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This paper explores tests of the hypothesis that the tail thickness of a distribution is constant
over tme. Using Hill's conditional maximum likelihood estimator far the tail index of a dis-
tribution, tests of tail shape constancy are constructed that allow for an unknown breakpoint.
The recursive test is shown to be inconsistent in one direction, and only a one-sided test is
recommended. Specifically, the test can be used when the alternative hypothesis is that the tail
index decreases over time. A rolling and sequential version of the test is consistent in both direc-
tions. The methods are illustrated on recent stack price data for Thailand, Malaysia and Indonesia.
The period covers the recent Asian financial crisis and enables us to assess whether breakpaints
in domestic asset return distributions are related to known changes in institutional arrangements
in the foreign currency markets of these countries.

1. INTRODUCTION

The role of extreme outliers has long been relevant in economics and is now important in
many financial market applications. More specifically, tail shape is well recognized as a
distinguishing empirical feature of asset price and financial return data. Exchange rate
and stock market return data are especially known to exhibit extreme outlier behaviour
(Mandelbrot, 1963; Boothe-Glassman, 1387). Events like the October 1987 stock market
crash, the Asian financial crisis of 1997-1998, the hedge fund crisis in 1998, and general
market concern over value at risk (VaR) underscore the relevance of outlier activity and
bear witness to the importance of this area of study in empirical wark. One aspect of tail
behaviour that is especially interesting during periods of market turbulence is whether the
tail shape of the distribution itself changes, thereby increasing (or decreasing) the prob-
ability of outliers. The Asian financial crisis over 1997-1998 is a poignant recent example
that we will consider, where abrupt changes in the market caught informed observers by
surprise and were of a sufficient magnitude to suggest the possibility of a change in the
underlying distribution.

There is econometric evidence that the tail behaviour of some financial series has
changed over time. Assuming that the breakdate is exogenous or krown, Phillips-Loretan
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(1990) and Koedjick e al. (1990) construct tests for the null hypothesis that the tail thick-
ness is constant over time. They find that the null of constancy is rejected by exchange
rate data for the U.S., Japan and a subset of Western European countries. Other papers,
like Pagan-Schwert (19904, b), apply parameter constancy tests with stricter moment
requirements (i.e. that the fourth moment be finite) and arrive at the same conclusion.
Thus, there is a consensus from past empirical research that the tail behaviour of certain
financial series are time varying.

The tests considered by Phillips—Loretan and Koedjick er al. are based on Hill’s
conditional maximum likelihood estimator of the tail index of a distribution. Hill’s esti-
mator does not make use of the full sample to estimate the tail slope but only the m
largest order statistics. This estimator has been shown to perform well in simulations
(Kearns—Pagan, 1997). On theoretical grounds, it has been argued to be a more robust
procedure for tail slope estimation compared with other estimators that use the full data
and, in consequence, look at the ceatre of the distribution as well {DuMouchel, 1983).
Furthermore, Hill’s estimator and tests constructed from it do not require finiteness of
the fourth moment.

Using Hill’s estimator for tail thickness, we develop tests for the constancy of the tail
behaviour over time when the breakdate is endogenous or unknown. While other papers
have looked at the constancy of the tails using regression methods on the full sample, this
is the first paper to construct tests for unknown breakpoints using an extreme value esti-
mator. The framework of extreme value theory has the problem of selecting the m largest
order statistics that goes into the estimation of the tails. In particular, the optimal selection
rule for m has been shown to depend on properties of the tails (Hall, 1982). Because of
this inherent circularity in tail slope estimation, DuMouchel (1983) suggested the simple
rule that m be chosen as a fixed fraction of sample size. This rule has been shown to
perform well in simulations and is widely used by practitioners in fields such as financial
risk management, engineering, bankruptcy law and insurance.

It turns out that DuMouchel’s rule can lead to the wrong test size for standard tests
of structural change. When the fixed fraction is such that the corresponding s grows too
fast with the sample size, then all three forms of the test considered here (recursive, rolling
and sequential tests) diverge under the null. Under the alternative, the most commonly
used test, the recursive test, which is based on the fluctuations test of Ploberger—Kramer—
Kontrus (1989) fails as a two-sided test when m is optimal, but the rolling and sequential
tests are consistent as two-sided tests. The power properties of these tests decrease with
the wrong choice of »2. This highlights the importance of finding an estimator for m rather
than relying on a rule that disregards tail shape. We therefore also suggest a procedure
for estimating s consistently.

We note that our test procedures are valid for both 1.i.d. and serially dependent data.
Since the current literature contains the theory of Hill’s estimator for i.id. and linearly
dependent data only, we derive in this paper the theory of Hill’s estimator for nonlinear
dependent data of the GARCH(1, 1) form. This theory draws heavily from Quintos
{1999).

As an empirical application of our tests for time varying tail slope, we consider some
recent data series whose tail behaviour is of much current interest and which have not, to
our knowledge, been studied in the literature. Our sample of daily stock market returns
covers the period from January 2, 1995 to October 16, 1998 which includes the recent
Asian financial crisis. We apply our tests to stock market indices for the three Asian
countries that were most affected by the crisis—Thailand, Malaysia and Indonesia. These
three countries had their currency rates pegged to the U.S. Dollar and switched to a
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floating rate system in July 1997. This known structural change in the operation of the
foreign exchange market in these economies provides an interesting backdrop for the
empirical application of our testing methods.

The rest of the paper is organized as follows. Section 2 presents an overview of the
theory of Hill’s estimator for .i.d. heavy tailed time series. Section 3 contains the tests for
structural change and Section 4 extends the theory to accommodate serial dependence.
Section 5 contains simulation results and Section 4 reports our empirical application to the
emerging markets data. Section 7 offers some conclusions and the final section contains all
proofs.

2. PRELIMINARIES

Consider the three time series of stock returns for Thailand, Malaysia and Indonesia
shown in Figure 1. It is clear from these graphs that the degree of extreme movement in
the series varies before and after July 1997, the time of the onset of the Asian financial
crisis. One source of such variation in tail activity in a series is that the tail thickness of
the underlying return distribution is not constant over time. Qur aim is to develop test
statistics that allow us to test the hypothesis of constant tail shape so we can address this
question empirically in the case of the Asian financial crisis of 1997-1998.

To clarify ideas, we first consider an i.i.d. sequence {X;}7., whose tail behaviour is
of the Pareto-Levy form,

P(X > x) = acx *(L+ dx" + o(x)),

P(X>—x) = bex * (1 + dx? + o(x7P)), .

with x >0 where «, ¢, >0, de R and the symmetry parameters, a, b=0, satisfy a+ b= L.
The parameter ¢ is the scale dispersion parameter. The parameter that determines tail
shape is the parameter . It is also called the maximal moment exponent of the distri-
bution since absolute moments of X of order less than « are finite.

When 0<a=2 then X is said to be “stable’ Paretian in the sense that the maximal
exponent does not change with convolution. The stable Paretian includes as a special case
the Cauchy distribution {& = 1} and the normal distribution (= 2). The case 0 < <2 is
referred to as the “infinite variance” model. If & > 2 then X is in the domain of attraction
of a normal distribution and standardized partial sums of X converge in distribution to a
normal.

We restrict our discussion to estimation and inference for the right tail of the distri-
bution and set a =1 (the behaviour of the left tail is easily inferred by premultiplication
of a negative sign assuming symmetry). We let Xy, denote the i-th ordered statistic of the
sample of size J, i.e. X{,=-- = X{;. Hill's estimator estimates o using my, the m largest
observations of a sample of size J, X{J_W,,“é- - éXf}]. For the full sample, Hill’s
estimator is given by

. I om -
aT:(HEjgllong—T—i'+l)_]-0g X(TT—m-ré—l)) - (2)
iy

The asymptotic properties of &, depend on the rate at which ms grows with 7. From
Hall (1982) we have the following rates of convergence:

(A) If mp—00 and myp= o(T/PF ) then

m¥f(Gr— 08) D N(O, oF). (3)
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(B) If mp~ AT+ for 0 < A <0 then
mif? (b= ) D N(ode P/7(a + By 'A% 9%, of) = N(ag, o) (4)
where 2= {?/%(1+ B/ ey /Qd*(B/ )y} /0D,
(C) If d=0, my= o(T) and mz/T™/P+® 00 then
(T/mg)P*(Gr — o) & de*af(a + B).

