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Abstract

We present a goodness of ¯t test for time series models based on the discrete spectral average

estimator. Unlike current tests of goodness of ¯t, the asymptotic distribution of our test statistic

allows the null hypothesis to be either a short or long range dependence model. Our test is

in the frequency domain, is easy to compute and does not require the calculation of residuals

from the ¯tted model. This is especially advantageous when the ¯tted model is not a ¯nite

order autoregressive model. The test statistic is a frequency domain analogue of the test by

Hong (1996) which is a generalization of the Box-Pierce (1970) test statistic. A simulation study

shows that our test has power comparable to that of Hong's test and superior to that of another

frequency domain test by Milhoj (1981).

Keywords: Portmanteau test, long memory, goodness-of-¯t.

1 Introduction

Most conventional goodness-of-¯t tests for time series models are based on the autocorrelations

of residuals from the ¯tted model. Examples of such tests include the portmanteau statistic

of Box and Pierce (1970) and its generalization, based on arbitrary kernel functions, by Hong

(1996). The Box-Pierce statistic is obtained as a particular case of the Hong statistic by using the

truncated uniform kernel. Simulations by Hong show that his statistic computed using kernels
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other than the truncated uniform kernel gives better power than the Box-Pierce statistic against

autoregressive (AR) processes and fractionally integrated processes.

Box and Pierce (1970) derived the null distribution of their test for autoregressive moving

average (ARMA) models and Hong derived the his null distribution only for ¯nite order autore-

gressive models. Both these results require assumptions that rule out long memory processes

which have hyperbolically decaying correlation functions and spectral densities unbounded at

the origin. Furthermore, both tests requires the computation of residuals from the ¯tted model,

which can be quite tedious when the model does not have a ¯nite order autoregressive represen-

tation. Also, in such cases, the residuals are not uniquely de¯ned.

A test statistic which circumvents the computation of residuals from the ¯tted model was pro-

posed by Milhoj (1981). To test the hypothesis that the observations xt; t = 1; :::; n; are from a

process with spectral density f(¸); he suggested the test statistic, Mdn =
nPn¡1
j=1 Vj

o¡2 Pn¡1
j=1 V 2

j

where Vj = I( j̧)=f(¸j), I(¸) = (2¼n)¡1
¯̄
¯Pnt=1 xte¡i̧ t

¯̄
¯
2

is the periodogram of the observations

and j̧ = 2¼j=n is the jth Fourier frequency. Though Milhoj's test statistic is easily computed,

his theoretical results are restricted to short memory time series models with bounded spec-

tral densities. Assuming Gaussianity, Beran (1992) extended Milhoj's results to long memory

time series models which have unbounded spectral densities at the origin. Examples of long

memory processes are the autoregressive fractionally integrated moving average (ARFIMA) pro-

cess (see Hosking (1981)). Beran stated that the null distribution of Md
n in the presence of

long memory is the same as that derived by Milhoj (1981) in the case of short memory. Be-

ran obtained his results by claiming that Mdn is asymptotically equivalent to its integral version

Mn =
nR 2¼

0 V (¸)d¸
o¡2 R 2¼

0 V 2(¸)d¸ where V (¸) = I(¸)=f(¸):

However, Deo and Chen (2000) showed that even in the case of Gaussian white noise, Md
n

and Mn do not have the same asymptotic distribution and that the variance of Mn is two thirds

that of Mdn: Thus, the asymptotic distribution of Mdn in the long memory case is still an open

question.

In this paper, we introduce a test statistic which is a frequency domain analogue of Hong's

statistic. We derive the asymptotic null distribution for both short memory models and long

memory models. Since our test does not require the calculation of residuals, it can be easily
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applied to long memory processes such as the ARFIMA models which do not possess ¯nite order

AR representations. Our test delivers uniformly better power than the periodogram-based test

Md
n of Milhoj:

In the next section, we de¯ne our test statistic and provide the theoretical results on its

asymptotic null distribution for short and long memory models. The power properties of our

test are studied in section 3 through simulations. The proofs are relegated to the Appendix at

the end.

2 The test statistic

To motivate our test statistic, it is instructive to consider Hong's statistic to test the null hypoth-

esis that the observations, xt; t = 1; 2; :::;n; are from an AR(p) process, xt = ®0+®1xt¡1+ ¢ ¢ ¢+
®pxt¡p + "t; where "t are zero mean white noise. Let et be the residuals from the ¯tted model,

et = xt ¡ b®0 ¡ b®1xt¡1 ¡ ¢ ¢ ¢ ¡ b®pxt¡p; where b®0; b®1; ::; b®p are the estimates of the parameters

®0;®1; ::;®p: Hong's (1996) test statistic is

Hn =
n¡1X

j=1
k2(j=pn)b½2e;j ;

where k (¢) is a suitable kernel function, ½̂e;j = b°e;j=b°e;0 are the sample autocorrelations of the

residuals and b°e;j are their sample autocovariances,

b°e;j =
1
n

nX

t=jjj+1
(et ¡ e)(et¡jjj ¡ e); j = 0;§1; :::; §(n ¡ 1):

By Parseval's identity, Hn can be written as

Hn =
1
2

0
@

n¡1X

j=¡(n¡1)
k2(j=pn)b½2ej ¡ 1

1
A =

1
2

(µZ 2¼

0
bfe(¸)d¸

¶¡2µ
2¼

Z 2¼

0
bf2e (¸)d¸

¶
¡ 1

)
(1)

where
bfe(¸) =

1
2¼

X

jjj<n
k(j=pn)b°e;je¡i j̧ : (2)

The kernel function k here is also called the lag window, and bfe(¸) the lag-weights spectral

density estimator. Let In;e be the mean corrected periodogram of the residuals given by

