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Abstract

In this paper we consider the estimation of a density f on the basis of random sample from a
weighted distribution G with density g given by

9(z) = w(@)f(2)/ 1w
where w(u) > 0 for all u and
P = /w(u)f(u) du < oo.

A special case of this situation is that of length—biased sampling, where w(x) = z. In this paper we
examine a simple transformation—based approach to estimating the density f. The approach is moti-
vated by the form of the nonparametric estimator of f in the same context and under a monotonicity
constraint. Since the method does not depend on the specific density estimate used (only the transfor-
mation), it can be used to construct both simple density estimates (histograms or frequency polygons)
and more complex methods with favorable properties (e.g., local or penalized likelihood estimates).
Monte Carlo simulations indicate that transformation-based density estimation can outperform the
kernel-based estimator of Jones (1991) depending on the weight function w, and leads to much better
estimation of monotone densities than the nonparametric maximum likelihood estimator.
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1 Introduction

Weighted distributions are used in statistics to model selection biased sampling. They arise, for example,
when observations do not have an equal chance of being recorded. Suppose that an observation viewed
without bias has probability density function (pdf) f and let w(z) be (proportional to) the probability of

recording the observation with value x. Then, the pdf of the recorded observation is

g(e) = ————, (1.1)

where p,, = Er(w(X)) is the normalizing factor which makes the total probability equal to one. Length
(size) bias occurs when w(z) = z with f supported on the positive half-line [0, 00), and arises naturally
in industrial and work sampling, in sampling from stochastic processes such as queues, telephone networks
and renewal processes. An illustration of this is given in Vardi (1982) and concerns m independent and
identically distributed stationary renewal processes with a common underlying distribution function F'.
Suppose that from each such process we sample the inter-arrival time that includes a fixed time T (the
time point 7T is assumed to be independent of the process itself). This sampling scheme (which gives rise to

the well known inspection paradox) results for large 7' in an approximate sample of size m from G where

G(z) = ,ULF /Ow zdF(x),

with up being the mean of F. This setup holds also, for example, when sampling velocities of passing
and passed cars from a car traveling at a fixed velocity pg. These velocities are, under some regularity
conditions, selected from a weighted distribution, G, not the underlying distribution of velocities, F. To
be specific, consider an infinite highway (the interval (—oo,+00)), where the initial positions of the cars
are determined according to a Poisson process with rate A. Assume that each car’s velocity is constant
along the highway and that the velocities are independent and identically distributed and independent of
the positions. Breiman (1962) showed that under these conditions the only time invariant point process
for car positions is the Poisson process. Furthermore, it can be shown that the velocities sampled form a

random sample from
1 y
G =7/ x — po|dF(x).
) = By =y |, 17 HoldF (@)

See Smith and Parnes (1994) for a further discussion on sampling velocities by an observer.



Estimation based on sampling from weighted distributions has been considered before. Vardi (1982)
and Vardi (1985) give, respectively, the nonparametric maximum likelihood estimator (NPMLE) of the
underlying distribution function in the presence of length bias and based on several independent samples,
each subject to a different selection bias. El Barmi and Rothmann (1998) consider the estimation of a
distribution function in the presence of selection bias when it is known that there is a d-dimensional
parameter @ associated with the distribution function through a set of estimating equations. They also
obtain a test of Hy : @ = 6 versus Hy : 6 # 6, based asymptotically on a x3 distribution. This test
is closely connected to the results obtained for empirical likelihoods in a selection biased model by Qin
(1993).

The problem of estimating a density is of major importance in statistics and has been widely studied us-
ing many methods, including histograms, frequency polygons, kernel estimates, nearest neighbor estimates,
local and penalized likelihood estimates, and so on. See Simonoff (1996, chapter 3) for discussion of many
of these methods. Bandwidth selection (i.e., determination of the amount of smoothing) is a problem with
all of these approaches and one way to avoid this difficulty is to place shape restrictions on the estimator
such as unimodality or monotonicity. Grenander(1956) derived the maximum likelihood estimator under
such constraints which turned out to be a histogram where the bandwidth depends on the data. Non-
parametric maximum likelihood estimation of a probability density functions has been studied by several
authors. Robertson (1965, 1967) considered the estimation of a unimodal density function when the mode
is known and Wegman (1970) extended these results to the case where the mode is unknown. Prakasa Rao
(1969) obtained the asymptotic distribution of the maximum likelihood estimator of a unimodal density
with a known mode and the pointwise limiting distribution of an isotonic estimator was obtained by Brunk
(1970) and Wright (1981). Recently, El Barmi and Nelson (1998) extended Prakasa Rao’s theorem to the
weighted distributions case. They show that the NPMLE of a monotone density f when sampling from
g is a scaled Grenander type estimator after transforming the data (note that g might, but need not, be
monotone and can take on a variety of shapes). To be specific, suppose X1, Xo,. .., X,, is a random sample
of size n from G whose probability density function is given by g where g is defined by (1.1). Let Xy =0
and define

