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Abstract. We consider a fractional exponential, or FEXP estimator of the memory
parameter of a stationary Gaussian long-memory time series. The estimator is
constructed by ®tting a FEXP model of slowly increasing dimension to the log
periodogram at all Fourier frequencies by ordinary least squares, and retaining the
corresponding estimated memory parameter. We do not assume that the data were
necessarily generated by a FEXP model, or by any other ®nite-parameter model. We
do, however, impose a global differentiability assumption on the spectral density except
at the origin. Because of this, and its use of all Fourier frequencies, we refer to the
FEXP estimator as a broadband semiparametric estimator. We demonstrate the
consistency of the FEXP estimator, and obtain expressions for its asymptotic bias
and variance. If the true spectral density is suf®ciently smooth, the FEXP estimator can
strongly outperform existing semiparametric estimators, such as the Geweke±Porter-
Hudak (GPH) and Gaussian semiparametric estimators (GSE), attaining an asymptotic
mean squared error proportional to (log n)=n, where n is the sample size. In a
simulation study, we demonstrate the merits of using a ®nite-sample correction to the
asymptotic variance, and we also explore the possibility of automatically selecting the
dimension of the exponential model using Mallows' CL criterion.

1. INTRODUCTION

We consider a Gaussian long-memory time series with spectral density

f (ë) � j1ÿ eÿiëjÿ2d f �(ë) ë 2 [ÿð, ð] (1)

where the memory parameter d 2 (ÿ1
2
, 1

2
) and the function f �(ë) govern the

long- and short-term correlation structures of the series respectively. We assume
that f �(ë) is positive, even, continuous, bounded above, and bounded away from
zero on [ÿð, ð].

There are two main approaches to the estimation of d in current use. In the
parametric approach, a ®nite-dimensional parametric model is assumed to hold
for f �(ë). A key example is the ARFIMA( p, d, q) model (Granger and Joyeux,
1980; Hosking, 1981) in which f �(ë) is the spectral density of a stationary and
invertible ARMA( p, q) process. The parameters of f (ë), including d, may then
be estimated using Gaussian maximum likelihood (Dahlhaus, 1989) or the
Whittle likelihood (Fox and Taqqu, 1986; Giraitis and Surgailis, 1990). The
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mean squared errors (MSEs) of the parametric estimators of d based on a
sample of size n are typically O(1=n) if the parametric model is correctly
speci®ed, but the estimator may be inconsistent if the model is misspeci®ed.
This drawback provides motivation for semiparametric estimators of d, which
rely only on the behaviour of f (ë) at low frequencies implied by (1), i.e.,

f (ë) � Cëÿ2d ë! 0�

where C is a positive constant. Examples of semiparametric estimators of d
include the log-periodogram regression estimator of Geweke and Porter-Hudak
(GPH) (Geweke and Porter-Hudak, 1983; Robinson, 1995a; Hurvich et al.,
1998), and the Gaussian semiparametric estimator (GSE) (Robinson, 1995b).
These estimators have the advantage that, under certain conditions, they are
consistent for d without the need to correctly specify a fully parametric model
for f (ë), but they typically have asymptotic MSEs proportional to nÿá, with
á < 4

5
, no matter how smooth f �(ë) is. See Hurvich et al. (1998), Giraitis et al.

(1997) and Henry and Robinson (1996).
Recently, Bhansali and Kokoszka (1999) have proposed a semiparametric

estimator of d based on ®tting a model which is fully parametric but not
assumed to be correctly speci®ed. They assume that the true spectral density
obeys an ARFIMA(1, d, 0) model, and then show that the estimate of d based
on ®tting potentially incorrect ARFIMA( p, d, 0) (i.e., fractional autoregressive,
or FAR) models using the Whittle estimator is consistent and asymptotically
normal, assuming that p!1 as n!1. The FAR estimator may thus be
viewed as providing a parametric approach to semiparametric estimation. Such
an approach has proven to be effective in the somewhat analogous context of
nonparametric spectral estimation. There, it has been shown, (Berk, 1974) that,
if the true process obeys an AR(1) model and an AR( p) model is ®tted to the
data by least squares, with p!1 at a suitable rate, then the resulting spectral
estimate is consistent for the true spectral density in the sense that the mean
integrated squared error of the estimate tends to zero. Furthermore, if the true
spectral density is in®nitely differentiable, so that the autoregressive coef®cients
decline exponentially fast to zero, then taking p proportional to log n yields a
mean integrated squared error of rate (log n)=n, while the classical smoothed
periodogram estimator can achieve a mean integrated squared error of rate no
better than nÿ4=5 no matter how smooth the true spectral density is. For a more
detailed discussion of this phenomenon, see Newton (1988, p. 251). In the
context of semiparametric estimation of d, we note that f � is potentially quite
smooth. For example, if one were prepared to assume (as Bhansali and
Kokoszka as well as many other practitioners do in their simulations) that the
process was ARFIMA( p, d, q) with p, d, q unknown, then f � would be
in®nitely differentiable, and so it should not be surprising that estimating d
using a potentially misspeci®ed parametric model such as FAR could
outperform the GPH estimator.

In this paper, we consider an explicitly de®ned semiparametric estimator of d
based on the ®tting of potentially misspeci®ed parametric models. This

222 C. M. HURVICH AND J. BRODSKY

# Blackwell Publishers Ltd 2001



estimator is denoted as the FEXP estimator, as the ®tted models are in the
FEXP class described in Beran (1993, 1994). The FEXP estimator was
originally proposed by Janacek (1982), and was also discussed by Robinson
(1994), although neither of these papers provided asymptotic theory for the
estimator. The spectral density of a FEXP model is of form

g(ë) � j1ÿ eÿiëjÿ2d g�(ë)

where g�(ë) is given by the exponential model of Bloom®eld (1973), i.e.,

log g�(ë) �
Xh

k�0

gk cos(ëk) (2)

where g0, . . ., gh are real constants, and h is a positive integer, possibly with
h!1 as n!1. For numerical and mathematical simplicity, we estimate the
parameters (d, g0, . . ., gh) by least-squares regression of the log periodogram on
the regressors implied by the model (details given below) over all nonzero
Fourier frequencies between 0 and ð. Since neither the FEXP nor the FAR
estimator is explicitly restricted to a narrow band of frequencies around zero, we
refer to them as broadband semiparametric estimators.

We will derive expressions for the bias and variance of the FEXP estimator
of d in a semiparametric context. It will follow from these expressions that if
f �(ë) is suf®ciently smooth then the estimator may have MSE which decreases
at a rate as fast as (log n)=n, even though f (ë) may not obey a FEXP model.

2. THE FEXP ESTIMATOR OF D

Suppose we have n observations y0, y1, . . ., ynÿ1 from a stationary Gaussian
time series having spectral density f (ë) given by (1). For the sake of de®niteness
and simplicity, we assume throughout this paper that n is even. The periodogram
is given by

Ij � I(ù j) � 1

2ðn

����Xnÿ1

t�0

yt exp(ÿiù j t)j2 j � 0, 1, . . .

where ù j � 2ð j=n is the jth Fourier frequency. In the special case of Gaussian
white noise (d � 0, f � � Const), it is well known that at all nonzero Fourier
frequencies between 0 and ð, the periodogram ordinates I1, . . ., I ~n (with
~n � n=2ÿ 1) are independently and identically distributed (i.i.d.) as f (ù j)

1
2
÷2

2.
These properties no longer hold when d 6� 0 (Kunsch, 1986; Hurvich and
Beltrao, 1993; Robinson, 1995a; Deo, 1997), although the ®ction that they
remain valid when d 6� 0 has helped to motivate both the GPH and GSE
estimators.