In;e(¸) =
1

2¼n

¯̄
¯̄
¯
nX

t=1
(et ¡ e)e¡i¸t

¯̄
¯̄
¯

2

:
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Using the relation

b°e;j =
Z 2¼

0
In;e(!)ei!jd!;

we have an equivalent form of bfe(¸) in the frequency domain,

bfe(¸) =
Z 2¼

0
W (¸¡ !)In;e(!)d!; (3)

where W; the spectral window corresponding to the lag window k is its Fourier transform

W (¸) =
1
2¼

X

jhj<n
k(h=pn)e¡ih¸: (4)

Expressions (1) and (3) provide the motivation for our test statistic. To test a general null

hypothesis that the observations xt are from a process with spectral density f(¢), we propose the

following test statistic

Tn =
(

2¼
n

n¡1X

`=0

efe( `̧)
)¡2(

2¼
n

n¡1X

`=0

ef2e (¸`)
)

; (5)

where
efe(¸) = 2¼

n

n¡1X

j=1

W (¸ ¡¸j)I( j̧)
f(¸j)

;

and I is the periodogram of the observations x1; :::; xn. Note that efe is a discrete version of bfe
in (3) with In;e replaced by I=f: Thus, we whiten the process in the frequency domain instead

of in the time domain. This not only avoids the computation of residuals but also allows one

to easily test for arbitrary spectral densities. Furthermore, Tn is obtained by discretizing the

integral in (1) with bfe replaced by efe: Also note that Tn is mean invariant because efe is evaluated

only at Fourier frequencies. This is especially favourable in the presence of long memory, since

the sample mean is not fully e±cient in that case.(See Beran, 1994, p. 6)

Hong (1996) established the asymptotic normality of Hn for AR models: We show that Tn is

asymptotically normal under a null hypothesis which can be either short memory or long memory

if the process is Gaussian. The properties of a long memory process di®er substantially from

those of a short memory process and hence the proof of the asymptotic results for long memory

models requires a more delicate approach than that for short memory models. We now state the

assumptions we make and our main results.
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Throughout the rest of this paper, we assume that fxtg is a stationary linear process of the

form,

xt = ¹ +
1X

j=0
Ãj"t¡j; (6)

where the innovations "t satisfy the following assumption.

Assumption 1 The series f"tg is independently and identically distributed with mean zero,

variance ¾2 and E("8t ) < 1:

We also make the following assumptions about the kernel k(¢) and the bandwidth pn:

Assumption 2a The kernel function k : R ! [¡1;1] is a symmetric function that is continuous

at zero and at all but a ¯nite number of points, with k(0) = 1: If the kernel function k is of

unbounded support, then for some ± ¸ 1; z± jk(z)j < 1 as z ! 1:

Assumption 3 The bandwidth pn satis¯es log6 n=pn ! 0 and pn=n ! 0: If the kernel function

k is of unbounded support, the bandwidth pn also satis¯es p±+1=2
n log n=n± ! 0:

More restrictive assumptions are made on the bandwidth when the kernel is of unbounded

support with the choice of bandwidth depending on the rate of decay of the kernel: The faster

the kernel decays, the less restrictive the condition on pn: It is worth noting that all the kernels

used in practice satisfy Assumption 2a. The next theorem states the asymptotic distribution of

Tn when fxtg is a short memory process.

Theorem 1 Let x1; :::;xn be n observations from a stationary linear process de¯ned by (6) with

coe±cients Ãj such that
P1
j=0 jÃj jj1=2 < 1 and innovations "t satisfying Assumption 1: Let f(¢)

be the spectral density of the process such that inf¸ f(¸) > 0: Let Tn be as in (5) and W be de¯ned

by (4) with kernel function k satisfying Assumption 2a and bandwidth pn satisfying Assumption

3. Then
n (Tn ¡Cn(k))

Dn(k)1=2
! N (0;1)

in distribution as n ! 1; where

Cn(k) = 1
n¼

n¡1X

j=1
(1 ¡ j=n)k2(j=pn) + 1

2¼
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and

Dn(k) =
2
¼2

n¡2X

j=1
f(1 ¡ j=n)(1 ¡ (j +1)=n)gk4(j=pn):

It can be shown that a process satisfying the assumptions in Theorem 1 has bounded spectral

density and autocovariances that are absolutely summable (Brockwell and Davis, 1991, ex 3.9).

Such a process is a short memory process, an example of which is the autoregressive moving

average (ARMA) model. If the chosen kernel is of compact support, assumptions 2a and 3a on

the kernel function k and bandwidth pn are identical to the assumptions made by Hong (1996)

for the test statistic Hn. However, the assumptions on the process fxtg of Theorem 1 are satis¯ed

by a broad range of short memory models while the asymptotic theory of Hn is established only

for autoregressive (AR) models.

To establish the asymptotic normality of Tn when the process is a long memory process, we

restrict the process fxtg to be Gaussian. We also require additional assumptions on k and pn,

which we state next.

Assumption 2b In addition to Assumption 2a, the kernel function k is di®erentiable almost

everywhere and satis¯es
R

jk0 (z)k (z)jdz < 1:

All the kernels used in practice satisfy Assumption 2b. We now state the asymptotic distri-

bution of Tn when fxtg is a long memory process. For the long memory case, we make the extra

assumption that the process xt is Gaussian. We feel that this assumption can be relaxed just as

in the short memory case in Theorem 1, though at the expense of much greater complexity in

the proof.

Theorem 2 Let x1; :::;xn be n observations from a stationary Gaussian linear process de¯ned

by (6) that has a spectral density f(¸) » a¸¡2d; as ¸ ! 0; where a is a constant and d 2 (0; 0:5).