Xa) ]
Qin = w(u)du, 1=1,2,...,n.
X(i-1)



El Barmi and Nelson (1998) proved the following theorem.
Theorem 1.1 The nonparametric maximum likelihood estimator fn of [ is given by

Bay, (1/nan|K)i

, X(i_1)<ﬂ?SX(i), 1=1,2,...,n,

n
fulz) = ZE% (1/nanlK)i (X —Xi-1))
=1
0, otherwise,
where a, = (a1n,02n,---,0nn) and E, (1/na,|K) is the least square projection of 1/na, onto K =
{(u1,u2,...,up), w1 >ug>--- > uy} with weights ain,aan, - - - ,ann-

It turns out that fn can also be expressed using the properties of isotonic regression as

( min max t/n—s/n
s<i—1 t>1 W( X)) — W(X(y)) X <X
: 0 tn—sin L EEEAe
fn(z) = < min max (X — X(i—1))

. 135@’—1 t>i W(X(t)) —W(X(s))

1=

L O, otherwise,

where W (z) = [ w(u)du.

Note that if w(z) = 1 for all z (i.e. the sample if from f), then az;, = X(; — X(;-1),7 = 1,2,...,n, and

it follows from the properties of isotonic regression that

n n 1

1
ZEan(nTnllC)z’(X(i) = X)) = Z

i=1 i=1

Xy — Xiogy) = 1
nam( (i) (i-1)) = 1,

so that fn is the Grenander estimator of f. We also note that the least squares projection in the previous
theorem can be computed using one of the algorithms described in Robertson, Wright and Dykstra (1988)
such as the Pool Adjacent Violators Algorithm (PAVA).

Let m(.) be the density of ¥; = W(X;). Careful inspection of f, shows that the numerator in the
previous formula is the NPMLE 70, (.) of m(.) evaluated at W (z) under the constraint that m(.) is non-
decreasing based on the random sample Y7, ys,...,Y, where Y; = W(X;),i =1,2,...,n. That is, fn(m) is
proportional to i, (W (zx)).

Note that if Y; = W(X;), where

then



= W)

Differentiating M (y) gives the density of y:

_ 9w y)
mO) = W)
wW = WAV~ )]/
w[W=1(y)]
FW= )]
fhw

Thus,

f(@) = m[W ()] - (1.2)

That is, the transformation to y = W (x) results in a density estimation problem (estimating m) identical
to the unweighted density estimation problem (estimating f) after back—transforming from the y = W (x)
argument to x and scaling to integrate to one. So, for example, length—biased sampling is the special
case W(x) = x2/2, so the estimation strategy is to estimate the density in the y = 2%/2 space and then
back—transform:
F(@) = (@ /2) i

In this paper we will examine several ways that the transformation approach can be used in density
estimation for weighted distributions. Depending on how sophisticated one wants to be, and how much one
wants to assume, this approach can be applied in different ways, which is the strength of this approach.
A potential advantage for this approach is that since density estimation is done in the y space, all of the
literature on density estimation can be applied directly (e.g., bandwidth selection to control the amount of
smoothing). This statement is not precisely correct, as it focuses on producing good estimates of m, rather
than f, but (1.2) implies that a good estimate of m should result in a good estimate of f. If u, can be
estimated to 1/n—consistency, then the convergence rates of density estimates for m will carry over directly
to estimation of f by (1.2); a simple way to accomplish this is to standardize the estimate to integrate to

one after constructing .



2 Simple density estimates

The simplest density estimator is the histogram, which takes the form

(#{Xi <bjp1} —#{Xi <b})/n

bjt1 —b;

u(x) =

) T € (bjabj-i-l]:

where v is a density function and (b;, bj11] defines the boundaries of the jth bin. The histogram is the
unique maximum likelihood density estimator over the set of estimates of f that are piecewise constant
on the set of bins (de Montricher, Tapia, and Thompson, 1975). By the invariance of the maximum
likelihood, a simple transformation—based density estimation scheme for weighted distributions, which is
also maximum likelihood, is to estimate m using a histogram, and then back—transform.

This strategy is particularly natural if the data are continuous, but are presented in the form of rounded
(binned) counts. In this situation the histogram could be based on the pre-binning, or bins could be
combined to yield a smoother estimate.

