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Abstract. We study the properties of Mallows' CL criterion for selecting a fractional
exponential (FEXP) model for a Gaussian long-memory time series. The aim is to
minimize the mean squared error of a corresponding regression estimator d̂FEXP of the
memory parameter, d. Under conditions which do not require that the data were
actually generated by a FEXP model, it is known that the mean squared error
MSE � E[d̂FEXP ÿ d]2 can converge to zero as fast as (log n)=n, where n is the sample
size, assuming that the number of parameters grows slowly with n in a deterministic
fashion. Here, we suppose that the number of parameters in the FEXP model is chosen
so as to minimize a local version of CL, restricted to frequencies in a neighborhood of
zero. We show that, under appropriate conditions, the expected value of the local CL is
asymptotically equivalent to MSE. A combination of theoretical and simulation results
give guidance as to the choice of the degree of locality in CL.

1. INTRODUCTION

Suppose we have an even number of observations y0, . . ., ynÿ1 from fYtg, a
Gaussian long-memory time series with spectral density

f (ù) � j1ÿ eÿiùjÿ2d f �(ù) ù 2 [ÿð, ð]

where d 2 (ÿ0:5, 0:5), and f � is positive, even, continuous, bounded above, and
bounded away from zero on [ÿð, ð]. The long and short memory aspects of
fYtg are controlled by the memory parameter d and the function f �,
respectively. We are interested here in estimating d semiparametrically, i.e.,
without making fully parametric assumptions on the form of f �.

Existing semiparametric estimators of d include the GPH estimator (Geweke
and Porter-Hudak, 1983; Robinson, 1995a; Hurvich et al., 1998), the average
periodogram estimator (Robinson, 1994a) and the Gaussian semiparametric
estimator (Kunsch, 1987; Robinson, 1995b). These estimators use periodogram
values from a vanishingly small neighbourhood of the origin, and therefore
require no strong global assumptions on f �. However, they typically have mean
squared error of order no better than O(nÿ4=5), even if f � is extremely smooth.

A different approach, which we call broadband semiparametric estimation,
assumes that f � is differentiable on [ÿð, ð] (perhaps excluding zero fre-
quency), but still speci®es no parametric form for f �. This global smoothness
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assumption motivates the ®tting of a fully parametric (though presumably
incorrect) long-memory model to the data, using all ~n � n=2ÿ 1 available
periodogram ordinates. Bhansali and Kokoszka (1999) have studied one such
estimator, based on ®tting a fractional autoregressive model in the frequency
domain. They established that the resulting estimator of d is consistent and
asymptotically normal if the autoregressive order approaches in®nity at a
suitable rate as n increases.

Here, we focus on another broadband semiparametric estimator which we call
d̂FEXP (de®ned in Section 2), originally due to Janacek (1982) and subsequently
discussed by Robinson (1994b). It is based on ®tting a fractional exponential,
or FEXP model to the log periodogram ordinates at all available Fourier
frequencies by linear regression. The FEXP model is a long-memory
generalization of the exponential model of Bloom®eld (1973), and has been
discussed by Beran (1993, 1994). Unfortunately, Janacek (1982) did not provide
asymptotic theory for his proposed estimator. This de®ciency has been
remedied by the two papers of Hurvich and Brodsky (1997) and Moulines
and Soulier (1999), which were written independently and at about the same
time. Both papers establish the consistency of d̂FEXP without requiring
parametric assumptions on f �, provided that the order of the exponential
model increases at a suitable rate with n. The rate of convergence of the mean
squared error of d̂FEXP improves with the smoothness of log( f �), and can be as
fast as (log n)=n if log( f �) is in®nitely differentiable, as would be the case for
example if f � were the spectral density of a stationary invertible ARMA
model. Moulines and Soulier (1999) established asymptotic normality for their
version of the estimator, which uses regressor frequencies that are slightly
shifted away from the Fourier frequencies. Hurvich and Brodsky (1997) used
the Fourier frequencies in the regression, but did not establish asymptotic
normality.

A question left unresolved by Hurvich and Brodsky (1997) is the de-
velopment of a rigorously justi®able method of selecting the number of
parameters h to use in the ®tted exponential model. Hurvich and Brodsky
(1997) proposed to select h so as to minimize

C�L (h) � RSSh � 2hð2

6

using a residual sum of squares RSSh taken over all ~n frequencies used in the
regression, but we did not develop any theory to support this choice. If fYtg
were Gaussian white noise, C�L(h) would be an exactly unbiased estimator of the
mean integrated squared error,

MISEm � E
Xm

j�1

(log f̂ j ÿ log f j)
2

" #
(with m � ~n), where f f̂ jg ~n

j�1 is the spectral estimator corresponding to the ®t-
ted FEXP model and f f jg ~n

j�1
is the true spectral density at the jth Fourier
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frequency ù j � 2ð j=n for j � 1, . . ., ~n. Moulines and Soulier (2000) have
established the optimality with respect to MISE~n of the ®tted FEXP model
selected by minimizing C�L . Brodsky (1997) presented similar though less
complete results in an unpublished dissertation. If the primary aim is to obtain a
good estimator of d, however, a quantity of more direct interest is the mean
squared error of d̂FEXP, i.e.,

MSE � E[d̂FEXP ÿ d]2

In this paper, we will assume conditions implying that the (log n)=n rate of
convergence of MSE can be attained but not improved upon.

We will establish that except for a multiplicative constant, MISEm and MSE
are asymptotically equivalent, under conditions implying that m � o(n), so that
the mean integrated squared error is restricted to a local neighborhood of zero
frequency. This equivalence does not hold, however, if m � ~n as was assumed
by Brodsky (1997), Hurvich and Brodsky (1997) and Moulines and Soulier
(2000). Under more restrictive conditions on m, we will show further that a
local version of CL, based on using a residual sum of squares restricted to
frequencies ù1, . . ., ùm, is asymptotically unbiased for MISEm, up to an
additive constant. Thus, apart from multiplicative and additive constants which
are irrelevant to the choice of h, the local CL is asymptotically unbiased for
MSE. This provides some motivation for selecting the h minimizing the local
CL for use in d̂FEXP.

In Section 2, we de®ne the local CL criterion, and give some heuristic
motivation for its unbiasedness property. In Section 3, we present and prove our
main theoretical results, and set out several Lemmas which are proved in an
Appendix. In Section 4, we present the results of a Monte Carlo study
exploring the sensitivity of the proposed methodology to the choice of m.

