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SUMMARY. Let X(t), t ≥ 0, be a real or vector valued stochastic process and T a

random killing-time of the process which generally depends on the sample function. In the

context of survival analysis, T represents the time to a prescribed event (e.g. system failure,

time of disease symptom, etc.) and X(t) is a stochastic covariate process, observed up to

time T . The conditional distribution of T , given X(t), t ≥ 0, is assumed to be of a known

functional form with an unknown vector parameter θ; however, the distributions of X(·) are

not specified. For an arbitrary fixed α > 0 the observable data from a single realization of T

and X(·) is min(T, α), X(t), 0 ≤ t ≤ min(T, α). For n ≥ 1 the maximum likelihood estimator

of θ is based on n independent copies of the observable data. It is shown that solutions of

the likelihood equation are consistent and asymptotically normal and efficient under specified

regularity conditions on the hazard function associated with the conditional distribution of T .

The Fisher information matrix is represented in terms of the hazard function. The form of the

hazard function is very general, and is not restricted to the commonly considered cases where

it depends on X(·) only through the present point X(t). Furthermore, the process X(·) is a

general, not necessarily Markovian process.

1. Introduction

Let (Ω, P ) be a probability space, and let the following family of random
variables be defined on it: a real or vector valued stochastic process X(t), t ≥ 0,
and a nonnegative real random variable T with the property

P (T > t
∣∣X(s), s ≥ 0) = P (T > t

∣∣X(s), 0 ≤ s ≤ t) . . . (1.1)

for all t > 0. Such a random variable is called a “killing-time” of the process.
The basic condition assumed here on the probability measure P is:
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For some integer m ≥ 1, there is an unknown parameter θ ∈ Rm such that the
conditional probability measure in (1.1) depends on θ: Pθ(T > t

∣∣X(s), s ≥ 0);
and the restriction of P to the sigma-field generated by X(s), s ≥ 0, does not
depend on θ.

The theme of this work is the estimation of the unknown parameter θ on
the basis of observations of T and the values of X(s), for s ≤ T . The latter
restriction on the values of X(·) is a consequence of the role of T as a time at
which the process is killed, so that it is not observable after that time. More
precisely, we prescribe a constant α, 0 < α ≤ ∞, such that a single observation
of the process is defined as

min(T, α), X(s), 0 ≤ s ≤ min(T, α). . . . (1.2)

Let (Ti, Xi(s), s ≥ 0), i = 1, . . . , n, be n independent copies of (T, X(s), s ≥ 0);
then, the set of independent copies of the subprocess (1.2) is the observation set.
The introduction of the constant α allows the possibility of a bounded sampling
interval.

The object of this investigation is to determine the conditions on the family
of measures P such that the maximum likelihood estimator θ̂ of θ is consistent
and asymptotically normal and efficient. The results are guided by the fact that
the likelihood function of a single observation (1.2) factors into a product of
the conditional likelihood of T , given the X-values, and the marginal likelihood
of the X-values, where the latter does not depend on θ. Thus the likelihood
function is essentially based on the conditional density obtained from (1.1).

We will consider the case where the conditional distribution of T has a smooth
density function. We define the conditional hazard function of T as

q(t, X(·), θ) = −
d
dtPθ(T > t

∣∣X(s), s ≥ 0)
Pθ(T > t

∣∣X(s), s ≥ 0)
. . . . (1.3)

Under the assumption (1.1), q(t, X(·), θ) depends on X(·) only for X(s), 0 ≤
s ≤ t. It follows from the definition of q that the conditional density of T , which is
the essential factor of the single-observation likelihood function, is representable
as

q(t, X(·), θ) exp
(
−
∫ t

0

q(s, X(·), θ) ds

)
. . . . (1.4)

Therefore, the conditions for the properties of the maximum likelihood estimator
are stated in terms of conditions on q.