As long as my grows slowly enough then Hill’s index converges to a normal distribution
with variance «’. When my grows too fast then its distribution is degenerate.

Outcomes (A)—~(C) show why tests for tail shape constancy have properties that
depend on the choice of my. Note the circular problem in estimating . We need sy to
estimate ¢ In (2) but we also need o to select mrin (A)~(C). DuMouchel (1983) suggested
that #; be chosen as a fraction of T, viz. me=[kT] with k= 0-10, which implicitly selects
an exponent for T. This presents a problem when the chosen x leads to (B) or (C) and
tests are constructed assuming (A) holds, as is usunally done in practice.

We consider tests with a single unknown breakpoint and leave the extension to mul-
tiple breaks for later work. We let ¢ = [¢T] for € (0, 1} denote the endpoini of a subsample
of size w,. For example, for the full sample we have w, = wr= 7. Correspondingly, we
index Hill's estimator with a time subscript as &, where

1 Lo W, s )
a, = (m_ 22108 Xmie  T108 XG - e ”) ' ?

DuMouchel’s rule is then written as m,, = [kw,].

The recursive, rolling and sequential estimators are modifications of (5). The recursive
estimator ¢, is estimated from the subsample [1,...,¢]. Thus, the recursive estimator is
given by (5) with subsample size w, = £ = [T¥]. The rolling estimator fixes the subsample
size w, and estimates ¢ using w;, rolled through time. Let ¢4e(0, 1) denote the fraction of
the fixed sarple length and restrict re{yq, 1). The calculation of the tail index o starts
from 2, = [T(* —¥4)] + 1. Bach subsample is of length w} =t — 14+ 1 = [Ty,s] rolled through
the full sample by eliminating past observations and adding future observations. Thus,
the rolling estimator is (5) with subsample size w¥, viz.

-1
ar :( : z:i:il log XEVJ:“—HU_108X?$:—m.,;+1)) :
Phour

The sequential test is constructed from a pre-break and a post-break estimator. The
sequential pre-break estimator is just the recursive estimator. The post-break estimator,
denated by ¢,,, is the reverse recursive estimator with sample size w, = wy, = T'— 1.

The following theorem gives invariance principles for the recursive, rolling and
sequential estimators. The rates of convergence of (A) and (B} are also given with respect
to the choice of x.

Theorem 1. Let £ =[T7], m., = [kw,] and let W(r) denote a standard Wiener process.
(AY If m, = o(wH/PP o) o 1= o (WA thon

tm

1/2
Q) (?) (&, —a) D aW();
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wim & o
(ii) ( ‘ w') (&f —a) > oW, vo);

1/2
(it) ( z'm‘”l') (Go— 0) D aW(1 1),

where WAy, vo) = W(r) — W{(s) with s = r — y, in ().

(BY Ifm,, = AwH/@P+%gp o= QP8+ thoy

1/2
(i) (‘%) (@ @)% oW + ¢
® . 1/2
(i) (%) (&2 — @)D a[W(r, o) + o1”°);
1/2
(i) (—wz‘;"‘”‘) (g — 0) D o[ WL 1) + (1 - $)M2].

Conditions (A) and (B} can be derived as a special case of (i) with t= T so r=1.
Condition (CY requires that {C} be modified by replacing T = w, and my— m,,.

3. THE TESTS

Our null hypothesis is that the tail index ¢ is constant over time. More specifically, let o,
be the tail index of the distribution of X,. We focus on observations ¢t ={7¥] for re R, =
[z, | —x], a prespecified compact subset of (0, 1) for some small > 0. The null hypothesis
of constancy then takes the form

H(] = O Vre R (6)

with the alternative H,: oy #a for some re R,. Sets like R, are commonly used in the
construction of parameter constancy tests (e.g. Hawkins, 1987, and Andrews, 1993) and
represent some constant. fraction of the overall number of observations, while being
bounded away from zero and unity.

Since the optimal x assumes knowledge of the tails in (B)' we assume that x is set
arbitrarily (say to 0-10) and assume that (A)’ is satisfied. Our tests are constructed from
the quantities

Note that the recursive test ¥r(f) is based on the fluctuations test of Ploberger—Kramer—
Kontrus since ({(é,/ér)— 1) = &7 (&, — &z). The same applies to the rolling test, since it
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is the recursive test rolled through the full sample. The sequential test measures the fluc-
tuation of the recursive estimator against the reverse recursive estimator as opposed to
the full sample estimator.

Theorem 2. Let m,, =[xw,] and let (A) hold. Then, under Hy.
(i) Q=sup,er, Yr[TH) S sup, . s, Wy

(i) O* = sup,.c, Vr{(THY D sup,er, Wz, v0)*

(i) Q"= SUpye g, Zr(Tr]* > sup, e p, W (r)>.

where we have W(r)= W) —rW(1), W(r, yo)= W(r, v0)—(r -1, 1} and W)=
W) -/ MW -1,

The critical values of the tests are tabulated in Appendix A. With Theorem [ and the
CMT, it is possible to construct tests for structural change other than the sup test. Let
H1) correspond to ¥7(8), Fr(d) or Zr(¢) then the mean-score test and mean-exponential
test of Andrews—Ploberger {1994) are, respectively,

f Ho((T)dr > f F(r) 2 dr
Ry

Ry

and

1ogU cxp(HT([Tr])z)dr}iﬂogU exp(@(r)ﬂ)dr]
R R

where W(r) corresponds to the Wiener functionals given in Theorem 2.

Under the alternative hypothesis, we need the following result on the behaviour of
Hill’s estimator with independent and non-identically distributed (i.ni.d.} data. Let ¢ be
the breakpoint and denote the subsamples as Y; =[1,¢) and Y,={r, T). The theorem
below is for the case where the data is segmented into two parts (i.e. a single breakpoint),
but the result will hold more generally for multiple breaks.

Theorem 3 (Hill's Estimator under inid. Data). Let &y correspond to the estimate
of o obtained from using the full sample {X,}, te[1, T =7 (viz., equation (2)). For i.ni.d.
data { X} such that te Y| has index o, and 1€Y', has index oy we have

dirS min (o, 06,) = . (7)

According to {7), thick tails dominate in the sense that

P Xy, > x)

= {(Cap/Ca)x™ %20,
P(Xex, > X)

as x— o0 iff &) <@, (and vice versa for o; < 0¢;). The implication of Theorem 3 1s that
Hill's estimator converges to the dominant tail slope for samples w, in which there are
different tail indices.

The consistency of the tests in Theorem 2 now follow using Theorem 3.
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Theorem 4. Assume (AY is satisfied. Suppose T is the breakpoint. We assuwme that
o, = for teY) and o, = oy for te Yy, Then, under Hy: Ha\OHas,
Hay: > s, Huriay < a,,
Q= Op(m.), 0 =0,(1),
Q* = 0,(mur),  @F = Oplrma),
Q" = Oy(my), 0" = 0,(m.).

Case Al has the tails varying from thinner to thicker and Case A2 has the tails varying from
thicker to thinner.

Remark 1. Under the alternative, the recursive test is consistent only under Al. It
can therefore only be used as a one-sided test. The intuition behind this result is that Hill's
estimator is conditional on the m largest observations, so that outlier behaviour that
appears in the initial sample remains in the selection of the m observations in the latter
part of the sample. This is not true for the rolling estimator since outlier behaviour that
occurs in the initial sample 1s removed in the selection of the # largest observations as the
sample is rolled through by eliminating past observations. The sequential test is consistent
because it is constructed from the sum of the recursive and reverse recursive estimator,
each of which is consistent in opposite directions.

Remark 2. Theorems 2 and 4 assume that « is chosen so that (A)’ is satisfied.

Corollary 5. Suppose k satisfies (BY then under Hy:
©) Q=supres, Yr(TAY 5 sup,cr [ WY+ or' /(1 —r P
(i) Q* = sup,er, Vr({THY 5 sup,e r, [, Vo) + 074> (1 — v &),
(i) O = sup,cr, Zr{{T¥Y 5 sup,c o, [ () + @r' (L = (r/CL = 1)) )T
If & satisfies (CY then under H,,
Q, 0* 05w,
If k is such that s, has the optimal rate, then all three tests have the wrong size if

critical values under {AY are used (viz. Appendix A). Furthermore, if « is such that (CY
is satisfied then the tests diverge and the null is falsely rejected with probability one.