2. THE LOCAL CL CRITERION

De®ne the periodogram by

Ij � I(ù j) � 1

2ðn

����Xnÿ1

t�0

yt exp(ÿiù j t)

����2 j � 1, . . ., ~n

Let y � log I(ù)� ã, where ù � (ù1, . . ., ù~n)9 and ã � 0:577216 . . . is Euler's
constant. Then we can write y � ì� å, where

ì � log f (ù) � ÿ2d log

����2 sin
ù

2

� ������ log f �(ù)

and

å � log
I(ù)

f (ù)

� �
� ã

MODEL SELECTION FOR SEMIPARAMETRIC LONG MEMORY 681

# Blackwell Publishers Ltd 2001



In the case of Gaussian white noise, the entries å j ( j � 1, . . ., ~n) of å are i.i.d.,
with mean zero and variance ó 2 � ð2=6.

We assume that

log f �(ù) �
X1
k�0

ãk cos(kù) ù 2 [ÿð, ð] (1)

where the fãkg are unknown constants. Thus,

log f �(ù) �
X1
k�0

ãk Vk

where Vk � cos(kù).
For any given positive integer h, de®ne

X h � [V0, V1, . . ., Vh] and X � [X h, ~V ]

where

~V � log

����2 sin
ù

2

� �����
De®ne

â̂ � (X 9X )ÿ1 X 9y

which may be viewed as the ordinary least squares estimator of the parameter
â � (ã0, ã1, . . ., ãh, ÿ2d)9. By de®nition, ÿ2d̂FEXP is the ®nal entry of â̂.
De®ne the hat matrix,

H � X (X 9X )ÿ1 X 9

and let ŷ � Hy � X â̂. Let m be a positive integer with 1=m� m=n! 0 as
n!1. Let W be a diagonal matrix with the ®rst m diagonal entries equal to
unity, and all other entries equal to zero. For any ~n-vector v, de®ne

kvk2
W � v9Wv �

Xm

j�1

v2
j

The local version of CL is de®ned by

CL(h) � kyÿ ŷk2
W � 2ó 2Tr(WH) (2)

Since kyÿ ŷk2
W � k( ŷÿ ì)ÿ åk2

W and since ŷÿ ì � ÿ(I ÿ H)ì� Hå, we
have

CL(h) � k ŷÿ ìk2
W � kåk2

W � 2ì9(I ÿ H)Wå� 2[ó 2Tr(WH)ÿ å9HWå] (3)

Note that Ek ŷÿ ìk2
W � MISEm. If fYtg were Gaussian white noise, we would

then have E[CL(h)] � MISEm � mó 2, so that CL(h) would be exactly unbiased
for MISEm, except for an additive constant which does not depend on h.
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3. THEORETICAL RESULTS

We assume that the ãk in (1) decay at least exponentially fast, i.e.,
jãk j < Cak=kp where C, p and a are real constants with C . 0, p > 0 and
0 , a , 1. For these same values of a and p, we assume the following.

ASSUMPTION 1

h

2

X1
k�h�1

ãk

k
� ah

hp
Gh as h!1

where suph jGhj,1 and inf h jGhj. 0.

The above sum determines the properties of Bias(d̂FEXP). Since Gh can take
on values of both signs, Bias(d̂FEXP) may oscillate between negative and pos-
itive values as h!1, but jBias(d̂FEXP)j is bounded both above and below by
®xed nonzero multiples of ah=hp. Assumption 1 holds with p � 1 for f �
corresponding to any AR(1) or MA(1) model, as well as an in®nite number of
ARMA models of all orders. A detailed explanation of the situation is provided
in Appendix 1.

From Theorems 1 and 2 of Hurvich and Brodsky (1997), if

log log n

h
� h

n
log6 n! 0

then

Bias(d̂FEXP) � h

2

X1
k�h�1

ãk

k
� O(a ~n)� O

h(log3 n)

n

� �

� ah

hp
Gh[1� o(1)]� O

h(log3 n)

n

� �
and

MSE � a2h

h2 p
G2

h � ó 2 h=n

Here, we have assumed slightly stronger conditions on h than in the theorems of
Hurvich and Brodsky (1997) to guarantee that MSE can be represented as above.
By taking h proportional to log n, with a proportionality constant exceeding
ÿ1=(2 log a), we would attain MSE < C�(log n)=n where C�. 0. Furthermore,
if we take h proportional to (log n)1�ä for any ®xed ä. 0 and use any positive
proportionality constant, then MSE < C�(log n)1�ä=n. Unfortunately, it will be
dif®cult in general to obtain an expression for the h which asymptotically
minimizes MSE, due to the presence of the potentially oscillatory term G2

h in the
expression for MSE. Nevertheless, under Assumption 1, MSE cannot converge to
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zero at a rate faster than (log n)=n, since inf h jGhj. 0. In our theoretical results,
we take h to be a deterministic, increasing sequence such that

log log n

h
! 0 and h � O[(log n)K ]

where K is a ®xed positive integer. In certain situations where Assumption 1
does not hold (including some ARMA models for f �) it may be possible to take
advantage of the extremely low bias of d̂FEXP to attain a faster rate of
convergence than (log n)=n, but model selection in such situations would require
a far more delicate analysis than we undertake in this paper.

Let âh and â̂h be (h� 1)-dimensional column vectors obtained by deleting
the ®nal element of â and â̂, respectively. We have

MISEm � Ek ŷÿ ìk2
W

� E

X â̂ÿ Xâ�
X1

k�h�1

ãk Vk

 !2

W

� E

ÿ 2(d̂FEXP ÿ d) ~V � X h( â̂h ÿ âh)ÿ
X1

k�h�1

ãk Vk

2

W

� 4MSEk ~Vk2
W � EkX h(â̂h ÿ âh)k2

W �
 X1

k�h�1

ãk Vk

2

W

� R (4)

where, by the Cauchy±Schwarz inequality, the remainder term R satis®es

R � O[MSEk ~Vk2
W � EkX h( â̂h ÿ âh)k2

W ]1=2 � O MSEk ~Vk2
W �
 X1

k�h�1

ãk Vk

2

W

 !1=2

� O EkXh(â̂h ÿ âh)k2
W �
 X1

k�h�1

ãk Vk

2

W

" #1=2

(5)

To obtain our main theoretical results, we will need the following Lemmas,
which are proved in Appendix 2. The notation A � O(B), where A and B are
matrices, means that the ratio of the j, k entry of A to the j, k entry of B is
O(1) for each j, k.

LEMMA 1. Suppose that

1

h
� h

n

� �
log2 n! 0

Then
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(X 9X )ÿ1 � B11 B12

B21 B22

� �
where B22 is scalar with B22 � 4h=n. Uniform bounds for the other submatrices
are given by

B11 � 4

n
I h�1 � O

1

n

h log n

n2
î9h

h log n

n2
îh

h

n
î9h 
 îh

2664
3775

B12 � B921 � O

h log n

n2

h

n
îh

2664
3775

where I h�1 is an (h� 1) 3 (h� 1) identity matrix, and îh � (1, 1
2
, . . ., 1=h)9.

