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Abstract

We introduce the notions of !-projection and �-projection that map almost integral polytopes

associated with almost perfect graphs G with n nodes from R
n into R

n�! where ! is the

maximum clique size in G. We show that C. Berge's strong perfect graph conjecture is correct

if and only if the projection (of either kind) of such polytopes is again almost integral in Rn�! .

Several important properties of !-projections and �-projections are established. We prove that

the strong perfect graph conjecture is wrong if an !-projection and a related �-projection of an

almost integral polytope with 2 � ! � (n� 1)=2 produce di�erent polytopes in Rn�! .
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Introduction

A graph G = (V;E) is perfect if �(G0) = �(G0) for all (node-induced) subgraphs G0 � G. �(G) is

the stability (or independence) number of G, i.e., the maximum number of pairwise nonadjacent

nodes of G, and �(G) is the clique-covering number of G, i.e., the minimum number of cliques

(or maximal complete subgraphs of G) that are necessary to cover all nodes of G.

A graph G = (V;E) is almost perfect (or minimally imperfect) if G is imperfect, i.e., �(G) <

�(G), but �(G0) = �(G0) for every proper subgraph G0 of G. Clearly, every imperfect graph

contains an almost perfect graph. Claude Berge formulated around 1960 several conjectures

regarding perfect and almost perfect graphs. One of these conjectures (the so-called weak perfect

graph conjecture) was proven by Lov�asz (1972) and is known as the perfect graph theorem. It

states that a graph G = (V;E) is perfect if and only if its complement graph G = (V;E) is

perfect, where E = f(u; v) 2 V � V : u 6= v and (u; v) 62 Eg.
Berge's strong perfect graph conjecture (SPGC) asserts that the only almost perfect graphs

are the chordless cycles Cn having an odd number n of nodes and their complement graphs Cn.

In other words, Claude Berge conjectured (and still does so) that a graph is perfect if and only

if it does not contain a chordless odd cycle or its complement as an induced subgraph.

The apparent elegance of the SPGC and its relevance to the problem of characterizing the

integrality of certain polytopes in Rn have prompted a good deal of work on perfect graphs, see

e.g. the book edited by Berge and Chv�atal (1984), but the status of the conjecture is still open

today.

From among the special graphs for which the SPGC has been proven to be correct the most

remarkable result is a theorem of Tucker (1977) which states that the SPGC is correct for

all graphs with �(G) � 3 and thus by Lov�asz's perfect graph theorem for all graphs with

!(G) = �(G) � 3 as well. !(G) denotes the clique-number of G, i.e., the maximum number of

pairwise adjacent nodes of G.

In this paper we connect to our earlier work on perfect matrices and almost integral polytopes,

see Padberg (1973, 1974, 1976), and give geometric reformulations of the SPGC in terms of

almost integral polytopes. We assume familiarity of the reader with polyhedral theory and

recommend e.g. Padberg (1995, Chapter 7) for a review.

1. Almost Integral Polytopes

Let A be any m� n matrix of zeros and ones having no zero row or column and let em be the

vector having m components equal to one. De�ne two polytopes P (A) and PI(A) as follows

P (A) = fx 2 Rn : Ax � em ; x � 0g ; PI(A) = conv(P(A) \Zn) : (1)

From x � 0 and the assumption that A contains no zero column it follows that x � en for all

x 2 P (A) and by de�nition PI(A) � P (A). The containment is in general proper, i.e., P (A)

typically has (fractional) extreme points x satisfying 0 < xj < 1 for some j 2 V = f1; : : : ; ng.
If P (A) = PI(A), i.e., if all extreme points of P (A) are zero-one valued, then P (A) is integral

and A is called a perfect zero-one matrix, see Padberg (1974). If the inequalities Ax � em

in the de�nition of P (A) are reversed, a zero-one matrix with the integrality property for the

corresponding polyhedron is called an ideal zero-one matrix, see e.g. Padberg (1993) for more

detail. Here we concern ourself solely with the �rst case.

With any zero one matrix A we associate the intersection graph GA = (V;E) as follows.

The node set V = f1; : : : ; ng corresponds to the column set of A and we de�ne (u; v) 2 E if
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u 6= v 2 V and the columns u and v of A are nonorthogonal, i.e., if they have an entry equal to

one in common in some row of A.

Every zero-one extreme point of P (A) thus corresponds to some stable set in GA, i.e., to some

subset of pairwise nonadjacent nodes of GA, and vice versa.

On the other hand, let K � V be a clique in GA. Since every stable set S in GA satis�es

jK \Sj � 1, every x 2 PI(A) satis�es the inequality
P

v2K xv � 1 and it is not di�cult to prove

that this inequality de�nes a facet of PI(A), see Padberg (1973). Let aKv = 1 for v 2 K, aKv = 0

for v 2 V �K and aK 2 Rn be the row vector with components aKv for v 2 V . If aK is missing

from the rows of A then jK \ Rij � ! � 1 where ! = jKj and Ri = fv 2 V : aiv = 1g for all

i = 1; : : : ;m. Consequently, x 2 P (A) where x 2 R
n is given by xv = 1=(! � 1) for v 2 K,

xv = 0 for all v 2 V �K and hence P (A) 6= PI(A) since aKx = !
!�1

> 1.

Consequently, for A to be perfect to every clique K of GA there must correspond some row

of A and we call a zero-one matrix with this property a clique-matrix.

With and without using the perfect graph theorem it has been shown that if A is a clique-

matrix and GA a perfect graph, then the matrix A is perfect and vice versa.

In other words, every perfect zero-one matrix is the clique-matrix of some perfect graph.

Further references and di�erent proofs of this remarkable theorem, which is equivalent to the

perfect graph theorem, can be found e.g. in Berge and Chv�atal (1984), Golumbic (1980) or

Padberg (1976).

De�nition 1. (i) Anm�n matrix A is almost perfect if A is a zero-one matrix, P (A) 6= PI(A)

and P j(A) = P
j

I(A) for j = 1; : : : ; n where

P j(A) = P (A) \ fx 2 Rn : xj = 0g (2)

and P
j
I (A) is de�ned likewise.

(ii) A polyhedron P � R
n is an almost integral polytope if there exists an almost perfect matrix

A such that P = P (A).

A =

0
@
1 1 0

0 1 1

1 0 1

1
A P (A) :

x1

x2

x3

(1
2
; 1
2
; 1
2
) P a(A) :

xb

xc

Figure 1: An almost integral polytope in R3 and its projection on R2

If P (A) is almost integral, then since P (A) 6= PI(A) the matrix A is imperfect and since

P j(A) = P
j

I
(A) for j = 1; : : : ; n every m� (n� 1) submatrix of A is perfect.

By the above it follows that clique-matrices of almost perfect graphs are almost perfect and

give rise to almost integral polytopes.

Di�erent from the case of perfect matrices here the reverse statement is not correct.

The matrix A = En � In where En is the n � n matrix consisting of ones only and In the

n � n identity matrix is clearly almost perfect, but its intersection graph GA is the complete

graph Kn and hence perfect.
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Padberg (1976) has shown that modulo identical rows A = En� In is the only exception, i.e.,

every almost perfect matrix A with GA 6= Kn is the clique-matrix of an almost perfect graph;

see also Shepherd (1990).