De®ning ù � (ù1, ù2, . . ., ù~n)9 and letting ã � 0:577216 . . . denote Euler's
constant, we have from (1) that

BROADBAND SEMIPARAMETRIC ESTIMATION 223

# Blackwell Publishers Ltd 2001



log I(ù) � log f (ù)� log
I(ù)

f (ù)

� �

� ÿ2d log

����2 sin
ù
2

� ������ log f �(ù)ÿ ã� å (3)

where the entries of

å � (å1, å2, . . ., å~n)9 � log
I(ù1)

f (ù1)
� ã, . . ., log

I(ù~n)

f (ù~n)
� ã

� �
9

are, in the case of Gaussian white noise, i.i.d. with E[å j] � 0, and Var[å j]
� ð2=6.

We will ®t a FEXP model (see (2) and the surrounding discussion) to
log I(ù). If such a model held exactly, then log f �(ù) in (3) would reduce to a
linear combination of V0, V1, . . ., Vh, where Vj � cos( jù) for j � 0, 1, 2, . . ..
This motivates the use of the FEXP estimator d̂FEXP of d de®ned as ÿ1

2
times the coef®cient of log j2 sin(ù=2)j in a least-squares regression of log I(ù)
on [V0, V1, . . ., Vh, log j2 sin(ù=2)j]. Equivalently, ÿ2d̂FEXP is the slope
coef®cient in a simple linear regression (without intercept) of log I(ù) on r,
where

r � log

����2 sin
ù
2

� �����ÿXh

k�0

bkVk (4)

and
Ph

k�0bkVk is the orthogonal projection of logj2 sin(ù=2)j on the linear space
spanned by [V0, V1, . . ., Vh]. Thus,

d̂FEXP � ÿr9 log I(ù)

2krk2
(5)

where k:k2 denotes the sum of squares of an ~n-dimensional vector. An explicit
formula for b � (b0, . . ., bh)9 is given by

b � (X9hXh)ÿ1X9h log

����2 sin
ù
2

� ����� (6)

where Xh is the [~n 3 (h� 1)] matrix with columns [V0, V1, . . ., Vh].

3. THEORETICAL RESULTS

We assume that log f �(:) has a convergent Fourier expansion,

log f �(ù) �
X1
k�0

ãk cos(kù) for ù 2 [ÿð, ð]

with
P1

k�0jãk j,1. We also assume that f �(:) is differentiable on [ÿð, ð]
ÿ f0g with
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j f �9(ë)j < C=jëj for ë 2 [ÿð, ð]ÿ f0g (7)

for some ®nite constant C. Equation (7), which constitutes a global smoothness
assumption on f �(ë), holds for many models in current use, including the
ARFIMA, fractional Gaussian noise and FEXP models. A condition similar to
(7) was assumed by Robinson (1995a), but only in a vanishingly small
neighbourhood around zero frequency. Equation (7) together with the bounded-
ness of f � imply that f (:) is differentiable on [ÿð, ð]ÿ f0g with

j f 9(ë)j < Cf (ë)

jëj for ë 2 [ÿð, ð]ÿ f0g (8)

for some ®nite constant C.
From (3) and (5), we have

d̂FEXP � d ÿ r9 log f �(ù)

2krk2
ÿ r9å

2krk2
(9)

where we have used the relation

ÿ 1

2krk2
(ÿ2d)r9 log

����2 sin
ù
2

� ����� � ÿ 1

2krk2
(ÿ2d)r9 r�

Xh

k�0

bkVk

" #
� d

since r is orthogonal to V0, . . ., Vh.
From Bloom®eld (1976, p. 43), it can be shown that, for all nonnegative

integers j, k,

V9kVj �ÿ 1

2
� 1

2
(ÿ1)k� jÿ1

� n

4
÷f j mod n�k mod n6�0 or n=2g � n

4
÷f j mod n�ÿk mod n6�0 or n=2g

� n

2
÷f j mod n�k mod n�0g � n

2
÷f j mod n�k mod n�n=2g (10)

where ÷S denotes the indicator of the set S. It follows from Gradshteyn and
Ryzhik (1994, p. 614 #7) that, for all nonnegative integers k,�ð

ÿð
log

����2 sin
ë

2

� �����cos(kë)dë �
0 if k � 0

ÿð
k

if k . 0

(
(11)

This, together with the fact that logj2 sin(ë=2)j is square integrable on [ÿð, ð],
implies that for any ®xed n,

log

����2 sin
ù
2

� ����� � ÿX1
j�1

1

j
Vj (12)

To obtain the asymptotic bias and variance of d̂FEXP, we will need the
following Lemmas, which are proved in the Appendix.
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LEMMA 1

V9k log

����2 sin
ù
2

� ����� �
R0 if k � 0

ÿ n

4k
� Rk if 1 < k < ~n

Rn=2 if k � n

2

8>><>>:
where the remainder terms Rk satisfy

max
k�0,1,..., n=2

jRk j � O(log n)

LEMMA 2. Let k be an integer, k > 3. De®ne the (k 3 k) matrices A and B
by

A � diag
n

2
,

n

4
, � � �, n

4

� �
and Bij � ÿ1÷fi� j eveng

for i, j � 0, . . ., k ÿ 1. De®ne

k1 �
�

k

2

�

k2 �
�

(k ÿ 1)

2

�
x1 � 1

(n=4)(n=4ÿ k1)

x2 � ÿ1

n=2
� 1

n=2ÿ 1ÿ k2=(n=4ÿ k2)

x3 � 1

(n=2ÿ 1)(n=4ÿ k2)ÿ k2

x4 � 1

n=4ÿ k2

1

n=4
� 1

(n=2ÿ 1)(n=4ÿ k2)ÿ k2

� �
Then (A� B)ÿ1 � Aÿ1 �M, where

M �
diag(x2, x1) 19k=2ÿ1 
 diag(x3, x1)

1k=2ÿ1 
 diag(x3, x1) 1k=2ÿ119k=2ÿ1 
 diag(x4, x1)

" #
if k is even

diag(x2, x1) 19(kÿ3)=2 
 diag(x3, x1) (x3, 0)9

1(kÿ3)=2 
 diag(x3, x1) 1(kÿ3)=219(kÿ3)=2 
 diag(x4, x1) 1(kÿ3)=2 
 (x4, 0)9

(x3, 0) 19(kÿ3)=2 
 (x4, 0) x4

264
375

if k is odd

8>>>>>>>>><>>>>>>>>>:
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LEMMA 3. If h=n! 0, then

bk �
R�0 if k � 0

ÿ 1

k
� R�k if 1 < k < h

8<:
where the remainder terms R�k satisfy

max
k�1,..., h

jR�k j � O
(log n)

n

� �
LEMMA 4 



log

����2 sin
ù
2

� �����



2

� nð2

24
� O(log2 n)

LEMMA 5. If

1

h
� h

n
log2 n! 0

then

krk2 � n

4h
� o

n

h

� �
LEMMA 6. If

1

h
� h

n
log2 n! 0

then

r9 log f �(ù) �
X1

j�h�1

ÿn=4

j mod n
ã j÷fh�1< j mod n<~ng

�
X1

j�n=2�1

ÿn=4

nÿ j mod n
ã j÷fn=2�1< j mod n<nÿhÿ1g � O(log n)

LEMMA 7.