Remark 3. The current literature has tests of tail shape constancy that assume the
sample splits are known. Suppose the sample size T is divided into g known subsamples
according to a window length w;, ¥9_ w, = T and « is calculated for each subsample. We
let subscripts {i} denote the subsamples i=1,2,...,g. The null hypothesis with known
breakpoint is

Ha:a{l}z-uza{g}=0:. (8)
Koedijk et al. recommend the statistic

_ % ? (‘x{g} : d. . 2
Qo—m“} -1 +“‘+m{g} -1 _)xg, (9)
Gy Ogy
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However, to implement this test one needs to specify o. Alternatively, ane could use the
test of Phillips—Loretan (1990) based on differences. For g = 2 and an equal sample split
where w,, = w9, they recommend the statistic

3
My (&, —Gy) o
a2 2
(G + &iay)

Far an uneven sample split the extension for P, is straightforward. Assuming my;, =
['}’{g}m{g}] With ‘Y{g} >0 we have

P(]:

172

2 “ 2,4 M, 1/2 2

m;{}(d{l}—a{z}):m}{}(a{l}_a)_(m ) m{é}(d{zg a)—>N(0 05[1}) Y{Q}N(ﬂ aﬁ})
{2}

= (0'-?1} + ¥ a%z})ImN(Os 13, (10}
sa P, becomes
may () ~ 0)’ - Py Oy (00y/ B2y — 1)21) ¥ (11)
(B, +(moy [me) @) (G + (mgy/me)) )

The revised test P, is the pointwise version of the sequential test Q*(r} when breakpoints
are known and Q¥(r) is normalized by its 2-period variance. The test Oy with g =1 is the
pointwise version of the recursive test with o estimated by & 7.

P]Z

Remark 4. Value-at-Risk. Time-varying tails have implications for Value-at-Risk
{VaR) calculation. VaR is defined as the maximum loss expected with (1 — p)}% probability
(typically taken as 5% or 1%) over a prespecified period of time {typically 1 day or 10
days). The VaR’s reported by financial institutions determine their capital requirements
and also inform investors of the (extreme) risk associated with their investments. Under
the extreme value theory framework, the effect of time-varying tails is clearly seen from
the VaR formula,

T —1fe
VaRp:(;(l "P)) Xg-men.

Remark 5. Optimal Tests and Adaptation. The results in Theorems 2 and 4 are
derived under rates that satisfy (A) and Remark 2 discusses the consequences of misspeci-
fication. It is possible to use the optimal rate (BY and to estimate #,,. Consider the
following recursive estimator for #1,,

= Ay W CR kG0 SR D), p.= 8./, (12)
where f._,=min(l,&,.,) and iz (AT + B QAN A )R yiith
bemy = Ot fw, o XX G, .+1]) ~Uand d,_ = &_1/2. The initial selection of'mE can be done
using a fixed fraction. Then, under the null hypothesis #i,— m, 50 where m,=

Aw2P/CP 2 Gimilarly, we can define the rolling estimator #i,s and the reverse recursive
estimator #i,, .

Theorem 6. Assume (B is satisfied and #h,, — mw,i> 0. Then

o Wity 12 A Hiurn Uz, : o Trr w2
gl (o2 o 450

reRe T MT re Ra
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where Hy(t) is either Yr(£), Vr(t) or Zy(t) and P(¥)* is the corvesponding distribution in
Theorem 2. For Z7(t) replace the subseript T by wy, in the correction terms.

The correction term comes from the noncentral term ¢ in {(B)’, which is defined in
(B). Note that with the choice of A, ¢ simplifies to ¢ = 1/v28/e. Thus,

1 ?
q)wr = = - q)wre
2ﬁw;xdw;' -

under H, where f..,, ¢., correspond to the recursive, rolling or sequential estimates.

The time-varying estimators s, and sa,; “adapt” to the behaviour of the tail param-
eters o, and f,. They are alternatives to the adaptive estimator for s given by Hall-Welsh
(1985) and to the bootstrap estimator of Danielsson-DeVries (19974, b). The restriction
B.=min{l, &) is the same as the restriction used by Hall-Welsh (1985} in adaptively
estimating m. It is valid for stable distributions and symmetric distributions for which
B.= ¢,. An important distribution that the restriction excludes is the ¢-distribution where
B =2 and e, equals the degrees of freedom.

P

4. TIME SERIES EXTENSIONS

The tests in Section 3 assume that {X;} is i.i.d. It is possible to modify the tests using
Hsing’s (1991} results for serially dependent data. Hill's estimator is still consistent and
asymptotically normal with the same rates of convergence under serially dependent data,
but with different variance. We let x, = max{x, 0) in what follows. Assume a consistent
estimator for X{r -+ 1, such that

log X{T—mrﬁ 1= ].CIg b(szT) + 3/ \/nTTs 66 ER
and b(T/myz) = F"(1 —myz/T) is the quantile function which satisfies

m£P(X> b(T /mr))—1. (13)

T

Let
Cr.=(log X7 —log B(T/my)). and Dg=TI(log X7 >log B(T/mz)+ 8/ Vmy).
Lemma 7 (Hill’s estimator for linearly dependent data; Hsing (1991), Theorem

3.3).  Let {X,} be a strictly stationary, I-dependent sequence with [>Q. Suppose there exist
constants ¥, ¢ and @ such that for all 8e R,

2a2m£2;=25cncﬂ—>x,
‘s

T
@32 (ECr Dyt ECrDr) >y, (14)
T

T
2—3._ ,EDrDg,>0.
M

Then
mi(dr— o) D N, &’(L+ x + @ —2y)) = N, o’n), (15)
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under (A). Under (B), the same noncentral term enters into the limiting distribution.

We now extend Hsing's result to the case where nonlinear dependence is allowed.
Theorem & and Corollary 9 below draw heavily from Quintos (1999}). We concentrate on
the stationary ARCH and GARCH process which can be approximated by an [-dependent
sequence. Let {X,} follow a GARCH(l, 1) process,

X, =02, 7Z,~11d. N(0, 1},
Gf:ﬁo‘*‘ﬁlﬁf-ﬁ‘l)ﬁ—h

with an ARCH(1) process being a special case with 8, =0. We work with a stochastic
difference equation of the form

(16)

Y, =AY, _+8 (17}
where {4,, B} are 1i.d. pairs. By substitution, we can write (16) in terms of {17).
o; = (B +AZ]_)oi_ 1+ Bo=AGI_+ B (18)
with Y, = o7, or for an ARCH(1),
Xi=AZDX._(+PoZi= A X+ (19)

with ¥,= ¥2. Note that X7 has tail index o/2. Thus, when we construct Hill’s estimator
in terms of Y, we have

— ]- " ! 7 o
dr= ('_ Z!.:Tl log Y(TT—{‘-'- 13 log Yérr_m}..p l)) - 0:/2 = 4.
M
We assume throughout that the conditions guaranteeing that (17) is strictly stationary,

ergodic and regularly varying with tail index /2 are satisfied—oviz, Bo>0 and 0 <A <1
for an ARCH(1) and B8,>0 and 0<f§,+ A <1 for a GARCH(1, 1}. We further assume

that the process starts at Zg (i.e. (Z.y,...,Z ) =0). We can then write (17) in finite
moving average form (with random coefficients}),

Y.=I,_, A: Yo+ Z;.: (ML=, 4)B=GlYe+ ¥ (20)
where we have set Hf:jﬂ A;= 1 for j=t. Note that stationarity requires E(G{) < 1. We let

b =b(T/my) in what follows.

Theorem 8 (Hill’s Estimator for ARCH(1) and GARCH(1, 1) processes). We con-
struct HilPs estimator in terms of the squared process {X7},

1 -
r= (_ ST 10g X7 iety =108 X 3T —mrs .)) .
Mr

Define
Cr.= (log X¥" —log b). and Dz, = I(log X*T > log b+ 8/ /my),
If {X,} follows an ARCH(1)} (GARCHL(L, 1)} process, then (a}—(c) ((d)-(f)) hold,
@) 2aX(T/mp) Y, ECr,Cr,>2 3, ,(2+ RE(GLN*) = g,
(b) &(T/mn)Y,) J(ECrDr+ ECrDr) =23, (1 + BGT )=y,
© AT/mp)Y;_, EDr Dy, »2 3 ,(1+ E(GT)*) = 0.