A potentially more accurate density estimate that is as easy to construct as the histogram is the

frequency polygon, which connects the midbin heights of the histogram bins with straight lines:

a(x) = 1 NjCj+1  Nj1Gj
n(cj+1 —¢;) Lbjr1 —b;  bjp2 — byt
Mj+1 n; ) ]
+ - T T € |Cj,Cj41
(bj+2 - bj+1 bj+1 — b]- ’ [ MR E ]a
where {co,...,cx+1} are the midpoints of the bin intervals. Besides producing an estimate that is more

pleasing to the eye, if the bin widths are chosen appropriately, the resultant density estimator converges to

—2/5 —-1/3

the true density at a n rate, rather than the n rate of the histogram. Other frequency polygon—
like estimators with desirable properties also can be constructed; see Jones, Samiuddin, Al-Harbey, and
Maatouk (1998).

Figure 1 illustrates the use of the transformation-based frequency polygon estimator. The data are
the number of years players in the National Basketball Association (NBA) have played in the league, for
members of the 1998 rosters of the teams from Miami, New Jersey, New York, Orlando, Philadelphia,
and Washington. The data were obtained from the NBA’s official World Wide Web site. The data are

given rounded up to the nearest integer. Figure 1(a) is a frequency polygon of the data using a bin width



of one year (the binning in the data as given). The frequency polygon is not a representation that can
be used to estimate the probability that a randomly selected NBA player will stay in the league a given
number of years, since the longer a player plays, the more likely he is to be observed. That is, the data are
length—biased (w(x) = x).

Figure 1(b) is a transformation-based length—bias—corrected frequency polygon estimate using the same
binning as in Figure 1(a). The estimate is constructed by transforming the z values to y = x? /2, construct-
ing a variable bin width frequency polygon for m(y), and then back—transforming using (1.2) to get the
estimate for f. Note that the bias towards larger values is corrected. Figure 1(c) is a transformation—based
frequency polygon when binning into six bins. The shape of the estimate is similar to that in Figure 1(b),

but is smoother.
3 Smoother density estimation

Given the assumption of a smooth true density f, it is reasonable to try to construct a density estimate
that is smoother than the histogram or frequency polygon forms of the previous section. Jones (1991)

proposed a weighted kernel estimator for this problem:

n

fla) =t 3o w0 K ().

i=1

where fi,, = n[ziw(Xi)_l] and K is the kernel function (typically a symmetric unimodal density
with finite variance). This estimate suffers from boundary bias (as all kernel estimators do), but this
can be corrected by using boundary kernel functions; see Simonoff (1996, sections 3.2.1 and 3.3.1) for
discussion. Jones (1991) demonstrated good properties of the estimate compared to an earlier proposal of
Bhattacharyya, Franklin and Richardson (1988). Further discussion of kernel-type estimation for weighted
distributions can be found in Richardson, Kazempour, and Bhattacharyya (1991), Ahmad (1995), Wu and
Mao (1996), Wu (1997a, b), and Guillamon, Navarro, and Ruiz (1998).

Smooth density estimates also can be constructed for weighted distributions based on transformation.
The only question is then how to estimate m, and by implication f. The obvious first choice is a kernel

estimator:



Unfortunately, the length—biased sampling problem illustrates a difficulty with the transformation—
based approach. If the density m is difficult to estimate, the resultant estimate of f can be less accurate
than when using a more direct approach. For example, for a unimodal x density (f) the density of
y = W(z) = z2/2 (m) has a sharp rise followed by a long right tail. This is a difficult density estimation
problem, particularly for the kernel estimator; the estimate either is severely biased at low values, or has
spurious bumps at high values (for discussion see Simonoff, 1996, section 3.2.2).

This suggests estimating m using a method better suited for data that might have long tails. One
possibility is the local quadratic likelihood density estimator of Hjort and Jones (1996) and Loader (1996),

which is the maximizer of

ZIK (y‘hy") toglm(¥i)] - [ K (y;“) m(u)du

over the family m(t,0) = 6o exp[f1(t — y) + 62(t — y)?]. This estimator has the advantage of automatically

correcting for boundary bias, achieves faster convergence rates in the interior, and is more accurate in the
tails than the usual kernel estimator. For discussion see Simonoff (1996) section 3.4.