This work was motivated by the estimation issues arising in the area of
survival analysis concerned with the modelling of the hazard of failure as a
function of a “marker”, a time-varying covariate represented by a stochastic
process. Here the “killing-time” is identified as the “survival-time”. Knowledge
of the hazard function q and the current and past values of the marker process
can, in principle, yield survival probabilities for the future.
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Marker models have been applied in medicine to study the relationship of sur-
vival to the clinically observable variables. Some recent papers on the estimation
and other aspects of marker models in the context of studying the progression
of AIDS are Fusaro et al (1993), Jewell and Kalbfleisch (1992), Self and Pawitan
(1992), and Tsiatis et al (1995). Fusaro et al (1993) consider nonparametric
estimation of marker-dependent hazard functions. Jewell and Kalbfleisch (1992)
discuss a number of methodological issues associated with marker models in
medicine. Self and Pawitan (1992), Tsiatis et al (1995), and Yashin and Man-
ton (1997), consider estimation in marker models when the marker process is
observed periodically.

Marker-dependent hazard functions have also emerged recently as an im-
portant ingredient of a new class of models in finance for pricing financial in-
struments subject to the risk of default (see Lando (1996) and the references
therein). One of the major issues in this class of models is the specification
and estimation of the hazard-rate of default as a function of time-varying state
variables, represented by stochastic processes. Here the “killing-time” is identi-
fied as the time of default and the stochastic process X(t), t > 0 describes the
evolution of a state variable known to influence the likelihood of default. For
example in Jarrow et al (1997), the hazard-rate of default of a defaultable bond
is modelled as a function of its credit rating which is represented by a continuous
time Markov chain.

The main result, Theorem 4.1, specifies the conditions on the hazard func-
tions that are sufficient for the asymptotic properties of θ̂, the maximum likeli-
hood estimator of θ. We show that if the hazard function q(t, x(·), θ), which is,
of course, a stochastic process, satisfies specified regularity conditions, then the
conditions in the hypothesis of the classical theorem of Cramer (1946, p. 500) are
valid, and so, by the latter theorem, θ̂ is consistent and asymptotically normal
and efficient. The limiting covariance matrix is also expressed as a functional
of q. Our result is related to the general result in Andersen, Borgan, Gill and
Keiding (1992, p. 420–426) on maximum likelihood estimation of parametrically
specified intensity processes. While it may be possible to establish the asymp-
totic properties of θ̂ in our case by showing that our set of sufficient conditions
implies the set of conditions given in Andersen et al (1992, Condition VI.1.1,
p. 420), we chose instead the simpler and more natural route of directly verifying
Cramer’s conditions. Our results employ the classical central limit theorem, the
law of large numbers, and a simple stochastic integral with respect to a process
with conditionally orthogonal increments.

Section 2 contains an analysis of the likelihood function of a single realiza-
tion (1.2). The logarithmic derivatives with respect to the parameters (θj) are
represented as stochastic integrals with respect to a process with conditionally
orthogonal increments.

Section 3 restates Cramer’s theorem in a form that is more directly applicable
to our framework. Section 4 contains the main result, specifying the conditions
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on the hazard function that are sufficient for the asymptotic properties of θ̂.
Section 5 includes several new examples illustrating the application of The-

orem 4.1. In the examples it is assumed that the hazard function depends on
X(s), 0 ≤ s ≤ t only through X(t). Under additional assumption that X(t) is a
Markov process the limiting covariance matrix is explicitly calculated in several
examples using the results on the joint distribution of (X(T ), T ) obtained in
Berman and Frydman (1996).

Statistical inference for θ̂ when a single observation of the process consists
of a subset of (1.2), including the case when a marker process is observed only
periodically, will be considered in a forthcoming paper.