LEMMA 2. The entries of H are uniformly O[(h=n)log2 n].

LEMMA 3. If m � o(n), then k ~Vk2
W � m log2(n=m).

LEMMA 4. EkX h( â̂h ÿ âh)k2
W � O[m MSE log2 h].

LEMMA 5.

 X1
k�h�1

ãk Vk

2

W

� O[m MSE]

LEMMA 6. If m � Const � ná with 1
2

,á, 1, then����E[ì9(I ÿ H)Wå]

MISEm

����! 0

LEMMA 7. If m � Const � ná with 1
2

,á, 1, then

jE[ó 2Tr(WH)ÿ å9HWå]j � o(MISEm)

THEOREM 1. If m � Const � ná with 0 ,á, 1, then

MISEm � 4 MSEk ~Vk2
W [1� o(1)]

PROOF OF THEOREM 1. We need to show that the ®nal three terms on the
righthand side of Equation (4) are o(MSEk ~Vk2

W ). From Lemma 3 with
m � Const � ná with 0 ,á, 1, we obtain

k ~Vk2
W � C3 � m log2 n

with C3 . 0. By Lemma 4,
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EkX h( â̂h ÿ âh)k2
W

MSEk ~Vk2
W

� O
m MSE log2 h

m MSE log2 n

" #
� O

log2 h

log2 n

 !
! 0

Next, from Lemma 5, we obtain X1
k�h�1

ãk Vk

2

W

MSEk ~Vk2
W

� O
m MSE

MSEk ~Vk2
W

 !
� O

m

m log2 n

� �
! 0

It remains to show that R given in (5) satis®es R � o(MSEk ~Vk2
W ). By arguments

similar to those given above, we have

[MSEk ~Vk2
W EkX h( â̂h ÿ âh)k2

W ]1=2

MSEk ~Vk2
W

� O
m MSE log2 h

MSEk ~Vk2
W

" #1=2

� O
log h

log n

� �
! 0

MSEk ~Vk2
W

 X1
k�h�1

ãk Vk

2

W

 !1=2

MSEk ~Vk2
W

� O
m MSE

MSEk ~Vk2
W

 !1=2

� O
1

log n

� �
! 0

EkXh( â̂h ÿ âh)k2
W

 X1
k�h�1

ãk Vk

2

W

" #1=2

MSEk ~Vk2
W

� O
(m MSE log2 h � m MSE)1=2

MSE � m log2 n

" #

� O
log h

log2 n

� �
! 0

and the proof is complete.

THEOREM 2. If m � Const � ná with 1
2

,á, 1, then

E[CL(h)] � MISEm � Ekåk2
W � o(MISEm)

PROOF OF THEOREM 2. Taking expectations in Equation (3) yields

E[CL(h)] � MISEm � Ekåk2
W � 2E[ì9(I ÿ H)Wå]� 2E[ó 2Tr(WH)ÿ å9HWå]
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The ®nal two terms are both o(MISEm), by Lemmas 6 and 7, respectively. The
proof is complete.

4. MONTE CARLO RESULTS

Using the method of Davies and Harte (1987), we simulated ARFIMA(1, d, 0)
models with d � 0:4. The models are of form

(1ÿ rB)(1ÿ B)d Yt � et

for t � 0, . . ., nÿ 1, where the fetg are independent standard normal, and B is
the backshift operator, i.e., BYt � Ytÿ1. We generated 500 simulated realizations
for each combination (n, r) with n � 512, 1024, 4096, and r � 0:2, 0.8. For
clarity, we now introduce the notation d̂ h

FEXP, where the superscript denotes the
value of h used in computing d̂FEXP. For each realization, we computed d̂ h

FEXP,
CL(h) (Equation (2)), and the global version C�L (h) for h � 1, . . ., 20. In the
calculation of CL, we tried two different values of m : m � n0:5 and m � n0:8.

For n � 4096, r � 0:8, m � n0:5 (a representative case), Figure 1 plots sim-
ulated versions of MISEm, E[CL]ÿ mó 2, 4 MSEk ~Vk2

W and E[C�L ] as functions
of h, based on averages over the 500 realizations. Since

Ekåk2
W � mó 2[1� o(1)]

Theorem 2 (if it applies; see comments below) suggests that MISEm and
E[CL]ÿ mó 2 should be similar, and indeed Figure 1 shows very good
agreement between these two quantities, with some deterioration as h gets very
small. Both curves are minimized at h � 9. The quantity 4 MSEk ~Vk2

W is also
minimized at h � 9, and has the same overall shape as the plots of MISEm and
E[CL]ÿ mó 2, but (somewhat paradoxically) does not provide a close numerical
approximation to these two quantities. A very close approximation of
4 MSEk ~Vk2

W to MISEm should not be expected, however, since from the proof
of Theorem 1 we have

MISEm

4 MSEk ~Vk2
W

� 1� O
log h

log n

� �
so the remainder term declines only very slowly to zero as n increases.

The close agreement in the numerical values of MISEm and E[CL]ÿ mó 2

noted above deserves further comment. These two curves were based on
m � ná with á � 1

2
, whereas Theorem 2 requires á. 1

2
. Indeed, the proofs of

Lemmas 6 and 7 imply that E[CL]=MISEm !1 when á � 1
2
. Our simulation

results suggest that the bounds in the proofs of these Lemmas could be
improved, and that the conclusion of Theorem 2 holds without the requirement
that á. 1

2
.

The curve in Figure 1 for E[C�L ] has, for large h, a noticeably sharper
upward slope than the other curves. Moreover, the E[C�L ] curve is minimized at
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MISEm (.) and E[CL] 2 mσ2 (1)

FIGURE 1. n � 4096, r � 0.8, m � n0:5
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h � 7, a somewhat smaller value than for the other curves (h � 9). Thus, the
local criterion CL provides, on the average, a better approximation than the
global C�L criterion to the shape of the MSE curve.

Figure 2 (n � 4096, r � 0:8, m � n0:8) once again shows that MISEm and
E[CL]ÿ mó 2 approximate each other well, up to a small additive shift.
However these curves have a shape closer to that of E[C�L ] than to that of the
desired target, MSE. This is not surprising, since in this case m=~n � 0:38, so
the neighbourhood used for computing MISEm is not suf®ciently local to zero.
Comparison of Figure 3 (n � 1024, r � 0:8, m � n0:5) and Figure 4
(n � 1024, r � 0:8, m � n0:8) reveals the same patterns observed above for
n � 4096.