644 REVIEW OF ECONOMIC STUDIES

(d) 26:2?“/»11—2;ZECTlCT;.—QcE(ZT‘)Ef=2(2+ aEGT ) =y,

(&) &T/my) 3, [(ECr D+ ECrDr) 5 2eE(ZY Y, (1+ BGY ") = v,

) 2T/mn) 3, _QEDTIDTJ—)'ZCZ LEZUWH+EGT YY) = o,
From Lemma 7, Hill's estimator for an ARCH(1) or GARCH(1, 1) process is distributed
as (13).

Lemma 7 and Theorem § show that Hill’s estimator is asymptotically normal so that
the tests in Section 3 need only be modified by scaling with a covariance matrix. Rather
than construct empirical estimates of the right-hand terms in (a)-(f), we follow Hsing’s
method which uses empirical estimates for Cr, and Dy,. Define

Cw, = (0g X7 ~10g X3 s, v )e and  dy, = I(log X7 > 10g Xgutem, +1)

and construct

~1
f _(2aw:)._zw’ LCWUCWUH:

“-‘r

- = w1
W, = (aw,)m_ EJ-,__ 1 (erjdwgﬂ + Cw,_,-+ ldw.rj)‘l (21)
1 w,—l
_2_2 dw:;dwuuﬂ
My,

so that .., =1+ £Wr+ @, — 24r,,,. For example, for the full sample with w, = T we have

ir=Qa% zj“ { (Qog X377 ~10g X s iy)llog X771 —10g X s iy)es
Yr=(a T) — E;T 1l {(log X537~ 10g X7 -+ 1)+ L (108 X771 > 108 X -y 1y)
+(log X771 ~108 X -y v i) [0g X577 > 10g X{F - purs 1)},

. \
cur:szz | I(0g X7 > 10g X per v p)I(log X75, > l0g X nre ).
r

Note that ¥, w and @ are zero if {X~} is ii.d. Extensions of the results in the previous
section now require normalization by #,,.
Corallary 9.  Suppose (A) holds. Then, under Hy:
(@) Q= sup,er, ;' ¥r(Tr])* 5 sup,c, WY,
(i) Q% =Sup,cz, fiut Ve(Tr)* 5 sup,ex W(r, vo)’;
(iii) Q* = Supc w, s, Zr( TP  sup,c a, WP,

where W(r), W(r, vo) and W'(r) are defined in Theorem 2. Under (BY, the distributional
vesults of Corollary 5 holds.
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Remark 6. The parameter « under the GARCH data generating process is a func-
tion of the parameters of the model. Thus, an alternative to Hill’s estimator is to find o
as the unique solution to

EQAZN*?=1 or EAZ*+B)**=1 (22)

for an ARCH(1) or GARCH(1, 1) respectively (sec Embrechuis, et al., 1997, and Mikosch—
Starica, 1998). For example, the relation of the tail index of an ARCH(1) process and its
conditional parameter A is tabulated in Ernbrechts ez al. (1997) and is repeated here.

i 03125 04 05 0-5773 06 07 08 09 1 1-57
o 200 609 474 400 382 317 268 230 200 1400

We abserve, in particular, that the second moment is infinite when 12 1.

Remark 7. (Conditional versus Unconditional Tail Testing). An important impli-
cation of (22) is that instability in the ARCH/GARCH parameter 4 implies instability in
the tail parameter ¢ of the unconditional distribution, and vice versa. Thus, the uncon-
ditional distribution of {X,} has very fat tails when A is greater than 1. Qur conditional
distribution has Gaussian (thin) tails irrespective of A, viz.

fXilo)=Z,~N(0,1).

The relation of A and ¢ given in Remark 6 relies on this assumption. Our limit theory is
not justified by the analysis given here when thick tails appear in the conditional distri-
bution, for example, when {Z,} is ¢-distributed. Such cases may be analysed by an exten-
sion of our methods but we have not done so in this paper.

3. SIMULATIONS

This section explores the finite sample properties of the parameter constancy tests using
5000 Monte Carlo simulations. Sections 5.1 and 5.2 consider only the i.i.d. case to high-
light the results of Theorem 4. Section 5.3 extends the simulations to the dependent case.
All simulations were done using Visual C++ version 4.0,

5.1. Data generating process

We split our sample into two periods of length 7, =[rT} {(re(0,1)) and L =T—-T;+ I.
For each sub-period, we generate the X7s randomly from a stable distribution with index
o using the method of Samorodnitsky-Taqqu (1994), viz. we set

_ sinay, (cos {(1- a)}q))(l ~ala
Y (cos y)* W, ’

where v is uniform on {(—x/2, ©/2) and W is exponential with mean 1. Different values of
the shape parameter & were chosen to lie in the interval 0 < o <1 (where the mean and
variance are infinite) and 1 < & <2 (where the variance is infinite} for each period. Both
Cases Al and A2 are tested, ie. from thin to thick tails and from thick to thin tails.
Breakpoints are imposed ex ante. Specifically, we set » =0-23, 0-5 and 0-75. Sample size T
is set to 500, and 2000, two sample sizes representative of those commonly found in
financial data applications. We use 5000 iterations.
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TABLE 1
Size of O(), Q*(r}, @*()
=500 = 2000
Nominal size Nominal size
0-01 003 01 0-05
Recursive
a=03 002 008 ¢-01 0-06
a=1-5 0-01 0-06 301 005
Rolling (¥5=0-15)
=005 ¢-03 0-07 0-G2 ¢-07
=15 ¢-02 007 1141 06
Sequential
=05 033 ¢-08 00 0-Q7
=15 302 006 001 005

5.2. Structural change tests for o

Since we specified & in our simulation we can ensure that (A) is satisfied. The problem
then is how to select m since both estimators & and ¢ are constructed conditional on the
m largest observations. DuMouchel (1983) suggests the simple rule m=0-1T, ie. that the
upper 10 percentile be used as extreme values. Hall (1982} and Hall-Welsh (1985} find the
optimal rate to be m =277 In this paper, we set x=0-10 and select o« such that
i, = [0-10w,] < A 3P /@Br e

Table | gives the size properties of the tests. Note the good size properties in both
the finite and infinite variance case. The tests perform better the further out in the tails,
as expected from extreme value theory.

Table 2(a) reports the power properties of the recursive test. For the power property
of the tests, we look at 2 cases: Case Al—where the change goes from thin to thicker tails
and Case A2—where the tails become thinner as T gets larger. Notice the drop in power
for O from Case Al to Case A2. This is, in fact, intuitively reasonable since the tests are
based on estimators that use only the largest observations. In Case A2, where the thicker
tails occur in the initial period, the outhers in this tail enter into the calculation of success-
ive tests as long as they belong in the m largest observations. For example, if the maximum
point in the data occurs in the first subsample, this point will enter into the calculation of
each successive test, thereby making the tails appear thicker than they really are. This will
not be the case when the outlier behaviour occurs in the latter part of the sample, as
evidenced by Case Al. These results support the theoretical findings in Theorem 4.

