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1.  Introduction

Cointegration implies restrictions on the low-frequency dynamic behavior of multivariate

time series.  Thus, imposition of cointegrating restrictions has immediate implications for the

behavior of long-horizon forecasts, and it is widely believed that imposition of cointegrating

restrictions, when they are in fact true, will produce superior long-horizon forecasts.  Stock

(1995, p. 1), for example, provides a nice distillation of the consensus when he asserts that “if the

variables are cointegrated, their values are linked over the long run, and imposing this

information can produce substantial improvements in forecasts over long horizons.”  The

consensus stems from the theoretical result that long-horizon forecasts from cointegrated systems

satisfy the cointegrating relationships exactly and the related result that only the cointegrating

combinations of the variables can be forecast with finite long-horizon error variance.  Moreover,

it appears to be supported by a number of independent Monte Carlo analyses (e.g., Engle and

Yoo, 1987; Reinsel and Ahn, 1992; Clements and Hendry, 1993; Lin and Tsay, 1996).

This paper grew out of an attempt to reconcile the popular intuition sketched above,

which seems reasonable, with a competing conjecture, which also seems sensible.  Forecast

enhancement from exploiting cointegration comes from using information in the current

deviations from the cointegrating relationships.  That is, knowing whether and by how much the

cointegrating relations are violated today is valuable in assessing where the variables will go

tomorrow, because deviations from cointegrating relations tend to be eliminated.  However,

although the current value of the error-correction term clearly provides information about the

likely near-horizon evolution of the system, it seems unlikely that it provides information about

the long-horizon evolution of the system, because the long-horizon forecast of the error-



(1&L)xt ' µ % C(L) t,
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correction term is always zero.  (The error-correction term, by construction, is covariance

stationary with a zero mean.)  From this perspective, it seems unlikely that cointegration could be

exploited to improve long-horizon forecasts.

Motivated by this apparent paradox, we provide a precise characterization of the

implications of cointegration for long-horizon forecasting.  In Section 2 we show that, contrary to

popular belief, nothing is lost by ignoring cointegration when long-horizon forecasts are

evaluated using standard accuracy measures; in fact, even univariate Box-Jenkins forecasts are

equally accurate.  Insection 3 we illustrate our results with a simple bivariate cointegrated

system.  In section 4, we address a potentially important deficiency of standard forecast accuracy

measures highlighted by our analysis—they fail to value the maintenance of cointegrating

relationships among variables—and we suggest alternative measures of accuracy that explicitly

do so.  In section 5, we consider forecasting from models with estimated parameters, and we use

our results to clarify the interpretation of a number of well-known Monte Carlo studies.  We

conclude in section 6.

2.  Multivariate and Univariate Forecasts of Cointegrated Variables

Assume that the Nx1 vector process of interest is generated by

where C(L) is an NxN matrix lag operator polynomial of possibly infinite order.  Then, under

regularity conditions, the existence of r linearly independent cointegrating vectors is equivalent to

rank(C(1)) = N-r, and the cointegrating vectors are given by the rows of the rxN matrix N, where

NC(1) = Nµ = 0.  That is, z =Nx  is an r-dimensional stationary zero-mean time series.  We willt t

assume that the system is in fact cointegrated, with 0<rank(C(1))<N.  For future reference, note
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 The work of Clements and Hendry (1994, 1995) is closely related to ours. They compare1

forecasts from the true VAR to forecasts from a misspecified VAR in differences, whereas we
compare forecasts from the true VAR to exact forecasts from correctly specified univariate
representations. More important, our motivation and focus are very different from Clements and
Hendry’s, as will become clear shortly.
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that following Stock and Watson (1988) we can use the decomposition 

where  to write the system in “common-trends” form,

where 

We will compare the accuracy of two forecasts of a multivariate cointegrated system that

are polar extremes in terms of cointegrating restrictions imposed: first, forecasts from the

multivariate model, and second, forecasts from the implied univariate models. Both forecasting

models are correctly specified from a univariate perspective, but one imposes the cointegrating

restrictions and one does not.1

We will make heavy use of a ubiquitous measure of forecast accuracy, mean squared

error, the multivariate version of which is

where K is an NxN positive definite symmetric matrix and is the vector of h-step-ahead

forecast errors. MSE, of course, depends on the weighting matrix K. It is standard to set K=I, in

which case

where .  We call this the “trace MSE” accuracy measure.  To compare the

accuracy of two forecasts, say 1 to 2, it is standard to examine the ratio , which we call
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 Many results on forecasting in cointegrated systems relevant for our purposes, and2

cataloged in this subsection, are contained in the lucid and insightful paper of Engle and Yoo
(1987).
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the “trace MSE ratio.”

