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ON THE LOG PERIODOGRAM
REGRESSION ESTIMATOR
OF THE MEMORY PARAMETER
IN LONG MEMORY STOCHASTIC
VOLATILITY MODELS

RoHIT S. DEO AND CLIFFORD M. HURVICH
New York University

We consider semiparametric estimation of the memory parameter in a long mem-
ory stochastic volatility modelWe study the estimator based on a log peri-
odogram regression as originally proposed by Geweke and Porter-HL8&88
Journal of Time Series Analysiis 221-238. Expressions for the asymptotic bias
and variance of the estimator are obtairemt the asymptotic distribution is shown

to be the same as that obtained in recent literature for a Gaussian long memory
series The theoretical result does not require omission of a block of frequencies
near the originWe show that this ability to use the lowest frequencies is partic-
ularly desirable in the context of the long memory stochastic volatility model

1. INTRODUCTION

There is a rapidly expanding empirical literature that has found evidence of
slowly decaying auto-correlations in the volatility of financial time seridss
literature includes DingGrangeyand Engle(1993, de Lima and Crat§1993),
Bollerslev and Mikkelser§1996, Lobato and Saviri1996, and Breidt Cratq

and de Lima(1998 for stock returnsLobato (1999, Andersen and Bollerslev
(19973 1997h, and Henry and Payng 998 for foreign exchange rate©ne

of the models to account for this persistence is the long memory stochastic
volatility (LMSV) model which was proposed independently by Breidt et al
(1998 and Harvey(1993. Breidt et al (1998 found that the LMSV model
provided a better match than a nearly integrated GARCH m@8ellersley

1986 for the sample autocorrelations of the log squared retBnsidt et al
(1998 also argued that the LMSV model has certain advantages over the ob-
servation driven models such as the fractionally integrated GAREGEARCH)
(Baillie, Bollersley and Mikkelsen1996 and fractionally integrated exponen-
tial GARCH (FIEGARCH) (Bollerslev and Mikkelsen1996.
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The LMSV model is a particular case of the class of stochastic volatility
(SV) models(see Taylor1986 of the form

& = o exp(Y/2)e, (1)

where{Y;} is a stationary Gaussian process independent of the progg¢that
is a sequence of independent and identically distribiedl.) random vari-
ables with zero meafhe persistence in the volatility ¢t} is determined by
the persistence in the correlation structure4f. The LMSV model assumes
that{Y;} has long memory so that the autocorrelation$¥f at lagk decay at
the ratek??~%, whered € (0,0.5) is the memory parameteln contrast the
autocorrelations of a short memory process typically decay at an exponential
rate

Most of the currently used estimation techniques for SV models exploit the
fact that the mode{l) can be linearized by using the transformation

Z, =log(e?) =logo? +Y, + log &?

= (logo? + E[loge?]) + Y, + (loge? — E[log e?])
=/“L+Yt+ut7 (2)

where {u;} is i.i.d. with mean zero and variance?. If, for example e is

standard normathen loge? is distributed as log of &2 variablg E(loge?) =

W(3) + log 2 ando? = 7%/2, whereW¥(-) is the digamma functianit is evi-

dent that the autocovariances {&;} are identical to those ofY;} except at
lag zero becausfy,} is an independent process

Assuming that{Y;} obeys a fully specified parametric modél is known
that the frequency domain quasi-maximum likelihd@ML) estimates based
on{Z,} are consistent and asymptotically normal wk¥n exhibits short mem-
ory (Dunsmuiy 1979 and also wherY;} has long memoryHosoya 1997).
However if the model is misspecifiedhen the parameter estimates can be in-
consistent Becaused is a measure of persistence as described previpiisly
may be appealing to estimatesemiparametrically frodZ;} without relying
on a parametric specification fg,}.

Several author$Breidt et al, 1998 Andersen and Bollerslev19973 have
estimatedd semiparametrically using either squared returns or some transfor-
mation such as absolute or log squared retufine semiparametric estimator
they have used is the Geweke and Porter-Hud#®83 estimator based on a
log periodogram regressiorlowever the asymptotic behavior of this estima-
tor is known only under the assumption that the observations used in comput-
ing the periodogram are Gaussidee Robinsor{1995a and Hurvich Deq
and Brodsky(1998. As Andersen and Bollerslgi1 9973 point out in their analy-
sis using the absolute retugrthis assumption will be clearly violated in their
caseAlso, as can be seen frof2), the log squared returns in an LMSV model
are not Gaussigrand hence the asymptotic theory for the Geweke and Porter-
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Hudak estimator does not follow immediately from currently known results in
this caseln this paperwe derive the limiting distribution of the Geweke and
Porter-Hudak estimator afin the LMSV model based on the log periodogram
of {Z,}.

