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The single index model is a generalization of the linear regression model with E4y—x5 D g4x0‚5, where
g is an unknown function. The model provides a � exible alternative to the linear regression model
while providing more structure than a fully nonparametric approach. Although the � tting of single index
models does not require distributional assumptions on the error term, the properties of the estimates
depend on such assumptions, as does practical application of the model. In this article score tests
are derived for three potential misspeci� cations of the single index model: heteroscedasticity in the
errors, autocorrelation in the errors, and the omission of an important variable in the linear index.
These tests have a similar structure to corresponding tests for nonlinear regression models. Monte Carlo
simulations demonstrate that the � rst two tests hold their nominal size well and have good power
properties in identifying model violations, often outperforming other tests. Testing for the need for
additional covariates can be effective, but is more dif� cult. The score tests are applied to three real
datasets, demonstrating that the tests can identify important model violations that affect inference, and
that approaches that do not take model misspeci� cations into account can lead to very different results.
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1. INTRODUCTION

In recent years the classic linear regression model,

yi
D x0

i‚C ˜i (1.1)

with E4˜i
—xi5 D 0, has been extended and generalized in vari-

ous ways. One simple, yet extremely useful, generalization is
the single index model, where (1.1) is replaced by

yi
D g4x0

i‚5 C ˜i1 (1.2)

where g is an unknown function, often taken to be smooth.
The single index model is more � exible than the linear model,
because it allows for nonlinear relationships between the index
variable x0‚ and the target variable y while avoiding many of
the drawbacks of a fully nonparametric approach. Such draw-
backs include decreasing precision with increasing dimension
of x (the so-called curse of dimensionality), dif� culty in rep-
resenting relationships graphically, and the inability to make
predictions at points x outside the support of the observed xi

values. This model and its variants have been applied suc-
cessfully to data in � elds including economics and medicine;
see, e.g., Carroll, Fan, Gijbels, and Wand (1997) and Horowitz
(1998).

Model (1.2) can be � t by using a two-step procedure. First,
‚ is estimated, and the linear index variable z D X O‚ is formed,
where X is the matrix of predictor values. Then g is esti-
mated using nonparametric regression as a smooth function
based on 8zi1 yi9, where zi

D x0
i
O‚1 i D 11 : : : 1 n. We focus on

two possible estimates of ‚. Brillinger (1983) showed that
if predictors are roughly Gaussian, the ordinary least squares
(OLS) estimate based on (1.1) is a

p
n-consistent estimate

of ‚ in (1.2) up to a constant of proportionality. Note that
an intercept term ‚0 is not identi� able in this context, as it
can be absorbed into the function g. (The OLS estimate is
based on centered predictors and includes an intercept, but
the linear index does not use the estimated intercept.) A sec-
ond approach is sliced inverse regression (S IR), proposed by

Duan and Li (1991). This estimate is easy to compute and isp
n-consistent (up to a proportionality constant) and asymp-

totically normally distributed. We do not consider here more
complicated semiparametric estimators that have been pro-
posed for this problem, such as those of Powell, Stock, and
Stoker (1989) and Ichimura (1993), although the tests derived
here would be equally applicable to those estimators.

Given z, any nonparametric regression smoother can be
used to estimate g, yielding � tted values Oyi

D Og4zi5. Simonoff
(1996, chap. 5) discussed various approaches to this problem.
We focus here on local polynomial estimation, where a pth-
order local polynomial estimator Og4z5 is the constant term Oƒ0

of the minimizer of
nX

iD1

£
yi

ƒ ƒ0 ƒ ¢ ¢ ¢ƒ ƒp4zi
ƒ z5p

¤2
K

³
zi

ƒ z

h

´
1 (1.3)

where K is the kernel function, generally taken to be a
symmetric probability density function with � nite second
derivative. In all simulations and examples treated here a local
quadratic (p D 2) estimate is used. We also need an estimate
of the derivative of g, Pg, which is just the slope term Oƒ1 of the
minimizer of (1.3). The smoothness of Og is controlled by the
smoothing parameter h. Hurvich, Simonoff, and Tsai (1998)
proposed using a corrected Akaike information criterion
(A IC) to choose the smoothing parameter, where h is chosen
to minimize

AICC
D log O‘ 2 C 1C tr4H5=n

1ƒ 4tr4H5 C 25=n

D log O‘ 2 C 1C 24tr4H5 C 15

nƒ tr4H5 ƒ 2
1
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where O‘ 2 D P Oe2
i =n (where Oei

D yi
ƒ Oyi is the ith element of

the residual vector), H satis� es Oy D Hy and depends on z
and depends on y only through O‚, and they showed that this
choice is asymptotically optimal for minimizing the integrated
squared error of Og. Note that although in theory a different
smoothing parameter should be used for estimating g and Pg,
in the tests constructed here we take the simple strategy of
using the same smoothing parameter (the one derived to esti-
mate g) for both estimates. This issue is discussed more fully
in Section 3.