To summarize more precisely what is known about almost perfect matrices and their polytopes

we denote by a1; : : : ;am the rows ofA. Let b1; : : : ;br be the (nonzero) extreme points of PI(A)

and denote by B the r � n matrix having rows b1; : : : ;br. We de�ne

! = maxfaien : 1 � i �mg ; � = maxfbien : 1 � i � rg ; (3)

Q(B) = fy 2 Rn : By � er; y � 0g ; QI(B) = conv(Q(B) \Zn) : (4)

In the following det denotes the absolute value of the respective determinants and r-unique is

to be read as \unique modulo identical rows."

Theorem 1. (Padberg (1974, 1976)) (i) Every almost integral P (A) � R
n has a unique non-

integer extreme point given by x0 = 1
!
en and

PI(A) = P (A) \ fx 2 Rn : eTnx � �g : (5)

(ii) The submatrix A1 of A de�ning x0 is r-unique and there exists an r-unique submatrix B1

of B satisfying the matrix equation

A1B
T
1 = En � In : (6)

x
0 has precisely n adjacent extreme points given by the rows of B1. Moreover, �! = n� 1 and

detA1 = !; detB1 = �; eTnA1 = (A1en)
T = !eTn ; eTnB1 = (B1en)

T = �eTn : (7)

(iii) If � = 1, Q(B) = QI(B) is the unit cube in Rn . Otherwise, Q(B) is almost integral and

QI(B) = Q(B) \ fy 2 Rn : eTny � !g : (8)

The properties of almost perfect matrices stated in the theorem, except the case where � = 1,

were originally derived for almost perfect graphs by Padberg (1974).

They show that almost perfect graphs G with � = �(G), ! = !(G) and n nodes have among

others the following properties:

(i) n = �! + 1,

(ii) G has precisely n cliques of size ! and every node of G is in exactly ! such cliques,

(iii) G has precisely n stable sets of size � and every node of G is in exactly � such stable sets,

(iv) the n stable sets Si of size � and the n cliques Kj of size ! can be arranged such that

Si \K
j = ; if and only if i = j where 1 � i; j � n.

More properties of almost perfect graphs can be derived by observing that (6) implies A1B
T
1 =

B
T
1A1, i.e. the commutativity of A1 and BT

1 .

These properties are, however, not su�cient to characterize such graphs. There exist many

graphs (the so-called partitionable or (�; !)-graphs) having the properties (i),: : : ,(iv), see Bland
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et al (1979) and Chv�atal et al (1979) for examples none of which, however, contradicts the

SPGC; see Boros and Gurvich (1993), Ma�ray and Preissmann (1993) and Seb�o (1996).

The fact that the above properties of almost perfect graphs do not characterize such graphs

completely is hardly surprising. Inspection of the proof of Theorem 1 shows that besides the

nonintegrality of P (A) only the integrality of P j(A) is exploited. We can characterize at present

the integrality of P j(A), however, only by forbidding the occurrence of polytopes of the very

same kind as the one that we are studying, namely P (A).

We are thus { so to speak { caught in a circle, because we will evidently need other, lower

dimensional faces of P (A) to fully characterize almost integral polytopes and almost perfect

graphs.

Theorem 1 has, however, a corollary that is worth noting.

Corollary 1. If the SPGC is correct for graphs with n nodes, then every almost integral P (A) �

R
n satis�es ! = 2 or ! = bn�1

2
c or ! = n� 1. Moreover, if ! 6= n� 1 then n is odd.

2. A Reformulation of the SPGC

Let P (A) � R
n be an almost integral polytope. We shall assume without loss of generality that

2 � ! � (n � 1)=2. For any v 2 V let K1
v ; : : : ;K

!
v be the cliques of size ! containing v and

de�ne

P= = P (A) \ fx 2 Rn :
X
u2Ki

v

xu = 1 for i = 1; : : : ; !g : (9)

We select one of the cliques Kj
v with 1 � j � ! and denote by �� the orthoprojection from R

n

onto Rn�! that projects out all xu with u 2 Kj
v . There are ! di�erent choices for the variables

to be projected out, there are n choices for the special column v 2 V and thus n! di�erent ways

of selecting the projection ��.

We call �� an !-projection and denote by 
 the index set of all possible !-projections (in

some arbitrary order). For � 2 
 we denote by P � the orthogonal projection of P=, i.e.,

P � = fz 2 Rn�! : 9x 2 P= such that z = ��xg ; (10)

and call P � the !-projection of P (A) for short.

IfA is the incidence matrix of a chordless odd cycle on n = 2�+1 nodes then a straightforward

calculation shows that P � is the polytope corresponding to a chordless odd cycle on 2(��1)+1 =

n� 2 nodes for all � 2 
.

Moreover, if A is the incidence matrix of all cliques of the complement of a chordless odd

cycle on n nodes then as shown in Appendix A

P � = fz 2 Rn�! : (En�! � In�!)z � en�! ; z � 0g (11)

for all � 2 
 where ! = (n� 1)=2.

Thus if the SPGC is true for graphs with n nodes then the !-projection P � of any almost

integral P (A) � R
n with 2 � ! � (n � 1)=2 is almost integral and moreover, P � = P= for all

� 2 
. We are thus led to the following almost integral polytope conjecture (AIPC).

Conjecture A. The !-projection P � of an almost integral P (A) � R
n with 2 � ! � (n� 1)=2

is almost integral for some � 2 
.
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Theorem 2. The SPGC is true if and only if the AIPC is true.

Proof. As we have seen, the truth of the SPGC implies the truth of the AIPC. Suppose that

the opposite is not correct. Then there exists a smallest n � 10 such that the AIPC applies, but

the SPGC is incorrect. Hence there exists an almost perfect graph having n nodes that violates

the SPGC. Let P (A) � R
n be the associated almost integral polytope. Since the AIPC applies

there exists some � 2 
 such that P � � R
n�! is almost integral. Since the SPGC is true for

graphs with n � ! nodes (by the minimality of n) it follows from Corollary 1 that ! = 2 or

! = (n�!�1)=2 or ! = n�!�1. Since the SPGC fails, ! 6= 2 and � 6= 2 and thus n�! is odd

and n = 3!+1. But then by Tucker's theorem the SPGC is correct, which is a contradiction.

As we have seen the truth of the SPGC implies more than we need to establish the equivalence

of the SPGC and the AIPC. Indeed the symmetries that must be present in almost integral

polytopes suggest the following conjecture.

Conjecture B. The !-projection P � of an almost integral P (A) � R
n with 2 � ! � (n� 1)=2

is some almost integral polytope P= � R
n�! for all � 2 
.

Clearly, Conjecture B is also equivalent to the SPGC since it is implied by the SPGC and it

implies Conjecture A.

Example: !-projection for C7 with v = 1 and K = f1; 2; 3g.

x1 + x2 + x3 = 1

x1 + x2 + x7 = 1

x1 + x6 + x7 = 1

x2 + x3 + x4 � 1

x3 + x4 + x5 � 1

x4 + x5 + x6 � 1

x5 + x6 + x7 � 1

xi � 0; i = 1; : : : ; 7

��
�!

z1 + z3 + z4 � 1

z1 + z2 + z4 � 1

z1 + z2 + z3 � 1

z2 + z3 + z4 � 1

zi � 0; i = 1; : : : ; 4

Note: zi = x3+i, for i = 1; : : : ; 4.

