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Abstract:  We generalize the Franke-Härdle (1992) spectral density bootstrap to the
multivariate case.  The extension is non-trivial and facilitates use of the Franke-Härdle
bootstrap in frequency-domain econometric work, which often centers on cross-variable
dynamic interactions.  We document the bootstrap’s good finite-sample performance in a
small Monte Carlo experiment, and we conclude by highlighting key directions for future
research.
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1.  Introduction

Inference for spectra is central to both theoretical and applied time series

econometrics.  Hence the interest in Franke and Härdle’s (1992) method for bootstrap

inference on estimated univariate spectral density functions.  In econometric work, however,

interest often centers on cross-variable dynamic interactions, and hence multivariate spectra,

as for example in Diebold, Ohanian and Berkowitz (1997).  Unfortunately, the Franke-Härdle

bootstrap has not yet been generalized to the multivariate case.  In this paper we do so.  We

provide a brief summary of the univariate procedure in section 2 to fix ideas and establish

notation, and we provide the multivariate generalization in section 3.  In section 4, we

perform a small Monte Carlo experiment, which suggests that the performance of the

multivariate Franke-Härdle procedure is superior to conventional first-order asymptotics for

sample sizes relevant in econometrics.  We offer concluding remarks in section 5.

2.  The Univariate Bootstrap

The Franke-Härdle (1992) bootstrap is based directly on frequency-domain

considerations.  We briefly discuss the univariate case.  Let  be the population spectral

density of a covariance stationary stochastic process at frequency , let  be the

unsmoothed (inconsistent) sample spectral density, and let  be the smoothed (consistent)

sample spectral density.

It is well-known that in large samples the asymptotically-pivotal statistic 

is independently and identically distributed as ,    Equivalently,
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      We first scale the  so that their sample mean equals their known asymptotic1

population mean, 2, using the transformation 

   Franke and Härdle suggest replacing the population spectral

density on the right side of the equation with a consistent estimator, drawing from the

distribution of the  to form a drawing of  which are then smoothed, and repeating

many times to build up an approximation to the distribution of the 

Two variants of the bootstrap, both nonparametric in the sense that no distributional

assumptions are made for the process whose spectrum is bootstrapped, may be performed. 

The first proceeds by making use of the known asymptotic distribution of the normalized

sample spectral density.  At bootstrap replication i, we draw  from a  distribution

and convert them into  via

Then we smooth to obtain   At the end we have 

  where R is the number of bootstrap replications.  Finally, we

form confidence intervals for   using the empirical percentiles of the

's.

The second variant of the bootstrap is motivated by the fact that the  distribution for

 obtains only asymptotically, so that it may be preferable to sample with replacement

directly from the empirical distribution of the "observed"   1

We proceed as follows.  At bootstrap replication i we  draw  by sampling with

replacement from  and convert them into  via
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      See Brillinger (1981).2

   Then we smooth to obtain    At the end we have

  from which we form confidence intervals for  using the empirical

percentiles of the 's, 

3.  The Multivariate Bootstrap

Now we generalize the Franke-Härdle procedure to the N-dimensional multivariate

case.  In obvious parallel to the univariate discussion, let  be the population spectral

density matrix at frequency , let be the unsmoothed sample spectral density matrix,

and let  be the smoothed sample spectral density matrix.   

We proceed by exploiting the result that  an N-dimensional

complex Wishart, .   Thus, in parallel with our univariate discussion, we2

define , and we have that, in large samples,

or equivalently,

 .

The above result suggests our first multivariate spectral density bootstrap.  At
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bootstrap replication i, we draw a sample spectral density as

 where  is a draw from an N-dimensional complex

Wishart distribution.  We then smooth to obtain  from

which we compute confidence intervals.

The second variant of the multivariate bootstrap proceeds by sampling  with

replacement from , where    We then

form

 and we smooth to obtain , ,  from which we compute

confidence intervals.

4.  Monte Carlo Evaluation of the Multivariate Spectral Bootstrap

We perform a Monte Carlo experiment to help assess the performance of our

multivariate spectral bootstrap.  The data-generating process is a bivariate first-order Gaussian

vector autoregression,

We vary persistence by setting  = 0, .5, .7, .9, and .95, and for each value of  we consider

four sample sizes, T = 128, 256, 512, and 1024.  At each design point and at each Monte
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    3   Following Franke and Härdle, we compute the estimate by smoothing the periodogram
with a Bartlett-Priestley window.  We select the bandwidth automatically using the method of
Beltrao and Bloomfield (1987).

    4  We use the variant of the bootstrap based on sampling from the complex Wishart.
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Carlo replication i, we generate a realization, , and calculate a consistent estimate of

the spectral density matrix, , at .   We perform 2000 Monte Carlo replications,3

which yield the exact finite-sample distributions of the elements of  (that is, estimates of

the two spectra, the co-spectrum, and the quadrature spectrum, , , , and ). 