E[Jj J k ÿ f j÷f j�kg]����������
f j f k

p � O jÿ1 j

k

� �jdj
� kÿ1 log n

j

k

� �d
" #

for 1 < k < j < ~n

where

Jj � (2ðn)ÿ1=2
Xnÿ1

t�0

yt exp(ÿiù j t)
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LEMMA 8

E[JjJk]����������
f j f k

p � O jÿ1 j

k

� �jdj
� kÿ1 log n

j

k

� �d
" #

for 1 < k < j < ~n

LEMMA 9

E(r9å) � O(log3 n)

THEOREM 1. If

1

h
� h

n
log2 n! 0

then

Bias(d̂FEXP) � h

2

X1
j�h�1

ã j

j mod n
÷fh�1< j mod n<~ng

� h

2

X1
j�n=2�1

ã j

nÿ j mod n
÷fn=2�1< j mod n<nÿhÿ1g � O

h log3 n

n

� �

THEOREM 2. De®ne Conditions 1±4:

1. (h=n)log6 n! 0:
2. hnäÿ1 log4 n! 0:
3. hnÿä log3 n! 0:
4. hn2d(1ÿä)ÿä log4 n! 0:

If Condition 1 holds, and if there exists a ®xed ä 2 (0, 1) such that Conditions 2
and 3 hold simultaneously, then

Var(d̂FEXP) � O
h

n

� �
If Condition 1 holds and if there exists a ®xed ä 2 (0, 1) such that Conditions 2,
3 and 4 hold simultaneously, then

Var(d̂FEXP) � ð2

6

h

n
� o

h

n

� �
(13)

REMARK 1. If h � O(log n) then Condition 1 holds, and Conditions 2, 3 and
4 hold simultaneously for any d and any ®xed ä 2 (0:5, 1). Thus, (13) holds if
h � O(log n). Suppose next that h � O(ná) for some ®xed á 2 (0, 1

2
). Then

Condition 1 holds, and Conditions 2, 3 and 4 are equivalent to ä, 1ÿ á,
ä.á and ä. (á� 2d)=(1� 2d), respectively. Theorem 1, together with a
consideration of simultaneous solutions of the inequalities above, yields the
following conclusions:

228 C. M. HURVICH AND J. BRODSKY

# Blackwell Publishers Ltd 2001



Var(d̂FEXP) � O(h=n) 8á 2 (0, 1
2
)

The more precise result of (13) holds for all á 2 (0, 1
2
) if d < 0. Equation (13)

also holds for 0 ,á, (2d � 2)ÿ1 if d . 0.

REMARK 2. We have not been able to establish the asymptotic normality of
d̂FEXP. In view of (5), Lemmas 3 and 5, as well as (5.15) of Robinson (1995a),
a suf®cient condition for the asymptotic normality of d̂FEXP is thatX~n

j�1

jrjj p � O
n

h

� �
for any ®xed integer p . 2.

4. MEAN SQUARED ERROR OF d̂FEXP IN SPECIFIC SITUATIONS

It is instructive to compare the minimum MSE of d̂FEXP with that of the GPH
estimator d̂GPH under various assumptions on the smoothness of f �(:). The
MSEs given below assume an optimal selection of the tuning constant, i.e., h for
d̂FEXP and the number of frequencies for d̂GPH.

The case perhaps most widely considered in practice is where the ã j decay
exponentially fast to zero, so that log f �(:) has an in®nite number of
continuous derivatives. In this case, it follows from Theorems 1 and 2 that, if
we take h proportional to log n, with a suitably chosen proportionality constant,
then

MSE(d̂FEXP) � O
log n

n

� �
Furthermore, if we take h proportional to (log n)1�å for any ®xed å. 0 and using
any positive proportionality constant, then

MSE(d̂FEXP) � O
(log n)1�å

n

� �
On the other hand, the fastest rate of convergence which can be attained in
general for d̂GPH in this case is

MSE(d̂GPH) � O(nÿ4=5)

See Hurvich et al. (1998). The reason for this relatively slow rate of convergence
for MSE(d̂GPH) is that, although f �(:) is extremely smooth here, it does not in
general satisfy the condition f � 0(0) � 0. Indeed, if the process is
ARFIMA( p, d, q), then the ã j decay exponentially fast, but f � 0(0) need not
be zero so that, even with an optimal selection of tuning constants, d̂FEXP

strongly outperforms d̂GPH.
Another case of interest is where
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ã j � j2d�ÿ1 for some d� 2 (ÿ1, 0) (14)

This situation could arise in econometric applications, as described below. If
d�,ÿ1

4
, Theorems 1 and 2 imply that the optimal MSE for d̂FEXP is

MSE(d̂FEXP) � O[n4d�=(1ÿ4d�)]

attained by taking h � O[n1=(1ÿ4d�)]. The rate of convergence of MSE(d̂FEXP)
can be made arbitrarily close to O(nÿ1) if d� is suf®ciently negative. This seems
sensible, since the smaller d� is, the smoother f �(:) is. Unfortunately, for the
case d� 2 [ÿ1

4
, 0), the results of Theorem 2 are not suf®ciently strong to allow

us to determine the optimal rate for MSE(d̂FEXP).
Next, we consider the best possible performance of d̂GPH under the

assumptions of (14). Theorem 2 of Yong (1971), together with the results of
Giraitis et al. (1997), imply that for d� 2 [ÿ1, 0) the GPH estimator with an
optimally chosen tuning parameter attains the rate

MSE(d̂GPH) � O[n4d�=(1ÿ4d�)]

This is of the same order as the optimal value for MSE(d̂FEXP) on the subinterval
where MSE(d̂FEXP) can be determined, i.e., for d� 2 [ÿ1, ÿ1

4
). On the other

hand, for d�,ÿ1, MSE(d̂GPH) remains at O(nÿ4=5) in general, since (14) does
not guarantee that f � 0(0) � 0, while MSE(d̂FEXP) retains the rate of
O[n4d�=(1ÿ4d�)], so that d̂FEXP outperforms d̂GPH in this case.