Indeed, if the SPGC is true, then almost integral polytopes P (A) with 2 � ! � (n � 1)=2

exist only in odd-dimensional spaces because they are precisely those corresponding to odd cycles
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Figure 2: An (�; !)-graph

without chords and their complements. !-projections

apply to all polytopes P (A) where A is the clique-

matrix of some graph and thus in particular to parti-

tionable or (�; !)-graphs. If e.g. in the �rst example of

Bland et al (1979), see Figure 2, the clique f2; 3; 4g with

v = 3 as the special node is projected out this way, then

the almost integral polytope associated with C7 results.

[This (�; !)-graph has n = 10 nodes, exactly ten cliques,

all of size ! = 3, given by f1; 2; 3g, f1; 6; 7g, f1; 2; 10g,

f2; 3; 4g, f3; 4; 5g, f4; 5; 6g, f5; 9; 10g, f6; 7; 8g, f7; 8; 9g,

f8; 9; 10g and ten stable sets of size � = 3 given by

f1; 4; 8g, f1; 4; 9g, f1; 5; 8g, f2; 5; 7g, f2; 5; 8g, f2; 6; 9g,

f3; 6; 9g, f3; 6; 10g, f3; 7; 10g, f4; 7; 10g.] It would thus

be wrong to believe that the almost integrality of some !-projection of a polytope P (A) implies

the almost integrality of the \mother" polytope P (A). Rather, to prove the SPGC, one has

to show that if the !-projection of P (A) is not almost integral, then P (A) cannot be almost

integral either.

3. Some Properties of !-Projections of P (A)

We assume throughout this section that P (A) is almost integral with 2 � ! � (n�1)=2 and that

the rows of A and B are indexed such that the rows of the submatricesA1 and B1 of Theorem 1

correspond to the rows 1; : : : ; n. Since A1B
T
1 = En � In = BT

1A1, (A1P)(B1P)
T = A1B

T
1

and (PA1)(PB1)
T = En � In for all n � n permutation matrices P, we can arrange the rows

and the columns of A1 and B1 such that

A1 =

�
A11 A12

A21 A22

�
; B1 =

�
B11 B12

BT
12 B22

�
(12)

and the ! � ! submatrices A11 and B11 are given by

A11 =

�
1 eT!�1

e!�1 G

�
; B11 =

�
0 0T!�1

0!�1 I!�1

�
; (13)

where G is a zero-one matrix of size (! � 1) � (! � 1) having zeros on its diagonal. The

submatrices B12 and B22 are of size !� (n�!) and (n�!)� (n�!), respectively, and satisfy

B12 =

0
BBB@
eT� 0T � � � 0T

0T eT��1 � � � 0T

...
...

...
...

0T 0T � � � eT��1

1
CCCA ; eTn�!B22 = (B22en�!)

T = (�� 1)eTn�! : (14)

This follows more or less immediately from the properties of almost perfect graphs listed in the

previous section and the matrix equation (6) remains correct after such a rearrangement.

Moreover, we are free to choose any column of A as the \�rst" column in this rearrangement

and thus it will su�ce to study the !-projection with column 1 being the special column and

x1; : : : ; x! the variables to be projected out.
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We will write P , PI and Pj to mean P (A), PI(A) and Pj(A) in the following for notational

simplicity. In this notation the polytope P= de�ned in (9) thus becomes

P= = fx 2 Rn : (A11 A12)x = e! ; (A21 A22)x � en�! ; A3x � et ; x � 0g ; (15)

where A3 are all t = m� n � 0 rows of A having less than ! ones. We assume that A has no

identical rows and de�ne for j = 1; : : : ; n

P=
j = P= \ fx 2 Rn : xj = 0g ; P=

I = conv (P= \ Zn) :

Proposition 1. (i) P= has exactly one fractional extreme point x0 = 1
!
en.

(ii) The extreme point x0 of P= has precisely n�! linearly independent adjacent extreme points

given by the rows b!+1; : : : ;bn of B1.

(iii) dimP= = dimP=
I = n� !.

(iv)
Pn

j=!+1 xj � �� 1 de�nes a facet of P=
I and

P=
I = P= \ fx 2 Rn :

nX
j=!+1

xj � �� 1g : (16)

(v) P=
j is integral for j = 1; : : : ; n.

Proof. (i) P= is a face of P , x0 2 P= and thus the assertion follows.

(ii) By Theorem 1, b1; : : : ;bn are precisely the adjacent extreme points of x0 in P . Since

bi 62 P= for i = 1; : : : ; !, bi 2 P= for i = ! + 1; : : : ; n and since P= is a face of P , the

statement follows from the nonsingularity of B1.

(iii) Since r(A11 A12) = !, dimP= � n � !. Consider the n� ! + 1 points b0;b!+1; : : : ;bn

where (b0)T = u1n 2 P= is the �rst unit vector in Rn . Suppose that they are linearly dependent.

Because b!+1; : : : ;bn are linearly independent, there exist �!+1; : : : ; �n, not all zero, such that

b0 =
Pn

j=!+1 �jb
j, i.e., there exists � 2 R

n , � 6= 0, �i = 0 for i = 1; : : : ; ! such that

b0 = �B1. Consequently, from A1B
T
1 = En � In = B1A

T
1 it follows that b0A

T
1 = �(En � In)

or a1 = �(En � In), where a
1 = (eT! ;0n�!) is the �rst row of A1. Solving for � we get

� = 1
�
eTn � a1 and thus �i = �(� � 1)=� for i = 1; : : : ; !. This is a contradiction and thus

b0;b!+1; : : : ;bn are linearly independent. Since b0 2 P=
I � P= and bj 2 P=

I � P= for

j = ! + 1; : : : ; n it follows that dimP= = dimP=
I = n� !.

(iv) Since
P!

j=1 xj = 1 for all x 2 P= the claim follows from PI = P \ fx 2 R
n : eTnx � �g

because P=
I is a face of PI .

(v) P=
j is a face of Pj which is integral and thus P=

j is integral for j = 1; : : : ; n.

Consider now the orthogonal projection P � of P= into Rn�! , i.e.,

P � = fz 2 Rn�! : 9x 2 P= such that z = �xg ; (17)

where the !-projection z = �x is in matrix form given by z = (O In�!)x. Clearly

P � � fz 2 Rn�! : 0 � zj � 1 for j = 1; : : : ;n� !g (18)

and thus every z 2 P � with z 2 f0;1gn�! is an extreme point of P �. Moreover since u1n 2 P=

it follows that 0n�! = �u1n 2 P �, i.e., P � contains the origin of Rn�! . Like we did above we

de�ne correspondingly P �
I and P �

j for j = 1; : : : ; n � !. The following proposition is stated in

terms of P � and P=, but its proof shows that it remains true for orthoprojections of polytopes

in general.
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P

x1

x2

Figure 3: Orthoprojection

Proposition 2. If F is a face of P �, then there exists a face F � of P= such that F = �F �.

In particular, if z is an extreme point of P �, then there is an extreme point x 2 P= such that

z = �x.