Although the � tting of single index models does not
require distributional assumptions on ˜, the properties of the
estimates do depend on such assumptions. Härdle, Hall, and
Ichimura (1993) derived an optimal smoothing parameter for
model (1.2) and showed that the ef� ciency of O‚ depends
on the distribution of ˜ (focusing on an assumption of
constant variance of ˜i). Similarly, a modi� ed estimator is
appropriate if the errors exhibit autocorrelation. In addition,
the existence of violations of model (1.2) affects practical
application of the model in, for example, the construction of
prediction intervals.

In this article we derive score tests to test for the presence
of violations of model (1.2) with ˜ N 401‘ 2I 5. The principle
here is that using the score test can be viewed as a unifying
principle in identifying such violations, which can then be
addressed using methods adapted to those violations. Score
tests have the advantage of requiring � tting only under the
null model, thus avoiding the � tting of models that incorpo-
rate those violations unless necessary. In addition, in one of
the scenarios examined here, a likelihood-ratio-type alterna-
tive test is not useful, leaving the score test without apparent
competition appropriate for this model.

In the next section a generalized version of (1.2) is formu-
lated; it has as special cases heteroscedasticity, autocorrelation,
and additional covariates. Score tests are then derived for each
possible violation. Section 3 summarizes the results of Monte
Carlo simulations investigating the usefulness of the tests, and
several real datasets are analyzed in Section 4. Discussion and
recommendations for further work conclude the article.

2. DERIVATION OF SCORE TESTS

In all that follows, the notation g4b5, where b is a vector,
is used to represent the vector with ith entry g4bi5. Consider
the generalization of (1.2)

y D g4X1‚1
C X2‚25 C è1=2˜1 ˜ N 401‘ 2I51 (2.1)

where X1 and X2 are an n� p1 and n� p2 matrices of predictor
values, respectively, ‚1 and ‚2 are p1 � 1 and p2 � 1 vectors
of predictor coef� cients, respectively, and

è D 1

1ƒ �2

0
BBB@

w1 � �2 ¢ ¢ ¢ �nƒ1

� w2 � ¢ ¢ ¢ �nƒ2

000
�nƒ1 �nƒ2 ¢ ¢ ¢ � wn

1
CCCA

with —�— < 1, wi
D w4ui1„5, u0

i the ith row of an n � k matrix
U , and „ is a q � 1 vector. De� ne „0 so that w4u1„05 D 1.
As shown below, setting parameters to speci� ed values results

in models consistent with heteroscedasticity, � rst-order autore-
gressive autocorrelation, and additional covariates.

The general form of the score test [see, for example, Cox
and Hinkley (1974, p. 324)] follows a structure similar to
that for nonlinear regression models (Seber and Wild 1989,
pp. 228–231). Let L4ˆ5 be the log-likelihood function of the
observed value of y, where the m � 1 vector ˆ is partitioned
into ˆ D 4ˆ0

11 ˆ0
25

0, with ˆ1 being m1
� 1 and ˆ2 being m2

� 1.
Let

Uj4ˆ5 D ¡L4ˆ5

¡ˆj

1 j D 11 21

and

Iij4ˆ5 D E

µ
ƒ¡2L4ˆ5

¡ˆi¡ˆj

¶
1 i D 1121 j D 11 20

Note that I214ˆ5 D I124ˆ50. The score test statistic tests the
hypotheses

H0 2 ˆ2 D ˆ20 (2.2a)

versus

Ha 2 ˆ2
6D ˆ20 (2.2b)

and is then de� ned as

S D
£
U2

ƒ I21I
ƒ1
11 U1

¤0£
I22

ƒ I21I
ƒ1
11 I12

¤ƒ1£
U2

ƒ I21I
ƒ1
11 U1

¤
1

where Uj and Iij are evaluated at ˆ1 D Ô
14ˆ205 (a

p
n-

consistent estimator of ˆ1 given ˆ2 D ˆ20) and ˆ2 D ˆ20.
In certain circumstances, the asymptotic distribution of the

score test can be shown to be �2 on m2 degrees of free-
dom under the null hypothesis. For example, in the nonlinear
regression situation where g is known, this is the case (Seber
and Wild 1989, p. 198; Tsai 1986). Similar results are some-
times available in the current context and are noted below. In
any event, we appeal to this distribution for S as a benchmark
here, and we use Monte Carlo simulations in the next section
to investigate this approximation.