Also let the spectral density satisfy inf¸f(¸) > 0. Let Tn be de¯ned as in Theorem 1 with kernel

function k satisfying Assumption 2b and bandwidth pn satisfying Assumption 3b. Then

n (Tn ¡Cn(k))
Dn(k)1=2

! N (0;1)

where Cn(k) and Dn(k) are as in Theorem 1.
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A stationary linear process which has a spectral density satisfying the assumption of Theorem

2 is a long memory process. It can be shown that the autocovariances decay to zero hyperbolically

and are not summable for such a process (Theorem 2.24, Zygmund, 1959) Examples of long

memory processes satisfying Assumption 2 are autoregressive fractionally integrated moving-

average (ARFIMA) models (Granger & Joyeux,1980 and Hosking, 1981) and fractional Gaussian

noise (Mandelbrot and Van Ness, 1968).

In applications, the null hypothesis of interest is the composite hypothesis that the process

has spectral density f (µ; ¢) for some unknown µ in the parameter space £: Under this composite

null, the test statistic becomes

Tn
³
bµ
´

=
(

2¼
n

n¡1X

`=0

efe(bµ;¸`)
)¡2 (

2¼
n

n¡1X

`=0

ef2
e (bµ; `̧)

)
; (7)

where
efe(bµ; ¸) =

2¼
n

n¡1X

j=1

W (¸ ¡¸j)I(¸j)
f(bµ; j̧)

and µ̂ is some estimator of µ based on the sample x1; :::;xn: Under certain additional assumptions,

we show in the next two theorems that the asymptotic null distribution of Tn(bµ) remains the

same as that of Tn in Theorem 1 and in Theorem 2. We ¯rst state the additional assumptions

we need.

Assumption 4 Let £0 be a compact subset of £; where £ is a ¯nite dimensional parameter

space. Let the spectral density of the process fxtg be f(µ0; ¢); where µ0 is the true parameter

vector that lies in the interior of £0: Assume that the estimator bµ 2 £ satis¯es
°°°bµ ¡µ0

°°° =

Op
³
n¡1=2

´
:

The following is an assumption on the spectral density for short memory process.

Assumption 5 The spectral density f (µ; ¸) satis¯es the following conditions for (µ;¸) 2 ££
[0;2¼] :

(i) f (µ;¸) and f¡1 (µ; ¸) are continuous at all (µ;¸) :

(ii) @
@µj

f¡1 (µ; ¸) and @2
@µj @µk

f¡1 (µ;¸) are continuous and ¯nite at all (µ;¸).

It is very easy to establish that Assumptions 4 and 5 are satis̄ ed by all ARMA models. The

next theorem states the asymptotic distribution of Tn(bµ) when fxtg is a short memory process.
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Theorem 3 Let x1; :::; xn be n observations from a stationary linear process satisfying the same

assumptions as those of Theorem 1. Let the estimated parameter vector bµ satisfy Assumption 4

and the spectral density of the process fxtg satisfy Assumption 5. Also let Tn(bµ) be de¯ned by (7)

with kernel function k and bandwidth pn satisfying the same assumptions as those of Theorem

1. Then
n

³
Tn(bµ) ¡Cn(k)

´

Dn(k)1=2
! N (0; 1)

in distribution as n ! 1; where Cn(k) and Dn(k) are de¯ned as in Theorem 1.

To establish the asymptotic distribution of Tn(bµ) when fxtg is a long memory process, we

need the following assumption on µ̂ and the spectral density f(µ; ¢).

Assumption 6 Let £0 be a compact subset of £; where £ is a ¯nite dimensional parameter

space. Let the spectral density of the process fxtg be f(µ0; ¢); where µ0 = (¯; d0)0 is the true

parameter vector that lies in the interior of £0 £ [±1;0:5 ¡ ±1] for some 0 < ±1 < 0:5: Assume

that the estimator bµ 2 £ satis¯es
°°°bµ ¡ µ0

°°° = Op
³
n¡1=2

´
:

Assumption 7 Let µ = (¯; d)0 ; where (¯; d) 2 £ £ (0; 2¼) ; d 2 (0; 0:5) : For any ± > 0; the

spectral density f (µ;¸) satis¯es the following conditions:

(i) f (µ;¸) is continuous at all (µ;¸) ; f¡1 (µ;¸) is continuous at all (µ; ¸) and

f (µ;¸) = O
³
j j̧¡2d

´
as ¸ ! 0:

(ii) @
@µj

f¡1 (µ; ¸) and @2
@µj@µk

f¡1 (µ;¸) are continuous at all (µ;¸) and

@
@µj

f¡1 (µ; ¸) = O
³
j¸j2d¡±

´
as ¸ ! 0;

@2

@µj@µk
f¡1 (µ; ¸) = O

³
j j̧2d¡±

´
as ¸ ! 0:

(iii) There exists a constant C with

jf (µ1;¸) ¡ f (µ2; ¸)j · C jjµ1 ¡ µ2jjf (µ2; ¸)
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uniformly for all ¸ and all µ1 = (¯1; d1)
0 and µ2 = (¯2; d2)

0 such that d1 < d2:

All the conditions of Assumptions 6 and 7 are satis¯ed by fractional Gaussian noise and

ARFIMA processes (See Dahlhaus (1989)). We now state the asymptotic distribution of Tn
³
µ̂

´

when fxtg is a long memory process.

Theorem 4 Let x1; :::; xn be n observations from a stationary Gaussian linear process satisfying

the same assumptions as those of Theorem 2. Let the estimated parameter vector bµ satisfy

Assumption 6 and the spectral density of fxtg satisfy Assumption 7. Also let Tn(bµ) be de¯ne by

(7) with kernel function k and bandwidth pn satisfying the same assumptions as those of Theorem

2. Then
n

³
Tn(bµ) ¡Cn(k)

´

Dn(k)1=2
! N (0; 1)

in distribution as n ! 1; where Cn(k) and Dn(k) are de¯ned as in Theorem 1.