Next, we present some numerical results, in tabular form, for all situations
studied. Let hopt, hE[C�L ] and hE[CL] denote the minimizers of MSE, E[C�L ] and
E[CL], respectively. (Note that hE[CL] depends on m.) Table 1 lists values of n,
r, hopt, hE[C�L ], MSE(hE[C�L ])=MSE(hopt), hE[CL] and MSE(hE[CL])=MSE(hopt),
where MSE(h) denotes the mean squared error as a function of h. In each of
the ®nal two columns, two entries are given, corresponding to m � n0:5 and
m � n0:8, respectively. The ®fth and seventh columns are crude measures of the
quality of the selections made by C�L and CL, respectively. For a given sample
size, the quantities hopt, hE[C�L ] and hE[CL] all tend to increase with r. When
r � 0:2, all of the averaged criteria considered here select the optimal value,
h � 1. The quantity hE[CL] with m � n0:5 is typically very close to or identical
to hopt, for both values of r considered. For r � 0:8, hE[CL] with m � n0:8

tends to be smaller than hopt, and hE[C�L ] tends to be even smaller. Cor-
respondingly, in terms of the quality measure considered here, CL with
m � n0:5 performs virtually as well as the optimal choice hopt, and is much
better than the global criterion C�L . The local CL criterion with m � n0:5

performs somewhat better than the one with m � n0:8, and both are sub-
stantially better than C�L .

Table 2 presents the means, over the 500 realizations, of the selected values
of h. In all cases, the average for the global criterion E[hC�L ] is always lowest,
followed by E[hCL ] with m � n0:8, followed by E[hCL ] with m � n0:5. When
r � 0:2, E[hC�L ] comes closest to hopt � 1. On the other hand, when r � 0:8,
E[hCL ] with m � n0:5 comes closest to hopt. These ®ndings are consistent with
the results in Table 1. The largeness of E[hCL ] when r � 0:2 may be attributed
to excess variability in the local criteria as compared to C�L . The closeness of
hopt and E[hCL ] with m � n0:5 when r � 0:8 may be attributed to the near-
unbiasedness of CL in this case.

Table 3 presents the bias and mean squared error of the selected estimators
of d, denoted by d̂ hC�L

FEXP and d̂ hCL

FEXP with m � n0:5 and m � n0:8. In most cases,
d̂ hCL

FEXP with m � n0:5 has the least bias, followed by d̂ hCL

FEXP with m � n0:8,
followed by d̂ hC�L

FEXP. This is consistent with the results of Table 2, since as h
increases, the bias of d̂ h

FEXP decreases. In terms of mean squared error, for
r � 0:2, d̂ hC�L

FEXP is clearly best, by a factor of as much as 1.8 compared to its
closest competitor. Again, this is consistent with the results of Table 2, since in
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MISEm (.) and E[CL] 2 mσ2 (1)

FIGURE 2. n � 4096, r � 0.8, m � n0:8
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MISEm (.) and E[CL] 2 mσ2 (1)

FIGURE 3. n � 1024, r � 0.8, m � n0:5
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MISEm (.) and E[CL] 2 mσ2 (1)

FIGURE 4. n � 1024, r � 0.8, m � n0:8
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this case the best criterion is presumably the one which selects h � 1 the most
frequently. When r � 0:8, in terms of mean squared error, the criteria perform
more similarly to each other, with d̂ hC�L

FEXP performing best by 4% for n � 512,
and d̂ hCL

FEXP with m � n0:8 outperforming d̂ hC�L
FEXP

by 7% and 22% for n � 1024
and n � 4096, respectively. For both values of r and for all sample sizes, in
terms of mean squared error, d̂ hCL

FEXP with m � n0:8 performed better than d̂ hCL

FEXP

with m � n0:5, although the differences were much more pronounced for
r � 0:2 than for r � 0:8. Table 3 also reveals that for a given value of r, and

TABLE 1

PERFORMANCE OF AVERAGED SELECTION CRITERIA

n r hopt hE[C�L] MSE(hE[C�L])

MSE(hopt)
hE[CL] MSE(hE[CL])

MSE(hopt)

512 0.2 1 1 1.0 1, 1 1.0, 1.0
512 0.8 7 3 1.78 5, 4 1.02, 1.27

1024 0.2 1 1 1.0 1, 1 1.0, 1.0
1024 0.8 7 4 1.73 7, 5 1.0, 1.27
4096 0.2 1 1 1.0 1, 1 1.0, 1.0
4096 0.8 9 7 1.37 9, 8 1.0, 1.12

TABLE 2

MEANS OF SELECTED VALUES OF h

n r hopt E[hC�L ] E[hCL ], m � n0:5 E[hCL ], m � n0:8

512 0.2 1 1.80 3.65 2.48
512 0.8 7 3.64 5.79 4.28

1024 0.2 1 1.98 4.04 2.62
1024 0.8 7 4.71 7.21 5.49
4096 0.2 1 2.04 3.65 3.03
4096 0.8 9 6.78 8.54 8.32

TABLE 3

PERFORMANCE OF THE SELECTED ESTIMATORS OF d

n r Bias(d̂ h
C�

L ) MSE(d̂ h
C�

L ) Bias(d̂ hCL )
m � n0:5

MSE(d̂ hCL )
m � n0:5

Bias(d̂ hCL )
m � n0:8

MSE(d̂ hCL )
m � n0:8

512 0.2 0.0224 0.0230 0.0104 0.0908 0.0153 0.0424
512 0.8 0.1982 0.1073 0.0987 0.1283 0.1688 0.1121

1024 0.2 0.0179 0.0093 0.0154 0.0301 0.0208 0.0153
1024 0.8 0.1391 0.0479 0.0658 0.0492 0.1137 0.0446
4096 0.2 0.0104 0.0019 0.0126 0.0049 0.0108 0.0030
4096 0.8 0.0657 0.0115 0.0392 0.0098 0.0428 0.0094
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for a given selection criterion, the mean squared error of the selected estimator
decreases monotonically as n increases.

5. DISCUSSION

We have demonstrated the asymptotic unbiasedness, up to irrelevant additive and
multiplicative constants, of a local CL criterion for the mean squared error
(MSE) of a fractional exponential estimator of the memory parameter. This is
done by ®rst establishing the asymptotic equivalence of a (local to zero)
frequency domain mean integrated squared error and MSE, and then showing
that the local CL is asymptotically unbiased for the corresponding local mean
integrated squared error (MISE). The need to work in a local neighbourhood of
the origin so that MISE provides a good approximation to MSE arose in a
similar context in Hurvich and Beltrao (1994). Our results are analogous in spirit
to those of Findley (1985) and Bhansali (1986), who established the asymptotic
unbiasedness of the Akaike information criterion (AIC) for the Kullback±Leibler
information in autoregressive model selection, assuming that the true model is an
in®nite order autoregression. As pointed out by Findley (1985), unbiasedness of
a model selection criterion is a basic property, worthy of study. We have not,
however, established the stronger result that the minimizers of the local CL and
MSE are asymptotically equivalent. Such a result would be more closely
analogous to those of Shibata (1980) on the asymptotic ef®ciency of AIC for
autoregressive model selection, and those of Li (1987) on the asymptotic
ef®ciency of CL for model selection in linear regression. The asymptotic
ef®ciency of a global version of CL for the global MISE has been established by
Moulines and Soulier (2000), assuming a power law decay of the ãk , but this
result does not have a direct bearing on the MSE of the resulting estimator of d.