2.1 Test for Heteroscedasticity in Errors

Consider model (2.1) with � D 0, i.e., è D diag4wi5. This
model incorporates possible heteroscedasticity through wi

D
w4ui1„5, because var4˜i5 D wi‘

2. The values ui represent
variables that are predictive for var4˜i5, which can, but need
not, include variables from X. To construct the test, a spe-
ci� c functional form for w is required; a typical choice is an
exponential function

w4ui1„5 D exp4u0
i„51 (2.3)

implying that „ D „0 D 0 corresponds to constant variance
[see Simonoff and Tsai (1994) and the references therein]. The
score test is based on hypotheses (2.2) with ˆ1 D 4‚01‘ 250 and
ˆ2 D „ and equals

SH
D 1

2
c0 SD4SD0 SD5ƒ1 SD0c1 (2.4)

where c is the n� 1 vector with ith entry ci
D Oe2

i = O‘ 2, SD D 4I ƒ
110=n5D, 1 is a vector of 1’s, Oe D y ƒ Og4X O‚5 is the vector of
residuals, O‘ 2 D Oe0 Oe=n, and D is the n� q matrix ¡w4ui1 „5=¡„

evaluated at „ D „0. This is one-half the regression sum of
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squares of the regression of c on D and is thus easy to cal-
culate. Koenker (1981) showed that the score test for non-
constant variance in the linear regression model can be made
more robust through studentizing, where O‘ 2 is replaced with
6
P

i4 Oe2
i
ƒ O‘ 252=42n571=2. Simonoff and Tsai (1994) applied this

same idea to the score test for heteroscedasticity based on the
modi� ed pro� le likelihood.

Eubank and Thomas (1993) investigated this score test for
heteroscedasticity in the context of the nonparametric regres-
sion model,

yi
D g4xi5 C ˜i1 ˜i N 401‘ 2

i 51 (2.5)

estimating g using a cubic smoothing spline. Speci� cally, they
proposed the test statistic

T D 6
Pn

iD1 Ai4 Oe2
i = O‘ 25 ƒ 172

2
Pn

iD1 A2
i

to test for nonconstant variance of the form ‘ 2
i

D‘ 2 Cnƒ1=2di

(putting appropriate boundedness conditions on the 8Ai9 and
8di9). They then showed that for a wide range of choices of
the smoothing parameter (including ones that lead to optimal
convergence rates), T is asymptotically noncentral �2

1 with
noncentrality parameter depending on 8Ai9 and 8di9.

This result can be adapted to the single index model when
there is one variance predictor. Because ‚ is

p
n-consistent,

the linear index values zi can be treated as the predictor values
xi in (2.5), implying an asymptotic �2

1 distribution under the
null hypothesis, and power to detect

p
n departures from

constant variance. The theorem requires the local quadratic
smoothing parameter to be o4nƒ1=125, which is satis� ed by the
smoothing parameter that minimizes the (mean) integrated
squared error (which has a rate of O4nƒ1=95 in the interior),
although technically it does not allow for data-dependent
choices of h.

2.2 Test for First-Order Autoregressive Errors

Consider model (2.1) with „ D „0. This model incorpo-
rates � rst-order autoregressive [AR(1)] autocorrelation into the
errors if � 6D 0. The score test statistic is based on hypotheses
(2.2) with ˆ1 D 4‚01‘ 250 and ˆ2 D � and equals

SA
D

"
nX

iD2

Oei
Oeiƒ1= O‘ 2

#2

4nƒ 150 (2.6)

De� ning an estimate of � to be O� D Pn
iD2

Oei
Oeiƒ1=

Pn
iD1

Oe2
i , the

score test statistic is effectively SA
D n O�2.

The statistic SA can be written in the form

SA
D y0My ƒ tr4A5

2 tr4A25
1

where M D 4I ƒ H5A4I ƒ H5 and A is the n � n matrix with
1’s in the main off-diagonal and 0’s elsewhere. Eubank and
Thomas (1993, p. 154) showed that statistics of this form are
asymptotically �2

1 under the null hypothesis in the nonpara-
metric regression context, and this result again carries over to
the single index model, justifying the use of �2

1 critical values
here.