3 Simulation Studies

We generated 5000 replications of Gaussian series of length n = 128 and 512 from a variety of

AR and ARFIMA processes. The algorithm of Davies and Harte (1987) was used in the data

generation of ARFIMA models. For each series, we computed the three test statistics: (i) Our

statistic Tn: (ii) Hong's statistic Hn: (iii) The Milhoj statistic Mn: The statistics were suitably

normalized so that they would have an asymptotic standard normal distribution under the null.

For Tn and Hn; we used the following three kernels:

(i) Bartlett k(z) = 1 ¡jzj ; jzj · 1;

= 0 otherwise,

(ii) Tukey k(z) = 1
2 (cos(z¼) +1) ; jzj · 1;

= 0 otherwise,

(iii) Quadratic Spectral (QS), k(z) = 25
12z2

³
sin(6¼z=5)
6¼z=5 ¡ cos(6¼z=5)

´
; z 2 (¡1;1) :

For computing Tn and Hn; we used three bandwidths, pn =
£
3n0:2¤ ;

£
3n0:3¤ and

£
3n0:4¤ : Note

that there is no bandwidth involved in computing Mn:
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In Tables I and II, we report the sizes of the three tests under the null hypothesis of an AR(1)

and an ARFIMA(0,d,0) respectively. The AR(1) parameter was set to 0.8 while the long memory

parameter d in the ARFIMA(0; d;0) was set at 0.4. It can be seen that for both the models, all

three statistics are undersized at both the 5% and 10% level. The amount by which they are

undersized decreases as the bandwidth pn increases. The Mn statistic is least undersized, while

the sizes of Tn are comparable to those of Hn:

To compare the power of the tests, we considered the following four cases: (a) ¯tting an AR(1)

to data generated by an AR(2), xt = 0:8xt¡1 ¡ 0:1xt¡2 + "t: (b) ¯tting an ARFIMA(1; d;0) to

data generated by an ARM(1,1), xt = 0:8xt¡1 + "t + 0:2"t¡1: (c) ¯tting an ARMA(1; 1) to data

generated by an ARFIMA(0; d; 0), (1 ¡ B)0:4 xt = "t where B denotes the backshift operator (d)

¯tting an ARFIMA(0; d;0) to data generated by an ARFIMA(1; d; 0), (1 ¡ B)0:4 (1 ¡ 0:1B)xt =

"t. The results are reported in tables III, IV, V and VI respectively.

It is seen that both the tests Tn and Hn have signi¯cantly higher power than Mn in all the

alternatives considered. This is not surprising, since the tests Tn and Hn give decreasing weights

to higher lag sample correlations, while Mn gives uniform weight at all lags. It might be tempting

to believe that this property of Mn may be useful in detecting long memory alternatives. This

belief is however belied by Table V, where we ¯t a short memory model to a long memory series

and yet Mn is outperformed by a wide margin by both the other tests. On the other hand, it

is seen that the power of Tn is very similar to the power of Hn; with neither test outperforming

the other signi¯cantly in any situation considered.

4 Appendix: Proofs

We will only provide the proofs for long memory models. The proofs for short memory models

are similar though much simpler and are available from the authors. In this appendix, we will

often use the following decomposition of I(¸),

I (¸) = jÃ (¸)j2 I" (¸) + I (¸) ¡jÃ (¸)j2 I" (¸) ;
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where Ã (¸) =
P1
k=0 Ãke¡i̧ k and I" (¸) is the periodogram of the innovations "t in (6). Then

I (¸)
f(¸)

=
2¼
¾2 I" (¸) + R(¸); (8)

where

R(¸) =
I (¸)
f(¸) ¡ 2¼

¾2 I" (¸) : (9)

Let °̂";j be the jth sample covariance of the "t given by b°";j = n¡1
Pn
t=jjj+1("t¡e)("t¡jjj ¡e); for

jjj · n ¡ 1:

Proof of Theorem 2

Let I"(¸) = (2¼n)¡1
¯̄
¯Pnt=1 "tei¸t

¯̄
¯
2

be the periodogram of the innovations "t without mean

correction: For the Fourier frequencies, ¸k; k = 1; :::; (n ¡ 1); we have I"(¸k) = In;"(¸k); where

In;" is the periodogram of the mean corrected innovations "t ¡ ¹": Also de¯ne

bf";d (¸) =
2¼
n

n¡1X

j=1
W (¸ ¡¸j)I"(¸j):

In Lemmas (1), (2) and (3) below, we show that

n

p1=2n

(
2¼
n

n¡1X

`=0

Ã
ef2e (¸`) ¡ 4¼2

¾4
bf2
";d (¸`)

!)
= op(1);

n
p1=2n

8
<
:

2¼
n

n¡1X

`=0

4¼2

¾4
bf2";d ( `̧) ¡ 2¼

¾4

n¡1X

j=¡(n¡1)
k2(j=pn)b°2";j

9
=
; = op(1);

and
n

p1=2n

2
4

(
2¼
n

n¡1X

`=0

efe( `̧)
)2

¡
µ2¼

¾2b°";0
¶2

3
5 = op(1):

Also, by Lemma 3,
n
(2¼=n)

Pn¡1
`=0

¡
2¼=¾2

¢
f̂";d( `̧)

o2
=

¡
4¼2=¾4

¢ b°2
";0 and

p
n

¡
°̂";0 ¡ ¾2¢ =

Op (1) : The Theorem now follows by Theorem 1 of Hong (1996) and the fact that p¡1n Dn(k) !
D(k) ´ R1

0 k4(z)dz < 1 as n ! 1 by assumption 2a.