Proof. Since F is a face of P � there exists (f ; f0) 2 R
n�!+1 such that F = P � \ fz 2 Rn�! :

fz = f0g and fz < f0 for all z 2 P ��F. Let g = (0!; f). By construction gx � f0 for all x 2 P=,

gx = f0 for x 2 P= if and only if �x 2 F and gx < f0 for x 2 P= if and only if f(�x) < f0. It

follows that F � = P= \ fx 2 Rn : gx = f0g is a face of P= that satis�es F = �F �. If F consists

of a single extreme point z of P �, then by the �rst part there is some nonempty face F � of P=

that is mapped into z. Because P= is a polytope F � has extreme points which are all mapped

into z.

Proposition 3. (i) z0 = (1=!)en�! is an extreme point of P �. All other extreme points z of

P � are integral and satisfy eTn�!z � �� 1.

(ii) Every extreme point z of P � that is adjacent to z0 satis�es eTn�!z = �� 1 and there are at

most n� ! such extreme points which are given by the rows of B22.

(iii) eTn�!z � �� 1 de�nes a facet of P �
I and

P
�
I = P � \ fz 2 Rn�! : eTn�!z � �� 1g : (19)

(iv) P �
j is integral for j = 1; : : : ; n� !.

Proof. (i) Since by Proposition 2 every extreme point of P � is the image of some extreme

point of P= it follows that P � has at most one fractional extreme point and that all other

extreme points of P � are zero-one valued. Moreover, every integer extreme point z of P � satis�es

eTn�!z � �� 1 because z is the image of some integer extreme point x of P= with a1x = 1 and

eTnx � �. Since z0 = �x0 where x0 = (1=!)en is the unique fractional extreme point of P= we

have z0 2 P �. But eTn�!z
0 = (n� !)=! > �� 1 and thus P � has at least one extreme point z

with eTn�!z > �� 1. Since z is the image of some extreme point of P= it follows that z = z0 is

the only fractional extreme point of P �.

(ii) Let z 2 P � be any integer extreme point of P � that is adjacent to z0 and suppose that

eTn�!z < � � 1. Then the point z� = �z + (1 � �)z0 for � = [n � ! � !eTn�!z]
�1 is in P �

because 0 < � < 1 and satis�es eTn�!z
� = � � 1. Moreover, since z and z0 are adjacent on P �

the convex combination for z� is unique. Let x� 2 P= be such that z� = �x�. Since a1x� = 1

it follows that eTnx
� = �. Consequently, by Proposition 1, there exist �i � 0 with

Pn
!+1 �i = 1
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and x� =
Pn

i=!+1 �i(b
i)T. But then

z� = �x� =

nX
i=!+1

�i�(b
i)T

contradicts the uniqueness of the convex combination for z� and thus every integer extreme

point z of P that is adjacent to z0 satis�es eTn�!z = �� 1. Since the only extreme points z of

P � with eTn�!z = ��1 are given by �(bi)T for i = !+1; : : : ; n there are at most n�! distinct

extreme points adjacent to z0 on P � and they correspond to the rows of B22.

(iii) By part (i) of the proposition we have

P
�
I � P � \ fz 2 Rn�! : eTn�!z � �� 1g � P � ;

were the last inclusion is proper because z0 2 P � and eTn�!z
0 > � � 1. Suppose that the �rst

inclusion is proper as well. Then there exists an extreme point z� of P � \ fz 2 Rn�! : eTn�!z �

� � 1g, z� 62 P
�
I . As we are intersecting P � with a single inequality it follows that z� lies on a

1-dimensional face of P � and satis�es en�!z
� = �� 1. Consequently there exists some extreme

point z of P � with eTn�!z < �� 1 that is adjacent to z0. By part (ii) of the proposition this is

impossible and thus the claim follows.

(iv) By de�nition we have

P �
j = fz 2 Rn�! : 9x 2 P= such that z = �x and zj = 0g

= fz 2 Rn�! : 9x 2 P=
!+j such that z = �xg :

But P=
!+j for j = 1; : : : ; n� ! is an integral polytope by Proposition 1(v) and thus by Proposi-

tion 2 the result follows.

Proposition 3 shows that !-projections of almost integral P (A) � R
n have many of the

properties of almost integral polytopes in Rn�! , but it leaves open two important aspects of

such polytopes: (i) the dimension of the !-projections and (ii) the linear description of them by

way of zero-one matrices. We partition the t = m� n � 0 nonmaximal rows A3 = (A31 A32)

of A like the rest of A.

Proposition 4. (i) dimP � = dimP �
I = r(B22) = n� 2! + r(A11) � n� !.

(ii) detB22 = (�� 1) detA11 and detA22 = 1.

(iii) If detA11 6= 0 then the linear description of P � is

P � = fz 2 Rn : H1z � en�! ; H2z � h2 ; H3z � u1! ; z � 0g ; (20)

where H1 = A22 � A21A
�1
11A12, H2 = A32 � A31A

�1
11A12, H3 = A�1

11A12 and h2 = et �

A31u
1
!. Moreover, eTn�!H1 = (H1en�!)

T = !eTn�!, detH1 detA11 = !,

H1B
T
22 = BT

22H1 = En�! � In�! ; (21)

and P � has precisely n � ! integer extreme points z with eTn�!z = � � 1 given by the rows of

B22.

Proof. (i) Because 0n�! 2 P � every valid equation for P � is of the form fz = 0. It follows that

(0! f)x = 0 for all x 2 P=. By Proposition 1(iii) the minimal system of valid equations for P=

is (A11 A12)x = e!. Consequently, there exists � 2 R! such that �A11 = 0!, �A12 = f and
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�e! = 0. The last equation is redundant because the �rst column of A11 has all entries equal

to one. There are precisely s = ! � r(A11) � 0 linearly independent solutions �1; : : : ;�s to

�A11 = 0!. Let f
i = �iA12 for i = 1; : : : ; s. Since r(A11 A12) = ! it follows that f i 6= 0n�!

for i = 1; : : : ; s. We claim that f1; : : : ; f s are linearly independent. Assume the contrary and

let H be the s � ! matrix with rows �1; : : : ;�s. Then there exists � 2 R
s ;� 6= 0s, such

that �H(A11 A12) = 0n. But from A1B
T
1 = En � In it follows that H(A11 A12)(b

i)T =

H(e! � ui!) = �Hui! for i = 1; : : : ; ! where ui! 2 R
! is the i-th unit vector. Hence �H =

0! which contradicts the linear independence of �1; : : : ;�s. Consequently P � has precisely

!� r(A11) linearly independent equations and thus dimP � = n�!� (!� r(A11)) = n�2!+

r(A11). By Proposition 1(iv) the same reasoning applies to P
�
I and hence dimP � = dimP

�
I . By

Proposition 3(ii) the rows of B22 are precisely the extreme points of P � satisfying eTn�!z = ��1.

By Proposition 3(iii) eTn�!z = ��1 is a facet of P
�
I and thus r(B22) = (dimP

�
I �1)+1 = dimP

�
I .