2. Likelihood Function

Let T be a killing-time for a process X such that the conditional distribu-
tion of T given X(·) depends on an unknown parameter θ. Suppose that the
conditional density,

p(t, X(·), θ) = − d

dt
Pθ(T > t

∣∣X(s), s ≥ 0) . . . (2.1)

exists for each t > 0, almost surely. If the finite-dimensional distributions of
X(·) have densities, then, for any finite set t0, t1, . . . tk of positive numbers, the
joint density of (T, X(tj), j = 0, 1, . . . , k) at a point (t, xj , j = 0, 1, . . . , k) is of
the form

f(t, x0, x1, . . . , xk; θ) = E
[
p(t,X(·), θ)

∣∣X(tj) = xj , j = 0, 1, . . . , k
]
h(x0, . . . , xk),

. . . (2.2)
where h(x0, . . . , xk) is the joint density of X(tj) at xj , j = 0, 1, . . . k, and does
not depend on θ. The function f(T,X(t0), . . . , X(tk); θ) is the likelihood function
of a single observed realization (T, X(t0), . . . , X(tk)). The likelihood function
for a sample of n independent copies is a product of the corresponding single-
realization likelihood functions (2.2). In the method of maximum likelihood, the
function h in (2.2) may be ignored because it does not depend on θ. Therefore,
it suffices to represent the single-realization likelihood as

E
[
p(t, X(·), θ)

∣∣X(tj), j = 0, 1, . . . , k
]
. . . . (2.3)

at t = T .
Under the assumption (1.1) and the definition (2.1), it follows that p(t, X(·), θ)

is measurable with respect to the sigma-field generated by X(s), 0 ≤ s ≤ t;
therefore,

E(p(t, X(·), θ)
∣∣X(s), 0 ≤ s ≤ t) = p(t, X(·), θ). . . . (2.4)
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For arbitrary t > 0, the conditional hazard function (1.3) is

q(t, X(·), θ) = − d

dt
log
∫ ∞

t

p(s, X(·), θ) ds; . . . (2.5)

then, by (1.4),

log p(t, X(·), θ) = log q(t, X(·), θ)−
∫ t

0

q(s, X(·), θ) ds. . . . (2.6)

Lemma 2.1. Define the random functions

N(t) = 1(T ≤ t), Y (t) = 1(T > t), . . . (2.7)

and

M(t) = N(t)−
∫ t

0

q(s, X(·), θ)Y (s) ds. . . . (2.8)

If ∫ t

0

E [q(s, X(·), θ)]2 ds < ∞, for all t > 0, . . . (2.9)

then M(t), t ≥ 0, has, under the conditional probability measure P (·
∣∣X(s),

s ≥ 0), orthogonal increments, and, with probability 1,

E
[
(M(t)−M(s))2

∣∣X(u), u ≥ 0
]

=
∫ t

s

p(u, X(·), θ) du . . . (2.10)

for 0 ≤ s < t.

Proof. By the definition (2.7) of N and Y :

E
[
(N(t)−N(s))2

∣∣X(·)
]

= E
[
N(t)−N(s)

∣∣X(·)
]

= P
(
s < T ≤ t

∣∣X(·)
)

=
∫ t

s

p(u, X(·), θ) du;

and

E

{
N(t)

∫ t

s

q(u, X(·), θ)Y (u) du
∣∣X(·)

}
= E

{∫ t

s

q(u, X(·), θ) 1(u < T ≤ t) du
∣∣X(·)

}
=
∫ t

s

q(u, X(·), θ)
∫ t

u

p(v, X(·), θ) dv du;
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and

E

[(∫ t

s

q(u, X(·), θ)Y (u) du

)2 ∣∣∣X(·)

]

= 2E

{∫ t

s

(∫ t

u

q(v, X(·), θ) Y (v) dv

)
q(u, X(·), θ) du

∣∣∣X(·)
}

= 2
∫ t

s

q(u, X(·), θ)
∫ t

u

p(v, X(·), θ) dv du.

The expectations are defined by virtue of (2.9). This confirms (2.10). The
result E M(t) ≡ 0 and the orthogonality of the increments follow by similar
calculations.