Forecasts from the Multivariate Cointegrated System2

From the moving average representation, we can unravel the process recursively from

time t+h to time 1 and write

from which the h-step-ahead forecasts are easily calculated as

From the fact that

we get that

so that the cointegrating relationship is satisfied exactly by the long-horizon system forecasts. 

This is the sense in which long-horizon forecasts from cointegrated systems hang together

correctly.

We define the h-step-ahead forecast error from the multivariate system as

The forecast errors from the multivariate system satisfy
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so the variance of the h-step-ahead forecast error is

where  is the variance of .t

From the definition of  we can also see that the system forecast errors satisfy

where the last equality holds if we take =0 for all j<t.  That is, when we view the systemj

forecast error process as a function of the forecast horizon, h, it has the same stochastic structure

as the original process, x , and therefore is integrated and cointegrated.  Consequently, thet

variance of the h-step ahead forecast errors from the cointegrated system grows like h,

In contrast, the cointegrating combinations of the system forecast errors, just as the error-

correction process z , will have finite variance for large h,t

where the matrix Q is a constant function of the stationary component of the forecast error. 

Although individual series can be forecast only with increasingly wide confidence intervals, the

cointegrating combination has a confidence interval of finite width, even as the forecast horizon

goes to infinity.

Forecasts from the Implied Univariate Representations
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Now consider ignoring the multivariate features of the system, forecasting instead using

the implied univariate representations.  We can use Wold’s decomposition theorem and write for

any series (the n-th, say),

where  = 1 and u  is white noise.  It follows from this expression that the univariate time-tn,0 n,t

forecast for period t+h is,

Using obvious notation we can write

and stacking the N series we have

where (L) is a diagonal matrix polynomial with the individual (L)’s on the diagonal. n

Now let us consider the errors from the univariate forecasts.  We will rely on the

following convenient decomposition

Recall that the system forecast is

where the approximation holds as h gets large.  Using univariate forecasts, the decomposition for

, and the approximate long-horizon system forecast, we get



ẽt%h . êt%h % µ(t%h) % C(1) t & (xt % µh % (L)ut).

ẽt%h . êt%h % µ(t%h) % C(1) t & (µt % C(1) t % C((L) t % µh % (L)ut),

ẽt%h . êt%h & (C((L) t % (L)ut).

var(ẽt%h) ' Var(êt%h) % O(1) ' O(h) % O(1) ' O(h),

lim
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trace(var(ẽt%h))

trace(var(êt%h))
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Now insert the common trends representation for x  to get t

and finally cancel terms to get

Notice that the ’s are serially uncorrelated and the u ’s depend only on current and pastt t

’s; thus, the two terms in the expression are orthogonal.  Notice also that the second term is justt

a sum of stationary series and is therefore stationary; furthermore, its variance is constant as the

forecast horizon h changes.  We can therefore write the long-horizon variance of the univariate

forecasts as

which is of the same order of magnitude as the variance of the system forecast errors.

Furthermore, the trace MSE ratio goes to one. Thus, when comparing accuracy using the trace

MSE ratio, the univariate forecasts perform as well as the cointegrated system forecasts as the

horizon gets large.  This is the opposite of the folk wisdom—it turns out that imposition of

cointegrating restrictions helps at short, but not long, horizons. Quite simply, when accuracy is

evaluated with the trace MSE ratio, there is no long-horizon benefit from imposing cointegration;

all that matters is getting the level of integration right. We summarize the result as:

Proposition 1

Proposition 1 provides the theoretical foundation for the results of Hoffman and Rasche (1996),



)ẽt%h . )êt%h & ( )C((L) t %
) (L)ut).

var( )ẽt%h) ' )Q % )var(C((L) t % (L)ut) ' O(1).
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who find in an extensive empirical application that imposing cointegration does little to enhance

long-horizon forecast accuracy, and Brandner and Kunst (1990), who suggest that when in doubt

about how many unit roots to impose in a long-horizon forecasting model, it’s less harmful to 

impose too many than to impose too few.