(ii) From A1B
T
1 = En � In it follows that A�1

1 = 1
!
En �BT

1 . We partition A�1
1 according to

the partitioning of A1 as

A�1
1 =

�
X W

Y Z

�
:

Multiplying the respective matrices we �nd the identities�
A11 A12

A21 A22

��
X O

Y In�!

�
=

�
I! A12

O A22

�
;

�
A11 A12

A21 A22

��
I! W

O Z

�
=

�
A11 O

A21 In�!

�

and thus we get from our formula for A�1
1 the Jacobi identities

detA1 det(
1

!
E! �BT

11) = detA22 ; detA1 det(
1

!
En�! �BT

22) = detA11 :

We calculate using elementary row operations

det(
1

!
E! �BT

11) = det

�
1
!

1
!
: : : 1

!

0 �I!�1

�
=
1

!
;

det(
1

!
En�! �BT

22) = det(B22(
1

!(�� 1)
En�! � In�!)) =

1

(�� 1)!
detB22 ;

for the absolute values of the respective determinants where we have used B22en�! = (� �

1)en�! in the second calculation. By Theorem 1(ii) detA1 = ! and thus the formulas follow.

(iii) From A11x
1+A12x

2 = e! we have x1 = u1! �A�1
11A12x

2 where x1, x2 correspond to the

! �rst and the n � ! last components of x, respectively. The linear description of P �
I follows

by eliminating x1 and the observation that A21u
1
! = 0n�!. From eTn�!A22 = !eTn�! � eT!A12

and eTn�!A21 = !eT! � eT!A11 we get

eTn�!H1 = eTn�!A22 � eTn�!A21A
�1
11A12 = !eTn�! � eT!A12 � (!(u1!)

T � eT! )A12 = !eTn�! ;

because the �rst row of A12 is zero. H1en�! = !en�! is veri�ed likewise. From A1B
T
1 =

En�In we �nd that A11B12+A12B
T
22 = E!

n�! and thus B12+A
�1
11A12B

T
22 = u1!e

T
n�!, where

E!
n�! = e!e

T
n�!. Moreover, A21B12 +A22B

T
22 = En�! � In�!. Consequently,

H1B
T
22 = A22B

T
22�A21A

�1
11A12B

T
22 = En�!�In�!�A21(B21+A

�1
11A12B

T
22) = En�!�In�! ;

because the �rst column of A21 is zero. Thus

H1 = En�!(B
T
22)

�1 � (BT
22)

�1 = (BT
22)

�1(En�! � In�!)
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shows that BT
22H1 = H1B

T
22 = En�! � In�! as asserted. Consequently, detH1 detB22 =

n�!� 1 and thus from (ii) detH1 detA11 = !, since n�!� 1 = (�� 1)!. The last assertion

follows from Proposition 3(ii) and the fact that dimP � = n� !.

Proposition 4 shows that an !-projection P � of P (A) cannot possibly be almost integral if

A11 is singular, because almost integral polytopes are in particular full-dimensional. But if

detA11 6= 0 then P � has several properties that we know from P (A), see Theorem 1(ii). Recall

that a full-dimensional polytope P � R
n
+ is an independence system (or down-monotone in Rn+)

if x 2 P and 0 � x0 � x imply that x0 2 P. It is easy to prove that all nontrivial facet de�ning

inequalities fx � f0 (i.e., those with f0 6= 0) of such polytopes satisfy f � 0 and f0 > 0, while

all other (trivial) facets are given by the nonnegativity constraints.

Theorem 3. P � is almost integral if and only if detA11 = 1 and P � is an independence system.

Proof. If P � is almost integral, then there exists an almost perfect matrix eA of size em�(n�!)

such that P � = P (eA). Consequently, P � is a full-dimensional independence system and thus by

Proposition 4(i) detA11 6= 0. By Theorem 1(ii) there exists a (n�!)�(n�!) submatrix eA1 of eA
such that eA1B22 = En�! � In�! with eA1en�! = !0en�!, say, satisfying !

0(�� 1) = n�!� 1.

Thus !0 = !, det eA1 = ! and from det eA1 detB22 = n � ! � 1 we have detB22 = � � 1.

Consequently by Proposition 4(ii) detA11 = 1. Suppose on the other hand that detA11 = 1

and that P � is an independence system. Thus dimP � = n� ! and uj 2 P � for all unit vectors

j = 1; : : : ; n � !. Let hz � 1 be any nontrivial facet de�ning inequality of P � in the linear

description of P � given in Proposition 4(iii). It follows that 0 � h � eTn�! and since detA11 = 1

the vector h is integer and thus zero-one. Consequently, P � is de�ned by a zero-one matrix which

by Proposition 3 is almost perfect.

From Theorem 2 it thus follows that the strong perfect graph conjecture is correct if for some

!-projection of an almost integral polytope P (A) with 2 � ! � (n � 1)=2 the corresponding

matrix A11 has a determinant of 1 and the corresponding P � forms an independence system.

It is interesting to note (and not di�cult to prove) that the case distinctionmade by Tucker (1977)

in the proof of his theorem is along the two cases where A11 is singular for some v 2 V and

some !-clique K containing v or not.

4. A Di�erent Reformulation of the SPGC

Here we look at the orthoprojection of a facet of an almost integral polytope P (A) satisfying

2 � ! � (n� 1)=2. Let K � V be any !-clique in GA and de�ne

P# = P (A) \ fx 2 Rn :
X
u2K

xu = 1g ; P#
I = conv(P# \Zn) : (22)

Denote by �� the orthoprojection from R
n into Rn�! that projects out all variables xu with

u 2 K. There are exactly n di�erent choices for K and we denote by � the index set (in an

arbitrary order) of all such �-projections.

For � 2 � we denote by P� the orthogonal projection of P#, i.e.,

P� = fz 2 Rn�! : 9x 2 P# such that z = ��xg ; P
�
I = conv (P� \ Zn) ; (23)

and call P� the �-projection of P (A) for short.
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The polytopes P� are contained in the unit cube of Rn�! and thus every 0-1 point in P� is

an extreme point of P�. !-projections and �-projections are related to one another as follows.

Since the �-projections are in one-to-one correspondence with the !-cliques in GA, we denote


� = f� 2 
 : xu with u 2 K� are projected outg ; (24)

where K� is the clique in GA given by row � of A1. For every choice of K = K� in (22) there

are exactly ! possible ways of choosing a special variable xv with v 2 K in the !-projection of

P (A) and the corresponding polytopes P= are all contained in P#. Thus

P � � P� for all � 2 
� and � 2 � : (25)

Like in the case of !-projections, a straightforward calculation (using Fourier-Motzkin elimi-

nation) shows that P� is the polytope corresponding to the chordless odd cycle on n� 2 nodes

for all � 2 � if A is the clique matrix of a chordless odd cycle on n nodes. In Appendix A we

show that the �-projection of the polytope P (A) is for all � 2 � the almost integral polytope

(11), when A is the clique-matrix of the complement of a chordless odd cycle on n nodes. We

are thus led to another almost integral polytope conjecture (AIPC#) which di�ers from (AIPC)

because a di�erent orthoprojection is used.

Conjecture C. The �-projection P� of an almost integral P (A) � R
n with 2 � ! � (n� 1)=2

is almost integral for some � 2 �.

The proof of Theorem 2 applies unchanged to conjecture (AIPC#) and thus we have:

Theorem 4. The SPGC is true if and only if the AIPC# is true.