It seems that there is a trade-off between the quality of model selection
methods and the quality of the FEXP estimator of d. If the ãk decay
exponentially fast, as assumed here, then the optimal rate of convergence for
the mean squared error of the FEXP estimator is very good, (log n)=n, although
it seems dif®cult to derive strong results on the properties of the estimator
selected by CL. On the other hand, if the ãk decay as a power law, it may be
possible to obtain stronger results on the properties of the estimator of d
selected by the local CL, but then the best possible rate of convergence for the
estimator of d is slower than described above. A similar trade-off is known for
model selection in linear regression by AIC; see, for example, Hurvich and
Tsai (1995).

Another issue not fully resolved is the appropriate choice of the number of
frequencies, m, to be used in the local CL. For MSE and the local MISE to
approximate each other well, a reasonably small value of m should be used.
Using too small a value for m, however, will result in an excessively variable
local CL criterion. Partly for this reason, the quality of the approximation of
the local CL to the local MISE will degrade if m tends to 1 at too slow a rate.
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Our simulations indicated that the use of m � n0:5 was preferable to m � n0:8

from the point of view of bias of the local CL for the shape of the MSE curve,
but that the opposite preference holds from the point of view of the mean
squared error of the estimator of d. It may seem undesirable to introduce the
somewhat arbitrary parameter m in order to obtain a method of selecting the
number of parameters to use in an estimator of d. It is noteworthy, however,
that similarly arbitrary parameters were needed in treating the analogous
problem of bandwidth selection in the Gaussian semiparametric estimator of d
(Henry and Robinson, 1996), and in the GPH estimator (Hurvich and Deo,
1999).

APPENDIX 1

Assumption 1 merits further discussion. It would clearly be satis®ed if ãk � Cak=kp,
though this speci®cation implies that the ãk are eventually all of the same sign. If
fY�t g � f(1ÿ B)d Ytg is a stationary AR(1) process, Y�t � á1Y�tÿ1 � et where fetg is
white noise with zero mean, já1j, 1, á1 6� 0, it can be shown that ãk � 2ák

1=k for k . 0.
Setting á1 � aeiè where a � já1j and è � 0 or ð according to whether á1 is positive or
negative, respectively, we obtain

1

2

X1
k�h�1

ãk

k
�
X1

k�h�1

(aeiè)k

k2
� (aeiè)h�1

(h� 1)2

X1
k�0

h� 1

h� 1� k

� �2

(aeiè)k � (aeiè)h�1

(h� 1)2(1ÿ aeiè)

where we have used the Dominated Convergence Theorem, together with the absolute
summability of a geometric series. Thus,

h

2

X1
k�h�1

ãk

k
� ah

h
Gh

where Gh � aei(h�1)è=(1ÿ aeiè), so that Assumption 1 with p � 1 is satis®ed for the
AR(1) model. Note that in this case Gh may be expressed as Gh � á1=(1ÿ á1) if á1 . 0,
or Gh � (ÿ1)há1=(1ÿ á1) if á1 , 0. A similar argument shows that Assumption 1 holds
for the invertible MA(1) model, since the log spectral density of any MA series is the
negative of that of a corresponding AR series. Next, we consider the stationary AR(2)
model

Y�t � á1Y�tÿ1 � á2Y�tÿ2 � et

Denote the roots of the characteristic polynomial z2 ÿ á1zÿ á2 by r1, r2. If these roots
are real with jr1j. jr2j, then for k . 0,

ãk � 2rk
1

k
� 2rk

2

k
� 2rk

1

k

so that Assumption 1 is satis®ed with p � 1 and with a � jr1j, by the argument given
above for the AR(1) case. If the roots are real with r1 � r2, Assumption 1 holds. If the
roots are real with r1 � ÿr2 then ãk � 0 for k . 0, and Assumption 1 does not hold. Then
the series is an FEXP model of order 0, and one could attain MSE � C=n by holding
h constant as n!1. If the roots are complex with r1 � aeiè, r2 � aeÿiè then
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ãk � 2(aeiè)k

k
� 2(aeÿiè)k

k
� 4 cos(kè)ak

k
for k . 0

Assuming that

inf
h
jcos(h� 1)èÿ a cos(hè)j. 0

we obtain

1

2

X1
k�h�1

ãk

k
�
X1

k�h�1

(aeiè)k � (aeÿiè)k

k2
� (aeiè)h�1

(h� 1)2(1ÿ aeiè)
� (aeÿiè)h�1

(h� 1)2(1ÿ aeÿiè)

� 2ah�1

(h� 1)2

cos(h� 1)èÿ a cos(hè)

1ÿ 2a cos è� a2

so that Assumption 1 holds with p � 1 and

Gh � 2a[cos(h� 1)èÿ a cos(hè)]

1ÿ 2a cos è� a2

If è is a rational multiple of ð then cos(hè) will only assume a ®nite number of
values so all but ®nitely many choices of a will lead to a model which satis®es
Assumption 1. Unfortunately, if è is not a rational multiple of ð, there will typically
exist no positive lower bound for jcos(h� 1)èÿ a cos(hè)j so that Assumption 1 will
fail.

For general stationary and invertible ARMA models, the ãk are sums of terms of the
two forms seen above for real and complex roots, respectively. Assumption 1 holds with
p � 1 if the root of largest magnitude of either the autoregressive or moving average
characteristic polynomial is real, and all other roots are of smaller magnitude.
Assumption 1 with p � 1 also holds if the two roots of largest magnitude are complex,
say aeiè, aeÿiè, all other roots are of smaller magnitude, and

inf
h
jcos(h� 1)èÿ a cos(hè)j. 0

APPENDIX 2

PROOF OF LEMMA 1. Index the columns of X by k � 0, . . ., h� 1. We can write

X 9X � X 9h X h c

c9 ~V 9 ~V

� �
(X 9X )ÿ1 � B11 B12

B21 B22

� �
where c � X 9h ~V � (c0, . . ., ch)9, and the entries of (X 9X )ÿ1 are given by the formula for
the inverse of a partitioned matrix. By Lemma 1 of Hurvich and Brodsky (1997),
c0 � O(log n), and ck � ÿn=(4k)� O(log n) for k � 1, . . ., h. By (10) and Lemma 2 of
Hurvich and Brodsky (1997),
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(X 9h X h)ÿ1 � Aÿ1 � M

where A is a diagonal matrix with diagonal entries (n=2, n=4, . . ., n=4), and all entries
of M are O(1=n2), except for the upper lefthand corner, which is O(1=n). These
properties of M follow from the proof of Lemma 3 of Hurvich and Brodsky (1997),
which assumes that h=n! 0. By Lemma 4 of Hurvich and Brodsky (1997),
~V 9 ~V � nð2=24� O(log2 n).