Proof of Theorem 4

By Theorem 1 it su±ces to show that

n

p1=2n

³
Tn(µ0) ¡ Tn(bµ)

´
= op(1); (10)
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which we do by establishing that

n

p1=2n

(
2¼
n

n¡1X

`=0

³
ef2e (µ0; `̧) ¡ ef2e (µ̂; `̧)

´)
= op(1) (11)

and
n

p1=2n

2
4

(
2¼
n

n¡1X

`=0

efe(µ0; `̧)
)2

¡
(

2¼
n

n¡1X

`=0

efe(µ̂; `̧)
)2

3
5 = op(1): (12)

We will prove only (11) since the proof of (12) is similar. Let

Gµ ( j̧ ; ¸h) =
1

fµ( j̧)
1

fµ (¸h)
:

Then the LHS of (11) is

n

p1=2n

2¼
n

n¡1X

`=0

0
@2¼

n

n¡1X

j=1
W(¸`¡j)

I(¸j)
fµ0( j̧)

1
A

2

¡
0
@2¼

n

n¡1X

j=1
W (¸`¡j)

I(¸j)
fbµ( j̧)

1
A

2

= (2¼)2

n2p1=2n

n¡1X

`=0

n¡1X

j;h=1
W ( `̧¡j)W ( `̧¡h)I( j̧)I(¸h)

³
Gµ0( j̧ ;¸h) ¡Gbµ(¸j; ¸h)

´
:

By a similar argument of deriving (28), the RHS of the above equation is

2¼

np1=2n

n¡1X

j;h=1
I(¸j)I(¸h)

³
Gµ0 (¸j ;¸h) ¡Gbµ( j̧ ; ¸h)

´
Kn(¸j¡h); (13)

where Kn( j̧¡h) is de¯ned as (29). For every ¸j and ¸h,we have by a Taylor series expansion,

G ( j̧ ; ¸h; µ0) ¡G
³
¸j; ¸h ; bµ

´

=
X

u

Ã
1

fµ0(¸h)
@f¡1(¸j ;µ0)

@µu
+

1
fµ0 (¸j)

@f¡1(¸h;µ0)
@µu

! ³bµu ¡ µ0u
´

+1
2

³
bµ¡ µ0

´0 @2G
³
¸j ;¸h; eµ

´

@µ2
³
bµ ¡µ0

´
;

where eµjh = µ0 + ®jh
³
µ̂¡ µ0

´
for some 0 < ®jh < 1 and

@2G ( j̧ ; ¸h; µ)
@µ2

= 1
fµ (¸h)

@2f¡1(¸j; µ)
@µ2

+ @f¡1(¸j; µ)
@µ

@f¡1(¸h;µ)
@µ

0

1
fµ (¸j)

@2f¡1(¸h; µ)
@µ2

+
@f¡1(¸h;µ)

@µ
@f¡1( j̧ ;µ)

@µ

0
(14)
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To prove (11), we will show that (13) is op (1) by verifying, for each u;

2¼

np1=2n

n¡1X

j;h=1
I( j̧)I(¸h)

Ã
1

fµ0 (¸j)
@f¡1(¸h; µ0)

@µu

! ³
bµu ¡ µ0u

´
Kn( j̧¡h) = op (1) ; (15)

and
2¼

np1=2n

n¡1X

j;h=1
I(¸j)I(¸h)

³
bµ ¡ µ0

´0 @2G
³
¸j; ¸h; eµ

´

@µ2
³
bµ ¡ µ0

´
Kn(¸j¡h) = op (1) : (16)

We ¯rst show (15). Let

g(¸) =
@ lnf( ;̧ µ0)

@µu
; (17)

then
1

fµ0( j̧)
@f¡1(¸h ;µ0)

@µu
= ¡ 1

fµ0(¸j)
1

fµ0(¸h)
g(¸h):

Since bµ ¡ µ0 = Op
³
n¡1=2

´
, (15) is true if

n¡1X

j;h=1

I(¸j)
fµ0 (¸j)

I(¸h)
fµ0 (¸h)

g(¸h)Kn( j̧¡h) = op
³
n3=2p1=2n

´
:

By (8), it is thus enough to show that

n¡1X

j;h=1
I"( j̧)I"(¸h)g(¸h)Kn( j̧¡h) = op

³
n3=2p1=2n

´
; (18)

n¡1X

j;h=1
I"( j̧)Rµ0(¸h)g(¸h)Kn(¸j¡h) = op

³
n3=2p1=2n

´
; (19)

and
n¡1X

j;h=1
Rµ0( j̧)Rµ0(¸h)g(¸h)Kn(¸j¡h) = op

³
n3=2p1=2n

´
: (20)

Since g(¸) = O
³
¸¡±

´
by assumption 7, (19) and (20) can be shown by an argument similar to

that used to establish (30) and (31). To show (18), we let

am =
n¡1X

h=1
g(¸h)e¡i¸hm:

The LHS of (18) is

n¡1X

j;h=1
I"(¸j)I"(¸h)g(¸h)

0
@

n¡1X

p=¡(n¡1)
k2pei j̧¡hp +2

n¡1X

p=1
kpkn¡pei j̧¡hp

1
A

13



=
1

(2¼n)2
n¡1X

p=¡(n¡1)
k2p

X

s;t;u;v
"s"t"u"v

n¡1X

h=1
g(¸h)e¡i¸h(u¡v¡p)

n¡1X

j=1
e¡i j̧ (s¡t+p)