TABLE 2A

Power praperties of O(r) (nominal size = 0:05)

=500 T=2000
(@), &2) Breakpoints Breakpoints
Power r=025 =050 r=075 =025 r=030 ,=075
Al {0-8,0-5) 03436 -4798 03678 0-5426  (G-8724  0-7450

(1-8,1-2) 06112 ¢7600  0-6050 09362 (09968  0-9606
{1-5,0-8) 0-6864 03790 07930 09852 09998  0-9988

Al ((+5,0-8) 00078 00172 (-0302 00000 G-0002 00008
{1-2,1-8) 00020 G-0104 00268 G:0028 040112 00008
(0-8,1-5) 00042  ©0130 G-0340 00048 00002  ©-0004
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TABLE 2B
Power praperties of Q*(¥) (nominal size = 0-03)

=500 7= 2000
Breakpoints Breakpoints

{cey, 22)
Power r=025 r=050 r=075 r=025 =030 r=075

Al (G-8,0-5) 0-4792 03616 05248 03020 03722 (1740
(1-8,1-2) 06372 07216 (6234 07582 (7952 (-3958
(1-5,0-8} 07114 08362 (7642 09034 09856 07500

Al (G-5,0-8) 95198 05724 (04760 01752 03650 0-3200

(12,1-8) 06300 07206 (6348 04014 (7968  0-7452
(0-8,1-5) 07784 08328 (7024 07524 09608 09092

Tables 2{b) and (c} report the power properties of the rolling test O* and sequential
test QF, Compared with the recursive test, the rolling test has more power in both direc-
tions: fram thick to thin tails, and from thin to thick tails which coincides with Theorem
4. The sequential test seems to do poorly when the sample size is small (T = 500). Its
power also depends on the lacation of the breakpoint and the direction that the tail varies.
This is, of course, due to the fact that the test is constructed from two statistics which are
consistent in opposite directions. At T'= 2000 for Al, the recursive test is consistent {(and
the reverse recursive test is inconsistent) but the power of the test is low because of sample
size (i.e. only 25% of the sample is used for the recursive test). At 0-75 the power of the
recursive test dominates. The symmetry in the power of Al and A2 depending on the
breakpoint is evident in the tables.

Table 3 reports estimates of the breakpoint, i.e. the location of the sup value of the
test. The recursive test does well in estimating the breakpoint for Case Al. For Case A2,
the sup values occur far from the location of the true breakpoints. Since the test is incon-
sistent in this direction the location of the breakpoint is also inconsistent. The breakpoint
estimates of (J improve as T becomes larger, both in terms of mean and standard error.

While the rolling test is consistent, its estimate of the breakpoints do not coincide
with the true breakpoints. The sequential test Q*, however, seems to perform well in
estimating the breakpoints for both Case Al and A2 when T = 2000. Its weakness lies in
its poor small sample behaviour. In our example, it fails when T = 500.

5.3, Extension to ARCH(1}

Our data generating process is an ARCH(1) as given in (16}). We set ;= I and vary A4
since, from Remark 6, this gives the value for the tail index ¢. Table 4 contains the

TABLE 2C
Power properties of Q*(r} (nominal size = 0-05)

=300 T=2000
Breakpoints Breakpoints

(ala a?)
Power ¥=025 ¥=050 »r=075 r=025 r=050 r=075

Al (0-8,0-5) G002 00010 0-0086 00110 02082 03074
{1-8,1-2) 0012 00078  0-0070 G-2372 08496 0-8362
{1-5,0-8) 0002 ¢-0060  0-0874 G-3388 09376 09494

A2 {0-5,0-8) 60116 G0020  0-0000 3006 (2056 040116
{1-2,1-8) 00676  G-0074  0-0008 08528 (8452 02348
{0-8,1-3) 00866 0054 (0002 09518 09372 03440
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TABLE 3

Estimates of breakpoints

T=4500 T = 2000
Breakpoints Breakpoints
(0, 22) g P
Pawer r=025 r=10-30 r=075 =025 ¥ = 0-50 r=075
Recursive test
Al (0-8,0-5) 0-2897(0-1195} 044920 1446} 0-3908 (G-2140) 02687 (0-0650) (-4945(0-0667) 0-7031 (0-0984)
(I-8,12) 0-2826 (- 1075) 0-4646(0-1296) O-8162(0-1978)  0-2608 (0-0477) G-497] (0-0448) 0-7182 (0-074€)
(1:5,0-8) 0-2653(0-0848) 04654 (0-1166) 0-6500(0-1753)  (-2509(0-0284) 0-4953(0-0335) 0-7306{0-0510)
A2 (0-5,0-8) 0-2922(0-1956) 0-2268 (0-0961) 02540 (0-1256) — 0-1625(—) 3-1388 (0-1766)
(1-2,1-8) 0-3084 (0-2578)  0-2242(0-1160) 0-2442(0-1130)  0-4898 (0-0551) 0-5276 (0-0384) (1878 (0-0103)
(0-8,1-5) 0-1941 (0-0520) 0-2126 (0-0676) 0-2668(0-1234)  0-4709(0-0519) 0-5550({—) 02242 (1-0712)
Rolling test
Al (0-8,0-5) 0-3868 (0-2509)  0-3966(0-1907) 0-4821(0-2028)  0-2129(0-0661) 0-3336(0-1145) 0-4566(0-1780)
{18, 1-2} 0-3161 (0-2147) G-3633(0-1574) 04674 (0- 1968} 0-2070 (0-0443)  0:3293(0-1151) 0-4543(0-1228)
{1-5,0-8) 0-204] (0-1978) 0-1589 (0-1538) 0-4620(0-1924)  0-2060(0-0412) 0-3305(0-1138) (-4537 (0-1843)
A2 {0-5,0-8) 06619 (0.2024) 0-7387(0-191R) 07494 (02530}  0-6897(0-1823) O0-B135¢0-1185) 09366 (0-0710)
(1-2,1-8) 0-6774(0-1949) 0-7828(0-1591) (0-8386(0-2058)  0-4909(0-1833) 0-2157(0-0132) 09444 (0-0418)
{0-8,1-5) 0-6781(0-1934) 0.7874(0-1508) O-3511(0-1975)  0-6331(0-1844) O0-B136(0-1152) 0-9460(0-0417)
Sequential test
Al (0-8,0-5) 0-8240(—) 0-8086(0-0367) 0-811370-0393)  0-3469(0-1803) 0-5254(0-0827) 0-7416(0-0656)
(1-8,1.2} 08310 (0-02468) 0-7735(0-0806) 0-7978(0-0434)  0-2906 (0-0919) 0-5182(0-0594) -7505 (0-0501)
(1:5,08) 08440(—) 0-7093(0-1037) 0.7886(0-0459)  0.2599 (0.0343) (-4997(0.0391) 0-7264{0-0557)
Al (0-5,0-8) 0-1926 (0-0411)  0-2042 (0-0491) — 02586 (0-0650) 04781 (0-0799) 06343 (0-1458)
(L2, 18) 01999 (0-0416) 0-2074(0.0679) 0-1920(00279)  0.2497 (0-0499) 04336 (0-0565) 07122 (0-0860))
(0-8,1-5) 0-2145(0.0438) 025060 1064) 0-1740{—) 0-2737 (0-0563) 0-5018 ¢0-0386) O-7397 (0-0389)

1. All computations of Hill index use & =010,
2. Table shows mean estimate of » over 5000 iterations. Standard errors are in parentheses.

TABLE 4

Size and power properties of testy of ARCH(L) pracess

Size
Nominal size =0-035

=1 x=4
Recursive 004 001
Rolling 03 03
Sequential 0-04 [eX1)]

Power
Case Al Case A2

(o), 09} = 4,1) 4,2 (1,4) 2.4
Recursive
r=0-25 08970 (4260 0-1886 00500
r=05 09400  0-5280 02662 (0938
Rolling
r=025 04500  0-2400 4300 2600
r=05 05500 03621 0-5484 03560
Sequential
p=025 00001 0-0000 0-0002  0-0000
r=05 00020 0-0000 00030 00001
Notes:

* Sample size T = 500.
** For rolling test, rolling sample size is 20% of full sample size.
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simulation outcomes for the size and power properties of our tests. We give results only
for T'= 500 since a larger sample will give only better results. The tests have the correct
size but the power is lower than in Table 2 for the i.i.d. case, The pattern of inconsistency
that appears in Table 2 can be seen here. The recursive test has significantly lower power
for Case A2 than Case Al and this is revealed as well in the sequential test. Recall that
the sequential test is constructed from the recursive and reverse recursive test. The rolling
test has the best power in both directions as expected. The sample size fraction used in
these simulations is o = 0-20.

6. APPLICATION TO THE TAIL BEHAVIOUR OF ASIAN FINANCIAL
MARKETS

6.1. Data

Qur dataset consists of the daily stock price index series of Thailand, Malaysia and
Indonesia, downloaded from Bloomberg Financial Markets. The sample covers the period
from January 2, 1995 to October 16, 1998, which includes 931 daily return observations
for the Bangkok SET Index of Thailand (SET)}, 933 daily return observations for the
Kuala Tumpur Composite Index of Malaysia (KLCI) and 937 daily return observations
for the Jakarta Composite Index (JCI). This sample covers the period of the recent
financial crisis.