2.3 Test for the Need for Additional Covariates

Consider model (2.1) with � D 0 and „ D „0. Given ‚1 6D
0, this model allows for the possibility of additional use-
ful covariates if ‚2

6D 0. The score test statistic is based on
hypotheses (2.2) with ˆ1

D ‚1 and ˆ2
D ‚2 and equals

SC
D

Oe0
1
eX26eX 0

24I ƒ eH15eX27
ƒ1 eX 0

2
Oe1

O‘ 2
1

1 (2.7)

where

eX2
D Diag6 OPg4X1

O‚157X
c
2 1

eH1
D eX14eX 0

1
eX15

ƒ1 eX11

eX1 D Diag6 OPg4X1
O‚157X

c
1 1

O‘ 2
1

D Oe0
1
Oe1=n1

Oe1
D y ƒ Og4X1

O‚151

OPg4X1
O‚15 and Og4X1

O‚15 are the estimates of Pg and g evaluated
at the observations, respectively, based on using only X1 as
predictors in the model, and Xc

1 and Xc
2 are mean-centered

versions of X1 and X2, respectively. Centered versions of the
predictors must be used for this test because, as noted above,
the intercept ‚0 is not identi� able in model (1.2). Similarly,
because O‚ is determined only up to a constant, the values
of OPg4X O‚5 must be standardized to have unit mean (as they
would have if g were linear). Evans and Savin (1982) proposed
an adjustment to the score test for extra covariates based on
degrees of freedom in the linear regression model that can also
be applied here. Unfortunately, there is no asymptotic theory
for SC in the single index situation, but we will continue to
use �2-based critical values as a benchmark.

3. MONTE CARLO SIMULATIONS

In this section we examine the properties of the tests
using Monte Carlo simulations. We examine both the size
and the power properties of the tests, and how they relate
to sample size, the strength of the relationship between y

and x, the nature of g, and the type of O‚ used. All tests
have the same level � D 005 and are examined using sample
sizes n D 30150. Tests for heteroscedasticity are based on
the model y D g4‚1x1 C ‚2x2 C ‚3x35 C ˜ � exp4z„=25 with
‚1

D ‚2
D ‚3

D 1, ˜ N 401‘ 25, z standard normal, and „

taking the values 4ƒ21 ƒ11ƒ05101 051 1125. Tests for autocor-
relation are based on the model y D g4‚1x1

C‚2x2
C‚3x35C˜,

where ‚1 D ‚2 D ‚3 D 1, ˜ follows an AR(1) process, and
� 2 4ƒ091ƒ051ƒ01101 011 051 095. Tests for an additional covari-
ate are based on the true model y D g4‚1x1

C‚2x2
C‚3x35C˜,

where ‚1
D ‚2

D 1 and ‚3 takes the values 4011151 95, ‚3
D 0

corresponding to the null hypothesis. For each situation
x1, x2, and x3 are generated once as uniform on 40115, g

is linear, negative exponential, or a sine function, and ‘
equals the range of g4‚1x1

C ‚2x2
C ‚3x35 or the range of

g4‚1x1
C ‚2x2

C ‚3x35 divided by 10, respectively [that is,
the signal-to-noise ratio (SNR) equals 1 or 10, respectively].
Each setting is simulated with 1,000 replications, resulting in
a maximum standard error of the estimates of power of .016
(estimates of size, which are around .05, have standard errors
roughly half as large).
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Either OLS or S IR was used to estimate ‚ for each simu-
lation replication, followed by a local quadratic estimate of g
using AICC to choose the smoothing parameter in each case.
The tests based on ordinary least squares (OLS) and SIR per-
formed similarly, with no clear advantage for one method over
the other. Given that the OLS estimates are much more famil-
iar, and simpler to calculate, all the simulation results reported
here are based on using OLS.

Figures 1–3 summarize results for the tests for het-
eroscedasticity, autocorrelation, and an extra covariate,
respectively. Each � gure consists of six plots giving simulated
power and size values, separated by the form of g and the
SNR (the solid lines refer to the score test). In each plot, the
lines represent linear interpolations between the actual values
obtained in the simulations, those showing higher power
corresponding to sample size n D 50 and those with lower
power corresponding to n D 30. The horizontal line in each
plot represents the nominal size � D 005.

Figure 1 summarizes results for testing heteroscedasticity.
In addition to the score test, two other easily calculated tests
were examined. Levene’s test (dashed lines) is the F -test for
signi� cance in a regression of —Oe— on the variance predictor(s),
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Figure 1. Results of Monte Carlo Simulations of Power and Size of Test for Heteroscedasticity as a Function of „, Separated by Type of g and
SNR. Solid lines refer to score test and dashed lines to Levene’s test.

and Harvey’s test is the regression sum of squares of a re-
gression of log64Oe527 on the variance predictor(s) divided by
4.9348 and is compared to a �2 distribution. The latter test
consistently exhibited much lower power than the score and
Levene’s tests, so its values are not given in the plots.