We focus ®rst on B22, a scalar given by B22 � [ ~V 9 ~V ÿ c9(Aÿ1 � M)c]ÿ1, so that

Bÿ1
22 �

nð2

24
ÿ c9Aÿ1cÿ c9Mc� O(log2 n)

� nð2

24
ÿ 2

n

� �
c2

0 ÿ
4

n

� �Xh

k�1

c2
k ÿ

Xh

j�0

Xh

k�0

cjMjkck � O(log2 n)

� nð2

24
ÿ n

4

Xh

k�1

1

k2
ÿ c2

0 M00 ÿ 2c0

Xh

k�1

ckM0k ÿ
Xh

j�1

Xh

k�1

cjMjkck � O(log2 n)

� n

4

ð2

6
ÿ
Xh

k�1

1

k2

 !
� O(log2 n)

� n

4h
� O(log2 n):

Thus, B22 � 4h=n. Next, consider B11 � (Aÿ1 � M)� B22(Aÿ1 � M)cc9(Aÿ1 � M),
where (B11) jk � (X 9X )ÿ1

jk for j, k � 0, . . ., h. From Lemma 1 of Hurvich and Brodsky
(1997),

cc9 � O
log2 n n log nî9h

n log nîh n2î9h 
 îh

� �

Similarly, we obtain
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Aÿ1cc9Aÿ1 � O
cc9

n2

� �

� O

log2 n

n2

log n

n
î9h

log n

n
îh î9h 
 îh

26664
37775

Aÿ1cc9M � O

log2 n

n2

log2 n

n2
19h

log n

n
îh

log n

n
19h 
 îh

26664
37775

Mcc9Aÿ1 � (Aÿ1cc9M)9

� O

log2 n

n2

log n

n
î9h

log2 n

n2
1h

log n

n
1h 
 î9h

26664
37775

Mcc9M � O

1

n

1

n2
19h

1

n2
1h

1

n2
19h 
 1h

0BB@
1CCA log2 n

n

log2 n

n
19h

log nîh log n19h 
 îh

0B@
1CA

26664
37775

� O

log2 n

n2

log2 n

n2
19h

log2 n

n2
1h

log2 n

n2
19h 
 1h

26664
37775

Thus,

(Aÿ1 � M)cc9(Aÿ1 � M) � O

log2 n

n2

log n

n
î9h

log n

n
îh î9h 
 îh

2664
3775

and

B11 � 4

n
I h�1 � O

1

n

h log n

n2
î9h

h log n

n2
îh

h

n
î9h 
 îh

2664
3775

Finally, we have

B12 � B921 � ÿB22(Aÿ1 � M)c � O

h log n

n2

h

n
îh

2664
3775
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PROOF OF LEMMA 2. Using the notation established in Lemma 1, we have

H � X (X 9X )ÿ1 X 9

� [X h, ~V ]
B11 B12

B21 B22

" #
X 9h

~V 9

" #

� X hB11 X 9h � ~V B21 X 9h � X hB12
~V 9� ~V B22

~V 9

All entries of X h are O(1). All entries of ~V are O(log n). By Lemma 1, all entries in the
kth column of X hB11 are

O
Xh

j�0

j(B11) jk j
24 35 � O

1

n
� h log2 n

n2

� �
if k � 0

� O
1

n
� h log h

nk

� �
if k . 0

Thus, each entry of X hB11 X 9h is

O
1

n
�
Xh

k�1

1

n
� h log h

nk

� �" #
� O

h log2 h

n

� �

Next, we note that ~V B21 is an ~n 3 (h� 1) matrix, with

( ~V B21) jk � O
h log2 n

n2

� �
if k � 0

� O
h log n

nk

� �
if k . 0

Thus, each entry of ~V B21 X 9h is

O
h log2 n

n2
�
Xh

k�1

h log n

nk

 !
� O

h log2 n

n

� �

The same bound holds for the entries of X hB12
~V 9. Finally, since B22 � O(h=n), we ®nd

that each entry of ~V B22
~V 9 is

O
h log2 n

n

� �
The proof is complete.

PROOF OF LEMMA 3. We have
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k ~Vk2
W �

Xm

j�1

log2 2 sin
ù j

2

� �� �

�
Xm

j�1

log2 ù j[1� o(1)]

�
Xm

j�1

log
2ð

n

� �
� log( j)

� �2

[1� o(1)]

Since

log2 x � d

dx
[x(log xÿ 1)2 � x]

and

log x � d

dx
[x log xÿ x]

we conclude thatXm

j�1

log2 ù j � m log2 2ð

n

� �
� m(log mÿ 1)2 � m� 2 log

2ð

n

� �
(m log mÿ m)

� �
[1� o(1)]

� m(log2 n� log2 mÿ 2 log n log m)� o m log2 n

m

� �� �� �
f1� o(1)g

� m log2 n

m

� �
[1� o(1)]

PROOF OF LEMMA 4. De®ne â� � E[â̂] � (X 9X )ÿ1 X 9[ì� E(å)], and let â�h be the
(h� 1)-dimensional column vector obtained by deleting the ®nal element of â�. We
have

X h( â̂h ÿ âh) � X h( â̂h ÿ â�h )� X h(â�h ÿ âh)

It suf®ces to show that

EkX h( â̂h ÿ â�h )k2
W � O[m MSE log2 h] (6)

and

kX h(â�h ÿ âh)k2
W � O[m MSE log2 h] (7)

We focus ®rst on establishing (7). We have

â� ÿ â � (X 9X )ÿ1 X 9[ìÿ Xâ� E(å)]

�
B11 X 9h � B12

~V 9

B21 X 9h � B22
~V 9

" #
[ìÿ Xâ� E(å)]

Thus,

â�h ÿ âh � (B11 X 9h � B12
~V 9)[ìÿ Xâ� E(å)]

Consider ®rst (B11 X 9h � B12
~V 9)E(å), which is an (h� 1)-dimensional column vector.
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From Lemmas 2 and 5 of Hurvich et al. (1998), and from Lemmas 7 and 8 of Hurvich
and Brodsky (1997), it follows that

lim
n

sup
1< j<log2 n

jE(å j)j,1

and that

jE(å j)j � O
log n

j

� �
for j � log2 n, . . ., ~n

Thus, each entry of X 9hE(å) is

O
X~n

j�1

(1)jE(å j)j
24 35 � O(log2 n)

and

~V 9E(å) � O log2 n
X~n

j�1

jE(å j)j
24 35 � O(log4 n)

Thus,

(B11 X 9h � B12
~V 9)E(å)

� O

log2 n
1

n
�
Xh

k�1

h log n

n2 k

 !
� log4 n

h log n

n2

� �

log2 n
h log n

n2
�
Xh

k�1

h

nk
� 1

n
÷fk�1g

� �( )
� log4 n

h

n

� �

..