These stock market data present interesting cases for studying tail behaviour as all
three countries experienced financial economic turmoil since May 1997. Following IMF
recommendations, all three countries switched from a pegged exchange rate system to a
floating rate system in July 1997. Qur interest is in whether equity markets reacted differ-
ently under the two currency regimes in terms of extreme movements in equity returns.
When exchange rates float, external shocks are partly absorbed by currency exchange rate
fluctuations. The institution of a floating currency should therefore play a role in influenc-
ing the extent of extreme price movements in other markats, such as the domestic equity
market.

6.2. Results

We are interested in whether there was a change in the tail behaviour of the stock market
during this period. A rise (fall) in o would imply a reduction (an increase) of extreme
market movements. Figure 1 graphs changes in the stock prices and seems to indicate that
all three countries exhibit a change in the degree of extreme movements over time. We
first apply our version of the Phillips—Loretan test of unequal sample split (viz. P} on the
three data samples using July 1997 as our breakpoint to test this assertion, then perform
the sequential, recursive and rolling tests assuming no knowledge of the breakpoints. We
use our most general result, Theorem 8 and Corollary 9, throughout this exercise
(Theorems 8 and 9 reduce to the i.i.d. tests of Section 3). The test size is set to 5%.

6.2.1. Sequential test

We split each data series into two periods according to the dates when each of the three
countries announced that they would no longer support their pegged exchange rate
systems. All countries widened the trading band first before they let their currencies float.
We treat the widening of the trading band as an interim step toward the float system.
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Therefore, we picked the initial central bank announcement date of widening the trading
band as the breakpoint for our sample. Specifically, the SET index is divided into two
subsamples by July 2, 1997 when the Bank of Thailand announced a managed float of
the baht. KLCI index is separated on July 14, 1997 when the Malaysian central bank,
Bank Negara, abandoned the defence of the ringgit, and we split the JCI index into two
by July 11, 1997 when Jakarta widened its rupiah trading band from 8% to 12%.

TABLE 3

The tail index of three equity markets in two sub-periods

Pegped rate system.  Floating raie system

Equity index Point estimate Point estimate 2y

SET 2-54(2-10-2-99) 2-15¢1-51-2-78) 1-51
KLCl 2-31 (2-03-3-00) 1-84{1-32-2-43) 512
Ia 2-80(2-26-3-33) 2.05(1-51-2-60) 537

The results for a known breakpoint are reported in Table 5. The first and second
column give Hill’s estimates of the tail index for the pre- and post-break periods. The
numbers in parentheses are the corresponding 95% confidence interval. From Theorem §,
our confidence interval is constructed as

- 172

o )

anr(zm)[ ’"‘”“] . i=1,2
i,

where zg,em = Zaas;2 = 196, i denotes the pre and post sample periods and T; the corre-
sponding sample size. Note that all three indices are higher in the first period and the
confidence intervals show that all three indices have a point estimate of @ above 2 under
this regime. The estimates of the second period are lower and are indicative of fatter tails.

The revised Phillips—Loretan test P, for the null hypothesis that o, = o, for all three
series 18 given in the third column. Following the notation of Section 3, the test is revised
to accommodate dependence as

- = a2
(G — Oyy)
—2 2
(@ Ny + (rpn/me) @y Ny — 20 0n)

The variances 1j;,; and 7 are calculated using (21) with corresponding sample size T
and T,. The covariance term 1)9; is constructed from

4 4t (23)

0, =

- 26‘:2 Tw T, 2T 2T 2T, 2T,
xT,,z mngjzl E;‘:[(IogX} n_log X(T:—mrn+1} +(10gX1' Jr_lag X(T:'-'mrx+l))+1
min

A dm-iﬂ " 2"x Fl 3 x 3
Y, = o Ej: 1 25 =1 (log XJ?T —log X(Z;,, —mr + 1))+I(10g X,-ir >log X(zg; ~mr, + 1)):

Th

Or= 51 5T Hlog X7 108 X2 1 M08 X108 X¥F e 1),

where T, = max (T, Ty}, T,=min (T, T2),0pi, = min{;, %2,;} and #.;, is the number
of order statistics used to calculate &.;,. With a ¥ critical value of 3.84, the test P, rejects
the null of tail constancy for both Malaysia and Indonesia at the 5% level.

Figure 2 plots the sequential test Q" for all three series. From Appendix A, the 95%
critical value is 18-31 and the 90% critical value is 13-98. Figure 2 shows that we are once
again able to reject the null of tail constancy for Malaysia, but not for Indonesia even at
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FIGURE 2

Sequential test (35% critical value = 18-31)
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the 10% level (test statistic is 12-60). A possible reason for the failure of the test is that
we do not have a large sample size and we know from the simulations that Q¥ does not
perform well in small samples. The estimated breakpoints are listed in Table 5.

6.2.2. Recursive test

For our recursive test of Theorem 2, we start with a window size of 500 observations and
successively increase the sample size by a single observation. Figure 3 shows the evolution
of the tail index starting from January 1997. It shows that the tail index for all three series
trend downward through the period and stays relatively stable at a lower level during
1998. The transition takes place in the mid and late half of 1997, which is roughly about
the time when the Asian financial crisis occurred. The downward trend of « indicates that
there is an increase in extreme movement in all three markets during the period.

35
----- Balayein
Thaitand

——— lodomesia

3

2.5

2

EIRELVITE SRR

Hill Index

—

0.3
0 T T T T T T 1
12/01/96 03/11/97 08/ 19197 15/27/97 OLAA9R 14/15/98 07/24/98 11/01/98
Date
FiGure 3

Hill's index: recursive

The recursive test statistic Q for all three equity indices during the period are plotted
in Figure 4. We are able to strongly reject the one sided null of constant ¢ (j.e. Hy: 0, = ctr
vs. Ha: o, > ay) for all three indices, with much stronger rejection for both Malaysia and
Indonesia. Suprema of the test statistics and hence the breakpoint dates detected by the
test are reported in Table 6. Note that for Malaysia and Indonesia, the selected break-
points are close to July 1997.

6.2.3. Rolling test

The rolling test 0* is a modification of the recursive test, for which we keep the window
size fixed at 500 observations and roll it through the sample. Our results are summarized
in Figures 5 and 6. Figure 5 confirms the downward trend of ¢. The difference between
the rolling « and the recursive a is that the extreme movements during the previous
period will be carried over in calculating the recursive &, but not so much in caleulating
the rolling . The chart suggests that there tends to be an increase in extreme movements
in all three equity markets.
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TABLE 6
Tests of breakpoints

Recursive test Rolling test Sequential test
Equity index Sup  Date Sup  Date Sup  Date
SET 478 16/05/97 7-49 03/06/97 639 04/04/96
KLCl 20-37 21/08/97 5375 19/08/97 2390 13/01/97
ilel] 37-74 20/08/97  37-57 14/08/97 1260 19/02/97

Thailard

——u— Tadonesia

Hill Index

0.5

0 T T T T T T T
12/01/96  03/11/97 06/19/97 OWZ797 QL0598 041508  O7/24/98 11/A0298  (R/09/99
Date

FIGURE 5
Hill’s index: rolling

The rolling test statistic O* for all three data series are plotted in Figure 6. Suprema
of the test statistic and the breakpoint dates detected by the test are again summarized in
Table 6. Like the recursive test, the rolling test strongly rejects the null hypothesis of
constant ¢ for bath KLCI and JCI indices. Moreover, the breakpoints picked by the
rolling test are close to those picked by the recursive test. Note that the rolling test
produces more “flat” surfaces due to the construction of the test so that it can reach its
suprema on multiple dates.

7. CONCLUSION

This paper has constructed tests for tail shape constancy using Hill’s estimator. It is the
first to do so with unknown breakpoints. The results show that standard tests for struc-
tural change have quite different power properties in this context. Furthermore, unless
the tests are normalized at the correct rate, the tests can diverge under the null and have
no power. This highlights the importance of the optimal/adaptive tests discussed in
Remark 5.