Suppose, for almost all sample functions X(·), that the last term in (2.6)
has partial derivatives with respect to the components θj of θ, and that the
differentiation may be done under the integral sign; then

∂

∂θj
log p(t, X(·), θ) =

∂

∂θj
log q(t, X(·), θ)

−
∫ t

0

∂

∂θj
log q(s, X(·), θ) q(s, X(·), θ) ds.

It follows that for almost all X(·), the score function (∂/∂θj) log p(t, X(·), θ) at
t = T is representable as∫ ∞

0

∂

∂θj
log q(s, X(·), θ) d M(s), . . . (2.11)

where the stochastic integral with respect to M(s) is well defined, by virtue of
Lemma 2.1, under the assumption∫ ∞

0

(
∂

∂θj
log q(s, X(·), θ)

)2

p(s, X(·), θ) ds < ∞. . . . (2.12)

3. Cramer’s Theorem on the Solutions of the Likelihood Equation

Let Y be a random vector or stochastic process, and let f(Y, θ) be the
likelihood function of a single realization of Y. Here f is a known functional
of (Y, θ), and θ = (θ1, . . . , θm) is an unknown real-vector parameter. As is
well-known in the theory of maximum likelihood, f is unique except for factors
that do not depend on θ. Let θ0 be the true value of θ, and let B be an
arbitrary neighborhood of θ0. Let Yi, i = 1, 2, . . . be independent copies of
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Y and put L(θ) =
∏n

i=1 f(Yi, θ), the likelihood function for the sample of n
independent realizations. The following result is equivalent to the vector version
of the classical theorem of Cramer (1946), page 500, on the consistency and
asymptotic normality of maximum likelihood estimators.

Lemma 3.1. Suppose that the following conditions hold: L.3.1. The partial

derivatives of log f, D(1) log f = (∂/∂θj) log f, D(2) log f = (∂2/∂θj ∂θh) log f,
and D(3) log f = (∂3/∂θj ∂θh ∂θ`) log f exist and are continuous for θ ∈ B,
almost surely for j, h, ` = 1, . . . m. L.3.2. We have

E

(
∂

∂θj
log f

)
θ=θ0

= 0, E

(
∂

∂θj
log f

)2

θ=θ0

< ∞, for j = 1, . . . ,m ;

. . . (3.1)
the matrix (σjh) =

∑
, where

σjh = E

[
∂

∂θj
log f

∂

∂θh
log f

]
θ=θ0

, j, h = 1, . . . ,m, . . . (3.2)

is strictly positive definite; and σjh is also equal to

−E

(
∂2 log f

∂θj ∂θh

)
θ=θ0

, . . . (3.3)

which is assumed to be finite.

L.3.3. There exists a real-valued functional H(Y) such that supθ∈B

∣∣D(3)

log f | ≤ H(Y), for all third-order partial derivatives and almost all Y, and
E H(Y) < ∞.

Then the system of likelihood equations (∂/∂θj) log L(θ) = 0, 1 ≤ j ≤ m,
has a solution θ̂, depending on n, such that θ̂ → θ0 in probability, for n → ∞,
and

√
n
(
θ̂ − θ0

)
d−→ N

(
0,
∑−1

)
, where

∑
is defined in L.3.2.

The subject of this paper is the maximum likelihood estimation of the un-
known parameter θ on the basis of the set of independent realizations of the
subprocess (1.2). As shown in Section 2, the unknown parameter θ enters the
likelihood function only through the conditional distribution of T , given the
observations on X(·). Hence, by the uniqueness of the likelihood function up
to factors that do not depend on θ, the single-realization likelihood function f
in the statement of Lemma 3.1 may be taken to be the function (2.3). The
logarithmic derivatives are representable in terms of the associated hazard func-
tions q by means of the stochastic integral (2.11). The conditions L.3.1–L.3.3 in
the hypothesis of Lemma 3.1 will be shown to be fulfilled under corresponding
conditions on the hazard functions.
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As in most applications of maximum likelihood, the matrix
∑

=
∑

(θ) is
generally unknown and has to be estimated from the same data used to estimate
θ. If the underlying process X(t) is specified so that

∑
(θ) can be determined

by mathematical analysis, then the natural estimator of
∑

is
∑

(θ̂), where θ̂ is
the estimator of θ.