The tests generally hold their size well, with estimated size
less than .06 in virtually all cases, despite the small samples
used here. As would be expected, the power of the tests
increases as the heteroscedasticity increases (—„— increasing),
with positive and negative „ generally equally easy to identify.
Whereas the score test and Levene’s test are close in power, the
score test is consistently the more powerful test. The strength
of the regression relationship and the nature of g seem to have
little effect on the test, with the exception of a sine relationship
and high SNR, where power is lower. Power values otherwise
exceed .9 (n D 30) or .95 (n D 50) for —„— D 2.

The properties of the score test for autocorrelation
(Figure 2) are broadly similar to those for heteroscedasticity.
The plots also give values for an application of the Durbin–
Watson statistic (dashed lines) to the observed residuals,

d D
Pn

iD24 Oei
ƒ Oeiƒ15

2

Pn
iD1

Oe2
i

0
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Figure 2. Results of Monte Carlo Simulations of Power and Size of Test for Autocorrelation as a Function of �, Separated by Type of g and
SNR. Solid lines refer to score test and dashed lines to Durbin–Watson test.

Signi� cance of the statistic is based on an asymptotic normal
limit, or equivalently a �2

1 approximation for n4d=2ƒ152. The
tests hold the .05 size well, with all estimated sizes less than
.06. The underlying form of g does not have a large effect,
except for the sine function with high SNR, where power is
noticeably lower. This is presumed to relate to the dif� culties
of estimating functions with more structure (as in the het-
eroscedasticity test) combined with the dif� culties of AICC

in differentiating between a regression function with some
curvature and some autocorrelation (the actual situation) and
one with even more curvature and little autocorrelation (which
would erroneously lead to nonrejection of the null hypothesis).
The score test and Durbin–Watson test have similar properties;
the score test is more powerful for negative autocorrelation
and the Durbin–Watson test is more powerful for positive
autocorrelation. This pattern is easy to understand, because

n

³
d

2
ƒ 1

2́

D n

³
O�C

Oe2
1
C Oe2

nPn
iD1

Oe2
i

2́

² n Q�20

Clearly Q� ¶ O�, implying a (typically) smaller �2 statistic (and
lower power) when O� < 0 and larger �2 statistic (and higher
power) when O� > 0.

Figure 3 presents results for the score test for an addi-
tional covariate, along with ones based on the ordinary t test
(dashed lines). The degrees-of-freedom adjustment of Evans
and Savin (1982) has little effect in the situations studied
here, so its results are not presented. The tests are slightly,
but consistently, anticonservative, with sizes typically between
.06 and .07. The power properties of the score test are con-
siderably more complex than those of the heteroscedasticity
and autocorrelation score tests, for several reasons. Recall that
the score test is derived assuming that the null hypothesis is
true, which means that the model is misspeci� ed under the
alternative hypothesis. This is only a second-order effect in
the presence of heteroscedasticity or autocorrelation (in the
sense that the mean function is still correctly speci� ed), which
means that Og4xi=‚5 is still a consistent estimator of E4yi5. This
is not the case when testing for the need for an extra covariate,
because then the estimated linear index is not a consistent
estimate of the true linear index. Thus, Og is not a consistent
estimate of the true g, and OPg is not a consistent estimate of Pg.

This accounts for several of the patterns in Figure 3. The
score test is best behaved for linear g, but the power decreases
with increasing ‚3 when SNR equals 10 (the same is true for
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Figure 3. Results of Monte Carlo Simulations of Power and Size of Test for an Additional Covariate as a Function of ‚3 , Separated by Type of
g and SNR. Solid lines refer to score test and dashed lines to t test.

the exponential function). The problem here is in estimation
of Pg. Recall that the same smoothing parameter is used to esti-
mate both g and Pg, although theory shows that they should be
different. This leads to degradation of the test. If the true val-
ues of Pg are used in the simulations (this can be done because
Pg is known), the power functions for linear g monotonically
increase to 1 with increasing ‚3 as would be expected, which
con� rms that the problem is in estimation of Pg.

The poor performance of the test for exponential g and
SNR D 1 arises because E4yi5 is close to zero and with the
added noise exhibits little structure. In this case including the
predictor x3 adds very little to the � t. The structure of x3 used
here results in a similar pattern for the sine function when
‚3

D 9.
On the other hand, the � exibility of the single index model

means that the estimate Og based on the misspeci� ed (null)
model will often � t better than the true g based on the null
model, which can translate into improved ability to identify
structure related to x3. The score test based on the true g

(results not presented here) is sometimes more powerful than
that based on the single index model (re� ecting the bene� t of

not having to estimate g), and sometimes it is less powerful
(re� ecting better � t of the nonparametrically estimated g).