Conjecture B has its equivalent for �-projections which is equivalent to SPGC as well.

Conjecture D. The �-projection P� of an almost integral P (A) � R
n with 2 � ! � (n� 1)=2

is some almost integral polytope P# � R
n�! for all � 2 �.

In case the SPGC is true, it follows that the polytope P= of Conjecture B and the polytope P#
of Conjecture D coincide {which evidently gives rise to a yet another conjecture, since in general

P= and P# must be expected to be di�erent.

Like in the case of !-projections, the almost integrality of the �-projection of some polytope

P (A) does not imply the almost integrality of the \mother" polytope P (A). An example to

this e�ect is the graph given at the end of Section 2, where the �-projection using the clique

K = f2; 3; 4g also yields the almost integral polytope associated with C7, while P (A) in this

case is known not to be almost integral.

5. Some Properties of �-Projections of P (A)

We make the same assumptions as in Section 3, in particular as regards the arrangement of the

rows and columns of A1 and B1. We use the same notation as done there with the necessary

changes and choose without restriction of generality the !-clique K = f1; : : : ; !g as the set of

variables to be projected out.

We start by listing some properties of the facet P# of P (A).
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Proposition 5. (i) P# has exactly one fractional extreme point x0 = 1
!
en.

(ii) The extreme point x0 of P# has precisely n�1 linearly independent adjacent extreme points

given by the rows b2; : : : ;bn of B1.

(iii) dimP# = dimP
#
I = n� 1.

(iv)
Pn

j=!+1 xj � �� 1 de�nes a facet of P
#
I and

P
#
I = P# \ fx 2 Rn :

nX
j=!+1

xj � �� 1g : (26)

(v) P
#

j
is integral for j = 1; : : : ; n.

The proof of Proposition 5 goes like the proof of Proposition 1 and is omitted. Let now

P� = fz 2 Rn�! : 9x 2 P# such that z = �xg ; (27)

where z = �x is in matrix form z = (O In�!)x the orthoprojection from R
n to Rn�! that we

consider. P� is a polytope that lies in the unit cube of Rn�! and thus every 0-1 point in P� is

an extreme point of P�.

Denote by B
#
12 the (!� 1)� (n� !) matrix that is obtained by deleting the �rst row of B12

and by B
#
1 the (n� 1) � (n� 1) matrix that is obtained by deleting the �rst row and column

of B1.

Proposition 6. (i) z0 = (1=!)en�! is an extreme point of P�. All other extreme points z of

P� are integral and satisfy eTn�!z � �� 1.

(ii) Every extreme point z of P� that is adjacent to z0 satis�es eTn�!z = �� 1 and there are at

most n� 1 such extreme points which are given by the rows of B
#
12 and B22.

(iii) eTn�!z � �� 1 de�nes a facet of P�
I and

P�
I = P� \ fz 2 Rn�! : eTn�!z � �� 1g : (28)

(iv) P�
j is integral for j = 1; : : : ; n� !.

(v) detB
#
1 = �� 1, dimP� = dimP�

I = n� ! and P� and P�
I are independence systems.

Proof. (i) The proof is mutatis mutandis the proof of Proposition 3(i).

(ii) The proof goes exactly like the one of Proposition 3(ii) by observing that the points

b2; : : : ;bn must be used in lieu of the points b!+1; : : : ;bn.

(iii) The proof goes like the proof of Proposition 3(iii).

(iv) The proof goes like the proof of Proposition 3(iv).

(v) B
#
1 is the matrix obtained by deleting the �rst row and column of B1. From (6) we have

B�1
1 = 1

�
En � AT

1 and thus from Cramer's rule, applied to the element with index f1; 1g of

B�1
1 , and detB1 = � we get detB

#
1 = �� 1. From the nonsingularity of B

#
1 it follows that

r(

�
B
#
12

B22

�
) = n� ! : (29)

Since u1n 2 P
# we have 0n�! 2 P

� and thus by (ii) dimP� = dimP�
I = n� !, because P� and

P�
I contain n�!+1 a�nely independent points. Let z 2 P�. So there exists x 2 P# such that

z = �x. Let x = (x1;x2) where x1 2 R
! and x2 2 R

n�! . Since a1x = eT!x
1 = 1 it follows
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that (x1; z0) 2 P# for all 0 � z0 � z = x2 because A is a nonnegative matrix and thus z0 2 P�.

If z 2 P�
I

and 0 � z0 � z then by (28) z0 2 P�
I

, because z0 2 P� and eTn�!z
0 � eTn�!z � � � 1

from the nonnegativity of z0.

Di�erent from the !-projection, in the case of �-projection of an almost integral P (A) � R
n

we thus have always a (full-dimensional) independence system, but no explicit linear description

like in Proposition 4(iii).

Theorem 5. P� is almost integral if and only if P� = P � for some � 2 
�.

Proof. If P� is almost integral, then by Theorem 4 the SPGC is correct, A is the clique-matrix

of a chordless odd cycle or its complement and thus P� = P � for all � 2 
� and � 2 �. So

suppose that P� = P � for some � 2 
�. By Proposition 6(v) thus dimP � = n�! and P � is an

independence system. By Proposition 4(ii) we thus have detA11 6= 0 and by Proposition 4(iii)

P � has exactly n � ! linearly independent 0-1 extreme points z with eTn�!z = � � 1 given by

the rows of B22. Consequently by Proposition 6(ii) for every row of B
#

12 there is some identical

row of B22, because otherwise P � has more than n � ! distinct 0-1 extreme points satisfying

eTn�!z = �� 1. From the factorization

B
#

1 =

 
I!�1 B

#

12

(B
#

12)
T B22

!
=

�
I!�1 B

#

12

O B22

� 
I!�1 �B

#

12B
�1
22 (B

#

12)
T O

B�1
22 (B

#

12)
T In�!

!
(30)

we get the determinantal identity in absolute values

detB
#

1 = detB22 det(I!�1 �B
#

12B
�1
22 (B

#

12)
T) :

But B�1
22 (B

#

12)
T is a (n � !) � (! � 1) matrix of unit vectors in Rn�! (because the rows of

B
#

12 are duplicates of some rows of B22) and thus the second determinant on the right is some

integer number � � 0 in absolute value. By Proposition 4(ii) and Proposition 6(v) we thus get

� � 1 = (� � 1) detA11� and hence detA11 = � = 1 since � � 2 and detA11 is some integer

number as well. Consequently, by Theorem 3, P � is almost integral and so is P�.

Theorem 5 shows that the strong perfect graph conjecture is wrong if for almost integral

P (A) � R
n with 2 � ! � (n�1)=2 the !-projection and the �-projection di�er for some ! 2 
�

and � 2 �.

Denote by B3 = (B31 B32) the matrix formed by the r�n � 0 nonmaximal rows of B and by

B
#

3 = (B
#

31 B
#

32) the subset of all s � 0 rows of B3 that correspond to the 0-1 extreme points

of P (A) that belong to P# where B3 and B
#

3 are partitioned like the rest of B.