.

log2 n
h log n

n2 j
�
Xh

k�1

h

njk
� 1

n
÷fk� jg

� �( )
� log4 n

h

nj

� �

..

.

26666666666666666666666664

37777777777777777777777775

� O

log2 n

n

h log4 n

n
îh � log2 n

n

266664
377775� O

log2 n

n

h log4 n

n
îh

266664
377775

Since the ( j, k) entry of X 9hWX h is O(m), we conclude that

kX h(B11 X 9h � B12
~V 9)E(å)k2

W
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� O
m log4 n

n2
� m log2 n

n

Xh

j�1

h log4 n

nj
� m

Xh

j�1

Xh

k�1

h2 log8 n

n2 jk

0@ 1A
� O m

h2

n2

� �
log10 n

� �
� o[m MSE log2 h]

Next, we consider (B11 X 9h � B12
~V 9)(ìÿ Xâ). De®ne

gj � V 9j(ìÿ Xâ) and ~g � ~V 9(ìÿ Xâ)

Then

(B11 X 9h � B12
~V 9)(ìÿ Xâ)

� O

1

n
jg0j �

Xh

k�1

jgk j h log n

n2 k

jg0j h log n

n2
�
Xh

k�1

jgk j h

nk
� 1

n
÷fk�1g

� �
..
.

jg0j h log n

n2 j
�
Xh

k�1

jgk j h

njk
� 1

n
÷fk� jg

� �
..
.

26666666666666666664

37777777777777777775

� O

j ~gj h log n

n2

j ~gj h
n

..

.

j ~gj h

nj

..

.

2666666666666664

3777777777777775
(8)

We now show that, under the assumptions given in Section 3, jgk j � O[MSE
1
2] uniformly

for 0 < k < h, and that (h=n)j ~gj � O[MSE
1
2]. For 0 < k < h, we have

V 9k(ìÿ Xâ) � V 9k
X1

j�h�1

ã jVj �
X1

j�h�1

ã jV 9k Vj

From Equation (10) of Hurvich and Brodsky (1997), it follows that

jgk j � O
X1

j�h�1

jã jj(1� n÷f j mod n�kg � n÷f j mod n�nÿkg)

" #

� O
X1

j�h�1

jã jj � n(jãn�k j � jã2n�k j � � � �)� n(jãnÿk j � jã2nÿk j � � � �)
" #

� O
X1

L�h�1

jãLj � n
X1
L�1

jãLnj � n
X1
L�1

jãLnÿn=2j
 !

� O(ah=hp)� O(na~n)

� O(MSE
1
2)

Next, from Lemma 1 and Theorem 1 of Hurvich and Brodsky (1997), we have
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h

n
~g � h

n
~V 9(ìÿ Xâ)

� h

n

X1
j�h�1

ã j
~V 9Vk

� h

n

X1
j�h�1

ã j

ÿn=4

j mod n
÷f1< j mod n<~ng � O(log n)

� �

� h

n

X1
j�n=2�1

ã j

ÿn=4

nÿ j mod n
÷ n

2
�1< j mod n<nÿhÿ1f g � O(log n)

� �

� O
ah

hp

� �
Thus,

h

n

� �2 j ~gj2
MSE

� O

a2h

h2 p

a2h

h2 p
� h

n

26664
37775 � O(1)

It follows from (8) that

(B11 X 9h � B12
~V 9)(ìÿ Xâ) � O

MSE
1
2

h log h

n

MSE
1
2

h log h

n
îh

2664
3775

� O
MSE

1
2

MSE
1
2îh

" #
We conclude that

kX h(B11 X 9h � B12
~V 9)(ìÿ Xâ)k2

W � O m MSE
h2 log4 h

n2
� log2 h

� �� �
� O(m MSE log2 h)

thereby establishing (7).
It remains to prove (6). We have

EkX h( â̂h ÿ â�h )k2
W � E[( â̂h ÿ â�h )9X 9hWX h( â̂h ÿ â�h )]

�
Xh

j�0

Xh

k�0

[Cov( â̂)] jk V 9jWVk

where Cov( â̂) is the covariance matrix of â̂, given by

Cov( â̂) � E[( â̂ÿ â�)( â̂ÿ â�)9] � (X 9X )ÿ1 X 9Cov(å)X (X 9X )ÿ1

and Cov(å) is the covariance matrix of å. It follows from the proof of Theorem 2 of
Moulines and Soulier (1999) that we can write å � ç� r where E(ç j) � 0, Var(ç j) � ó 2,
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jrjj � O[(log j)= j] (a non-stochastic bound) uniformly for 1 < j < ~n, and Cov(ç j,
çk) � O[(log2 n)kÿ2jdj j2jdjÿ2] uniformly for 1 < k , j < ~n. The conditions required for
this theorem are clearly met, in view of the exponential decay of the fã jg sequence. Let
~r � r ÿ E(r). We have

Cov(å) � Cov(ç)� Cov(r)� 2E(~rç9)

The ( j, k)th entry of Cov(r) is O((log j)(log k)= jk) uniformly for j, k � 1, . . ., ~n. Writing
Cov(ç) � ó 2 I �P, where I is an ( ~n 3 ~n) identity matrix, we obtain

Cov( â̂) � ó 2(X 9X )ÿ1 � (X 9X )ÿ1 X 9[Ó� Cov(r)� 2E(~rç9)]X (X 9X )ÿ1

so that

EkX h( â̂h ÿ â�h )k2
W

�
Xh

j�0

Xh

k�0

V 9jWVkó
2(X 9X )ÿ1

jk �
Xh

j�0

Xh

k�0

V 9jWVkf(X 9X )ÿ1 X 9[Ó� Cov(r)]X (X 9X )ÿ1g jk

� 2
Xh

j�0

Xh

k�0

V 9jWVk[(X 9X )ÿ1 X 9E(~rç9)X (X 9X )ÿ1] jk (9)

The ®rst term on the right-hand side of (9) is of order

O m
Xh

j�0

Xh

k�0

j(X 9X )ÿ1
jk j

24 35 � O m
1

n
�
Xh

k�1

h log n

n2 k
�
Xh

j�1

Xh

k�1

h

njk

0@ 1A24 35
� O

mh

n
log2 h

� �
� O(m MSE log2 h)

Since all entries of X are O(log n), it follows that all entries of X 9[Ó� Cov(r)]X are of
order

O log2 n
X~n

k�1

X~n

j�k�1

log2 n kÿ2jdj j2jdjÿ2 � log2 n
X~n

k�1

X~n

j�1

log j

j

log k

k

0@ 1A
� O log4 n

X~n

k�1

kÿ2jdjk2jdjÿ1 � log6 n

 !