Table 1 summarizes the results of a small simulation study comparing the Jones (1991) estimator
with the transformation-based local quadratic likelihood estimator. Two weight functions, w(z) = x and
w(z) = 1/z, are used. The data are generated based on a x? random variable, which has the advantage
that weighted distribution data are easy to generate (if w(z) = z the weighted data are x3 4o, While if
w(z) = 1/ the weighted data are x3_,). There were 500 Monte Carlo replications at two different settings
of k for each weight function (reflecting an asymmetric and roughly symmetric true density) for a small
(n = 50) and moderate (n = 200) sample size. The values reported are the average minimum integrated
squared error (ISE = [] f(z) — f(2)]? dz) when the smoothing parameter is chosen in each replication to
minimize ISE.

As would be expected, the more symmetric densities (larger k) are easier to estimate than the asymmet-
ric ones. The dominant effect, however, comes from the weight function. While the kernel-based estimator
is noticeably more accurate when w(z) = 1/z compared with when w(z) = z, this effect is far stronger
for the transformation—based estimator. As was noted earlier, when w(z) = x the density is estimated in
the W (x) = 2% /2 space, which is difficult; this results in comparatively poorer performance. On the other

hand, when w(z) = 1/x the density is estimated in the W (x) = log(z) space, which is a generally favorable



transformation. As a result, the transformation—based estimator is considerably more accurate than the
kernel-based estimator.

Figure 2 illustrates an example with inverse size bias (w(z) = 1/z). An important consideration for
university faculty, administrators, and students is class size. It is relatively easy to sample classes for class
size, but this provides an estimate of typical class size at the class level. From the student’s point of view,
these data are inverse size biased, since the chances of being in a class increase with the size of the class
(i.e., sampling classes leads to undersampling of students in larger classes).

The data used are the number of students responding to end—of—semester course evaluations for Spring
1998 MBA core courses at New York University’s Leonard N. Stern School of Business. Figure 2(a) is the
Jones kernel-based estimator. It can be seen that the kernel estimator has trouble with the long—tailed
density, since the weighting leads to bumps at each of the large values. The transformation—based local
quadratic estimate (Figure 2(b)) has a similar shape to the Jones estimator, including a bulge at around 30
students and a peak between 50 and 60 students, but the right tail is estimated smoothly, since estimation
is done in the log scale.

The smoothing parameters for the two densities in Figure 2 were chosen by eye. One advantage of
the transformation—based approach is that automatic selectors can be used in the transformed space; this
should be reasonably effective, although it does not guarantee good performance in the original scale. Si-
monoff (1998) discussed an automatic selector that can be used for the local quadratic likelihood estimator,

although for these data it leads to a somewhat under smoothed estimate.
4 Multiple Samples

In this section we consider estimating f on the basis of several samples each of which is subject to a different
form of selection bias. Let X;1,X2,...,Xin;,¢ = 1,2,...,k, be independent random samples and assume

that X;; has a probability density function given by

gila) = OIE G e =12k,
Hw;
where w;(-),7 = 1,2,...,k, are known functions, w;(.) > 0 for some i and p.; = Er(w;(X)) < oo for all i.

The estimator we propose to use in this case is a convex combination of the estimators of f based on the



different samples and is given by
k
= Z aifi (1’)7
=1
where a; = n;/ E§:1 n; and fi is the estimator of f based on the ith sample. So, for example, if kernel

estimators are used, then

where W;(z) = [ wi(u)du,i =1,2,... k.

If it is the case that k = 2,w,(.) = 1 and wa(z) = =, for all z, then

- ni 1 & x— Xy Ne  fly, XQJ)/2)
= K —_— | -
f(x) niy + no nlhj_zl ( h ) +n1 + no nzhz

Finally we note that because of independence, the properties of f follow immediately from those of f;,

i=1,2,...,k. For example MSE(f(z)) = ¥ | a?2M SE(fi(x)).
5 Monotone densities

The nonparametric maximum likelihood estimate of El Barmi and Nelson (1998) assumes a monotone
density, since otherwise the estimate cannot be constructed. It is possible that a data analyst might believe
that the true underlying density is both smooth and monotone. The transformation—based approach makes
it easy to construct a monotone density estimate as long as the transformation is one—to—one (one—to—one
transformations include those for inverse size bias, and size bias if the data are nonnegative), since a
monotone density in the transformed space will be monotone in the original space.

Density estimators can be constructed from regression estimators by binning the data and smoothing
the observed frequencies in each bin (see Simonoff, 1998), so monotone regression estimators can be adapted
to produce monotone density estimates. In this way the frequency polygon can be adapted to be monotone
using the corresponding “pool adjacent violators” algorithm for regression function estimation. Smoother
density estimates also can be constructed using smooth monotone regression functions; see, e.g., Ramsay
(1988).