The t test performs reasonably well in many of the sit-
uations, because the partial relationships between y and x3

given x1 and x2 for these functions have enough of a linear
component to be identi� ed. It is not at all dif� cult, however,
to construct situations in which the score test is much more
powerful than the t test. For example, if the entries in x1 and
x2 have mean zero, and the x3 values are symmetric around
zero, the t test has no power to identify nonzero ‚3 in the
quadratic function 4‚1x1

C ‚2x2
C ‚3x35

2, whereas the score
test can have power greater than .5 when n D 30. The supe-
riority of the score test over the t test when g is linear and
the SNR is low seems paradoxical. This occurs because O‘ 2 is
biased downward, re� ecting the � exibility of the single index
model noted earlier ( Og is closer to the observed y values than
is g).

Although the score test SC is useful, it should be used with
caution in practice. However, because its dif� culties are much
more related to power than to size, a statistically signi� cant
test can indicate that the additional covariates are important
to the model � tting. It might seem that the solution to the
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dif� culties in using the score test is to use a likelihood-ratio-
type test,

LR D n6log4 O‘ 2
1 5 ƒ log4 O‘ 2

11 2571

where O‘ 2
11 2 is the variance estimate

P Oe2
i =n based on the full

dataset 4X11 X25. (Recall that O‘ 2
1 is the corresponding esti-

mate based on using only X1 as predictors.) Unfortunately,
this is not the case, because the statistic does not follow a
standard distribution under the null hypothesis. The unique
characteristics of the single index model make it impossible
to appeal to standard inferential arguments. Unlike in linear
regression models, it is not necessarily the case that the unre-
stricted model (including the extra covariate) � ts better than
the restricted model (omitting it). Because the form of g is
different under the null and alternative hypotheses, it can hap-
pen that O‘ 2

1 < O‘ 2
11 2, implying LR < 0. For the cases examined

here, this happened 15–25% of the time for high SNR situa-
tions and more than 30% of the time for low SNRs. Further,
the � exibility of estimation of g in the single index model
implies that even under the null hypothesis the model using
the additional covariate improves estimation accuracy more
than would usually be expected. Using a �2 approximation,
the tests are seriously anticonservative, with null sizes for both
n D 30 and n D 50 around 015ƒ 02 for low signal-to-noise and
008ƒ 01 for high SNR.

Small-scale simulations based on t3-distributed errors
showed that although the score tests for autocorrelation and
an additional covariate were relatively insensitive to the
nonnormal errors, for heteroscedasticity it was not, becoming
strongly anticonservative. Studentizing the score test brings
its size back to the proper level, but at the price of reduced
power, making that approach problematic. For example, the
studentized score test is less powerful than the ordinary score
test for normal errors and is less powerful than Levene’s test
for t3 errors.

4. ANALYSIS OF REAL DATA

In this section three real datasets are analyzed using the
single index model score tests, and it is shown that not taking
model misspeci� cations into account can lead to very different
inferences. In all cases the linear index was calculated using
OLS on centered predictors, and g was estimated using a local
quadratic estimator with smoothing parameter chosen using
AICC . For all three examples S IR-based linear indices led to
substantially similar results.

4.1 Automobile Prices

The data come from the 1999 Car Buyers issue of Con-
sumer Reports (1999) and represent a sample of 41 autos. The
price (in thousands of dollars) of the auto is modeled as a func-
tion of engine power (in horsepower), weight (in thousands of
pounds), passenger space (in cubic feet), and reliability rating
(from 1 to 5, with 1 being worst and 5 being best), as these are
all characteristics that could be viewed as important by con-
sumers. Figure 4(a) gives a scatter plot of price versus the lin-
ear index, with the estimated g superimposed, indicating non-
linearity in the relationship. Figure 4(b) is a scatter plot of the
residuals from this � t versus the linear index, which strongly
suggests heteroscedasticity. The score test SH given in (2.4),
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Figure 4. Plots. (a) Automobile price (in thousands of dollars) versus
linear index, with Og superimposed; (b) residuals from the single index
model versus linear index.

assuming an exponential model V4˜i
—zi5 D ‘ 2

i
D ‘ 2 exp4„zi5,

equals 6.13 on one degree of freedom (p D 0013), strongly
rejecting constant variance. This inference is insensitive to the
choice of smoothing parameter. Figure 5 gives a signi� cance
trace for this test (Bowman and Azzalini 1997, p. 89), which
gives the tail probability of the test based on different choices

Smoothing parameter

p-
va

lu
e

1 2 3 4 5 6

0.
0

0.
02

0.
04

0.
06

Figure 5. Signi’ cance Trace for Test of Heteroscedasticity for Auto-
mobile Price Data. The dashed vertical line corresponds to the AICC

smoothing parameter choice. A horizontal line is given at the � D .05
level.
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of the smoothing parameter (the AICC choice is represented
by the vertical dashed line). It is clear that the p-value of
the test is virtually constant over a wide range of smoothing
parameters.