+
2

(2¼n)2
n¡1X

p=1
kpkn¡p

X

s;t;u;v
"s"t"u"v

n¡1X

h=1
g(¸h)e¡i̧ h(u¡v¡p)

n¡1X

j=1
e¡i¸j(s¡t+p)

= 1
4¼2n

0
@

n¡1X

p=¡(n¡1)
k2p

X

t;u;v
au¡v¡p"t"t¡p"u"v +2

n¡1X

p=1
kpkn¡p

X

t;u;v
au¡v¡p"t"t¡p"u"v

1
A

¡ 1
4¼2n2

0
@

n¡1X

p=¡(n¡1)
k2p

X

s;t;u;v
au¡v¡p"s"t"u"v+ 2

n¡1X

p=1
kpkn¡p

X

s;t;u;v
au¡v¡p"s"t"u"v

1
A : (21)

We will show that both terms of the last expression in (21) have second moments of order o(n3pn):

By the Cauchy Schwarz inequality, we have

E

0
@

n¡1X

p=¡(n¡1)
k2p

X

t;u;v
au¡v¡p"t"t¡p"u"v + 2

n¡1X

p=1
kpkn¡p

X

t;u;v
au¡v¡p"t"t¡p"u"v

1
A
2

= O( 1
16¼4n2

n¡1X

p1;p2=¡(n¡1)
k2p1k

2
p2

X

t1 ;t2;u1 ;u2 ;v1 ;v2

au1¡v1¡p1au2¡v2¡p2

£E ("t1 "t2 "t1¡p1"t2¡p2"u1"u2"v1"v2))

+O(
1

16¼4n2

n¡1X

p1 ;p2=¡(n¡1)
k2n¡p1k

2
n¡p2

X

t1;t2 ;u1;u2;v1 ;v2
au1¡v1¡p1au2¡v2¡p2

£E ("t1 "t2 "t1¡p1"t2¡p2"u1"u2"v1"v2))

Since "t are independent with zero mean, the above expectation is positive only when the random

variables inside the parentheses consist of products of even powers of the "t. Thus, the above

expression is dominated by two cases: one is when p1 = p2 = 0, u1 = u2 and v1 = v2 while the

other is when p1 = p2 = 0, u1 = v1and u2 = v2: Using lemma 6, the order of these two cases is

O

0
@n¡2

X

t1 ;t2 ;u1 ;u2
a2u1¡u2 + n¡2

X

t1 ;t2;u1;u2
a20

1
A

= O
³
n¡2n5+2± + n¡2n4+2±

´

= o
³
n3pn

´
:

It can be shown that the second moment of the second term in (21) is also of order o(n3pn) by

similar arguments. We have thus established (15).

14



Next, we establish (16). Let Auv(¸j; ¸h; eµjh) denote the (u; v)th element of the matrix

@2G
³
j̧ ; ¸h; eµjh

´

@µ2
:

Then, by (14) and Assumption 7,

Auv(¸j; ¸h; eµjh) = O
µ

¸2
edjh
j ¸2edjh

h ¸¡±j ¸¡±h

¶
; (22)

where eµjh =
³ē
jh; edjh

´0
: Since bµ¡ µ0 = Op

³
n¡1=2

´
; (16) will follow if for every (u;v)

n¡1X

j;h=1
I( j̧)I(¸h)Auv( j̧ ;¸h; eµjh)Kn( j̧¡h) = op

³
n2p1=2n

´
:

To show this, it su±ces, by (8), to prove that

n¡1X

j;h=1
f(µ0;¸j)f(µ0; ¸h)I"(¸j)I"(¸h)Auv( j̧ ;¸h; eµjh)Kn(¸j¡h) = op

³
n2p1=2n

´
; (23)

n¡1X

j;h=1
f(µ0;¸j)f(µ0;¸h)I"(¸j)Rµ0(¸h)Auv( j̧ ;¸h; eµjh)Kn(¸j¡h) = op

³
n2p1=2n

´
;

and
n¡1X

j;h=1
f(µ0; j̧)f(µ0;¸h)Rµ0 (¸j)Rµ0(¸h)Auv(¸j ;¸h; eµjh)Kn(¸j¡h) = op

³
n2p1=2n

´
:

We will prove only the ¯rst of these, since the proof for the other two is similar. Letting

Yn =
n¡1X

j;h=1
f(µ0; j̧)f(µ0;¸h)I"( j̧)I"(¸h)Auv(¸j ;¸h; eµjh)Kn(¸j¡h);

we have

Yn = I
³
d̂ ¸ d0

´
Yn+ I

³
d̂ < d0

´
Yn: (24)

First consider d̂ ¸ d0: Then edjh ¸ d0 for all j;h: Hence, by Assumption 7 and (22), we have

f(µ0;¸j)f(µ0; ¸h)Auv( j̧ ;¸h; eµjh) = O
³
¸¡±j ¸¡±h

´
for all j; h. Also, by the Cauchy Schwarz in-

equality, supj;hE jI"( j̧)I"(¸h)j < K < 1 and it follows from (32) that

E
¯̄
¯I

³
d̂ ¸ d0

´
Yn

¯̄
¯ = O

0
@
n¡1X

j;h=1
¸¡±j ¸¡±h n (j ¡h)¡1

1
A = O

³
n2 log n

´
= o

³
n2p1=2n

´
: (25)

15



Now consider d̂ < d0: Then 0 < edjh < d0 for all j; h: By part (iii) of Assumption 7 we get that

f(µ0;¸j)f(µ0; ¸h)f¡1(eµjh ;¸j)f¡1(eµjh; ¸h) = (1 +¢j) (1 +¢h) ;

where j¢j j · Kjjµ̂ ¡ µ0jj¸¡2d0j for all j. Furthermore, f(eµjh;¸j)f(eµjh;¸h)Auv( j̧ ; ¸h; eµjh) =

O
³
¸¡±j ¸¡±h

´
by (22). Using these bounds and the fact that supj;hE jI"(¸j)I"(¸h)j < K < 1; we

get

E
¯̄
¯I

³
d̂ < d0

´
Yn

¯̄
¯ = O

³
n2 log n

´
+ O

³
n3=2 log n

´

+I (d < 1=4)O (n log n) + I (d ¸ 1=4)O
³
n4d+2± log n

´

= o
³
n2p1=2n

´
: (26)

Thus, (23) follows from (24), (25) and (26).