Now let’s consider the variance of cointegrating combinations of univariate forecast

errors.  Above we recounted the Engle-Yoo (1987) result that the cointegrating combinations of

the system forecast errors have finite variance as the forecast horizon gets large.  Now we want to

look at the same cointegrating combinations of the univariate forecast errors.  From our earlier

derivations it follows that 

Again we can rely on the orthogonality of the two terms.  The first term has finite variance, as

discussed above.  So too does the second, because it is a linear combination of stationary

processes.  Thus we have

Proposition 2

The cointegrating combinations of the long-horizon errors from the univariate forecasts, which

completely ignore cointegration, also have finite variance. Thus, it is, in fact, not imposition of

cointegration on the forecasting system that yields the finite variance of the cointegrating

combination of the errors; rather, it is the cointegration property inherent in the system itself.

3.  A Simple Example

To illustrate our results in a transparent way, we consider the simple bivariate

cointegrated system,
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where the disturbances are orthogonal at all leads and lags.  The moving average representation is

and the error-correction representation is

The system’s simplicity allows us to compute exact formulae that correspond to the qualitative

results derived in the previous section.

Univariate Representations

Let us first derive the implied univariate representations for x and y.  The univariate

representation for x is, of course, a random walk with drift, exactly as given in the first equation

of the system,

Derivation of the univariate representation for y is a bit more involved.  From the moving-

average representation of the system, rewrite the process for y  as a univariate two-shock process,t

where   The autocovariance structure for z  ist
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The only non-zero positive autocorrelation is therefore

where  is the signal to noise ratio.  This is exactly the autocorrelation structure of an

MA(1) process, so we write   To find the value for , match autocorrelations at

lag 1, yielding

This gives a second-order polynomial in , with invertible solution

Finally, we find the variance of the univariate innovation by matching the variances, yielding

or

Forecasts from the Multivariate Cointegrated System

First consider forecasting from the multivariate cointegrated system.  Write the time t+h

values as



x̂t%h ' µh % xt
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 We are using the fact that var[(, -1)e ] = var[- ( , -1)e ].3
t+h t+h
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The h-step-ahead forecasts are

and the h-step-ahead forecast errors are

Note that the forecast errors follow the same stochastic process as the original system (aside from

the drift term),

Finally, the corresponding forecast error variances are

Both forecast error variances are O(h).  As for the variance of the cointegrating combination, we

have

for all h, because there are no short-run dynamics.   Similarly, because we have no short-run3

dynamics, the forecasts satisfy the cointegrating relationship at all horizons, not just in the limit. 

That is,



ŷt%h & x̂t%h ' 0, é h ' 1, 2, ...

x̃t%h ' µh % xt.

ẽx,t%h ' êx,t%h ' j
h

i'1
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' O(h).

yt%h ' h µ % yt % ut % ut%1 % j
h
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zt%i.
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h

i'2
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Forecasts from the Implied Univariate Representations

Now consider forecasting from the implied univariate models.  Immediately, the

univariate forecast for x is the same as the system forecast,

Thus,

so that

To form the univariate forecast for y, write

The forecast is

and the corresponding forecast error is

yielding the forecast error variance



q' 2 / 2
v .
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ẽy,t%h ' j
h

i'1
t%i % vt%h & vt & ut.
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h
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 Keep in mind that  is a function of 4
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Notice in particular that the univariate forecast error variance is O(h), as is the system forecast

error variance.

Now let’s compute the variance of the cointegrating combination of univariate forecast

errors.  We have

To evaluate the covariance term, use the fact that 

to write

Now recall the formula for the forecast error of x and the fact that future values of  are

uncorrelated with future and current values of v, and with current values of u, so that 

Armed with this result, we have that4

which, of course, accords with our general result derived earlier: that the variance of the

cointegrating combination of univariate forecast errors is finite.

Forecast Accuracy Comparison

Finally, compare the forecast error variances from the multivariate and univariate
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var(ẽy,t%h) ' var(êy,t%h) % (1% ) 2
v.

trace(var(ẽt%h))
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representations.  Of course, x has the same representation in both, so the comparison hinges on y. 

We must compare

to

Expanding the product in the expression for  yields

Substituting for , and using the fact that 

we get

Thus, 

The error variance of the univariate forecast is greater than that of the system forecast, but it

grows at the same rate.