Härdle, Hall, and Ichimura (1993) showed that a weighted
version of O‚ has higher ef� ciency than an unweighted ver-
sion when there is nonconstant variance, and they proposed
a multistage estimator. We do not pursue this because their
heteroscedasticity model is different from the one used here.
Still, even if O‚ is not changed, heteroscedasticity needs to
be taken into account in making predictions, for example. A
rough pointwise 95% prediction interval at z D z0 is

Og4z05 2
q

6bV 4 Og4z055 C bV 4˜—z0570 (4.1)

This is only roughly a prediction interval, because it ignores
the bias in Og4z05, but it is useful as a guide for the effect
of nonconstant variance on predictions. Once heteroscedastic-
ity is suspected, a weighted version of Og is appropriate, with
weights O‘ ƒ2

i . Asymptotic forms for V4 Og4z055 are well known;
see, for example, Fan and Gijbels (1996, p. 62).

Estimating the weights requires estimating the variance
coef� cients „. Because E4˜2

i 5 D‘ 2
i is an exponential function

of zi , a Poisson regression of ˜2 on z using the canonical
logarithmic link function

log
£
E ˜2

i

¢¤
D „0

C „1zi

provides consistent estimates for „, and hence ‘ 2
i (and thus

V4˜—z05). The errors ˜ are not available, of course, so a Pois-
son regression of Oe2 on z provides a practical implementation
of this idea.

Figure 6 gives a plot of the pointwise prediction intervals for
the unweighted (dashed) and weighted (solid) models based
on (4.1). It is apparent that the intervals without accounting
for heteroscedasticity are not appropriate, being too wide for
smaller z and too narrow for larger z. In contrast, the intervals
accounting for heteroscedasticity follow the observed relation-
ship closely, and they could be used in predictions for other
automobiles not in the sample.
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Figure 6. Plot of Approximate Pointwise 95% Prediction Intervals for
Automobile Price. Not accounting for heteroscedasticity (dashed lines)
and accounting for heteroscedasticity (solid lines).

4.2 Carbon Monoxide Emissions Data

These data track carbon monoxide emissions in the United
States from 1960 through 1989. The target variable is per
capita emissions (in metric tonnes per person), with predictors
per capita constant dollar gasoline consumption, millions
of acres destroyed by forest � res, and a linear time trend,
thereby taking into account two major causes of carbon
monoxide (internal combustion engines and forest � res), while
still allowing for a trend in emissions given these causes.
The data come from the web sites of the Census Bureau,
the Environmental Protection Agency, the Department of
Agriculture, and Statistical Review of World Energy, published
by British Petroleum. The coef� cient for time in the OLS-
based linear index is negative, indicating a declining trend
in emissions given these causes. The linear model indicates
a strong relationship between the predictors and emissions
(R2 D 9103%) but also shows strong evidence of autocorrela-
tion in the residuals (for example, the Durbin–Watson statistic
equals .70, which is highly statistically signi� cant).

Figure 7 gives a plot of emissions versus the linear index,
with estimated g superimposed. The plot suggests some non-
linearity in the relationship. This nonlinearity of Og completely
changes inferences about the existence of autocorrelation,
because the score test for autocorrelation given in (2.6) is
SA

D 034, which does not give any sign of autocorrelation
(p D 056). Figure 8 shows why the nonlinearity of g is so
important. That � gure plots the residuals versus year from the
linear model (dashed line) and single index model (solid line).
It is apparent that the Durbin–Watson test is interpreting the
pattern in Figure 7 as autocorrelation in the errors, rather than
nonlinearity in g. This is also apparent in the signi� cance
trace for this test given in Figure 9. Although the test is
not statistically signi� cant for a wide range of smoothing
parameters, as the smoothing parameter becomes larger the
estimated curve becomes straighter, and eventually the test
becomes statistically signi� cant. It is impossible to tell which
interpretation (autocorrelation in the errors or nonlinearity
of g) is correct for these real data, given the existence of other
factors related to air pollution that are not in the model, but
nonlinearity seems reasonable. For example, the emissions
observations at the far right of Figure 7 correspond to pre-
1973 data, before emissions began to steadily fall. This drop
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Figure 7. Plot of Per Capita Carbon Monoxide Emissions (in Metric
Tonnes Per Person) Versus Linear Index, With Og Superimposed.
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Figure 8. Plot of Residuals Versus Year for Linear Model. Carbon
monoxide emissions (dashed line) and single index model (solid line).

is attributable in large part to the implementation of the Clear
Air Act of 1970, which put sharp limitations on sources of
air pollution.