Another popular semiparametric estimatoida$ the Gaussian semiparamet-
ric (GSE) estimator proposed by Kiins¢thi987). The limiting distribution of
the GSE has been established under general conditions by Rokit8®5h
and Henry and Robinsof1997) without assuming Gaussianitoth these pa-
pers assume that the observed data is generated by a process that is linear in
martingale differencesHowever the {Z;} process in the LMSV model does
not possess such a representatiioreover it seems that none of the other
currently existing models of long memory conditional heteroskedasticity would
satisfy these assumptions either

In the next sectionwe define the LMSV model and state our result on the
Geweke and Porter-Hudak estimator bf Section 3 presents results from a
simulation studyand we conclude with a technical Appendix containing the
proofs of our results

2. ASYMPTOTIC THEORY

In addition to(1), we assume that the spectral density{\4f is

f = in( 2
v(A) = 23m<5>

whered € (0,0.5) is the memory parameter agd(-) is a spectral density con-
tinuous on—, ] bounded above and bounded away from zditferentiable
twice with the second derivative bounded in a neighborhood of. &yeym-
metry of g* around the originit follows thatg*'(0) = 0. In particular if g*
were taken to be the spectral density of a stationary ARA&) model then
{Y;} would obey the ARFIMAp, d, q) specification considered by Breidt et al
(1998. We also assume thatl} has a finite eighth momenA sufficient con-
dition for this is that the density dfe,} be bounded at the origin and obey a
power law decay in the tails as would occtor example in all t and stable
distributions

Letting o2 denote the variance dfi} andf,(A) andfy(A) denote the spec-
tral densities ofZ,} and{Y;}, respectivelywe have

—2d

g"(A), 3

—2d 0.2
g (A + o=
2

o? (A
f,(A) =1 (A) + > = ‘25m<5>

A\ | —2d
()
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where
A\ O'UZ
f*(A) =g"(A) + 23in<5> Py (5)

Note that becausk’ is bounded above and bounded away from z#re ratio
f,/fy converges to 1 as goes to zerpso that the spectral density 6Z,} be-
haves like that ofY;} at low frequenciesThis motivates the use of the Geweke
and Porter-Hudak estimator based{@q} described as follows

Define the periodogram of the observatiais Z4, ..., Z,_, at thejth Fourier
frequencyw; = 27j/n by

1 2

27Tn

2 Z eltwJ

The Geweke and Porter-Hudak estimatodafsing the firstm Fourier frequen-
cies may be written as

jZ

N 1
d= 2. ]Z ajlogl,
wherea; = X; — X, X; = log|2 sin(w;/2)|, X=m 3", X;, andS, = X", a’.
Note that we do not require a lower truncation on the valuginfcomputing
the estimatod. Such a truncation was originally required in Robing@895a
but not in Hurvich Deqg and Brodsky(1998. Freedom from lower truncation
is of particular importance in the LMSV context because the presence of the noise
spectrumo2/(27r) will place a potentially stringent upper bound om partic-
ularly whend is small
The following theorem provides expressions for the asymptotic bias and vari-
ance ofd.

THEOREM 1 Let n— oo, m— oo, and n2m??log?m — 0. Then

E(d-d) = —(2m)* i ‘ (m—m>+o<|°gsm>+ (m—m>
T 20g7(0) (2d+ 1)2 \ n m O\

and

R ? m*d
Var(d) = — +o(m™%) + O( log m)
24m

Theorem 1 implies thad is consistent fod if m = Kn? for any 0< § < 1.
The first term in the preceding expression for bias is due to the presence of the
noise{u;} in equation(2). The second term is due to the bias from the long mem-
ory in{Y;}. The first term is dominant if and only & > (1 + 2d)*2d. Hence
d will tend to have an increasingly negative biaswalsecomes sufficiently large
The quantityo?/(27g*(0)) is a measure of the relative importance of the noise
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term{u,} compared to the short memory component\pf. Hence for a given

{Y,} processaso? is increasedthe bias ind increasesThe first two terms in

the expression for the variance are identical to those given by Hymety and
Brodsky (1998, whereas the remaining term is due to the presence of the noise
{u.}. The first term will dominate if and only i6 < (1 + 4d)~*4d.

The condition thag™ be twice differentiable may be relaxed as in Robinson
(199543. This would result in a somewhat more complicated expression for the
bias in Theorem 1The next theorem shows that under stronger conditions on
m, we obtain asymptotic normality fat.

THEOREM 2 Let n — o, m — oo, N~ 4Im**1log’?’m — 0, and log’n =
o(m). Then

1/2(4 D 77_2>
m*/#(d d)—>N<O, 4 )"

Theorem 2 shows that the limiting distribution @femains unchanged com-
pared to the Gaussian case considered by Robi(ls@®5a and Hurvich Deq,
and Brodsky(1998. However the conditions orm here are much stronger
The limiting distribution will hold if and only if§ < (1 + 4d)*4d, which can
be arbitrarily small ifd is sufficiently close to zeroBecause this limitation on
m depends on the unknown value @fthe construction of confidence intervals
for d based upon Theorem 2 may be problematic

Remark 1 Robinson(19953 obtained the limiting distribution ofl for a
Gaussian long memory proceisg} under the assumption that its spectral den-
sity was of the form

f,(A) = CA24(1+ O(A%)),

whereC > 0 and 0< a = 2. He showed that the feasible range of values for
m required to obtain asymptotic normality fdrdepended om:. More specif-
ically, Robinson showed that the condition om was of the formm?**/
n%* — 0. From equation$4) and(5), it can be seen that in our conte¥t\) =
A29g*(0)[1 + O(A?9)]. This is analogous to Robinson’s formulation with
a = 2d. Hence it is not surprising that the conditions animposed in Theo-
rem 2 depend ol

Remark 2 We believe that our methodology of proof could be combined
with the results of Robinso(i19954 to obtain in a fairly straightforward man-
ner, the limiting distribution of the Geweke and Porter-Hudak estimator in a
multivariate LMSV modelWe have presented the results here only for the uni-
variate case for the sake of notational simplicity