∑
(θ̂) is called the parametric estimator. If X(t) is itself not

specified or if
∑

cannot be sufficiently identified as a function of θ, then it can
often be estimated by applying the law of large numbers as will be shown at the
end of Section 4. Such an estimator is called nonparametric.

4. Main Result

The sample data consists of a set of n independent copies of (1.2) for some
α > 0. The likelihood function of a single realization (1.2) is obtained by a
modification of (1.4) to account for the length α of the observation interval. In
view of the two possibilities, T ≤ α and T > α, we obtain the likelihood function
of one realization,

f(T, X(·), θ) = 1(T ≤ α) q(T, X(·), θ) exp

(
−
∫ T

0

q(s, X(·), θ) ds

)

+ 1(T > α) exp
(
−
∫ α

0

q(s, X(·), θ) ds

)
= (q(T, X(·), θ))1(T≤α) exp

(
−
∫ α

0

1(T > s) q(s, X(·), θ) ds

)
;

hence

log f = 1(T ≤ α) log q(T, X(·), θ)−
∫ α

0

1(T > s) q(s, X(·), θ) ds. . . . (4.1)

If the derivative of
∫ α

0
1(T > s) q(s, X(·), θ) ds with respect to θj can be

taken inside the integral, then

∂
∂θj

log f = 1(T ≤ α) ∂
∂θj

log q(T, X(·), θ)
−
∫ α

0
1(T > s) q(s, X(·), θ) ∂

∂θj
log q(s, X(·), θ) ds.

. . . (4.2)

The following theorem furnishes conditions on q which are sufficient for the
conditions on the function f assumed in Lemma 3.1.

Theorem 4.1. Assume the following three sets of conditions: L.4.1. Let

D(i), i = 1, 2, 3 be the differential operators defined in L.3.1. Then for almost
all realizations (T, X(·)) the functions D(i) log q(T, X(·), θ)
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and D(i)
∫ α

0
1(T > s) q(s, X(·), θ) ds, i = 1, 2, 3, exist and are continuous

for θ ∈ B, and furthermore,

D(i)

∫ α

0

1(T > s) q(s, X(·), θ) ds =
∫ α

0

1(T > s) D(i) q(s, X(·), θ) ds.

L.4.2. For every j, h = 1, . . . ,m, and θ ∈ B.∫ α

0

E

{∣∣∣∣ ∂

∂θj
log q(s, X(·), θ)

∣∣∣∣2 p(s, X(·), θ)

}
ds < ∞,

and ∫ α

0

E

{∣∣∣∣ ∂2

∂θj ∂θh
log q(s, X(·), θ)

∣∣∣∣2 p(s, X(·), θ)

}
ds < ∞;

and the following (nonnegative definite) matrix is strictly positive definite at
θ = θ0:∫ α

0
E
{

∂
∂θj

log q(s, X(·), θ) ∂
∂θh

log q(s, X(·), θ) · p(s, X(·), θ)
}

ds,

j, h = 1, . . . ,m.
. . . (4.3)

L.4.3. There are nonnegative Borel functions H1(t, X(·)) and H2(t, X(·))
such that for all third-order derivatives D(3), and all θ ∈ B, and all 0 ≤ t ≤ α,
and almost all sample functions X(·), we have the inequalities∣∣∣D(3) log q(t, X(·), θ)

∣∣∣ ≤ H1(t, X(·)),∣∣∣D(3) q(t, X(·), θ)
∣∣∣ ≤ H2(t, X(·)),

∫ α

0

E
{
H1(t, X(·)) p(t, X(·), θ0)

}
dt < ∞,∫ α

0

E

{
H2(t, X(·))

∫ ∞

t

p(s, X(·), θ0)
}

dt < ∞.

