q
j
)sup

jw1
q
j
(C

2
(R for

some constants C
1

and C
2
. De"ning the set S

j
by S

j
"Mx, y : DxD)1,

Dy!q
j
D)C

1
N and noting that the function f (x, y) is a bounded function, we see

that the remaining conditions of Theorem 5.4.3 of Fuller (1996) are satis"ed and
thus

E f (Z
j,n

,>
j,n

)"OA
1

n!jB (A.22)

for 1)j)n!Jn. Eq. (A.14) now follows from Eqs. (A.22) and (A.15).
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