3. SIMULATION RESULTS

In this sectionwe report the results from a Monte Carlo study on the perfor-
mance of the Geweke and Porter-Hudak estimator for LMSV motlédsgen-
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erated 500 replications of time series of lengtk 6,144 from the mode(1),
whereo = 1 and{Y;} is an ARFIMA(0, d,0) given by

(1_ B)dYt =M

where{n,} is Gaussian white noise with varianm§ and independent dfe },
which is Gaussian white noise with unit variand@ée sample size af = 6,144
was used in the Monte Carlo study of Breidt et(d998. We considered three
values ofd (0.1, 0.3, and 047) and two values ofrn2 (0.37 and 08). The pa-
rameter configuration adl = 0.47 andcr,f = 0.37 was also considered by Breidt
etal (1998. The ratios?/(27g*(0)) takes the values 137 and 617 wheno2

is 0.37 and 08, respectivelyThe estimatod was computed without any lower
truncation usingn = n%3 n%4, andn®®, To study the effects of lower trunca-
tion, we also computed for m = n®° excluding the first two frequencieas
was done in Breidt et a[1998.

Table 1 presents the simulation means and standard deviations of the esti-
mates As predicted by Theorem, the bias is negative in all cases and be-
comes more negative asincreasesrlhis phenomenon was also noted by Breidt
et al (1999. Note that wherm = n®5, the truncated estimator has a greater
bias compared to the nontruncated versibimis seems to suggest that any low
frequency bias due to long memory is more than compensated for by the result-
ing increase in bias due to the noise term at high frequencies

We now consider the variances of the estimatbrsTable 2 we present the
theoretical standard errors of the estimators as obtained from Theorem 2 and
given by SE, = 7[24(m — 1)] Y2 wherel = 0 or 2 for the nontruncated and
truncated versigrrespectivelyAlso presented in Table 2 are the vall&s =

TABLE 1. Average estimates af over 500 replicatior’s

m = n%3 m= n% m = n%> m = n%5 Trunc
d=0.1, 0'712 =0.37 0018 Q016 Q016 Q014
(0.245 (0.137) (0.083 (0.099
d=0.1, 0',72 =0.8 0.032 Q031 Q028 Q025
(0.249 (0.139) (0.084) (0.096)
d=0.3, 0',]2 =0.37 0200 Q175 Q145 Q132
(0.247) (0.135 (0.083 (0.092
d=0.3, 0',72 =0.8 0.238 Q222 Q197 Q188
(0.244) (0.138 (0.084) (0.099)
d=0.47, 0'712 =0.37 0433 Q408 Q362 Q344
(0.247) (0.142 (0.085 (0.099
d=0.47, (7172 =0.8 0451 Q438 Q412 Q402
(0.251) (0.143 (0.084) (0.092

@Associated simulation standard deviations are given in parentheses



692 ROHIT S. DEO AND CLIFFORD M. HURVICH

TABLE 2. Theoretical standard errors followed by approximate standard errors
based on standard regression theory

m = n%3 m= n%4 m= n%> m = n°5 Trunc
Sk 0.178 Q113 Q073 Q074
SE 0.242 Q135 Q080 Q095

7[243 % (X; — X)?]"V2 These are the standard errors for the estimated slope
in a regression with 8X; as the regressors and assuming that the errors are
independent with mean zero and varianc&6. The approximatiorSE, was
originally suggested by Geweke and Porter-Hu@i$83. From Table 1 it is
seen that the variances of the estimates decreaseraseasesComparison of

the simulation standard deviations from Table 1 and the theoretical standard
errors from Table 2 indicates th&E, provides a much better approximation
than SE to the simulation standard deviatiorfsurthermore SE understates

the standard deviation of the estimates in all cased it also understates the
inflation of variance that would be incurred by truncati@he inflation in vari-

ance due to truncation can be quite substantial and is apparently due to the
high leverage of the initial values of. In view of the increases in both the
bias and the variancéruncation is particularly inadvisable for estimationf

in the LMSV model
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TECHNICAL APPENDIX

In all the proofs we will use the following notationLet

L, = AL + B2,
where
1 n—1 n—1 n—1
Az = Nz tgothOSwjt= NezT lZEOYtCOSwjt+ Nz tgoutco&ojt
= Ay + Ay
and
1 n-1 n—1 n-1
B, = > Zsinwjt= > Y.sinejt + > usinwjt=By + By

\N2mn t=o N 27N t=o0 \2mn t=o0
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Proof of Theorem 1. We will prove the expression for bias firdn this proof we
will use the facts thag,, = m + o(m), a; = O(logm), anda; = log(j/m) + 1 + o(1)
(see HurvichDeq and Brodsky1998 pp. 22, 38). We have

d=—--—2 a/logl;, alg a, logf,
Z&X ,Z 2st ,2 fJY 2st JE "