Then the conditions L.3.1, L.3.2, and L.3.3 of Lemma 3.1 hold for f = f(T, X(·), θ),
and with

∑
as the matrix with entries (4.3).

Proof. It is obvious that L.4.1 implies L.3.1 and that L.4.3 implies L.3.3 in
the case where log f is given by (4.2).

There remains only to prove L.3.2. Under L.4.1, ∂
∂θj

log f in (4.2) is repre-
sentable as ∫ α

0

∂

∂θj
log q(t, X(·), θ) dM(t), . . . (4.4)
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where M(t) is given by (2.8), which is analogous to (2.11) except that the upper
limit α is inserted in the place of ∞. By the conditional orthogonality of the
increments of M and formula (2.10), the expected value of (4.4) is equal to 0,
and the variance is equal to the (finite) integral (4.3) with j = h. This confirms
(3.1).

For the confirmation of the positive definiteness of
∑

, observe that, by the
representation (4.4) of (∂/∂θj) log f , the covariance σjh in (3.2) is equal to

E

{∫ α

0

∂

∂θj
log q(t, X(·), θ) dM(t)

∫ α

0

∂

∂θh
log q(t, X(·), θ) dM(t)

}
at θ = θ0, which is equal to the integral (4.3). The resulting matrix is, by
hypothesis, strictly positive definite.

Finally, we verify (3.3). Recall the general result from elementary calculus
for an arbitrary smooth function f of several variables:

∂2f

∂θj ∂θh
= f

{
∂2 log f

∂θj ∂θh
+

∂ log f

∂θj

∂ log f

∂θh

}
. . . (4.5)

From (4.2) it follows under condition L.4.1 that

∂2 log f

∂θj ∂θh
= 1(T ≤ α)

∂2 log q(T, X(·), θ)
∂θj ∂θh

−
∫ α

0

1(T > s)
∂2 q(s, X(·), θ)

∂θj ∂θh
ds ,

which, by (4.5) with q in the place of f , is equal to

1(T ≤ α)
∂2 log q(T, X(·), θ)

∂θj ∂θh
−
∫ α

0

1(T > s) q(s, X(·), θ){
∂2 log q(s, X(·), θ)

∂θj ∂θh
+

∂ log q(s, X(·), θ)
∂θj

∂ log q(s, X(·), θ

∂θh

}
ds .

By the definition (2.8) of M(t), the previous sum is representable as

− 1(T ≤ α)
∂ log q(T, X(·), θ)

∂θj
· ∂ log q(T, X(·), θ)

∂θh

+
∫ α

0

{
∂2 log q(s, X(·), θ)

∂θj ∂θh
+

∂ log q(s, X(·), θ)
∂θj

· ∂ log q(s, X(·), θ)
∂θh

}
dM(s).

By Lemma 2.1, it follows that

E

{
∂2 log f

∂θj ∂θh

∣∣∣∣X(·)

}
= − E

{
1(T ≤ α)

∂ log q(T, X(·), θ)
∂θj

∂ log q(T, X(·), θ)
∂θh

∣∣∣∣X(·)
}

.