The simulations corroborate the limit theory that the recursive test is a one-sided
test. For cases where it is valid, the recursive test outperforms the rolling and sequential
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tests both in power and in estimation of the breakpoint. An alternative to the sequential
test is therefore simply to treat the recursive and reverse recursive tests separately as one-
sided tests.

When our methodology is applied to Asian stock market indexes the empirical evi-
dence shows that both the recursive test and the rolling test reject the null of tail shape
constancy for Malaysia and Indonesia. The breakpoints picked by both tests match well
with suspected breakpoints arising from known changes in institutional arrangements.
However, unlike the recursive test and due to the nature of its construction, the rolling
test often does not produce a singleton supremum for the estimation of the break point.
Therefore, separate one-sided tests of the recursive and reverse recursive tests seem
preferable when the breakpoint date is of interest, as it is in this application.

APPENDIX PROOFS
Proof of Theorem 1. From Hall (1982, p. 41) and Hall-Welsh (1985, p. 338} we have for (i)
e —ay =mi T, (25— 1) - de Pl p)  oncfw ) + 0, (1) (24)

where p = /e, Z} are independent exponential random variables with mean [, and the a,(1) error holds uni-
formly in ¢. Set

m, = [kf] = k¢ T = [IT]. (25)
By Donsker's Theorem and with z = [»T] we get
Sp=T7PY (25— D)D),
Let £ =de™p(l + p)™", s0 that we can write

t ¢ 12

142 L _ 142 B , 1
(}) mPald; - o l):(;) T ‘”z;:{_ml(zj—l)—g(m,/w,)ﬂm}”(})

t

142
! .
) (_) St 0 (1) i < WO = 20128 -l
M

5 kW (k)
=, W) (26)
Then, since ;' —a™') = —&; (¢, — &), we have
NI .
(?) e (G, - a) S — W) =, W(r)
for (AY(). For (BY(i) if m, = Aw2®/2* 1 then
142 tl.-fl +[1ru2p ¥7)
Lom fw) Py (}) =gaery (}) et

as required.
For the rolling estimator, our subsample size is wf =[T¥]—[T(¥ — ¥q)]. Then, instead of (25), set
My, = [kw?l = [xrTT—[x5T]. The results follow as before with

ST S, et (Z5= 1) 5 Woer) = W(ks) =6 P WG, o).

For {(B)Y(ii) the noncentral term follows from w# /T—r — 5 = y,4. The post-break sequential estimator follows by
setting (25) as My, = (Kwe ] = [K(L —1T] ||

Proof af Thearem 2. The result for Q follows from

12 172 172
Y,(z]:(“’;"') d;‘(@,w%(%) (ﬁ) mifa 6y~ o)

Hir

& Wiy - (1),
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since (m, /T (e Th= ([krT)/ N/ (kT /Th—r¢. For O* we have

#, a2 w12 il
Vol (Mt ’”‘”') a;‘(ar—dr)—(‘”—’) ("’—) mif* 4 (ar - o)
T T Ay

“ Wi, yo) = (r = WL ),
since (i /T mp/ Ty = (0 T] - (k5T T/ (x T/ T) —¢ — 5. Similarly for QF, noting that &z} = & under the

null,
12 12 172 172 142
zr<r)=(f?') dzlfdr—a)—(i) (1) (—”"] K‘fi) L2654 e )

T Wa iy, T

% W) - —— (W -l
1~r
and the result follows by the continuous mapping theorem. ||

Proaf of Thearem 3. Let (X372} and { X)L . have indices ¢, and a,, respectively, where T, = £ — | and
Ty=T-t+1. We wark with the mr largest order statistics of the full sample of which my, and my, are each
taken from ¥, =[1, t) and Y5 = [t, T]. We let X[r—,.;. e Y1, say. Then, Hill's estimator is wrilten as

1 - 1 fr
d7 = — YT 0g ¥ —ion) ~ 108 X g o1y +—— i 0E ¥Am i)
Hr tHr

Following Hall (1982, equation (3)) and Hall-Welsh (1985, equation (1.1)}, we make the transformation x—x™
s (1) becomes

Flxy = ex®(1+ dx? + o(x®Y) as x L0 on

and
1 ™ 1 H
&7 = {log Xobr vy — X1 log X(T-,‘} - [H— T log Xfff}z A-B. (28)
! iy My

The following lemma is used in the proof of Theorem 3. It generalizes (24), the representation of Hill's estimator
in terms of standard exponential random variables, to the case of i.ni.d. data. The result (24) is a special case
of our lemma with mp= sy, and iy, = 0).

Lemma 10. For inid datq such thar (X V2! and {X,}1. . have indices o, and o, respectively, we hane

d;l = ( - @) log et (mﬂ) log e
iy iy

I T L SR -

[ ! 1 1 ™ 1 a 1 1 Ta_ [ ar

+ &y mTIEJ‘=T|—mT+lZf + 0y My ey, g Ziimarde
Hir ! M 1

® [l —{l+py! (ﬁ)](@)m o' de {1+ g (@)m(@) +a,(l},
mef N Ty i My

where g, = B.jor, and ZT are independent exponential vandom variahles with mean | constructed from the grder
statisties in period Y, i=1,2.

Proof of Lenma 10.  We make use of the following representation for X7 from. Hall-Welsh (equations
(3.9 and (3.10%):

log X7 = log ¢/ — 07 Yoy — 0 dePiexp (—p; Yr) + a,(1), 29)
where Yo = £ ZP/ T, j+ 1. Working with (28) and applying (29) we have for A,

sl
i L om
A= [(1 ”i) log C_lm'} “{GT](YT.(mrl+ Tt Y YT.@)}
mr

Hr
_ _ o b oam
—{a[l(dc Pexp (-m Yl"l(m7‘|+ ) —de Dlm_ ,-=T'1 exp (- Yr[o}))}
T

=Al+A2- A3 (30)
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For A2,
T T
gy 1 1 =T - 4 T Z
Ad=oy =L — Ty e R T ——
My M, Ti—j+1 T, -i+1
T
_ a—[(mi"l —1)gTeomn Z; e mr, 1 _r 7T
— f= . 1 =T — i
Hr L L my mp, AT TR
" 1
fE -1t T T
= opm vat T~y 7T, a1)
Wiy My, t

where the last line follaws from Hall-Welsh equation (3.3). For A3,

77T

T 1 my ( T—i+l i )}
— ). e - i .
EJ_] Xp plE_,,| T.'_J"‘"l

iy My,

Ald= aTldC_pl [Exp (_pl YTI{MI‘IJ l)) -

s 1 o

it

= Ch_l e [CKIJ(—Pl YT|(mrr4 1)) -
Myp Wp,

z
% €xp (~p1 ¥r guer, 4 ) 3D (—P[ Ef_-' I m)]

1
= gl de ¥ | g zjr[ Hr,
=a exp (—p1 ¥rypur, 1) - YT expl-p Xty - e el

I
- o de p.( n) [1 - (m")JMp(lL (32)
T| Hlr
where the last line follows from Hall-Welsh Lemma 3.1. Thus we have

A:(I—m—)logc‘”‘lura : — S g 2] 07 de ’J'( r.) [l—(l+pl) ( ﬂ'ho ., 033
Mr mr et i My
from (303, (31) and (32}

For B we have

1 m 1 ot
B="Dog % — o5 — I ¥rygy aE'dC'”’“m* 21€Xp (=2 Yry) +0,(1)

My My T
=Bl -B2-B3. (34}
Far B2 we have
T
oy | mr | e T ZJ
B2= o 117 E;:r%)l j:l -
My M, T-ji+l
T
_ -1 My 1 T T Ty—my Zf
= — VARE S 11—
*mr (mrl EFTJ_MTZ“ vy T—j+ I)
" L -
i M 5T 200
My Wi, 2

from Hall-Welsh equation {3.3) and for B3,

. ZT2
B3 = a'de 20 L5 oxg (-ﬂz T —)

Wy M, Ty—j+1
-1z -y FET, L my,—L Tard z
= i F) _ . PR —
o de . TlEf:Q exp( PZYTz(mrlu}]exp pZEj=T;—m1~2+[Tl_j+l

2Zm
" Ty-i i
le(mrl-»l})( E[ 3 cxp (_pz E}: Ta-mr+l Ty—j+ 1))
Y —

= otildc'

m
= o5lde 0 (m—’) (1+ 2y + 2,(1),
M T;
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from Hall-Welsh Lemma 3.1. Thus