1 1 m
= a | lo —+C a; logfy,
2&x,2 <g f > 25, 2 109t

whereC = —W¥(1) — log 2 and we have used the fact taf' ; a, = 0. Thus

R 1 m 2l;
d=d— Ealogg(w)— > a <Iogf—'z+C>

230(1 1 230(1 1 N4

_drof ™)oL log =% + ¢ Al
+ P 2Sg()(}}‘,a(og P, + (A1)

by Lemma 1 of Hurvich Deq and Brodsky(1998. Now

1
a Iog—+C
{ZSXX,E < fiv >}
1 logim 21,
= aj{log— +C
{2sxx > '< 9t )}
1 m 21,
+E{ > g Iog—JZ+C>}
2S<x j=log®m+1 fJ'Y

log®m 1 m 2l
oM L g > aflog==+cC (A.2)
m 254 j=log?m+1 fiY

by Lemma 1By Lemmas 2 and 3t follows that

1 m 21| 1 m 0_2
E S aflog=E+c)l= > afyt—
230( j=log?m+1 fJY 230( j=log?m+1 2m

mi log®m
+0 Flogm +0 o) (A.3)
But

1 m o2
2 > aftos
S<><j:Ic>me+l ™

1 m 2

= > {log(j/m) +1+ oD}t ==

28« j=log?m+1

1 m 0_2 2d
= {log(j/m) + 1}, — + ( )
230( j*logzszrl Y n2d

. ﬁ {log( j/m) 1}'25i”w1/2|2" ol <m2d>
= og(j/m+1) —— 4 -
28 j=log?m+1 ot g*(wj) 2w n2d
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By a Taylor expansion and using the fact tigat(0) = 0, we have

1 _ 1 Lo .2)
g(w) g @

and also

12 sine; /224 = w2+ O(w?**Y),

Hence
1 m |2 sinw; /2|% o2
flog(j/m) +1} ————— ——
Z%ijlogzszrl g (wi) 2m

l m (1)2d 0_2 m2d+l
= log(j 1 2 40 —=1
Z&Xj:.ogzzm+l{og(1/m) } (0 2 <n2d+1 og m)

m2d 0_ 1 m2d
= 277_9“(0) 2] {logx + 1} (27x)2%dx + O( ) + 0( n2d>
m2d+l
+ O<W log m)

o O.UZ d m2d 1 mZd m2d+l
= (2m) ng*(o)m W +0 a +0 W +0 Wlogm.

(A.4)

The expression for the bias follows from equatiqAsl)—(A—4). We now derive the
variance ofd. We have

Var(d) = Var a logly; | = Var a log —
< 25“,2 gl; > < zs“,Z 9 )
= Var(T,) + Var(T,) + 2Cov(T,, T,),
where T, = —(2S,) ' 2194 log(l /fiy) and To = —(2S,) S ogims18j X

log(ljz /fiv). We can write
i liv a liz liv
T.=—-(@2S)7" > alog— -8 X alog -~ —log -
j=log®m-+1 fiY j=log®m-+1 iy iy

=T, + Too.

By Lemma 5 of Hurvich et al(1998,

2

Var(T,,) = 7; +o(m1). (A.5)
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Letting ujz = Elog( fy1;z) andujy = Elog( fy'l;y) and applying Lemma,4dve also
have

j=log®m+1 iy

m . ) 2
Var(T,,) = E[(2$<X)l > q (Iogfl_J—Z —log LJ—Y>]
iy

m

2
- [(2$<x)1 > a(pz — /J‘jY):|

j=log®m+1
m4d
= O(W |ngm>. (A.6)
The expressions ifA.5) and(A.6) in conjunction with the Cauchy—Schwarz inequality
give

2

m4d m2d
Var(T,) = am +o(m™) + O( log m) + O(UT”2d log m>
77.2 m4d
= am +o(m?t) + O( log m) (A7)

From Lemma 1 we also get

log*®m
Var(T,) = O 7 ) (A.8)
whereas the Cauchy—Schwarz inequality gives
m4d 1/2
|Cov(T,, T,)| = ( ~1log® m[o(m )+ O( log m)] ), (A.9)

and the expression for the variancedfollows from (A.7)—(A.9).

Proof of Theorem 2. Let y = —¥(1) = 0.577216.. denote Euler’s constantVe
have

. m1/2 m m1/2 m |_Z
mY2(d —d) = ®s ]2 a;logg’ — 25, laj (Iog i + y)
X j= X j= j

1
=o0(1) - 220( 72 2 E 3 (Iog -+ y) (A.10)

fiv

where the last step follows from Lemma 1 of Hurvjé&eao, and BrodskyNow consider

1 m I]Z 1 lOQBm I]Z
_ngzlaj |ng-+y :_W jg:l a; |Ogr+y

iy Y

1 m Iz
-7 > g (Iogf’— +7> =T, + T, (A.11)

j=1+log®m Y
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By Lemma 1 Chebyshev’s inequalifyand the fact thal; = O(logm) (see Hurvich
Deq and Brodsky1998 p. 22), we have

T, = 0,(D). (A.12)

Using (A.10)—(A.12), it remains to show that

2
D o
T2 N<O,?>. (A.13)

Let

1 m |jy
T3:W E g |ng_—+'y .

j=1+log®m iy
From the proof of Theorem 2 of Hurvicibeq and Brodskyit is known that
2
D o
T, — N<O’F>' (A.14)

Hence to show(A.13) it is sufficient to prove that

T, — T3 = 0,(1). (A.15)
But
7T - — § {I 2 l”} (A.16)
—Ts3=—, aqlog-— —log —— ;. .
: : m'/2 j=1+log®m J fiY fiY

Using Lemma 4we have

g L ﬁ 09 Z _1og 2 |}
—0 a{log — —log —
m*/2 j=1+log®m : fiv fiv

m+1 oa2m
- o )

n4d
Thus
1 m l]Z I]Y
s 2 gilog = —log -~ = 0,(1), (A.17)
m j=1+log®m fJY fiY

and(A.15) follows from (A.16) and(A.17).