 Assembling all of the results, we have immediately that

In Figure 1 we show the values of this ratio as h gets large, for q =  = 1.  Note in particular the

speed with which the limiting result,



lim
h64

trace(var(ẽt%h))

trace(var(êt%h))
' 1,

var[ẽy,t%h& ẽx,t%h]

var[êy,t%h& êx,t%h]
' (2% ) > 1, é h.
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obtains.

In closing this section, we note that in spite of the fact that the trace MSE ratio

approaches 1, the ratio of the variances of the cointegrating combinations of the forecast errors

does not approach 1 in this simple model; rather,

This observation turns out to hold quite generally, and it forms the basis for an improved class of

accuracy measures, to which we now turn.

4.  Accuracy Measures and Cointegration

Accuracy Measures I:  Trace MSE

We have seen that long-horizon univariate forecasts of cointegrated variables (which

completely ignore cointegrating restrictions) are just as accurate as their system counterparts

(which explicitly impose cointegrating restrictions), when accuracy is evaluated using the

standard trace MSE criterion.  So on traditional grounds there is no reason to prefer long-horizon

forecasts from the cointegrated system.

One might argue, however, that the system forecasts are nevertheless more appealing

because “... the forecasts of levels of co-integrated variables will ‘hang together’ in a way likely

to be viewed as sensible by an economist, whereas forecasts produced in some other way, such as

by a group of individual, univariate Box-Jenkins models, may well not do so” (Granger and

Newbold, 1986, p. 226). But as we have seen, univariate Box-Jenkins forecasts do hang together



 See also Watson (1994) and Zivot (1996).5
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if the variables are cointegrated—the cointegrating combinations, and only the cointegrating

combinations, of univariate forecast errors have finite variance.

Accuracy Measures II:  Trace MSE in Forecasting the Cointegrating Combinations of Variables

But all is not lost. The long-horizon system forecasts do a better job of satisfying the

cointegrating restrictions than do the univariate forecasts—the long-horizon system forecasts

always satisfy the cointegrating restrictions, whereas the long-horizon univariate forecasts do so

only on average. That’s what’s responsible for our earlier result in our bivariate system: that,

although the cointegrating combinations of both the univariate and system forecast errors have

finite variance, the variance of the cointegrating combination of the univariate errors is larger.

Such effects are lost on standard accuracy measures like trace MSE, however, because the

loss functions that underlie them don’t value long-run forecasts’ hanging together. The solution

is obvious: if we value maintenance of the cointegrating relationship, then so, too, should the loss

functions underlying our forecast accuracy measures.  One approach, in the spirit of Granger

(1996), is to focus on forecasting the cointegrating combinations of the variables and to evaluate

forecasts in terms of the variability of the cointegrating combinations of the errors, Ne .t+h

Accuracy measures based on cointegrating combinations of the forecast errors require that

the cointegrating vector be known. Fortunately, such is often the case. Horvath and Watson

(1995, pp. 984-985), for example, note that5

“Economic models often imply that variables are cointegrated with simple and
known cointegrating vectors.  Examples include the neoclassical growth model,
which implies that income, consumption, investment, and the capital stock will
grow in a balanced way, so that any stochastic growth in one of the series must be
matched by corresponding growth in the others.  Asset pricing models with stable



E ( )et%h)
)( )et%h) ' trace E ( )et%h)

)( )et%h) ' trace(K h),

E(e )

t%hKet%h) E trace(e )
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)

t%h) trace(K h)

h et%h

trace(K h)
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risk premia imply corresponding stable differences in spot and forward prices,
long- and short-term interest rates, and the logarithms of stock prices and
dividends.  Most theories of international trade imply long-run purchasing power
parity, so that long-run movements in nominal exchange rates are matched by
countries’ relative price levels. Certain monetarist propositions are centered
around the stability of velocity, implying cointegration among the logarithms of
money, prices and income.  Each of these theories has distinct implications for the
properties of economic time series under study: First, the series are cointegrated,
and second, the cointegrating vector takes on a specific value. For example,
balanced growth implies that the logarithms of income and consumption are
cointegrated and that the cointegrating vector takes on the value of (1, -1).”

Thus, although the assumption of a known cointegrating vector certainly involves a loss of

generality, it is nevertheless legitimate in a variety of empirically and economically relevant

cases.  This is fortunate because of problems associated with identification of cointegrating

vectors in estimated systems, as stressed in Wickens (1996).  We will maintain the assumption

throughout this paper.