Mmr _ a1 o o
B=""loge M —ay'—73 ZD oyt de?
mr

m‘r‘; mi‘"z
e = T1-myy e

. )ma o +ap(), 35)

iy

and the lemma follows from (33) and (35). {]
The proof of Theorem 3 follows from Lemma 10. Let

ﬁ—)nle[ﬂ,l] and %—)nie[ﬂ, 1].
iy Hy

A necessary condition for consistency of &, for e, is that mr = ofT) and mr, = o(T3); a sufficient condition
heing

mp, =T" and myp,=T*, (36}
with ¢, =28, /28, + @) <1 for i = 1, 2. Then since

1 T r e 1 T Ty P
iy =T 20 L and Y 2L,
by the WLLN we have from Lemma 19,
a7 D otte + az'ma + (1 - m) log ¢ — mylog M = o7, an

assuming {36) {or my, = o(T\} and my, = (7)) holds.
We set iy /iy = T*/T? in what follows with ¢ = (25/28 + ¢). We reguire & >0 s0 &, and/or &, have to
be greater than zero. Suppase o, < &, then T% > T*? and

W if T*/T* > =0 then T*/T* 5ny=0so n = 1.

(i} if T*/T* >r,>0 then T*/T* o which violates the requirement that m,2[0, 1].
Thus, if &, <o, then ¢7' Dol =a™

Suppase o = &, then T < T and

(i) if T*/T* >r; =0 then T*/T* -0 which violates the requirement that 7, [0, 1].
(iy if 7*/T* >m,>0then TH/T? >m, =050 ma=1.

s ] P - —
Thus, if o > @, then 87 S a3' =a™. ||

Proof of Theorem 4. Write
12
m 67 (6~ dr)= mi A7 (G~ o) —(’”—) m 165 (6 - a) + miP 65 (o, - )
My

= 0,11+ 0,(1) + L. (38)

For the recursive test we have my= AT * % and o = min (at,, &2). Suppose Case Al then &= @, so for te
Y, we have 7= 0,{1) and for r= Y, we have 7= O,(m;"™). For Case A2 we have a= o, and &, = &, so {=g,(l)
for ¢, Vs

For the rolling test w,= w¥ in (38). Then for Case Al /= Q,(n.¥} and for Case A2 we have =0,
{m!fd) for re[t +w}, T| The sequential test is the sum of the recursive and reverse recursive test so the conver-
gence is reversed for the latter—ie. the reverse recursive test is inconsistent for Case Al but for Case A2 we

have m 265, (0, — @) = O, (m1,). ||

Praaf af Carellary 5. The result follows from {(B) and the continuous mapping theorem. For ) we have

142 12 12
Yr(r)=(“’;”*) a;‘(d;—a)—(%) (ﬂ) mi? 67 6y — @)

M,

S W+ or? - W)+ gl,
and for 0%,

LI W2 A2 )
Vr(f]=(wr—T') 876 —dr)—(?) (m—) mif*er (dr— o)
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and finally

Zr()= (f—;’:')md;%(d, - (i)”z(l)‘“(_"a)‘“

T W, Hl,
W 1 4 I
y [(7) mif s (d;,—a)} W0+ o - -0y gl -1
—F

as required. Under (C), divergence comes from the second term in (26} since the first term is O,(1) and

W, L2 m(29+l}f2 W, 12 e (1p+1)/2 We L/2 " (2p+ 12
Wy e — B 1 _ g B ey
— 1= —_ = —_ —m,
g(T) ( wf ) g(’f‘) (w?""z"*”) (T) (w?""‘”‘””)

Proof of Thearem 6. The cotrection terms follow from the noncentral terms of Corollary 5 under (BY. ||

Proaf of Theorem 8. We write the process Y7 as ¥, in what follows to simplify notation. We use the
following result from Resnick—Starica (1996, Lemma 4.1¢): for a strictly stationary process { ¥, } that satisfies
(17) we have for £ =0,

P(Y, > x, ¥.> )= P Yo x)P(Ya>p )+ P(Fo> x, G Yo £). 39
We also use the following fact extensively, for independent random variables n and ¥,
P ¥y»x) ~EN** B(¥y = x) (40)
from equation (2.10) of Mikosch-Starica {1999}. Note that from regular variation of ¥ we have
P(Yo>x}~ex™? a3 x—m,

To show (a}, for ECy Cr,, we write

Y, };)
Ellog—| {log—=
(“gb)+(°gb .

j j P = b, ¥, i) 2 &
¥ ox

x=1Jy=1I

éj J P(Yo> B)P(Yo> by - 2L 2
¥ x

x=1lJp=1

‘5'—[ P(Y0>bx,G‘f[_]Yo>b£)d—x
X

xr=1

:ro r P(}’q>bx)a'r—yé+—"Go Jy P(Ypb(y—s)]d—;i—y

=0 Jp=1 y ox a=0tx=1

+_[ P(Yy > by, G*"["‘i-’pb,s)g
x=1 X

ZAL+A2+A3 1)

where the inequality follows from (39). For Al we have

Al:f f P(Yor by 2
1 ¥y X

x= r=1

® dx
:[ logxP(Ya>bx)——>Ei—ch
L X T

r=

= d
log x(x 3% (asx— )
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T y=f
Hir
T

}n

2

=]



QUINTOS, FAN & PHILLIPS STRUCTURAL CHANGE TESTS
and similarly for A2,

A?.:r r P(¥o>b(y ~ s)}—d—}’

petden ¥

@ d @ 4
=l logyP(¥e= bty ~s})—y—;m—;cj logy(y )2, (asy 00, 20)
¥ ¥

p=1 k=1

For A3 we use {40),

AS:J P(Yg>bx,G{"Yo>bs]§
X

=1

a0

=J°° P((uorl)ro>a(xvs))d—"=5<<ﬂ")“f (Yo bxv )
X X

x=1 FEN
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_kd’x mre

—)m—;cE(G{"]&J SE@Y,

z=1 E

and the result follows by substitution into (41). We assume x =y for (b) and (c). For (b),

E(log };) Illog ¥;=log b+ 8/ Jmr)

@ dx
:J P(Y,=bx, ¥, > be 6*""’%};

x=p

gf P( Yy bx}P(¥a > be ¥/ Ty —.e))E
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and

El(log Y, > logh + 8/ Jr?r)(log %)
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=J P(Y, > be ¥Pry y>bx)—
r=4

x

gf P(Yo > be Py P ¥y > b(x - e))—+J P(¥y> be 2Py Gi- ‘Y>be)—
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Finally, we have
E(i(log ¥, > logh + &/ Jmp), Illog Yy =log b+ 8/ Jatr))

= P(¥, > be 3Py ¥, 5 be 31y
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for part {(c).
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For parts (d}—(f}, note that the difference equation is written in terms of o7 . Thus regular variation of the
tails of X7 comes from regular variation of a2. The proof of (d)—(f) follows (a}—(c) with the following modifi-
cation. Note that Cr, and Dy, are defined in terms of X7 so,

P(X1> x, XI5 y)= BZD*PPol > x, 07 > p)= EZEP(Y, > x5, ¥, > )
and (39) is applied to the last expression.

APPENDIX A

TABLE

Critical values for vecursive, rolling and sequential tests

Tests 0-50 0-60 0-70 0-30 0-90 095 0-973 099
Q) 0-67 079 0-94 1-14 1-44 178 211 2-54
Q*(r)

Yo =015 0-73 0-81 0-92 1-05 1-26 1-46 1-65 190
Yo =020 0-82 0-93 1-06 1-23 1-48 1-75 201 230
Yq=025 088 1-0Q I-14 1-32 1-67 1-98 223 255
¥o =030 390 1-04 1-21 1-43 1-78 212 2-45 186
Yo=035 091 1-05 1-22 1-46 1-79 214 252 296
Yo = 0-40 0-89 1-04 1-20 1-44 1-84 223 257 309
Yo =045 0-88 1-02 1-21 |45 1-89 pv g 262 306
Yo =050 089 1-04 [-23 |47 1-87 225 264 3
oM 4-62 573 720 348 13-98 18-31 22494 28-82
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