REMARK 3. The situation described in (14) could arise in an econometric
context, from differencing the sum of two independent and potentially
nonstationary long-memory time series. Speci®cally, suppose that d1 2
(0:5, 1:5) and d2 , d1. Let x1, t and x2, t be two independent processes whose
®rst differences are stationary, having spectral densities j1ÿ eÿiëjÿ2(d1ÿ1) f �1 (ë)
and j1ÿ eÿiëjÿ2(d2ÿ1) f �2 (ë) respectively, where f �1 (ë) and f �2 (ë) are the spectral
densities of stationary and invertible ARMA processes. Let xt � x1, t � x2, t.
De®ne yt � xt ÿ xtÿ1 and let d� � d2 ÿ d1 , 0. The process fytg is a
stationary and invertible long-memory series with memory parameter d1 ÿ 1
and spectral density

f y(ë) � j1ÿ eÿiëjÿ2(d1ÿ1) f �y (ë)

where

f �y (ë) � f �1 (ë)� f �2 (ë)j1ÿ eÿiëjÿ2d�

It follows from Yong (1971, Theorem 2) that the Fourier coef®cients ã j of
log f �(:) satisfy (14).
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5. MONTE CARLO RESULTS

We conducted a Monte Carlo study to compare the asymptotic theory for d̂FEXP

with its ®nite-sample performance, and also to compare d̂FEXP with the widely
used log-periodogram regression estimator d̂GPH of Geweke and Porter-Hudak
(1983). For clarity, we now introduce the notation d̂ h

FEXP, where the superscript
denotes the value of h used in computing d̂FEXP. Using the method of Davies
and Harte (1987), we generated 500 realizations of a variety of zero-mean
stationary ARFIMA(1, d, 0) models, with d � 0:4. The models are expressed as

(1ÿ rB)(1ÿ B)d xt � å t

where the å t are independent standard normal, and B is the backshift operator.
We considered the three sample sizes n � 512, 1024 and 4096, and the four
values r � 0:2, 0.4, 0.6 and 0.8.

For d̂GPH, we used the estimator originally recommended by Geweke and
Porter-Hudak (1983). Speci®cally, d̂GPH is given by ÿ1

2
times the slope

estimator in a least-squares linear regression of flog Ijg
���
n
p
j�1 on

flogj2 sin(ù j=2)jg
���
n
p
j�1. The number of frequencies used in the regression is���

n
p

. This choice was found to work well in the simulation studies of Geweke
and Porter-Hudak (1983), and is in widespread use today. In general, however,
it is not an optimal choice, as shown by Hurvich et al. (1998), and by Giraitis
et al. (1997). Note that we do not omit a block of the lowest frequencies from
the regression. Such trimming was suggested by Robinson (1995a), but it was
shown by Hurvich et al. (1998) that consistency and asymptotic normality of
the estimator hold without trimming, and that ®nite-sample performance is
better without trimming. For each realization, we evaluated d̂GPH, as well as
d̂ h

FEXP for h � 1, . . ., 20. We focus ®rst on the performance of d̂ h
FEXP.

As predicted by the theory, we found that for all values of n and r studied,
Var(d̂ h

FEXP) increases with h. Moreover, for a given n and h, Var(d̂ h
FEXP) was

virtually constant for all r, again in accordance with the theory. Unfortunately,
for all n, r and h, Var(d̂ h

FEXP) was clearly larger than the asymptotic value
ð2 h=6n given in Theorem 2, although the disparity between the two values did
decrease for larger values of n. For a given n and r, Bias(d̂ h

FEXP) was typically
decreasing in h, especially for small values of h, as would be expected from
Theorem 1. For larger values of h, Bias(d̂ h

FEXP) sometimes increased slightly
with h, perhaps due to the gradual deterioration of some of the approximations
used in Theorem 1. Not surprisingly, for a given n and h, Bias(d̂ h

FEXP)
increased with r.

To illustrate some of these ®ndings, Table 1 gives Bias(d̂ h
FEXP), Var(d̂ h

FEXP)
and MSE(d̂ h

FEXP) for n � 512, r � 0:6 and h � 1, . . ., 20, based on the 500
simulated realizations of the process. Here, MSE, is the average of
(d̂ h

FEXP ÿ d)2 over the 500 realizations. In addition to the patterns described
above, it should be noted that MSE(d̂ h

FEXP) was a convex function of h,
minimized at h � 3. To see the inadequacies of the variance formula from
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Theorem 2, note for example that, when h � 5, the formula gives 0.016, while
the observed variance is 0.026.

A better approximation to Var(d̂ h
FEXP) than that provided by Theorem 2 can

be obtained from the expression

Var(d̂ h
FEXP) � ð2

24krk2
(15)

This expression follows from (9) together with the simplifying approximation
that å1, . . ., å~n are i.i.d. with mean 0 and variance ð2=6. Note that krk2 may be
evaluated on a computer as the residual sum of squares in the least squares
regression of logj2 sin(ù=2)j on [V0, . . ., Vh]. Table 2 gives values of the
approximate theoretical variances from (15) for h � 1, . . ., 20, assuming
n � 512. Agreement of these values with the observed variances in Table 1 is
good, and improves as n increases. In practice, we recommend that (15) be used
instead of the formula from Theorem 2 to approximate Var(d̂ h

FEXP).
Next, we compare the performance of d̂ h

FEXP with that of d̂GPH. Let hopt be
the value of h for which MSE(d̂ h

FEXP) is minimized. Clearly, hopt would not be
known in practice, but it is still of interest to see how d̂FEXP would behave
under this optimal choice for h. Table 3 gives the bias and MSE for d̂ hopt

FEXP and
for d̂GPH. For a given value of r, hopt tends to increase very slowly with n.
This ®nding is consistent with the discussion in Section 4. In addition, for a
given value of n, hopt increases with r. This seems reasonable since, as r
increases, it is necessary to use larger values of h to overcome bias in the

TABLE I

BIAS, VARIANCE AND MSE OF d̂FEXP FOR n � 512, r � 0:6,
h � 1, . . ., 20

h Bias Variance MSE

1 0.2394 0.0060 0.0633
2 0.1302 0.0103 0.0272
3 0.0797 0.0144 0.0208
4 0.0524 0.0196 0.0223
5 0.0361 0.0256 0.0268
6 0.0308 0.0340 0.0349
7 0.0253 0.0408 0.0413
8 0.0206 0.0479 0.0482
9 0.0151 0.0564 0.0565

10 0.0199 0.0670 0.0673
11 0.0200 0.0778 0.0781
12 0.0239 0.0889 0.0893
13 0.0316 0.1033 0.1041
14 0.0311 0.1140 0.1148
15 0.0218 0.1272 0.1274
16 0.0167 0.1426 0.1426
17 0.0177 0.1511 0.1511
18 0.0107 0.1635 0.1632
19 0.0125 0.1758 0.1756
20 0.0047 0.1874 0.1870
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estimate of d. In all cases, MSE(d̂ hopt

FEXP) is less than MSE(d̂GPH), by a factor of
as much as 7.3 when r is small. In these cases, d̂GPH is using far less than the
optimal number of frequencies; see Hurvich et al. (1998). On the other hand,
when r is large, d̂GPH becomes more competitive with d̂ hopt

FEXP because for a
given n, the optimal number of frequencies to use in d̂GPH tends to decrease as
r is increased.