Interestingly, evaluation of accuracy in terms of the trace MSE of the cointegrating

combinations of forecast errors is a special case of the general mean squared error measure.  To

see this, consider the general N-variate case with r cointegrating relationships, and consider again

the mean squared error,

       =  =  = ,

where  is the variance of .  Evaluating accuracy in terms of trace MSE of the cointegrating

combinations of the forecast errors amounts to evaluating

where K = N.  Thus the trace MSE of the cointegrating combinations of the forecast errors is in

fact a particular variant of MSE formulated on the raw forecast errors, E(eNKe)  = ,



E
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0 (1&L)

)

Ir & )
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xt ' (x )

1t, x )

2t)
) ' ( )

x2t
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where the weighting matrix K = N is of (deficient) rank r, the cointegrating rank of the system.

Accuracy Measures III:  Trace MSE from the Triangular Representation

The problem with the traditional E(eNKe) approach with K = I is that, although it values

small MSE, it fails to value the long-run forecasts’ hanging together correctly. Conversely, a

problem with the E(eNKe) approach with K = N is that it values only the long-run forecasts’

hanging together correctly, whereas both pieces seem clearly relevant. The challenge is to

incorporate both pieces into an overall accuracy measure in a natural way, and an attractive

approach for doing so follows from the triangular representation of cointegrated systems

exploited by Campbell and Shiller (1987) and Phillips (1991).

From the fact that N has rank r, it is possible to rewrite the system so that the N left-hand-

side variables are the r error-correction terms followed by the differences of N-r integrated but

not cointegrated variables.  That is, we rewrite the system in terms of  where the

variables have been rearranged and partitioned into , where  and the

variables in  are integrated but not cointegrated.  We then evaluate accuracy in terms of the

trace MSE of forecasts from the triangular system,

which we denote trace MSE .  Notice that the trace MSE   accuracy measure is also of  E(eNKe)tri tri

form, with  

Recall Proposition 1, which says that under trace MSE, long-horizon forecast accuracy
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iẽt%h] & j
r

i'1
var[ )

iêt%h] ' tr( )S ) > 0,

)Q ' var( )êt%h),

20

from the cointegrated system is no better than that from univariate models. We now show that

under trace MSE , long-horizon forecast accuracy from the cointegrated system is always bettertri

than that from univariate models. 

Proposition 3

Proof:  Consider a cointegrated system in triangular form, that is, a system such that N = [ I  - N]. 

We need to show that for large h, 

and

To establish the first inequality it is sufficient to show that

We showed earlier that for large h,

 where  from which it follows that

because S is positive definite.  To establish the second inequality, recall that 
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(1&L)ẽx,t%h
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so that

Let C (1) be the last N-r rows of C(1); then altogether we haveN-r

and the proof is complete.

The Bivariate Example, Revisited

In our simple bivariate example all we have to do to put the system in the triangular form

sketched above is to switch x and y in the autoregressive representation, yielding

For the system forecasts we have

For the univariate forecasts we have

Thus, we see that the trace MSE   ratio does not approach one as the horizon increases; intri

particular, it is constant and above one for all h,
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 This simple design allows us to make our point forcefully and with a minimum of6

clutter.  The results are robust to changes in parameter values and sample size.
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In Figure 2 we plot the trace MSE  ratio vs. h, for =1 and .tri

In summary, although the long-horizon performances of the system and univariate

forecasts are identical under the conventional trace MSE accuracy measure, they differ under

trace MSE .  The system forecast is superior to the univariate forecast under trace MSE ,tri tri

because the system forecast is accurate in the conventional “small MSE” sense and it hangs

together correctly.

5.  Understanding Earlier Monte Carlo Studies

Here we clarify the interpretation of earlier influential Monte Carlo work, in particular

Engle and Yoo (1987), as well as Reinsel and Ahn (1992), Clements and Hendry (1993), and Lin

and Tsay (1996), among others. We do so by performing a Monte Carlo analysis of our own,

which reconciles our theoretical results and the apparently conflicting Monte Carlo results

reported in the literature, and shows how the existing Monte Carlo analyses have been

misinterpreted.  Throughout, we use our simple bivariate system (which is very similar to the one

used by Engle and Yoo), with parameters set to =1, µ=0 and .  We use a sample size

of 100 and perform 4000 Monte Carlo replications.  In keeping with our earlier discussion, we

assume a known cointegrating vector, but we estimate all other parameters.  6

Let us first consider an analog of our theoretical results except we now estimate

parameters instead of assuming them known. In Figure 3 we plot the trace MSE ratio and the
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trace MSE  ratio vs. h.  Using estimated parameters changes none of the theoretical resultstri

reached earlier under the assumption of known parameters.  Use of the trace MSE ratio obscures

the long-horizon benefits of imposing cointegration, whereas use of trace MSE  reveals thosetri

benefits clearly.