By (14) B
#

12en�! = (��1)e!�1, B22 has row and column sums equal to ��1 and B
#

32en�! �

(��2)es. Let B
� be the q� (n�!) matrix consisting of B

#

12, B22 and B
#

32 where q = n�1+ s

denotes the number of rows of B�. The polytope

Q� = fy 2 Rn�! : B�y � eq ; y � 0g (31)

is by de�nition the antiblocker of P�
I

, since the rows of B� is a list of all (nonzero) extreme

points of P�
I

. Because P�
I

is an independence system, Q� gives a (nonminimal) extremal char-

acterization of the nontrivial facets of P�
I

, see Padberg (1995, Chapter 10.3.1). We de�ne

Q�
I = conv (Q� \ Zn�!) ; fQ� = Q� \ f y 2 Rn�! : eTn�!y � b(n� !)=(� � 1)c g ; (32)

where b�c is the largest integer less-than-or-equal-to �.
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Proposition 7. (i) If y 2 Q�, then yTz � 1 for all z 2 P�
I

, i.e., yTz � 1 is a valid inequality

for P�
I

.

(ii) If yTz � 1 de�nes a nontrivial facet of P�
I

, then y is an extreme point of Q�.

(iii) Q�
I �

fQ� � Q� ;dimQ�
I = n� ! and y0 = 1

��1
en�! is an extreme point of Q�.

(iv) If � = 2, then Q�
I =

fQ� = Q� is the unit cube in Rn�! . If � > 2, then fQ� is the antiblocker

of P�.

(v) If y 2 fQ�, then yTz � 1 for all z 2 P� and if yTz � 1 de�nes a nontrivial facet of P�,

then y is an extreme point of fQ�.

(vi) Let fQ�
I

= conv(fQ� \ Zn�!). Then Q�
I =

fQ�
I

.

Proof. (i) Since B� is a list of all extreme points of P�
I

and B�y � eq by assumption, it

follows that zTy � 1 for all z 2 P�
I

because zT = �B� for some � � 0 with
Pq

i=1 �i = 1, i.e.,

because z is a convex combination of the extreme points of P�
I

.

(ii) If yTz � 1 de�nes a facet of P�
I

, then there exist n � ! linearly independent 0-1 points in

P�
I

satisfying the inequality at equality. Hence y is an extreme point of Q�; see (31).

(iii) By de�nition, fQ� � Q�. Since B22y � en�! for all y 2 Q�
I , we have

eTn�!B22y = (�� 1)eTn�!y � n� ! ;

hence eTn�!y � b(n� !)=(� � 1)c for all y 2 Q�
I and thus Q�

I �
fQ�. The origin and the n� !

unit vectors of Rn�! are in Q�
I and thus dimQ�

I = n�!. Since every row of B� is zero-one and

has at most �� 1 entries equal to 1, y0 2 Q� and hence by (29) y0 is an extreme point of Q�.

(iv) If � = 2, then the assertion follows from (29) and (31) by observing that the last inequality

de�ning fQ� is redundant. If � > 2, then b(n � !)=(� � 1)c = !. By Proposition 6(i) the

nontrivial inequalities de�ning fQ� correspond to the list of all extreme points of P� and thusfQ� is the antiblocker of P�.

(v) The proof of this part is similar to that of parts (i) and (ii).

(vi) By part (iii) it follows that Q�
I �

fQ�
I

. Let y 2 fQ�
I

be integer. Then y 2 Q� \ Zn�! and

thus y 2 Q�
I , i.e., Q

�
I =

fQ�
I

.

Theorem 6. P� is almost integral if and only if Q�
I =

fQ�.

Proof. If P� is almost integral, then by Theorem 4 the SPGC is correct and Q�
I =

fQ� follows.

Suppose Q�
I = fQ�. Since every nontrivial facet yTz � 1 of P� de�nes an extreme point y offQ� and all extreme points of Q�

I are 0-1 valued, it follows that there exists a zero-one matrix

A� with n � ! columns and some �nite number of rows such that P� = P (A�) and which by

Proposition 6 is almost perfect.

If P� is not almost integral, then by the preceding there exists an extreme point y 2 fQ� with

0 < yj < 1 for some j 2 f1; : : : ; n� !g that de�nes a facet yTx � 1 of both P� and P�
I

.

Since P� \inherits" all of its facets and P�
I

all but one of its facets from P (A), there should be

a facet-de�ning inequality fx � 1 of P (A) or of PI(A) with f 6= 1
�
en, f 62 f0;1g

n, thus making

P (A) not almost integral. If this is not the case, then the SPGC does not hold.

The SPGC is, of course, still open to proof or disproof, but the geometric reformulations

presented here may help to resolve this long standing conjecture one way or the other.
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Appendix A. !-Projection and �-Projection of Circulants

To prove that the !-projection of almost integral polytopes associated with the complements

of odd cycles without chords are given by (11) we prove �rst a more general proposition. We

denote by

C!
n =

0
BBB@
1 1 : : : 1 1 0 : : : 0 0

0 1 : : : 1 1 1 : : : 0 0
...

...
...

...
...

...
...

...
...

1 1 : : : 1 0 0 : : : 0 1

1
CCCA

the circulant matrix where ! consecutive ones are shifted cyclically over n components and

2 � ! � (n � 1)=2. C2
n for odd n is the clique-matrix of a chordless odd cycle. For odd n

and ! = (n � 1)=2 C!
n is the incidence matrix of the cliques of maximum cardinality of the

complement of a chordless odd cycle. The clique-matrices of such graphs contain for n � 9

many additional cliques of cardinality ! � 1 or less, but we will show below that these become

redundant under !-projections. It is well known that for n � 9 the polytopes P (C!
n) as de�ned

by (1) are almost integral if and only if n is odd and ! = 2. For n � 8 the only exception from

this statement is the polytope P (C3
7), which is almost integral.

Proposition 8. For all � 2 
 and 2 � ! � (n� 1)=2 the !-projection P � of P (C!
n) is

P � = fz 2 Rn�! : C!
n�!z � en�! ; z � 0g :

Proof. We index the rows and columns of C!
n by 1; 2; : : : ; n and because of symmetry we can

choose x! to be the special variable and the variables with nonzero coe�cients in any one of the

�rst ! rows of C!
n as the variables to be projected out. So let 1 � k � ! be the selected row.

We denote by E
p
q and O

p
q the p� q matrices consisting of all ones and of all zeros, respectively.

Ip is the p� p identity matrix, eTp = (1; : : : ;1) a vector of p ones, uip the i-th unit vector of Rp

and for notational simplicity rip = (uip)
T where 1 � i � p. Moreover, we de�ne p� p matrices

Lp =

0
BBB@
0 : : : 0 0

1 : : : 0 0
...

. . . 0 0

1 : : : 1 0

1
CCCA ; Wp =

0
BBBBB@

�1 1 : : : 0 0

0 �1 : : : 0 0
...

...
. . .

. . .
...