Then, for each of the four estimated elements of the spectrum, we compare the actual finite-

sample distribution to two approximations:  one delivered by conventional Gaussian

asymptotics and the other by the multivariate spectral bootstrap. 4

The Gaussian approximation is simple and follows from the well-known result that

under regularity conditions the standardized elements of the estimated spectral density matrix

are asymptotically Gaussian (e.g., Brockwell and Davis, pp. 447-448).  The bootstrap

approximation is also simple, when used in one-time applications to real data; one merely

follows the recipe we provided in section 3.  The computational burden of Monte Carlo

evaluation of the bootstrap, however, quickly becomes prohibitive.  Thus we do not

implement the bootstrap at each Monte Carlo replication; instead, precisely following Franke

and Härdle (1992, p. 128), we adopt an alternative and clever, if second-best, strategy.  For

each sample size, we obtain a typical realization on which to perform bootstrap replications,

which we do only once.  We obtain the typical realization by generating nine samples and

choosing the one for which the integrated squared error (ISE) of the estimated spectrum with

respect to the true spectrum,
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achieves its median, where .  We then implement the bootstrap

on that realization, from which we obtain our bootstrap approximations to the actual finite-

sample distributions of the elements of .

We display the results for a realistic value of persistence ( =.95) in Figure 1. 

Evidently the Gaussian approximations are comparatively poor guides to the finite-sample

distributions in small samples, because the actual finite-sample distributions of the

standardized elements of the spectral density matrix appear fat-tailed.  The bootstrap

approximations, in contrast, appear to capture the fat tails of the finite-sample distributions

quite well, although particularly in small samples the bootstrap distributions appear to be

shifted leftward relative to the true distributions.  As the sample size increases, all

distributions become closer.

One can only go so far with visual assessments of the sort contained in Figure 1. 

Response surfaces are preferable for a number of reasons.  First, they enable us to summarize

the results of the entire experiment, rather than just a single design point.  This helps us

understand how the comparative performance of the bootstrap approximation varies with ( ,

T).  Second, the response surface helps us reduce the specificity of the Monte Carlo

experiment by facilitating  generalization to other ( , T) values.  Last, and not least, to fit

response surfaces we are forced to adopt an explicit measure of divergence between the true

sampling distribution and the various approximations, which is helpful for making precise
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assessments.

We model the difference between the ISE of the Gaussian approximation and the ISE

of the bootstrap approximation as a function of  and T.  We have seen, moreover, that as

T  the difference in approximation accuracy of the Gaussian and bootstrap approximations

appears to vanish, which suggests expansion in negative powers of T.  Some experimentation

revealed that expansion in powers of  provides a good approximation.  Thus, for each of

the four elements of the spectral density matrix, we estimate a response surface of the form

where  and  denote the ISE of the Gaussian and bootstrap approximations with

respect to the true finite-sample distribution.  We report the least squares estimates in Table 1,

together with robust standard errors and adjusted s.  Most estimated parameters are highly

statistically significant, and all adjusted s are in the neighborhood of 90 percent.

We display the four estimated response surfaces in Figure 2.  The surfaces are

everywhere positive, indicating that, throughout the range of the experimental design, the

bootstrap approximation is better than the Gaussian approximation.  The graphs also reveal

the nature of the dependence of the ISE difference on T.  Interestingly, however, the ISE

differences depend little on ; in particular, the comparative accuracy of the bootstrap

approximation does not deteriorate as  approaches 1.  The likely explanation is that the

absolute performance of both the Gaussian and bootstrap approximations deteriorates as 

approaches 1, but in such a way as to leave their comparative performance unchanged.

5.  Conclusions and Directions for Future Research

We have generalized the Franke-Härdle (1992) spectral density bootstrap to the
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multivariate case and documented its good finite-sample performance in a Monte Carlo

experiment.  As with its univariate counterpart, the multivariate spectral bootstrap is intuitive

and appealing, because it is based directly upon the well-known asymptotic distribution of the

periodogram ordinates.  The approach complements recent work by Politis and Romano

(1992), who generalize the Künsch (1989) and Liu and Singh (1992) moving-blocks bootstrap

so that it delivers valid inference for spectra, in contrast to the original Künsch-Liu-Singh

procedure.

The obvious item at the top of our agenda for future work is proof of first-order

asymptotic validity of the multivariate spectral bootstrap.  We conjecture that it is first-order

valid, because it is a natural extension of the Franke-Härdle univariate bootstrap, which is

first-order valid.  Our Monte Carlo analysis supports that conjecture, as the Gaussian and

bootstrap approximations appear to get closer as sample size grows.  We conjecture as well

that the multivariate spectral bootstrap may offer second-order refinements, because it is

based on an asymptotically pivotal statistic.  Our Monte Carlo analysis also supports that

conjecture, as the bootstrap approximation appear superior in small samples.  Formal proofs,

however, are not at all trivial and remain elusive, as the univariate proof methods do not

readily generalize to the multivariate case.
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Table 1
Response Surface Estimates

Dependent Variable:  

W4444444444444444444444444444444444444444444444444444444444444444444444444444444444
     Coefficient on:  

W4444444444444444444444444444444444444444444444444444444444444444444444444444444444
    Component of 
    Spectral Density:

           .060 -.093 .075 .441 .95
(.010) (.017) (.038) (.066)

           -.011 .017 .315 .061 .94
(.016) .023) (.060) (.086)

           -.067 .082 .548 -.283 .87
(.011) (.018) (.044) (.073)

           .036 -.069 .117 .402 .94
(.012) (.027) (.053) (.124)

W444444444444444444444444444444444444444444444444444444444444444444444444444444444U

Notes to Table:   and  are the two spectra,  is the cospectrum, and is the
quadrature spectrum.  We report ordinary least squares parameter estimates, based on an
ordinary least squares response surface regression with sample size 20, which is the number
of design points.  Newey-West standard errors, computed using a Bartlett window, appear in
parentheses.