LEMMA 1. lim,_,_, Sup—j—m E({log(l;; /o, 2%)}?) < co.
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Proof of Lemma 1. There exist constan{s; andC, such that for allx # O,
|log|x|| = Cy|x| ™8 + C;|x|*2

Thus

IjZ 2 IIZ
E({Iog ijd} > = CfE(‘ =

.
iz
+ 2clc2{E<‘ =

]

—1/4 ) IjZ
e
—1/4\ )1/2 ljZ
E wjfzd

From Theorem 2 parta) of Robinson(19953, it follows that

1/2
)} . (A.18)

I
lim sup E< iZZd ><oo. (A.19)

N—0 1=j=m Wj

From (A.18) it follows that the lemma is proved if

|jz —1/4
lim sup E< > < oo, (A.20)

N—w 1=j=m

which we now proceed to showet 3, be the 2X 2 covariance matrix of the condi-
tional distribution ofg; = (Ajz/w; %, Bjz/w; )" givenU = (uy,...,uy). Note that be-
causeY = (Yy,...,Yy) andU are independenk;, is deterministic and does not depend
on U, and hence any function &;j, will also be free fromU. There exists an ortho-
normal matrixB, = (p’,p%)’ such thatP, 3, P, = diag(Ajn1, Ajn2), where 0< Ajyy <
Ajn2 < oo are the eigenvalues &j,. Furthermore

liz/w; 2" = gjg; = g P Png; = hjhj,

where the conditional distribution & = B,g; = (hj;, h;2)’ givenU is bivariate normal
with meanP,, (A, /w; %, By, /o %)’ and covariance matrix diddjn1, Ajn2). Also,

A2 B2 1 I
Y Y jY
Az = maX{E ( wj_2d>’ E(“’J_Zd)} "2 E<w1_2d>

(see Rap1973 equation 1f2.1) and hence by Lemma 4 of HurvicBeqg, and Brodsky

lim inf A, > 0. (A.21)

n—oo 1=j=m

Thus

liz —1/4 Iz —1/4
E(w]-Zd> =EjE w2

= E{E(h%)*| U} = E{E|ho| 2| U}. (A.22)

U} =E{E(h;h;) 4| U}
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The conditional distribution ofy, given U is normal with meanu, = pa(Ajy /wj’d,
= /wfd)’ and variance\j,,. Furthermorefrom (A.21) there exists som€; > 0 such
that inf,infi1<j<=mAjn2 > C;1. Hence

E{| hj2|7l/2 |U} = f |x|~%2( \ 27 Ajn2) Tt exp(—0.54;5{x — wnt?) dx
= f IX|7Y2(\ 27 Ajn2) "t exp(—0.5A,5{x — wn}?) dx
[x|<1

+ f [X|7Y2(\[27 A jy2) Tt eXp(—0.5A;,5{X — p,}?) dX
|x|=1
= Tln + T2n'

Using the fact that exp-a) < 1 fora > 0, we get

T = J |x|7Y2(4[27Cy)tdx < Ky < o0 for all n.
[x|<1

Using|x|~Y2 < 1 for |x] > 1, we get

Ton = f (V27 Ajn) ™t exp(—0.55{x — 1n}?) dx
[x|=1

sf (V27 Ajn) L exp(—0.505{x — ,}?) dx = 1.

Hence
E{lh,| Y2|U} <K < oo, (A.23)
whereK is a constant that does not dependlgrand hencéA.20) follows from (A.22)
and(A.23).
LEMMA 2. For log?m=j = m,
21, , , : .
E(log e (1+0O(jtlogj))E(E{log x5(1)|U}) + O(j~*logj),

]
where
2l
oy
is the noncentrality parameter of thg variable that is independent &f.

Proof of Lemma 2. The conditional distribution of X = (fyY2V2A;,
fjgl/Z\IEsz)/ givenU = (Uy,Us,,...,U,) is bivariate normal with mean vector

py = ( fj\?l/z\/EAjU , fj\?l/z\/EBju )
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and a conditional variance covariance maRixhat is free fromU. From Theorem 2 of

Robinson(19953, using the fact that i, =1 + A then3 * =1 — (I + A) A, it
follows that
S 1=1+R, (A.24)

where every element of the matriX is O(b;) whereb; = j “*logj. Hence letting x =
(X1, X2)', 2= X — py, andg(x) = log(x{ + x3), we get

E(Iog% u) - (277)1|2|1/2ffg(x)exp<2,2212> dx
= @my iz | g(x)exp(—%) dx
b m) i3 v2 f 9(x) {exp<—2,22_12> - exp<—%z>} dx
= (277)*1f g(x)exp(—%Z) dx

+ oz -1 [ acoen( -2 ) o

7'z 'Rz
+ (277)’1\2|’1/2f g(x)exp(—7>[exp<—7> - 1] dx

= L,(U) + Ly(U) + L3(U). (A.25)

It is clear that
L,(U) = E{log x3(A) |U}, (A.26)

whereA = 2f 'l is the noncentrality parameter ofyg variable that is independent
of U. It also follows from equatiortA.24) that

Lo(U) = O(j *logj)E{log x3(A) | U}. (A.27)
We now boundL3(U). By the mean value theorgnwe havelexpx — 1 — x| =