How then can we reconcile our results with those of Engle and Yoo (1987) and the many

subsequent authors who conclude that imposing cointegration produces superior long-horizon

forecasts?  The answer is two-part:  Engle and Yoo make a different and harder-to-interpret

comparison than we do, and they misinterpret the outcome of their Monte Carlo experiments.

First, consider the forecast comparison. We have thus far compared forecasts from

univariate models (which impose integration) to forecasts from the cointegrated system (which

impose both integration and cointegration). Thus, a comparison of the forecasting results isolates

the effects of imposing cointegration.  Engle and Yoo, in contrast, compare forecasts from a

VAR in levels (which impose neither integration nor cointegration) to forecasts from the

cointegrated system (which impose both integration and cointegration). Thus, differences in

forecasting performance in the Engle-Yoo setup cannot necessarily be attributed to the

imposition of cointegration; instead, they may simply be due to imposition of integration,

irrespective of whether cointegration is imposed.

Now consider the interpretation of the results.  The VAR in levels is of course integrated,

but in finite samples, the well-known Dickey-Fuller-Hurwitz bias tends to produce parameter

estimates in the covariance stationary region. Thus, it’s no surprise that forecasts from the VAR

estimated in levels perform poorly, with performance worsening with horizon, as shown in

Figure 4. It is tempting to attribute the poor performance of the VAR in levels to its failure to



 Figure 5 corresponds to our simple bivariate system.  We have also duplicated the result7

on the Engle-Yoo system.  Moreover, the result is apparent (but not noticed or discussed) in the
Monte Carlo results of Reinsel and Ahn (1992), Clements and Hendry (1993), and Lin and Tsay
(1996).
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impose cointegration, as do Engle and Yoo. The fact is, however, that the VAR in levels

performs poorly because it fails to impose integration, not because it fails to impose

cointegration—estimation of the cointegrated system simply imposes the correct level of

integration a priori. To see this, consider Figure 5, in which we compare the forecasts from an

estimated VAR in differences to the forecasts from the estimated cointegrated system.  At long

horizons, the forecasts from the VAR in differences, which impose integration but completely

ignore cointegration, perform just as well.   In contrast, if we instead evaluate forecast accuracy7

with the trace MSE  ratio that we have advocated, the forecasts from the VAR in differencestri

compare poorly at all horizons to those from the cointegrated system, as shown in Figure 6.

In our simple bivariate system, we are restricted to studying models with exactly one unit

root and one cointegration relationship.  It is also of interest to examine richer systems;

conveniently, the literature already contains relevant (but unnoticed) evidence, which is entirely

consistent with our theoretical results. Reinsel and Ahn (1992) and Lin and Tsay (1996), in

particular, provide Monte Carlo evidence on the comparative forecasting performance of

competing estimated models. Both study a four-variable VAR(2), with two unit roots and two

cointegrating relationships. Their results clearly suggest that under the trace MSE accuracy

measure, one need only worry about imposing enough unit roots on the system.  Imposing three

(one too many) unit roots is harmless at any horizon, and imposing four unit roots (two too many,

so that the VAR is in differences) is harmless at long horizons.
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6.  Summary and Concluding Remarks

First, we have shown that imposing cointegration does not improve the accuracy of long-

horizon forecasts when forecasts of cointegrated variables are evaluated using the standard trace

MSE ratio. Ironically enough, although cointegration implies restrictions on low-frequency

dynamics, imposing cointegration is helpful for short- but not long-horizon forecasting, in

contrast to the impression created in the literature. Imposition of cointegration on an estimated

system, when the system is in fact cointegrated, helps the accuracy of long-horizon forecasts

relative to those from systems estimated in levels with no restrictions, but that is because of the

imposition of integration, not cointegration. Univariate forecasts in differences do just as well!

Second, we have shown that the variance of the cointegrating combination of the long-

horizon forecast errors is finite regardless of whether cointegration is imposed.  The variance of

the error in forecasting the cointegrating combination is smaller, however, for the cointegrated

system forecast errors.  This suggests that accuracy measures that value long-run forecasts’

hanging together correctly should be defined, in part, on the cointegrating combinations of the

forecast errors.  We explored one such accuracy measure based on the triangular representation

of the cointegrated system.