TABLE 2

THEORETICAL VARIANCE APPROXIMATION FOR

d̂FEXP, BASED ON EQUATION (15), n � 512,
h � 1, . . ., 20

h Variance approximation

1 0.0060
2 0.0106
3 0.0157
4 0.0214
5 0.0276
6 0.0344
7 0.0416
8 0.0495
9 0.0579

10 0.0668
11 0.0764
12 0.0866
13 0.0974
14 0.1089
15 0.1210
16 0.1338
17 0.1474
18 0.1617
19 0.1768
20 0.1927

TABLE 3

PERFORMANCE OF d̂ hopt

FEXP AND d̂GPH

n r hopt Bias(d̂ hopt

FEXP) MSE(d̂ hopt

FEXP) Bias(d̂GPH) MSE(d̂GPH)

512 0.2 1 0.0345 0.0073 0.0273 0.0291
512 0.4 2 0.0444 0.0122 0.0359 0.0295
512 0.6 3 0.0797 0.0208 0.0617 0.0318
512 0.8 7 0.0995 0.0496 0.1725 0.0571

1024 0.2 1 0.0265 0.0035 0.0157 0.0182
1024 0.4 2 0.0384 0.0062 0.0201 0.0184
1024 0.6 4 0.0445 0.0108 0.0340 0.0191
1024 0.8 7 0.0929 0.0252 0.1026 0.0285
4096 0.2 1 0.0184 0.0010 0.0129 0.0073
4096 0.4 3 0.0140 0.0017 0.0139 0.0073
4096 0.6 4 0.0324 0.0031 0.0172 0.0074
4096 0.8 9 0.0409 0.0063 0.0364 0.0085
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Unlike d̂GPH, the estimator d̂ hopt

FEXP as summarized in Table 3 could not be
used in practice, since hopt would be unknown. Thus the practical effectiveness
of d̂ h

FEXP depends on the ability of the user to select an appropriate value for h
solely on the basis of the observed data. One could try to suggest a choice for
h which depends only on the sample size, in analogous fashion to the
suggestion of Geweke and Porter-Hudak (1983) to use

���
n
p

frequencies in their
estimator. We prefer not to do this, however, since there will always be
situations where any such data-independent choice will perform badly, even if n
is large.

Instead, we propose a data-based choice for h, based on Mallows' CL

criterion. (Mallows, 1973; Li, 1987). Speci®cally, we propose to choose h so as
to minimize

CL(h) � RSSh � 2h
ð2

6

over the set of all candidate values for h, where RSSh denotes the residual sum
of squares in the regression used to calculate d̂ h

FEXP. We defer any theoretical
results on this choice to a later paper. The use of CL in the context of long-
memory processes was originally considered in Brodsky (1997).

Denote the value of h which minimizes CL(h) by hCL. Then d̂ hCL

FEXP provides a
feasible estimator of d, based on a data-driven selection of h. Table 4 gives
Bias(d̂ hCL

FEXP), MSE(d̂ hCL

FEXP), and the ratio MSE(d̂GPH)=MSE(d̂ hCL

FEXP), based on the
same simulated realizations described above. The ratio of MSEs provides a
measure of the relative ef®ciency of d̂ hCL

FEXP to d̂GPH. Table 4 indicates that, for a
given value of r, as n is increased, the ef®ciency of d̂ hCL

FEXP improves. This suggests
that if n is made suf®ciently large, then d̂ hCL

FEXP will eventually outperform d̂GPH.
In the best case, n � 4096 and r � 0:2, the ef®ciency of d̂ hCL

FEXP is 3.84. On
the other hand, for a given n as r is increased the ef®ciency of d̂ hCL

FEXP

TABLE 4

BIAS AND MSE FOR d̂ hCL

FEXP

n r Bias(d̂ hCL

FEXP) MSE(d̂ hCL

FEXP)
MSE(d̂GPH)

MSE(d̂ hCL

FEXP)

512 0.2 0.0224 0.0230 1.266
512 0.4 0.0501 0.0295 1.002
512 0.6 0.0862 0.0531 0.600
512 0.8 0.1982 0.1073 0.532

1024 0.2 0.0179 0.0093 1.949
1024 0.4 0.0412 0.0138 1.330
1024 0.6 0.0646 0.0208 0.919
1024 0.8 0.1391 0.0479 0.595
4096 0.2 0.0104 0.0019 3.844
4096 0.4 0.0185 0.0029 2.545
4096 0.6 0.0332 0.0047 1.590
4096 0.8 0.0658 0.0115 0.736
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decreases, and can be substantially below unity. This may occur because for
larger values of r the optimal number of frequencies to use in d̂GPH decreases,
making the choice of

���
n
p

frequencies commonly used in practice much more
competitive.

6. POSTSCRIPT

After submitting the ®rst version of this paper, we learned of the simultaneous
and independent work of Eric Moulines and Philippe Soulier on the FEXP
estimator. The authors kindly provided us with their manuscripts, which are now
published as Moulines and Soulier (1999, 2000). In Moulines and Soulier
(1999), under less restrictive conditions on the ã j than assumed here, it is
established that a generalized version of the FEXP estimator, which allows for
pooling (averaging) of the periodogram prior to taking logarithms, is
asymptotically normal. Our asymptotic variance expression (13), as well as the
rates of convergence of the FEXP estimator discussed in Section 4, follow as
special cases of their results, which include stronger bounds on the covariances
between discrete Fourier transform values than we obtained in Lemmas 7 and 8.
Their use of pooling reduces the asymptotic variance by a constant multiplicative
factor, which can be arbitrarily close to 6=ð2. Moulines and Soulier (2000)
established the asymptotic ef®ciency of the CL criterion for data-driven choice
of h, although the loss function they considered was the global mean integrated
squared error of the log of the estimated spectral density, rather than, say,
E(d̂FEXP ÿ d)2, a quantity which would be more directly relevant from the point
of view of estimation of d. For theoretical convenience, Moulines and Soulier
(1999, 2000) used a set of regression frequencies which does not correspond to
Fourier frequencies, even in the case of no pooling. Although their choice of
regression frequencies makes no difference asymptotically, it remains to be seen
whether it adds any appreciable bias in ®nite samples compared to the FEXP
estimator as de®ned here.

APPENDIX

PROOF OF LEMMA 1. For any k 2 f0, 1, . . ., n=2g with n ®xed, we have from (10)
and (12) that

V9k log

����2 sin
ù
2

� ����� � V9k ÿ
X1
j�1

1

j
Vj

" #
� ÿ lim

M!1

XnM

j�1

1

j
V9kVj

� ÿ lim
M!1

[B0M � B1M � B2M � B3M � B4M ] (16)

where M is a positive integer, and
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B0M �
XnM

j�1

1

j
ÿ 1

2
� 1

2
(ÿ1)k� jÿ1

� �

B1M � n

4

XnM

j�1

1

j
÷f j mod n�k mod n 6�0 or n=2g

B2M � n

4

XnM

j�1

1

j
÷f j mod n�ÿk mod n 6�0 or n=2g

B3M � n

2

XnM

j�1

1

j
÷f j mod n�k mod n�0g

B4M � n

2

XnM

j�1

1

j
÷f j mod n�k mod n�n=2g

For any ®xed positive integer á, as M !1, we have

XáM

j�1

1

2 j
� 1

2
log(áM)� ã

2
� o(1)

XáM

j�1

1

2 jÿ 1
�
X2áM

j�1

1

j
ÿ 1

2

XáM

j�1

1

j

� log(2áM)� ãÿ 1

2
[log(áM)� ã]� o(1)