4.3 Ozone Concentration Data

The data come from Cook and Weisberg (1994, p. 127)
and refer to air quality readings taken on 111 days in the
New York City area in 1973. The target variable is the ozone
concentration in parts per billion, and the potential predictors
are the temperature (in degrees Fahrenheit), wind speed (in
miles per hour), and solar radiation (in Langleys). The t statis-
tics for the three variables from an OLS � t are 6.52, ƒ5010,
and 2.58, respectively. Thus, the evidence for the need for
the solar radiation variable given the other two variables is
barely statistically insigni� cant at a .01 level (p D 0011). This
is dependent, of course, on an appropriate linear model.

Figure 10 is a plot of ozone concentration versus the linear
index based on only temperature and wind speed, with esti-
mated g superimposed; noticeable curvature in g is again evi-
dent. Given the use of these two predictors, the score test (2.7)
for the need for solar radiation level in the single index model
is SC

D 11096, which is highly statistically signi� cant (p D
00005). The signi� cance trace for this test given in Figure 11
shows that this inference is very insensitive to the choice
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Figure 9. Signi’ cance Trace for Test of Autocorrelation for Carbon
Monoxide Emissions Data. The dashed vertical line corresponds to the
AICC smoothing parameter choice. A horizontal line is given at the � D
.05 level.
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Figure 10. Plot of Ozone Concentration Versus Linear Index, With Og
Superimposed.

of smoothing parameter. Thus, when the curvature of g is
considered, the usefulness of the solar radiation variable is
considerably greater than would have been thought otherwise.

These data form a time series, of course, so issues of auto-
correlation are also relevant here. According to the score test
for autocorrelation, this is not a problem, as it gives no indi-
cation of any autocorrelation.

5. CONCLUSIONS

In this article we used the general structure of the score test
to derive tests for three possible misspeci� cations of the single
index model. Monte Carlo simulations show that the tests hold
their size well and can be reasonably powerful, even for small
samples.

Score tests also can be derived for other models of interest.
For example, if autocorrelation (if present) is assumed to be
AR4p5, rather than AR415, the score test generalizes to the
intuitive form

S D n O�2
1
C ¢ ¢ ¢C O�2

p

¢
1

where O�j
D Pn

iDjC1
Oei

Oeiƒj=
Pn

iD1
Oe2
i , referenced to a �2

p distribu-
tion. Obviously the Durbin–Watson test is potentially useless
for models of this type, if �1 is small but higher-order auto-
correlations are large.
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Figure 11. Signi’ cance Trace for Test of an Additional Covariate for
Ozone Concentration Data. The dashed vertical line corresponds to
the AICC smoothing parameter choice. A horizontal line is given at the
� D .05 level.
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The reduced power of the test for autocorrelation when the
underlying function was a sine function shows that smoothing
parameter selection for this test could be improved. The test
is derived assuming the null is true, so the AICC choice is
not inappropriate, but it can lead to autocorrelation being mis-
taken for signal. Hart (1994) and Hart and Yi (1998) proposed
time series cross-validation for smoothing parameter selection
under autocorrelation, and it is reasonable to think that using
a smoothing parameter based on this method in the autocor-
relation test could improve power.

Problems with smoothing parameter choice also affect the
properties of the test for an additional covariate, in that they
affect estimation of Pg. Using a different smoothing parameter
for estimating g and Pg is appropriate in theory and would
de� nitely help for g functions close to linear. There has not
been a great deal of work done on smoothing parameter choice
for estimation for regression derivatives, although the plug-in
method of Fan and Gijbels (1995) is one possible approach.
The deterioration of power for other g functions as the coef-
� cient of the additional covariate gets larger is clearly a con-
cern, but it seems to be an inherent part of the score test
construction. In addition, the � exibility of the single index
model means that the estimated g under the null can be far
from the “true” g, potentially reducing the power of the test,
but the failure of the likelihood ratio to provide a useful test
makes it clear that further research is needed in this area.

S-Plus code to implement these tests is available from the
authors.
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