By taking expectations over X(·), we see that the preceding expression becomes
the entry (j, h) of the matrix defined by (4.3). This operation is justified under
L.4.2.
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The element (4.3) of
∑

is representable as

σjh = E

{
1(T ≤ α)

∂

∂θj
log q(T, X(·), θ)

∂

∂θh
log q(T, X(·), θ)

}
. . . . (4.6)

If (Ti, Xi(·), i = 1, . . . , n) are the independent copies of (T, X(·)) used in the
estimation procedure, then, by the Law of Large Numbers,

1
n

n∑
i=1

1(Ti ≤ α)
∂

∂θj
log q(Ti, Xi(·), θ)

∂

∂θh
log q(Ti, Xi(·), θ)

is a consistent nonparametric estimator of σjh. If the distributions of X(·)
are known and σjh can be explicitly calculated as a function σjh(θ), then, by
Theorem 4.1, σjh(θ̂) is a consistent parametric estimator of σjh(θ) if the latter
function is continuous.

5. Examples

We consider the class of hazard functions q where the dependence on X(s),
0 ≤ s ≤ t, is limited to X(t) alone: There is a real-valued function q(t, x, θ)
such that q(t, X(·), θ) = q(t, X(t), θ). Other models, where the dependence
of q(t, X(·), θ) on X(·) is through some functional of X(s), 0 ≤ s ≤ t, such
as X(t − a) (a > 0) or

∫ t

0
X(s) ds, are certainly plausible. However, in most

applications the dependence of q on X(s), 0 ≤ s ≤ t, is limited to X(t) alone.
In particular we first take q to be of the form

q(t, x, θ) =
m∑

j=1

θj qj(t, x) 1(x ∈ Jj), . . . (5.1)

where Jj , j = 1, . . . ,m, are disjoint Borel sets forming a decomposition of the
real line, (qj) are positive functions, and 1(·) is the indicator function. From the
relations

∂q

∂θj
= 1(x ∈ Jj) qj(t, x),

∂ log q

∂θj
= 1(x ∈ Jj)/θj ,

and from (4.2) it follows that the likelihood equation for θj has the solution

θ̂j =
∑n

i=1 1(Xi(Ti) ∈ Jj , Ti ≤ α)∑n
i=1

∫ α

0
1(Ti > s, Xi(s) ∈ Jj) qj(s, Xi(s)) ds

, . . . (5.2)

where (Ti, Xi(·)), i = 1, . . . , n are the independent observed realizations. From
the elementary form of ∂ log q/∂θj it is simple to formulate general conditions
under which Theorem 4.1 can be applied.
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The information matrix (σjh) in (4.6) takes the form

σjh = 1
θ2

j

P (T ≤ α, X(T ) ∈ Jj), for j = h,

= 0, for j 6= h.

According to the discussion following (4.6), the nonparametric estimator of σjj

is
1

n θ̂2
j

n∑
i=1

1 (Ti ≤ α, Xi(Ti) ∈ Jj) ,

where θ̂j is given by (5.2). The parametric estimator is obtained, under the
assumption that P (T ≤ α, X(T ) ∈ Jj) = Pθ (T ≤ α, X(T ) ∈ Jj) can be calcu-
lated as a function of θ, by using the estimator θ̂ in the place of θ0 :

θ̂−2
j Pθ̂ (T ≤ α, X(T ) ∈ Jj) . . . . (5.4)

If m = 1 in (5.1), then q(t, x, θ) = θq(t, x), and (5.2) and (5.3) assume the
simpler forms:

θ̂ =
∑n

i=1 1(Ti ≤ α)∑n
i=1

∫ α

0
1 (Ti > s) q(s, Xi(s)) ds

, . . . (5.5)

and
σ11 =

1
θ2

P (T ≤ α) . . . . (5.6)

Next we discuss the calculation of (5.3) and (5.6) in specific cases. In each
case it is easy to verify the conditions of Theorem 4.1. In Examples 5.1 and 5.2
we use the results on the joint distribution of (X(T ), T ) obtained in Berman
and Frydman (1996). Example 5.3 employs the results from Yashin (1985) and
Yashin and Manton (1997) on the formula for the marginal survival function of
T . In the final example q has a form different from (5.1).