� 1

2
log(áM)� ã

2
� log 2� o(1)

where ã is Euler's constant. Thus,

B0M � ÿ
XnM=2

j�1

1

2 j
÷fk is eveng ÿ

XnM=2

j�1

1

2 jÿ 1
÷fk is oddg

� ÿ 1

2
log

nM

2

� �
ÿ ã

2
ÿ log 2 ÷fk is oddg � o(1) (17)

First, we consider the case k � 0. Then B1M � B2M � B4M � 0, and

B3M � n

2

1

n
� 1

2n
� � � � � 1

nM

� �
� 1

2
log M � ã

2
� o(1)

Combining this with (16) and (17) yields

V90 log

����2 sin
ù
2

� ����� � R0 � 1

2
log

n

2

� �
Next, we consider the case k � n=2. Then B1M � B2M � B3M � 0 and
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B4M � n

2

1

n=2
� 1

3n=2
� � � � � 1

(2M ÿ 1)n=2

� �
� 1� 1

3
� � � � � 1

2M ÿ 1
� 1

2
log M � log 2� ã

2
� o(1)

Combining this with (16) and (17) yields

V9n=2 log

����2 sin
ù
2

� ����� � Rn=2

� 1

2
log

n

2

� �
ÿ log 2÷fn=2 is eveng

Finally, we treat the case k 2 f1, . . ., ~ng. Then B3M � B4M � 0. Also,

B1M � n

4

1

k
� 1

n� k
� � � � � 1

n(M ÿ 1)� k

� �

� n

4k
� n

4k

XMÿ1

L�1

1

1� Ln=k

� n

4k
� n

4k

XMÿ1

L�1

1

Ln=k
ÿ 1

(Ln=k)(1� Ln=k)

� �

� n

4k
� n

4k

k

n
(log M � ã� o(1))ÿ n

4k

XMÿ1

L�1

1

(Ln=k)(1� Ln=k)

� �

� n

4k
� 1

4
log M � ã

4
� o(1)ÿ n

4k

XMÿ1

L�1

1

(Ln=k)(1� Ln=k)

� �
(18)

and

B2M � n

4

1

nÿ k
� 1

2nÿ k
� � � � � 1

nM ÿ k

� �

� n

4k

XM

L�1

1

ÿ1� Ln=k

� n

4k

XM

L�1

1

Ln=k
� 1

(Ln=k)(ÿ1� Ln=k)

� �

� 1

4
log M � ã

4
� o(1)� n

4k

XM

L�1

1

(Ln=k)(ÿ1� Ln=k)

� �
(19)

Note that
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����ÿ n

4k

XMÿ1

L�1

1

(Ln=k)(1� Ln=k)

� �
� n

4k

XM

L�1

1

(Ln=k)(ÿ1� Ln=k)

� �����
<

n

4k

X1
L�1

1

(Ln=k)2
� nk

4

XM

L�1

1

Ln(ÿk � Ln)

<
n

4k

X1
L�1

1

(Ln=k)2
� nk

4

X1
L�1

1

(Ln=2)2

� 5

4

k

n

ð2

6

<
5

4

ð2

6

Combining this with (16), (17), (18) and (19) yields

V9k log

����2 sin
ù
2

� ����� � ÿ n

4k
� Rk

where

max
k�1,..., ~n

jRk j < 1

2
log

n

2

� �
� 5

4

ð2

6
� log 2 � O(log n)

PROOF OF LEMMA 2. Using the relationships between x1, x2, x3 and x4, it may be
veri®ed directly that the matrix (A� B)Aÿ1 � (A� B)M is the (k 3 k) identity matrix.

PROOF OF LEMMA 3. De®ne ck � V9k log j2 sin(ù=2)j for k � 0, 1, 2, . . . and let c �
(c0, c1, . . ., ch)9. Then by (6), b � (X9hXh)ÿ1c. By (10), X9hXh is of the form A� B,
where A and B are the matrices de®ned in Lemma 2 with k � h� 1. It follows from
Lemma 2 that b � Aÿ1c�Mc where M is the (h� 1) 3 (h� 1) matrix de®ned in
Lemma 2. Since h=n! 0 the upper lefthand corner of M is M00 � x2 � O(1=n), and
the maximum absolute value of all other entries of M is max(jx1j, jx3j, jx4j) � O(1=n2),
where x1, x2, x3, x4 are de®ned in Lemma 2. Thus,

b0 � R�0 �
2

n
c0 � x2c0 �

Xh

j�1

M0 jcj

so by Lemmas 1 and 2,

jR�0 j <
2

n
� jx2j

� �
jc0j � jx3j

Xh

j�1

����ÿ n

4 j
� Rj

����
<

2

n
� jx2j

� �
jR0j � n

4
jx3jConst:log n� jx3jh max

j�1,..., h
jRjj

� O
log n

n

� �
� O

h

n2

� �
log n

� �

� O
log n

n

� �
By Lemmas 1 and 2, for k � 1, . . ., h
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bk � 4

n
ck � M k0c0 �

Xh

j�1

Mkjcj � ÿ 1

k
� R�k

where

R�k �
4

n
Rk � M k0 R�0 �

Xh

j�1

Mkj ÿ n

4 j
� Rj

� �

Thus,

max
k�1,..., h

jR�k j <
4

n
max

k�1,..., h
jRk j � jx3j jR0j �max(jx1j, jx3j, jx4j)[Const:n log n� h max

j�1,..., h
jRjj]

� O
log n

n

� �

Since

jR�0 j � O
log n

n

� �

it follows that

max
k�0,..., h

jR�k j � O
log n

n

� �

PROOF OF LEMMA 4. The proof is reasonably straightforward, and is omitted for
brevity.

PROOF OF LEMMA 5. Since

r � log

����2 sin
ù
2

� �����ÿXh

k�0

bkVk

and since r is orthogonal to the linear space spanned by [V0, V1, . . ., Vh], we have by
Lemmas 1, 3 and 4 that
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krk2 � r9r � r9 log

����2 sin
ù
2

� �����
�




log

����2 sin
ù
2

� �����



2

ÿ
Xh

k�0

bkV9k log

����2 sin
ù
2

� �����
�




log

����2 sin
ù
2

� �����



2

ÿ R�0 R0 ÿ
Xh

k�1

ÿ 1

k
� R�k

� �
ÿ n

4k
� Rk

� �

�




log

����2 sin
ù
2

� �����



2

ÿ
Xh

k�1

n

4k2
� O(log2 n)

� nð2

24
ÿ n

4

Xh

k�1

1

k2
� O(log2 n)

� n

4

ð2

6
ÿ
Xh

k�1

1

k2

 !
� O(log2 n)

� n

4

1

h
� o

1

h

� �� �
� O(log2 n)

� n

4h
� o

n

h

� �
� O(log2 n)

PROOF OF LEMMA 6. From Lemma 3,

r � log

����2 sin
ù
2

� �����ÿXh

k�0

bkVk � log

����2 sin
ù
2

� ������Xh

k�1

1

k
Vk ÿ

Xh

k�0

R�k Vk

Therefore,

r9 log f �(ù) � log f �(ù)9r �
X1
j�0

ã jV9j log

����2 sin
ù
2

� ������Xh

k�1

1

k
Vk ÿ

Xh

k�0

R�k Vk

" #
From Lemma 1, (10) and the fact that Vj � V j mod n � Vnÿ j mod n for all integers j, we
obtain