� O(log6 n)

Thus, the second term on the right-hand side of (9) isXh

j�0

Xh

k�0

V 9jWVkf(X 9X )ÿ1 X 9[Ó� Cov(r)]X (X 9X )ÿ1g jk

� O m log6 n
Xh

j�0

Xh

k�0

Xh�1

L1�0

Xh�1

L2�0

j(X 9X )ÿ1
jL1
j j(X 9X )ÿ1

L2 k j
0@ 1A (10)

We have
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Xh�1

L1�0

Xh�1

L2�0

j(X 9X )ÿ1
jL1
j j(X 9X )ÿ1

L2 k j

�
Xh�1

L1�0

j(X 9X )ÿ1
jL1
j
Xh�1

L2�0

j(X 9X )ÿ1
kL2
j

� O
1

n
÷f j�0g � h log h

nj
÷f1< j<hg

� �
1

n
÷fk�0g � h log h

nk
÷f1<k<hg

� �" #

Using (10) gives

Xh

j�0

Xh

k�0

V 9jWVkf(X 9X )ÿ1 X 9[Ó� Cov(r)]X (X 9X )ÿ1g jk

� O m
h2

n2

� �
log10 n

� �

� O
mh

n

� �
log2 h

� �
� O(m MSE log2 h)

Let P be the (h� 1) 3 ~n matrix obtained by deleting the ®nal row of (X 9X )ÿ1 X 9. The
absolute value of the last term on the right-hand side of (9) is����EXh

j�0

Xh

k�0

V 9jWVk(P~r) j(Pç)k

���� � jE[(X hP~r)9W (X hPç)]j

< E(kX hP~rkWkX hPçkW )

< (EkX hP~rk2
W )

1
2(EkX hPçk2

W )
1
2 (11)

Using similar arguments to those presented above, it can be shown that

EkX hP~rk2
W � O m

h2

n2

� �
log10 n

� �
and EkX hPçk2

W � O m
h2

n

� �
log6 n

� �
Thus, the right-hand side of (11) is of order

O
m(log8 n)h

n3=2

� �
� O m

h

n

� �
log2 h

� �
� O[m MSE log2 h]

We conclude that EkX h( â̂h ÿ â�h )k2
W � O(m MSE log2 h), and the proof is complete.

PROOF OF LEMMA 5. We have
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 X1
k�h�1

ãk Vk

2

W

�
X1

k�h�1

X1
L�h�1

ãk(V 9k WVL)ãL

� O m
X1

k�h�1

jãk j
 !2

24 35
� O

ma2h

h2 p

� �
� O[m MSE]

PROOF OF LEMMA 6. We have

(I ÿ H)ì � (I ÿ H) Xâ�
X1

k�h�1

ãk Vk

" #

�
X1

k�h�1

ãk(I ÿ H)Vk

By Lemma 2, each entry of (I ÿ H)Vk is of order h log2 n. Thus,

E[ì9(I ÿ H)Wå] �
X1

k�h�1

ãk V 9k(I ÿ H)WE[å]

� O h log2 n
Xm

j�1

jE[å j]j
X1

k�h�1

jãk j
" #

� O(h log4 n MSE1=2)

where we have used the assumptions given at the beginning of Section 3 together with the
fact that E[å j] � O(1) for 1 < j < log2 n and E[å j] � O[(log n)= j] for log2 n < j < ~n. It
follows from Theorem 1 (which will be proved without using Lemma 6) and Lemma 3
that ����E[ì9(I ÿ H)Wå]

MISEm

���� � O
h log4 n MSE

1
2

m log2 n MSE

 !

� O
h log2 n

m MSE
1
2

� �

� O
h log2 n

m(h=n)
1
2

" #

� O
n

1
2

m

� �
h1=2 log2 n

� �
� O[n

1
2
ÿáh

1
2 log2 n]! 0

since 1
2
ÿ á, 0, and h

1
2 log2 n is bounded by a power of log n. The Lemma follows.
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PROOF OF LEMMA 7. We write å � ç� r, where the properties of ç and r are
described in the proof of Lemma 4. We have

E[å9HWåÿ ó 2Tr(WH)] � E[ç9HWç� r9HWr � r9HWç� ç9HWr ÿ ó 2Tr(HW )]

� E
Xm

j�1

(ç2
j ÿ ó 2)Hjj �

X~n

j�1

Xm

k�1

ç j Hjkçk÷f j6�kg � r9HWr � r9HWç� ç9HWr

24 35
Note that E

Pm
j�1(ç2

j ÿ ó 2)Hjj � 0. Next, we have

E
X~n

j�1

Xm

k�1

ç j Hjkçk÷f j 6�kg

� E
Xm

k�1

Xkÿ1

j�1

ç j Hjkçk � E
Xm

k�1

X~n

j�k�1

ç j Hjkçk

� O (h=n)(log4 n)
Xm

k�1

Xkÿ1

j�1

k2jdjÿ2 jÿ2jdj � h

n

� �
(log4 n)

Xm

k�1

X~n

j�k�1

j2jdjÿ2 kÿ2jdj
24 35

� O
h

n

� �
log5 n

� �
� o(MISEm)

Next,

E(r9HWr) � E
X~n

j�1

Xm

k�1

rjHjkrk

� O
h

n

� �
log2 n

X~n

j�1

log j

j

Xm

k�1

log k

k

24 35
� O

h

n

� �
log6 n

� �
� o(MISEm)

Next, we have

jE(r9HWç)j < Ejr9HWçj � E

����X~n

j�1

Xm

k�1

rjHjkçk

����
< E

X~n

j�1

jrjj
����Xm

k�1

Hjkçk

���� < Const
X~n

j�1

log j

j
E

����Xm

k�1

Hjkçk

����
< Const

X~n

j�1

log j

j
E
Xm

k�1

Hjkçk

 !2
24 351

2

Now,
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E
Xm

k�1

Hjkçk

 !2

� E
Xm

k�1

Hjkçk

Xm

L�1

HjLçL � O
h

n

� �
log2 n

� �2

(m� log3 n)

( )
so that

jE(r9HWç)j � O
X~n

j�1

log j

j
m

1
2

h

n

� �
log2 n

24 35
� O[m

1
2(h=n)log4 n]

� o(MISEm)

By a similar argument,

jE(ç9HWr)j � O n
1
2

h

n

� �
log4 n

� �
� o(MISEm)

since á. 1
2
. The proof is ®nished.
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