0.5x2?exp x| for any x. Letting K; denote the largest absolute entryRfand lettingV
denote a bivariate standard normal vector that is independed; ok get

V'RV
La(U) = —[3]"V2Ey {'09[(V + o) (V4 py)l T}

+ O{Kfffg(x)zH“exp(—%) dx}

= L3,(U) + Lsy(U), (A.28)
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where|3|~%2 = O(1). By the Cauchy-Schwarz inequality

V'RV
Ev {'09[(V +uy) (V+ gyl TH

V'RV \?
= \Eylog?[(V + py)'(V + ﬂu)],/Ev<T) . (A.29)

But there exist finite constants; andC, such that for all,

[log?|x|| = Cy|x|" ¥4 + C,|x|V2
Hence
Ev10g®[(V + my)' (V + my)] = CLEV[(V + my) (V + my)] ¥4
+ CE LV + ) (V + py)lY2 (A.30)
But
CLEV[(V + py) (V + p)] Y = CLE/[(V1 + pud)? ] Y4 =G, (A.31)

whereV = (V;,V,), wy = (mu1, mu2)’, and C3 does not depend opy. Also, by
Minkowski’s inequality

EvI(V+my) (V+ ey =Ey[IVi+ puill+ Ev[IVo + mysl]

=C,+ |F'u1| + |F'u2|y (A.32)
andC, does not depend od. From equationgA.30)—(A.32) we get
Ev100%[(V + my) (V + )l = Cs + Colpusl + Colpyal, (A.33)

whereCs does not depend od. BecauseE, (0.5V'RV)? = O(bf) and does not depend
on U, equationgA.29) and(A.33) yield

ILs,(U)] = O(bj)\/cs + Colmusl + Colpyal. (A.34)

A similar argument shows that

|Lsp(U)| = O(bjz)\lcs + Colmysl + Colpyal. (A.35)

From equationgA.28), (A.34), and (A.35) and the Cauchy—Schwarz inequality it fol-
lows that

ElLs(U)[ =M, = O(by) (A.36)

andMs is free fromU. The lemma now follows frontA.25)—(A.27) and(A.36).



702 ROHIT S. DEO AND CLIFFORD M. HURVICH

LEMMA 3. Let X be a noncentral chi-square random variable with two degrees of
freedom and with noncentrality parametér= 2fj;1IjU. If X and U are independent,
then forlog?m=j=m,

(@) E(logX) = ¥(1) + log 2 + 02/(2mfy) + O(w*)
(b) E(logX)? = E(log x3)? + O(w??)

where y3 is a central chi-square random variable with two degrees of freedom.

Proof of Lemma 3. We will demonstrate only parta) because the proof gb) is
similar. From JohnsoyKotz, and Balakrishna1995 p. 448 we have for integer > 0

e{(es(3)) uf - ool 5[ 7 el 52))

whereE(log x{) = ¥(j) + log 2 Thus

A
—5>[Elog X2+ 0.5AElog x2]

A\ & [ (0.51)]
+ exp(——) > [ T ] Elog x3. 2
J !

E{logX|U} = exp(

2)i=

A
= exp<—5> [Elog x2 + 0.5AElog x2] + R,

A
= Elog x2 + 0.5AElog y2 + [exp<—§> — 1] [Elog x3 + 0.5AElog x2]

+R;

A
= Elog x2 + 0.5AElog y2 + [—5 + O(/\2)] [Elog x5 + 0.5AE log x2]

+R;
= Elog x5+ 0.5A(Elog 7 — Elog x3) + O(A%) + R,
=¥(1) + log2+ 0.51 + O(A?) + Ry, (A.37)

where we have used the fact thaf2) — ¥(1) = 1. Now, using the fact that¥(j)| =
O(logj) (see Zwillinger 1996 p. 496), we have for some finité,

IR,| = Kexp<—§> f} [ (O'?,A)J } logj

2 j=2

>} ji—2
= K(0.51)? exp(—é) > [%] logj.

2

i=2

But the functionx" exp(—x) has a maximum of " exp(—r) for r > 0. Furthermoreby
Stirling’s approximationsee Courant and Johh965 p. 504),

rrexp(—r) < rl(27) Y2r V2
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Thus noting thatA > 0, we have

IR, = K(0. 5/\>2exp<—é> m%z +K(0.51)? Z (j—21@2m)Y2(j -2~ ”2] logj

j=3
=0(A2). (A.38)

Part(a) of the lemma now follows from{A.37), (A.38), and the facts thaE(0.5)) =
o2/(2fy) and thatE(13) is bounded

LEMMA 4. Forloggm=j=k=m,
(a)

I l; | 4 10gk
E[(Iogf'—Z —log f'—Y><|ogf— —log kaﬂ O(wp?) + O< g )
iy iy kY KY j

(b)

ey
Elog —= = Elog Y+ O(wdd).
ka kY
Proof of Lemma 4. We will prove only (a) because(b) follows along similar
lines To demonstratga), we expand the producE[(log(ljz/fy) — log(ljy /fijv))
(log(lkz/fky) — log(ly/fiy))] into its four components and obtain expressions for
each of themThroughout the rest of this praofve will assume that logn = j <
k = m. The proof for lodm = j = k = m follows along similar lines but is simpler
Let
Az Bz Ay, B\
jZ iz kZ kZ _ ’
X = <f,$_/2’ fj\l,_/z’ fa/2 @) = (Xg, X2, X3, X4)

and letU = (ug,U,,...,U,)". The conditional distribution oK given U is multivariate
normal with mean