V9j log

����2 sin
ù
2

� ����� � V9j mod n log

����2 sin
ù
2

� �����
� R0÷f j mod n�0g � ÿn=4

j mod n
� Rj mod n

� �
÷f1< j mod n<~ng

� ÿn=4

nÿ j mod n
� Rnÿ j mod n

� �
÷fn=2�1< j mod n<nÿ1g

� V9n=2 log

����2 sin
ù
2

� �����÷f j mod n�n=2g

From (10),
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V9j
Xh

k�1

1

k
Vk �

Xh

k�1

1

k
V9kVj mod n

� O(log n)� n=4

j mod n
÷f1< j mod n<hg � n=4

nÿ j mod n
÷fnÿh< j mod n<nÿ1g:

From Lemma 3 and (10),����ÿ V9j
Xh

k�0

R�k Vk

���� � ����Xh

k�0

R�k V9kVj mod n

���� < Const:
log n

n

� �Xh

k�0

jV9kVj mod nj

� O
log n

n

� �
. O(h� n)

� O(log n)

uniformly in j. Thus,

r9 log f �(ù) �
X1

j�h�1

ÿn=4

j mod n
ã j÷fh�1< j mod n<~ng

�
X1

j�n=2�1

ÿn=4

nÿ j mod n
ã j÷fn=2�1< j mod n<nÿhÿ1g � O(log n)

�
X1
j�0

ã j[Rj mod n÷f0< j mod n<~ng � Rnÿ j mod n÷fn=2�1< j mod n<nÿ1g

� Rn=2÷f j mod n�n=2g]

Since max j jRj mod nj � O(log n) and
P1

j�0jã jj,1, the ®nal term above is O(log n).

PROOF OF LEMMA 7. Our proof follows the structure of the proof of Lemma 3.5 of
Giraitis et al. (2000). In the discussion below, C2 ÿ C13 are ®nite positive constants not
depending on j, k, n. De®ne

E j,k(ù) � 1

2ðn
Dn(ù j ÿ ù)Dn(ùÿ ùk)

where

Dn(ù) �
Xnÿ1

t�0

exp(ÿiùt) � exp ÿi(nÿ 1)
ù

2

� �
sin(nù=2)

sinù=2

Note that �ð
ÿð

E j, j(ù)dù � 1

and that �ð
ÿð

E j,k(ù)dù � 0 for 1 < k , j < ~n

Thus,
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E[Jj J k ÿ f j÷f j�kg] �
�ð
ÿð

[ f (ù)ÿ f j]E j,k(ù)dù

�
�
jùj,ù k=2

[ f (ù)ÿ f j]E j,k(ù)dù�
�
ù k=2<jùj<ð

[ f (ù)ÿ f j]E j,k(ù)dù

From the de®nition of Dn(:), it can be shown that

jDn(ë)j < Cn

1� njëj for ÿ 3ð=2 < ë < 3ð=2

Thus, for ù j ÿ ù and ùÿ ùk in this range, jE j,k(ù)j < Ce j,k(ù), where

e j,k(ù) � n

1� njù j ÿ ùj
.

1

1� njùk ÿ ùj

First, we assume that jùj,ùk=2. Then

j f (ù)ÿ f jj < C2(jùjÿ2d � ùÿ2d
j )

and

e j,k(ù) <
1

n(ù j ÿ ù)
.

1

ùk ÿ ù

� 1

nù jùk

.
1

1ÿ ù=ù j

.
1

1ÿ ù=ùk

<
1

nù jùk

.
1

1ÿ 0:5k= j
.

1

1ÿ 1=2

<
C3

nù jùk

Thus,

�����jùj,ù k=2

[ f (ù)ÿ f j]E j,k(ù)dù

���� <
C2C3

nù jùk

�ù k=2

ù�ÿù k=2

[jùjÿ2d � ùÿ2d
j ]dù

� C2C3

nù jùk

2
ùk

2

� �ÿ2d�1

�ùkù
ÿ2d
j

" #

<
C4

j
(ùÿ2d

k � ùÿ2d
j ) (20)

Next, we suppose that ùk=2 < ù < ð. Then, by the mean value theorem and (8),
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j f (ù)ÿ f jj < jùÿ ù jj sup
ù k=2<ë<ð

j f 9(ë)j

< C5jùÿ ù jj sup
ù k=2<ë<ð

jëjÿ2d jëjÿ1

< C6jùÿ ù jjùÿ2dÿ1
k

� C6ù
ÿ1
k f (ùk)jùÿ ù jj ù

ÿ2d
k

f (ùk)

< C7ù
ÿ1
k f (ùk)jùÿ ù jj

Therefore,�����ð
ù k=2

[ f (ù)ÿ f j]E j,k(ù)dù

����
< C . C7ù

ÿ1
k f (ùk)

�ð
ù k=2

jùÿ ù jje j,k(ù)dù

< C . C7ù
ÿ1
k f (ùk)

�ð
ù k=2

1

1� njùk ÿ ùj dù

< C . C7ù
ÿ1
k f (ùk)

�ù kÿ1

ù k=2

1

n(ùk ÿ ù)
dù�

�ù k�1

ù kÿ1

dù�
�ð
ù k�1

1

n(ùÿ ùk)
dù

" #

< C8ù
ÿ1
k f (ùk)nÿ1 log n

< C9ù
ÿ2d
k kÿ1 log n (21)

Finally, we suppose that ÿð < ù < ÿùk=2. Then

j f (ù)ÿ f jj � j f (ÿù)ÿ f jj < j ÿ ùÿ ù jj sup
ÿð<ë<ÿù k=2

j f 9(ÿë)j

� jù� ù jj sup
ù k=2<ë<ð

j f 9(ë)j < jù� ù jjC7ù
ÿ1
k f (ùk)

Thus,�����ÿù k=2

ÿð
[ f (ù)ÿ f j]E j,k(ù)dù

����
< C7ù

ÿ1
k f (ùk)

1

2ðn

�ÿù k=2

ÿð
jù j � ùj

���� sin n(ù j ÿ ù)=2

sin(ù j ÿ ù)=2

���� ���� sin n(ùÿ ùk)=2

sin(ùÿ ùk)=2

���� dù
< C10ù

ÿ1
k f (ùk)

1

n

�ÿù k=2

ÿð

���� sin n(ùÿ ùk)=2

sin(ùÿ ùk)=2

���� dù
< C11ù

ÿ1
k f (ùk)nÿ1 log n

< C12ù
ÿ2d
k kÿ1 log n (22)

where we have used the fact that
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sup
ù2[ÿð,ÿù k=2]

���� ù j � ù

sin(ù j ÿ ù)=2

����, C13

The Lemma now follows from (20), (21) and (22).