Third, we showed that our theoretical results are entirely consistent with several well-

known Monte Carlo analyses, whose interpretation we clarified. The existing Monte Carlo results

are correct, but their widespread interpretation is not. Imposition of integration, not

cointegration, is responsible for the repeated finding that the long-horizon forecasting

performance of cointegrated systems is better than that of VARs in levels. 

We hasten to add that the message of this paper is not that cointegration is of no value in



 In that respect this paper is in the tradition of our earlier work, such as Diebold and8

Mariano (1995), Diebold and Lopez (1996), and Christoffersen and Diebold (1996a, 1996b), in
which we argue the virtues of tailoring accuracy measures in applied forecasting to the specifics
of the problem at hand.
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forecasting. First, even under the conventional trace MSE accuracy measure, imposing

cointegration does improve forecasts. Our message is simply that, under the conventional

accuracy measure, it does so at short and moderate, not long, horizons, in contrast to the folk

wisdom. Second, in our view, imposing cointegration certainly may be of value in long-horizon

forecasting; the problem is simply that standard forecast accuracy measures don’t reveal it.  The

upshot is that in forecast evaluation we need to think hard about which characteristics make a

good forecast good and how best to measure those characteristics.   Seemingly omnibus8

measures such as trace MSE, although certainly useful in many situations, are inadequate in

others.

In closing, we emphasize that the particular alternative to trace MSE that we examine in

this paper, trace MSE , is but one among many possibilities, and we look forward to exploringtri

variations in future research.  The key insight, it seems to us, is that if we value preservation of

cointegrating relationships in long-horizon forecasts, then so, too, should our accuracy measures,

and trace MSE  is a natural loss function that does so.tri

Interestingly, it is possible to process the trace MSE differently to obtain an accuracy

measure that ranks the system forecasts as superior to the univariate forecasts, even as the

forecast horizon goes to infinity. One obvious candidate is the trace MSE difference, as opposed

to the trace MSE ratio. It follows from the results of section 2 that the trace MSE difference is



1& 2

 The idea of checking whether the trace MSE difference is positive follows immediately9

from the more general idea of checking whether  is positive definite, as advocated in
Wallis (1995). 
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positive and does not approach zero as the forecast horizon grows.   As stressed above, however,9

it seems more natural to work with alternatives to trace MSE that explicitly value preservation of

cointegrating relationships, rather then simply processing the trace MSE differently.  As the

forecast horizon grows, the trace MSE difference becomes negligible relative to either the system

or the univariate trace MSE, so that the trace MSE difference would appear to place too little

value on preserving cointegrating relationships.
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Figure 1
Trace MSE Ratio

Univariate vs. System Forecasts
Bivariate Example, =q=1

Notes to Figure:  We plot the trace MSE ratio (univariate / cointegrated system) against the
forecast horizon.
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Figure 2
Trace MSE  Ratiotri

Univariate vs. System Forecasts
Bivariate Example, =q=1

Notes to Figure:  We plot the trace MSE  ratio (univariate / cointegrated system) against thetri

forecast horizon.
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Figure 3
Trace MSE Ratio and Trace MSE  Ratiotri

Univariate vs. System Forecasts, Estimated Parameters
Bivariate Example, =q=1

Notes to Figure:  We plot the trace MSE ratio and the trace MSE  ratio (univariate / cointegratedtri

system) against the forecast horizon
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Figure 4
Trace MSE Ratio

Levels VAR vs. Cointegrated System Forecasts, Estimated Parameters
Bivariate Example, =q=1

Notes to Figure:  We plot the trace MSE ratio for (VAR in levels / cointegrated system) against
the forecast horizon.
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Figure 5
Trace MSE Ratio

Differenced VAR vs. Cointegrated System Forecasts, Estimated Parameters
Bivariate Example, =q=1

Notes to Figure:  We plot the trace MSE ratio (VAR in differences / cointegrated system) against
the forecast horizon.
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Figure 6
Trace MSE  Ratiotri

Differenced VAR vs. Cointegrated System Forecasts, Estimated Parameters
Bivariate Example, =q=1

Notes to Figure:  We plot the trace MSE  ratio (VAR in differences / cointegrated system)tri

against the forecast horizon.