Av Bu Ay Bw)
Hy = fl/2’ f1/2’ fL/2’ £ 12

and variance covariance mati@x From Robinsor(1995 Theorem 2parts(a)—(d)), we
have

s = % I, +o(1) (A.39)

uniformly in log®m = j < k= m. Define? = 3% Now

UH (A.40)

A% + B2 A2, + B2
Elog — Iog — = Elog 22 log 2
fJY ka fiv fiov
A% +BZ  AZ +BZ2
_ E[E{Iog iz iZ log kZ kz

fiv fiov
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We now work with the conditional expectation(A.40). Forx = (X1, Xo, X3, X4)’, define

g(x) = (2m) 72| ¥[V?log(xf + x3)log (x5 + X§).

’)

- fg(x)exp(— - ”U)/;F(X ~ “U)> dx

Then

AZ+BZ AL +BL
E4log log

fi fir

!

X' X U
g(x)exp(—7> exp(x’\Ify@exp(—%) dx

X" ¥X
g(x)exp(— T) dx

’

g(x)exp(—x—:,x> [exp(x’?p@exp(—#) - 1] dx

X" ¥X
= Elog Iog AL g(x)exp(——)

fJY ka

u?
X [exp(x’\lfp@exp(—%) - 1} dx.

Let

’

X ¥x u'?
R(py) = g(x)exp(—T)[exp(x’*lm@exp(—%) - 1] dx.
Thus
liz e iy ey
Elogf—logf— = Elogf—l gf +ER(p,U) (A.41)
14 kY iy kY

and we now proceed to work witBR( ). Let
AJU BJU ' Aku Bku
Ky = Y2 12 ) Ko = £y 12 £y 12

and partition® as

v ‘I’JJ ¥k .
‘I'jk Wi
Letv = xX'¥uy — uy¥uy /2. By a Taylor series expansipwe have exfv) — 1 =

3 Wil + (v¥4)exp(6v), where 0< 6 < 1. This implies that

3

explv) — 1= v¥il +O<v4| (v <0) +u4exp<x"l'uu - W”Z”“)l(u >0)>

i=1
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and hence

4
ER(py) = Z Ry, (A.42)

i=1

where

X'¥X\ . i
Ruj —E{fg(X)eXp<— > )v'/l!dx} i=123

and

X" ¥X
Ry, = O<E{fg(x)|exp<— > )v“dx})
+ O<E{f|g(x)exp<— Xr;”) v exp<x’~lrp,u — %) dx})

= Ry41 + Ry

Let g1(x) = g(x)exp(—(x'¥x/2)). Becauseag,(x) is an even function ang’¥u, is an
odd function ofx, it follows that

f g () (X' Ppy)dx =0 (A.43)
for all wy. Hence we have

v l; |
Ri1 = —E<M>Elog'—Y IogLY

2 fJY ka
TR T oA l; I
_ [—E( U Ejj 1U> _ E(Mku kkl“kU) _ E(”J(U“I’jkl-"ku)]Elogl_Y Iogﬁ
Hiu Yy WY I [
= [—E(—'U ) '“) —E(—”k” kk““’)]aogJ—Ylog g (A.44)

Applying (A.43) again we get

X' X
Ry, = 0.5E{fg(x)exp<—T)(X"I’ﬂu)zdx}

+ 81E{f9(x)eXp<—L?)(u’u‘lmu)de}
|

X" ¥X i I
= 0.5E{fg(x)exp<— >(x’1lrp,u)2dx} + 8’1E(;1,’U*Irp,u)2EIogJ—Y log A

2 fJY ka

(A.45)
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From equatior{A.39), it follows that there exist finite positive constars andK, such
that

0 <Ky < Amin < Amax < Ky < o0 (A.46)

uniformly in log®m = j < k = m, where A, and A, are the smallest and largest
characteristic rootgespectivelyof ¥. Hence we have

ROV = Aoty by = Ko pipy, (A.47)
giving

E(ny¥ry)? = O(w?).

le 2\1/2 |kY 2\1/2
= <E{Iog—} > (E{Iog—} > =0()
fiv fiev
from Lemma 5 of HurvichDeq and Brodsky Thus the second term on the right in

(A.45) is O(wgd). We now tackle the first term i6A.45). Noting thatE(mjy myy) =0
and lettingx; = (X, X2)" andx, = (X3, X4)’, we get

Also

I; I
‘ Elog X log X
fiv " v

’

X' X
0.5Efg(x)exp<—T)(x’\lmu)zdx

’

XX\ )
= 0.5E | g(x)exp 5 (X795 pyy ) “dx

’

XWX\ )
+ 0.5E | g(x)exp T (X5 Wi ) “dX

X" X , 5
+ 0.5E [ g(x)exp 5 (X1 ¥ miu) “0X

’

Xox\ 5
+ 0.5E | g(x)exp 5 (X5 pjy ) 20X

X' ¥X , .
+ E | g(x)exp T (X195 mju) (X5 T pyy ) dX

’

XX\ )
+ E | g(x)exp T (X3 Wy ) (X5 Wi iy ) AX

6
= E Rizi-
i—1
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Using the Cauchy—Schwarz inequality and the fact fHét Ay = trac A’A)y’y, we
get

’