Example 5.1. Let X(t), t ≥ 0, be a Poisson process with parameter λ.
Take q(t, x, θ) = θx; then, as shown by Berman and Frydman (1996),

P
(
T ≤ α

∣∣X(0) = i
)

= 1− exp
[
−λα− θαi +

λ

θ

(
1− e−θα

)]
and the parametric estimator of

∑
is obtained from this by (5.6).

Example 5.2. Suppose that X(t), t ≥ 0, is a continuous-time Markov
chain with state space S = (1, . . . ,m), matrix generator A, and the killing-rate
function q(t, x, θ) =

∑m
j=1 θj 1(x = j). Then, by (5.2),

θ̂j =
∑n

i=1 1 (Ti ≤ α, Xi(Ti) = j)∑n
i=1

∫ α

0
1 (Ti > s, Xi(s) = j) ds

,



186 simeon m. berman and halina frydman

and σjj(θθ) is given by (5.3). Put D = diag (θ1, . . . , θm); then, by the results of
Berman and Frydman (1996), for any h, j ∈ S,

P
(
T < α, X(T ) = j

∣∣X(0) = h
)

= θj

[(
I − eα(A−D)

)
(D −A)−1

]
hj

so that, for any initial distribution (πh) on S,

P (T < α, X(T ) = j) = θj

m∑
h=1

πh

[(
I − eα(A−D)

)
(D −A)−1

]
hj

.

This model is related to that of Jarrow, Lando and Turnbull (1997).

Example 5.3. Let X(t), t ≥ 0, be a Gaussian diffusion defined by

dX(t) = [a0(t) + a1(t) X(t)] dt + σ(t) dW (t), . . . (5.7)

where X(0) is a constant, and a0(t), a1(t), b(t) are known functions of time,
and define

q(t, x, θ) = θx2. . . . (5.8)

Yashin (1985) showed that in this case the distribution of X(t) conditioned on
T > t is also Gaussian with the mean and variance functions satisfying a set of
ordinary differential equations. This result combined with the general formula
in Yashin and Manton (1997) for the marginal survival function:

P (T > t) = exp
(
−
∫ t

0

E[q(u, X(u), θ)|T > u] du

)
makes the calculation of P (T > t) tractable in the model given by (5.7) and
(5.8). In particular, suppose that X(t) is a Brownian motion with variance
parameter σ2 (i.e. a0(t) = a1(t) ≡ 0, σ(t) = σ). Then the calculations give

P (T > t) =
(

cosh 2
√

θ σα
)−1/2

so that (5.6) is of the form

θ−2

[
1−

(
cosh 2

√
θ σα

)−1/2
]

.

This model is related to that of Yashin and Manton (1997).

Example 5.4. Consider the hazard function

q(t, x, θ) = a + (x− θ)2 ,
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where a > 0 is known and θ is a real-valued unknown parameter. (This is not
in the special class (5.1).) The likelihood equation based on the independent
realizations (Ti, Xi(·)), i = 1, . . . , n, is, by (4.2), equivalent to

θ =

∑n
i=1

∫ Ti∧α

0
Xi(s) ds−

∑n
i=1

{
Xi(Ti) 1(Ti≤α)
(Xi(Ti)−θ)2+a

}
∑n

i=1 (Ti ∧ α)−
∑n

i=1
1(Ti≤α)

(Xi(Ti)−θ)2+a

,

where T ∧ α = min(T, α). The latter is solvable by successive approximation.
By (4.6),

σ11 = 4E
[
(X(T )− θ) 1(T ≤ α)

(X(T )− θ)2 + a

]2
.

This model is related to that of Yashin and Manton (1997).
Remark 5.5. The hazard functions h0(t) + βX(t) and h0(t)(1 + βX(t))

were considered by Jewell and Kalbfleisch (1992) and Self and Pawitan (1992),
respectively. In their models β is an unknown parameter and h0(t) an unknown
function; thus, these are semi-parametric models. By contrast, our model is
purely parametric since the functional form of q is assumed to be given.
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