0 0 : : : �1 1

0 0 : : : 0 �1

1
CCCCCA ;

Up = LTp , Vp = WT
p , Sp = Ip + Lp and Tp = Ip +Up. The matrix A11 of Proposition 4

corresponds to the submatrix of C!
n given by the columns k; : : : ; !+k�1 and the rows 1; : : : ; !

where 1 � k � ! is arbitrary. In our notation we �nd that A11 and its inverse A�1
11 are given

by

A11 =

0
@E

p
q ep Lp

eTq 1 eTp
Uq eq E

q
p

1
A ; A�1

11 =

0
@O

q
p u1q Vq

r1p � r
q
q

Wp u
p
p O

p
q

1
A ;

where � = 1�eTq u
1
q�e

T
pu

p
p and we have set p = k�1 and q = !�k for notational convenience. If

p = 0 or q = 0 then the corresponding matrices and vectors are empty. We leave the veri�cation

that A11A
�1
11 = I! to the reader. To form the matrix A12 of Proposition 4 we list the remaining
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C!
n =

0
BBBBBB@

Tp

0p
O

q
p

E
p
q ep Lp

eTq 1 eTp
Uq eq E

q
p

O
p
q O

0q 0

Sq O

X1

X2

X3

O
p
q 0p Tp

O 0 O

Sq 0q O
q
p

Y1 Z1
Y2 Z2
Y3 Z3

1
CCCCCCA

; C!
n�! =

0
@X1 +Tp Y1 Z1

X2 Y2 Z2
X3 Sq +Y3 Z3

1
A

Figure 4: The image of C!
n under an !-projection.

columns of C!
n in the order 1; : : : ; k � 1; ! + k; : : : ; n. Then we get in our notation

A12 =

0
@Tp O

p
q O

0p 0q 0

O
q
p Sq O

1
A ; A21 =

0
@O

p
q 0p Tp

O 0 O

Sq 0q O
q
p

1
A ;

where 0 and O are zero vectors and matrices of the required size. The k-th row of A12 and the

k-th column of A21, respectively, are vectors of zeros only. We compute

A�1
11A12 =

0
@O

q
p �Iq O

eTp eTq 0

�Ip O
p
q O

1
A ;A21A

�1
11A12 =

0
@�Tp O

q
p O

O O O

O
q
p �Sq O

1
A :

We label the rows of A22 by ! + 1; : : : ; n as in the original matrix C!
n. Let 1 � i � k � 1.

Then the �rst nonzero entry in column i of A22 occurs in row n � ! + 1 + i, while the last

nonzero entry in column i of A21A
�1
11A12 occurs in row ! + i. Since n� ! + 1 + i > ! + i it

follows that the two columns do not overlap. Let k � i � ! � 1 corresponding to the columns

! + k; : : : ; 2! � 1 of A22. Then the last nonzero entry in column i of A22 occurs in row ! + i,

while the �rst nonzero entry in A21A
�1
11A12 occurs in row n�!+1+ i. Thus the corresponding

columns do not overlap either. But then it follows that

A22 �A21A
�1
11A12 = C!

n�! ;

since the matrix on the left inherits the consecutive ones property fromC!
n and there are precisely

! ones per row, see also Figure 1 for an illustration. Consequently, by Proposition 4 the assertion

follows since the matrix A3 is empty in our case and the constraints given by A�1
11A12z � uk!

are either nonnegativity conditions or dominated and thus redundant.

It follows from the proposition that the !-projections of almost integral polytopes associated

with chordless odd cycles on n nodes are the corresponding polytopes for cycles on n� 2 nodes.

So let A be the clique-matrix of the complement of an odd cycle without chords and P (A) be

the associated polytope. Then without loss of generality A1 = C!
n with ! = (n� 1)=2 and thus

by the proposition the matrix H1 of Proposition 4(iii) becomes H1 = En�! � In�! because

n�! � n� (n� 1)=2 = (n+1)=2. The matrix B22 is the (n�!)� (n�!) identity matrix and

thus by Proposition 3(ii) the !-projection P � of P (A) contains the n� ! unit vectors of Rn�!

as well as its origin. Since by Proposition 3(i) z0 = 1
n�!

en�! is the unique fractional extreme

point of P � it follows that all constraints H2z � h2 and H3z � u1! of Proposition 4(iii) are

redundant and thus (11) follows.

In the proof of the proposition we have made explicit use of the consecutiveness of the ones in

the matrix C!
n. An open question is whether or not a similar result can be proven when general
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zero-one circulants (without the consecutive ones property) are considered. We do not know the

answer, but conjecture that it is negative.

To carry out the �-projection of P# for A = C!
n we choose without restriction of generality

the !-clique K = f1; : : : ; !g as the set of variables to be projected out. Here we will use Fourier-

Motzkin elimination, see e.g. Ziegler (1995) for an excellent exposition of this method, which

goes stepwise by projecting out a single variable at a time. Using this aspect of the method

we can in our case detect redundant constraints for the next projection in the course of the

computation and drop them from further consideration. We start by projecting out x1. To do

so we substitute x1 = 1 �
P!

j=2 xj everywhere. The nonnegativity condition x1 � 0 gives rise

to the constraint
P!

j=2 xj � 1 which is redundant because it is implied by
P!+1

j=2 xj � 1 and

x!+1 � 0. We claim that after eliminating variable xk for 1 � k � ! the nonredundant linear

inequalities for the current projected polytope are

xk+1 + : : :+ x!+k � 1

xk+2 + : : :+ x!+k+1 � 1

...

xn�!+1 + : : : : : : : : : : : :+ xn � 1

�xk+1 : : : � x! + xn�!+k+1 + : : :+ xn � 0

...

�x! + xn � 0

x!+1 + xn�!+2 + : : : : : : : : :+ xn � 1

...

x!+1 + : : :+ x!+k�1 + xn�!+k + : : :+ xn � 1

and xi � 0 for i = k + 1; : : : ; n : The claim is correct for k = 1 with an empty set of \new"

constraints. Suppose that it is correct for some 1 � k < !. To project out variable xk+1 we

write

xk+1 � 1�

!+kX
j=k+2

xj ; xk+1 � �

!X
j=k+2

xj +

nX
j=n�!+k+1

xj ; xk+1 � 0 :

Combining the upper bound on xk+1 with xk+1 � 0 we get
P!+k

j=k+2 xj � 1 which is implied byP!+k+1
j=k+2 xj � 1 and x!+k+1 � 0 and thus redundant. Combining the �rst two inequalities we

�nd

x!+1 + : : :+ x!+k + xn�!+k+1 + : : : + xn � 1

and thus the claim and the next proposition follow.

Proposition 9. For all � 2 � and 2 � ! � (n� 1)=2 the �-projection P� of P (C!
n) is

P� = fz 2 Rn�! : C!
n�!z � en�! ; z � 0g :

To prove that the �-projection of P (A) when A is the clique-matrix of Cn for odd n is given

by (11) we note �rst that

P (En � In) = convf0n;u
1
n; : : : ;u

n
n;

1

n� 1
eng ;
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i.e., that the vectors on the right are a minimal pointwise generator of the polytope on the left

for all n � 2. Let A1 be as usual denote the !-cliques of GA and note that P (A) � P (A1).

Since A1 is a circulant on ! = (n�1)=2 ones it follows from Proposition 9 that the �-projection

of P (A1) is given by (11). Consequently, P� � P (En�! � In�!). Since n � ! � 1 = ! in our

case, we have by Proposition 6 that the pointwise generator of P (En�! � In�!) is contained in

the �-projection P� of P (A) and thus we have equality as claimed in Section 4.
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