PROOF OF LEMMA 8. Since

E[JjJk] � E[Jj Jÿk] �
�ð
ÿð

f (ù)E j,ÿk(ù)dù

and since �ð
ÿð

E j,ÿk(ù)dù � 0 8 j, k such that 1 < j < k < ~n

we have

E[JjJk] �
�ð
ÿð

[ f (ù)ÿ f j]E j,ÿk(ù)dù (23)

Breaking this integral into the ranges jùj < ùk=2, ù 2 [ùk=2, ð] and ù 2 [ÿð, ÿùk=2],
and using arguments very similar to those given in the proof of Lemma 7, we can obtain
bounds for the contribution to (23) from these ranges which are of the same order as
given by the right-hand sides of (20), (21) and (22).

PROOF OF LEMMA 9. From (4) and Lemma 3, we conclude that max j jrjj � O(log n).
We have

jE(r9å)j �
����X~n

j�1

rjE(å j)

����
< Const . log n .

X~n

j�1

jE(å j)j

< Const . log n
Xlog2 n

j�1

jE(å j)j �
X~n=log n

j�log2 n

jE(å j)j �
X~n

j�~n=log n�1

jE(å j)j
24 35

From Lemma 5 of Hurvich et al. (1998)

lim
n

sup
1< j<log2 n

jE(å j)j,1

For j 2 [log2 n� 1, . . ., ~n=log n], Lemma 6 of Hurvich et al. (1998) implies that
E(å j) � O[(log j)= j] uniformly in j. For j 2 [~n=log n� 1, . . ., ~n], Lemmas 7 and 8 of this
paper together with the proof of Lemma 2 of Hurvich et al. (1998) imply that
E(å j) � O[(log n)= j]. Thus,

jE(r9å)j � O log3 n� log2 n
X~n

j�log2 n�1

jÿ1

0@ 1A � O(log3 n)

PROOF OF THEOREM 1. The theorem follows immediately from (9), together with
Lemmas 5, 6 and 9.
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PROOF OF THEOREM 2. From (9) and Lemma 5,

Var(d̂FEXP) � 1

4krk4
Var(r9å) � 4h2

n2
� o

h2

n2

� �� �
Var(r9å) (24)

We therefore focus on Var(r9å). For any ®xed ä 2 (0, 1), we have

r9å � T1 � T2 � T3 � T4

where

T1 �
Xlog2 n

j�1

rjå j

T2 �
Xnä

j�log2 n�1

rjå j

T3 �
X~n=log n

j�nä�1

rjå j

T4 �
X~n

j�~n=log n�1

rjå j

Thus,

Var(r9å) �
X~n

j�1

r2
jVar(å j)� è1 � è2 � è3 � è4 � 2

X3

j�1

X4

k� j�1

Cov(Tj, Tk) (25)

where

è1 � 2
Xlog2 n

k�1

Xlog2 n

j�k�1

rjrk Cov(å j, åk)

è2 � 2
Xnä

k�log2 n�1

Xnä
j�k�1

rjrk Cov(å j, åk)

è3 � 2
X~n=log n

k�nä�1

X~n=log n

j�k�1

rjrk Cov(å j, åk)

è4 � 2
X~n

k�~n=log n�1

X~n

j�k�1

rjrk Cov(å j, åk)

Consider the ®rst term on the right-hand side of (25). By Lemma 5 of Hurvich et al.
(1998),

lim
n

sup
1< j<log2 n

Var(å j) ,1
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Combining Lemma 7 of Hurvich et al. (1998), the proof of Lemma 2 of Hurvich et al.
(1998) and Lemmas 7 and 8 of this paper, we conclude that

Var(å j) � ð2

6
� O

log n

j

� �

uniformly for log2 n < j < ~n. Thus,

X~n

j�1

r2
j Var(å j) �

Xlog2 n

j�1

r2
j Var(å j)�

X~n

j�log2 n�1

r2
j Var(å j)

� O(log4 n)�
X~n

j�log2 n�1

r2
j

ð2

6
� O

log n

j

� �( )

� ð2

6

X~n

j�1

r2
j � O(log4 n)

� ð2

6

n

4h
� o

n

h

� �

by Lemma 5 and Condition 1.
Next, we present bounds for Cov(å j, åk). From the discussion above, jCov(å j, åk)j is

uniformly bounded for 1 < k < j < log2 n. From Lemma 2 of Hurvich et al. (1998) and
the proof of Lemma 3 of Hurvich et al. (1998), it follows that

Cov(å j, åk) � Of( f j f k)ÿ1[jE(Jj J k)j2 � jE(JjJk)j2]g 8 j, k

Thus from Theorem 2 of Robinson (1995a),

Cov(å j, åk) � O
log2 j

k2

� �

uniformly for log2 n < k , j < ~n=log n, and from Lemmas 7 and 8 of this paper,

Cov(å j, åk) � O[( jk)ÿ1 � log2 n kÿ2 j

k

� �2d
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uniformly for ~n=log n < k , j < ~n. We now present bounds for è1, è2, è3 and è4. From
the discussion above, we have

è1 � O(log6 n) � o
n

h

� �
by Condition 1

è2 � O log4 n
Xnä

k�log2 n�1

kÿ2 nä

0@ 1A
� O(nä log2 n)

� o
n

h

� �
by Condition 2

è3 � O log4 n
X~n=log n

k�nä�1

kÿ2 n

log n

0@ 1A
� O(n1ÿä log3 n)

� o
n

h

� �
by Condition 3

è4 � O log2 n
X~n

k�~n=log n�1

X~n

j�k�1

[( jk)ÿ1 � log2 n kÿ2( j=k)]

8<:
9=;

� O(log4 n)� O log4 n
X~n

k�~n=log n�1

kÿ3 n2

0@ 1A

� O
n2 log4 n

(n=log n)2

" #

� O(log6 n)

� o
n

h

� �
by Condition 1

Finally, we consider the last term on the right-hand side of (25). We have
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Var(T1) �
Xlog2 n

j�1

r2
j Var(å j)� è1 � O(log4 n)� è1 � o

n

h

� �

Var(T2) �
Xnä

j�log2 n�1

r2
j Var(å j)� è2 � o

n

h

� �

Var(T3) � O
X~n

j�1

r2
j Var(å j)

24 35� è3 � ð2

24

n

h
� o

n

h

� �
� O

n

h

� �

Var(T4) � O
X~n

j�1

r2
j Var(å j)

24 35� è4 � O
n

h

� �
Thus, by the Cauchy±Schwartz inequality,

Cov(Tj, Tk) � o
n

h

� �
for ( j, k) � (1, 2), (1, 3), (1, 4), (2, 3), (2, 4)

A direct calculation yields

Cov(T3, T4) � O(log4 n)� O log4 n
X~n=log n

k�nä�1

kÿ2ÿ2d
X~n

j�~n=log n�1

j2d

0@ 1A
� O(log4 n)� O log4 n . n2d�1(nä)ÿ2dÿ1

� �
� o

n

h

� �
by Conditions 1 and 4.

If Conditions 1±4 simultaneously hold, then we obtain from (25) that

Var(r9å) �
X~n

j�1

r2
j Var(å j)� o

n

h

� �
� ð2

24

n

h
� o

n

h

� �
If Conditions 1±3 simultaneously hold, then we can still conclude that Var(r9å) � O(n=h)
since

Cov(T3, T4) < [Var(T3)Var(T4)]1=2 � O
n

h

� �
and all other aspects of the above argument are unchanged. The theorem now follows
from the above expressions for Var(r9å) together with Equation (24).
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