Table 2 summarizes the results of a small simulation study comparing the (monotone) nonparamet-
ric MLE with two transformation—based monotone frequency polygon estimator. Two weight functions,

w(z) = z and w(xz) = 1/z, are used. The data are generated based on either a uniform distribution

10



on (1,2), or (if w(z) = x) an exponential density (resulting in a Gamma(2, 1) weighted density) or (if
w(z) = 1/z) a Gamma(2, 1) density over [1,00) rescaled to integrate to one (resulting in a shifted expo-
nential weighted density). There were 500 Monte Carlo replications for each weight function for a small
(n = 50) and moderate (n = 200) sample size. The values reported are the average ISE for the MLE, the
optimal monotone frequency polygon (in the sense that the number of bins was chosen to minimize the
ISE for that simulation run), and a Gaussian—based monotone frequency polygon. The latter estimator
is based on choosing the bin width in the z space for each run to be 2.15sn~'/5 (where s is the sample
standard deviation of the observed x values), the optimal choice if g(x) is Gaussian. This data—based
choice is clearly overly simplistic, but provides a crude way to choose the bin width in practice.

Since the true densities being estimated are, in fact, smooth, it would be expected that a frequency
polygon can outperform the nonsmooth MLE, and this is, in fact, the case. The average ISE’s for the
optimal frequency polygon are 35-95% smaller than those of the MLE. The generally strong performance
of the data—based frequency polygon shows that even a naive application of the frequency polygon beats
the MLE; no doubt a better choice of bin width would achieve performance even closer to that of the
optimal frequency polygon.

Figures 1(b) and 1(c) suggest that the probability function for the number of years in the NBA could
be monotonic. Figure 3 gives a monotonic version of the frequency polygon in Figure 1(b), created using
a pooled adjacent violators algorithm on the estimate of Figure 1(b). The original frequency polygon is
also superimposed on the plot. The monotonic version smooths the frequency polygon further, removing
the bumpiness in the original estimate. An even smoother version can be created using wider (and fewer)

bins. For comparative purposes, the (nonsmooth) nonparametric MLE is also given on the plot.
6 Conclusion

In this paper a simple transformation—based technique is proposed for density estimation for weighted
distributions. The approach has the advantage of being widely applicable, allowing simple density estima-
tion using histograms and frequency polygons, smoother estimation using (for example) local likelihood
estimates, and monotone density estimation using isotonic regression techniques. The general nature of

the approach means that any methods used for ordinary samples also can be used for weighted distribution

11



data, including, for example, censored data, densities with sharp edges and jumps, and multivariate data.

Naturally, if the weight function w was under the control of the data analyst, the choice w = 1

corresponding to unbiased sampling would be best. As was noted in the introduction, different observa-

tion processes lead to different forms of w, typically out of the analyst’s control. The simplicity of the

transformation-based technique encourages its routine application, but the simulation results of section 3

do suggest that if the weight function w is such that the transformed data have a density that is difficult

to estimate (because of long tails, for example), other estimates might be preferable.
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Table 1. Average minimum ISE values from Monte Carlo investigation of Jones (1991) kernel-based

estimator and transformation—based local quadratic likelihood estimator for different weight functions and

sample sizes. Data were generated based on a true xi density.

w(z) =2
Kernel-  Transformation—
k n based based
2 50 .0312 .0309
200 .0155 .0317
12 50 .002033 .00434
200 .000891 .00184

14

k n

3 50
200

16 50
200

w(z) =1/x
Kernel-  Transformation—
based based
.0155 .00568
.00744 .00216
.00179 .00105
.000691 .000293



Table 2. Average minimum ISFE values from Monte Carlo investigation of nonparametric MLE and mono-
tone frequency polygons for different weight functions and sample sizes. Data were generated based on
a true uniform(1, 2) density, an exponential density (w(x) = z), or a truncated Gamma(2, 1) density

(w(z) =1/z).

w(z) =2

MLE  Optimal frequency Gaussian—

Density n polygon based f.p.
Uniform 50  .02209 .00571 .00824
200 .00612 .00134 .00496
Exponential 50 47191 .03326 .10587
200 .29408 .01274 .04190

w(z) =1/x

MLE  Optimal frequency Gaussian—

Density n polygon based f.p.
Uniform 50  .10458 .00595 .01366
200 .02723 .00156 .00402
Truncated gamma 50 .03466 .02243 .04803
200 .01085 .00441 .00859
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Figure 1. Frequency polygons for years in NBA data. (a) Frequency polygon without correction for
length bias. (b) Transformation-based length—bias—corrected frequency polygon. (c) Transformation—
based length—bias—corrected frequency polygon based on six bins.
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