’ 1/2 ’ X"¥X
Ri2s = K{trace ' )} *E(mjy mjy) | 19(x)|exp| — >
logk
:O<wj2d ]g )’

where we have used the fact thigt = O(logk/j). See Theorem 2 of Robins@h9953.
A similar argument shows that

logk
Rize = O(‘”fd %)

Thus we conclude that

>(X’1X1)1/2(X’2X2)1/2dx

4 logk logk
Riz= > Ryp; + o<w,-2d %) + o<w§d J—g> + O(wid). (A.48)

i=1

To boundR;3, we note that becausg(x) is an even function
[ o000 wm2ax =0 (A49)

Applying (A.43) and(A.49), we see that

X" ¥X
Riz = —E{f@ﬂx)exp(-T)(X"I’/Lu)z(ub‘lmu) dX}

. , 3 X" WX
— 6T E(puTry)® | g(x)exp o dx.

Applying the Cauchy—Schwarz inequality a(dl.47), we get

X' ¥X
E{ g(X)EXp<— T)(X"Fﬂu)z(ﬂb‘l'nu) dX}

’

L'
= KSE(nuuu>2f|g(x>|exp(—x—zx)<x'x> o

= O(w?),
and hence
Ri3 = O(w@?) + O(w). (A.50)

We now finally boundRy4. Arguments similar to the ones presented previously show
that

Rig1 = O(wy?), (A.51)
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and hence we concentrate By, ». From the inequalitfa + b)* = K(|a|* + |b[*), we
get

X" ¥X u'?
E{Jg(x)|exp<— > >u4exp<x"lmu - %) dx}
X" ¥X u'?
= KE{f|g(x)|exp<—T)x/\lmu“exp(x’*lmu - %) dx}

X" ¥X pyYu
+ KE”IQ(X)exp<—7>(ubwu)“exp<x"vuu - %) dX}

=Rys21 T Rigzo- (A.52)

Letting ay= ¥¥2u, and using the definition of(-) we have

X" ¥X aya
Rigz1 = KE{rog%x’x)exp(—T>|x’\lfl/2aU |4 exp(x’\lfl/zaU - %) dx}

X'x a,a
= KE{flOQZ(X’EX)eXp<—7>x’au4exp<x’au - U2 U> dx}

KE{f|X’aU |4 |092(szx)exp<_w> dx}

I\

2

= KE [(abau)zf(x’x)zIog%x’Ex)exp(—Lz()(_aU)) dx}. (A.53)

But using(A.46) and the fact that logj x| = Cy1|x|™? + C,|x|% we have

(x—ay) (x— au)) dx

f(x’x)2 Iogz(x’Ex)exp<— >

(x—ay)'(x— au)) dx

= f(x’x)z{cl(x’z‘,x)‘2 + Cz(x’Ex)z}exp(— >

(x—ay) (x—ay)
— 5, >dx

= f(x’x)z{cl(x’x)’2 + Cz(x’x)z}exp<
= 0(1) + O((ayay)?) + O((ayay)*). (A.54)
Equations(A.53) and (A.54) imply that

Rig21 = O(wi?). (A.55)



LONG MEMORY STOCHASTIC VOLATILITY 709

To boundRy4 2, we note that
X" ¥X ajay
Ri42.2 = KE1{ [ log?(x'x)exp Y |ayay|* exp| x' Y2, — — dx
X—ay)(x—a
= KE[(a{J a@“flog%x’?,x)exp(—Lz(U)) dx}. (A.56)

But using(A.46) and the fact that logj x| = Cy|x|~%* + C,|x|, we have

flogz(x'zx)exp(—(x_Lz(x_aU)> dx

- f{cl(x/x)ﬂ” + CzIX’XI}eXF’(_W) dx,

5 (A57)

and we now bound this integrdletting A = {x’x = 1}, we have

[oexy-sa exr{%f—%)) dx

_ f (x'x)" V4 EXp<— (x—ay)'(x— au)) dx
A 2

_ (x—ay) (x—ay)
’ 1/4 - e &7
+LC (X’'x) exp< 2 ) dx

< f (x'%)~Yadx + f exp<—L2(x_aU)) dx = O(1).

Also

fx’x|exp<—L2(x_aU)> dx = O(1) + O(ayay).

Thus equationgA.56) and(A.57) imply that

Rig22 = O(w?). (A.58)
From (A.51), (A.55), and(A.58), we get

Ris = O(wid). (A.59)

From(A.41), (A.42), (A.44), (A.48), (A.50), and(A.59) we have

l; I I I PR T g
Elog‘_zlogLZ=E|ogJ_Y|Ogﬁ[l_E(M _ g #ru kB
fiv fiev fiv fiev 2 2

4 logk
+ > Rypi + O(‘de Jg ) + O(wi?). (A.60)
i-1
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Similar arguments establish that

|. | |. | A T
Elog’—zlogﬁ = EIog'—YIogﬁ[l— E(Mﬂ
fiv 7 v fiv " v 2

logk
+ Riz1 + Ripg+ o<w|%d Jg > + O(wfd)
and
l; | I; | w
Elog'—Y IogLZ = Elog'—Y Iogﬁ[l E(Mﬂ
fiv 7 iy fiv 7 ey 2

logk
+ Rizo+ Rizs+ o<wk2d ,g

Using (A.60)—(A.62) we get the desired result

) + O(wf9).

(A.61)

(A.62)