Lemma 1 Under the assumptions in Theorem 2,

n
p1=2n

(
2¼
n

n¡1X

`=0

Ã
ef2
e(¸`) ¡ 4¼2

¾4
bf2
";d ( `̧)

!)
= op(1): (27)

Proof. The LHS of (27) is

n

p1=2n

2¼
n

n¡1X

`=0

2
64

0
@2¼

n

n¡1X

j=1
W ( `̧¡j)

I(¸j)
f( j̧)

1
A

2

¡
0
@2¼

¾2
2¼
n

n¡1X

j=1
W ( `̧¡j)I"(¸`)

1
A
2
3
75

=
(2¼)3

n2p1=2n

n¡1X

`=0

n¡1X

j;h=1
W ( `̧¡j)W (¸`¡h)fI"( j̧)R(¸h) + I"(¸h)R( j̧) +R(¸j)R(¸h)g :

Letting ks = k(s=pn) and ©( j̧ ;¸h) = I"(¸j)R(¸h) + I"(¸h)R( j̧) +R(¸j)R(¸h); the last line of

the above equation becomes

2¼

n2p1=2n

n¡1X

`=0

n¡1X

j;h=1

n¡1X

p;q=¡(n¡1)
kpkqe¡i( `̧¡jp+ `̧¡hq)©( j̧ ;¸h)

=
2¼

n2p1=2n

n¡1X

j;h=1

n¡1X

p;q=¡(n¡1)
kpkqei(¸jp+¸hq)©(¸j ;¸h)

n¡1X

`=0
e¡i¸`(p+q)

=
2¼

np1=2n

0
@
n¡1X

j;h=1
©(¸j; ¸h)

0
@

n¡1X

p=¡(n¡1)
k2pei¸j¡hp +2

n¡1X

p=1
kpkn¡pei j̧¡hp

1
A

1
A : (28)
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Let

Kn(¸s) =
n¡1X

p=¡(n¡1)
k2pe
i̧ j¡hp+ 2

n¡1X

p=1
kpkn¡pei¸j¡hp: (29)

We will show that (28) is op(1) by verifying

E

¯̄
¯̄
¯̄
n¡1X

j;h=1
R(¸j)I"(¸h)Kn( j̧¡h)

¯̄
¯̄
¯̄ = o

³
np1=2n

´
; (30)

and

E

¯̄
¯̄
¯̄
n¡1X

j;h=1
R(¸j)R(¸h)Kn(¸j¡h)

¯̄
¯̄
¯̄ = o

³
np1=2n

´
: (31)

To prove the above two equations, we will need a bound for Kn(¸s): Using the facts that

p¡1n
P jkpj = O (1) and

Pb
`=a ei¸` = O(¸¡1) uniformly in a and b for 0 < ¸ < ¼ (see Zyg-

mund, 1977, p. 2), by applying summation by parts and by Assumption 2b, for s 6= 0 we

obtain
n¡1X

p=¡(n¡1)
k2pei şp = 2

n¡1X

p=1
k2p cos(¸sp) +1

= 2
n¡2X

p=1

³
k2p ¡k2p+1

´ pX

u=1
cos(¸su) + 2k2n¡1

n¡1X

u=1
cos(¸su) + 1

= 2
n¡2X

p=1
(kp ¡kp+1) (kp +kp+1)

pX

u=1
cos(¸su) +O (1)

= O
Ãn¡2X

m=1

1
pn

k
0

ep (kp+ kp+1)
pX

u=1
cos(¸su)

!

= O(¸¡1s );

where p < ep < p+ 1. Similarly,
n¡1X

p=1
kpkn¡pei¸sp = O(¸¡1s );

and hence

Kn(¸s) = O(¸¡1s ): (32)

We shall only derive (30) and (31) when j 6= h; since the proofs for j = h are similar and simpler.

To prove (30) we note that the LHS of (30) is bounded by

E

¯̄
¯̄
¯̄
log2nX

j=1

X

h6=j
R(¸j)I"(¸h)Kn( j̧¡h)

¯̄
¯̄
¯̄ +2E

¯̄
¯̄
¯̄
n¡1X

j=log2n+1

log2 nX

h=1
R( j̧)I"(¸h)Kn(¸j¡h)

¯̄
¯̄
¯̄

17



+E

¯̄
¯̄
¯̄
n¡1X

j=log2 n+1

n¡1X

h=log2 n+1

R(¸j)I"(¸h)Kn( j̧¡h)
¯̄
¯̄
¯̄ :

Using the Cauchy Schwarz inequality, lemma 5, equation (32) and the fact that maxj E
¡
I2" ( j̧)

¢
<

1; the ¯rst term and second term of the equation above are of the order

O

0
@

log2nX

j=1

X

h 6=j
jKn( j̧¡h)j +

n¡1X

j=log2 n+1

log2nX

h=1
jKn( j̧¡h)j

1
A

= O

0
@

log2nX

j=1

X

h 6=j
¸¡1j¡h+

n¡1X

j=log2 n+1

log2nX

h=1
¸¡1j¡h

1
A

= O
³
n log3 n

´
:

To verify the third term is o(np1=2n ); we will show that

E

¯̄
¯̄
¯̄
n¡1X

j=log2n+1

n¡1X

j 6=h=log2n+1

R( j̧)I"(¸h)Kn(¸j¡h)
¯̄
¯̄
¯̄

2

= o(n2pn):

By Assumption3, lemma 4 and (32),

E

¯̄
¯̄
¯̄
n¡1X

j=log2n+1

n¡1X

j 6=h=log2n+1

R( j̧)I"(¸h)Kn(¸j¡h)
¯̄
¯̄
¯̄

2

= 2
n¡1X

h1=log2n+1

h1¡1X

j1=log2 n+1

n¡1X

h2=log2n+1

h2¡1X

j2=log2n+1

E (R(¸j1)I"(¸h1)R( j̧2)I"(¸h2 ))

£Kn(¸j1¡h1)Kn(¡ j̧2¡h2 )

+2
n¡1X

h1=log2 n+1

n¡1X

j1=h1+1

n¡1X

h2=log2 n+1

n¡1X

j2=h2+1
E (R( j̧1)I"(¸h1)R(¸j2 )I"(¸h2))

£Kn(¸j1¡h1)Kn(¡ j̧2¡h2 )

= O

0
@

n¡1X

h1=log2n+1

h1X

j1=log2 n+1

n¡1X

h2=log2n+1

h2X

j2=log2 n+1

j¡d1 hd¡11 j¡d2 hd¡12 log h1 log h2¸¡1j1¡h1¸
¡1
j2¡h2

1
A

= O
³
n2 log6 n

´
:

Thus (30) is proved. The proof of (31) is similar to that of (30).

Lemma 2 Under Assumptions 1a, 2a and 3a,

n

p1=2n

8
<
:

2¼
n

n¡1X

`=0

bf2";d(¸`) ¡ 2¼
¾4

n¡1X

j=¡(n¡1)
k2(j=pn)b°2";j

9
=
; = op(1):

18



Proof. Since I"( j̧) = In;"(¸j) and In;"(0) = 0; we have

I" (¸j) =
1

2¼

n¡1X

h=¡(n¡1)
b°";he¡i j̧h ; for j = 1; :::; (n ¡ 1):

Now

2¼
n

n¡1X

`=0

bf2
";d( `̧)

=
µ2¼

n

¶3 1
4¼2¾4

n¡1X

;̀j1 ;j2=0

n¡1X

p1 ;p2;h1;h2=¡(n¡1)
kp1kp2b°";h1b°";h2 e¡i¸`¡j1 p1 ei¸`¡j2p2 e¡i¸j1h1 ei¸j2h2

=
2¼

n3¾4
n¡1X

p1 ;p2;h1;h2=¡(n¡1)
kp1kp2b°";h1b°";h2

n¡1X

`=0
e¡i¸p1¡p2`

n¡1X

j1=0
e¡i¸h1¡p1j1

n¡1X

j2=0
e¡i¸h2¡p2j2

=
2¼
¾4

n¡1X

p=¡(n¡1)
k2p

³
b°2";p + b°";pb°";n¡jpj

´
+

4¼
¾4

n¡1X

p=1
kpkn¡p

³
b°2
";p + b°";pb°";n¡p

´
:

Hence, to show Lemma 2, it is su±cient to prove that
n¡1X

p=¡(n¡1)
kpkn¡jpjb°2";p = op(n¡1p1=2n ) (33)

and
n¡1X

p=¡(n¡1)

³
k2p + kpkn¡jpj

´
b°";pb°";n¡jpj = op(n¡1p1=2n ): (34)

In the steps which follow next, we will assume that k has unbounded support. If k has bounded

support, all terms involving kpkn¡jpj are zero in both (33) and (34) and the proof is extremely

simple. By Assumptions 2a and 3,

E

¯̄
¯̄
¯̄

n

p1=2n

n¡1X

p=1
kpkn¡pb°2";p

¯̄
¯̄
¯̄ · n

p1=2n

n¡1X

p=1
jkpkn¡pj

n ¡ p
n2

=
n

p1=2n

n=2X

p=1
jkpkn¡pj

µ n ¡ p
n2 +

p
n2

¶
=

1

p1=2n

n=2X

p=1
jkpj

p±n
(n ¡ p)±

= O

0
@ p±+1

n

n±p1=2n

1
pn

n=2X

p=1
jkpj

1
A = o(1)

since p¡1n
Pn=2
p=1 jkpj = O (1). We now verify equation (34).

E

0
@
n¡1X

p=1

³
k2p +kpkn¡jpj

´
b°";pb°";n¡p

1
A

2

19



=
X

p

³
k2p +kpkn¡jpj

´2
E

³
b°2";pb°2";n¡p

´

+
X

p 6=q

³
k2p + kpkn¡jpj

´ ³
k2q + kqkn¡jqj

´
E (b°";pb°";n¡pb°";qb°";n¡q) : (35)

By Lemma 1 on page 186 of Grenander and Rosenblatt (1957), E
³

b°2
";pb°2
";n¡p

´
= O

¡
n¡2

¢
while

E (b°";pb°";n¡pb°";qb°";n¡q) = O(n¡3): Hence, by Assumption 2a, the ¯rst term of (35) is

O
ÃX

p

³
k2p +kpkn¡jpj

´2 1
n2

!
= O

µpn
n2

¶
;

while the second term of (35) is

Op

0
@ 1

n3

X

p 6=q

³
k2p + kpkn¡jpj

´ ³
k2q + kqkn¡jqj

´
1
A = Op

Ã
p2n
n3

!
:

and the lemma is established.

Lemma 3 Under the assumptions in Theorem 2,
(

2¼
n

n¡1X

`=0

efe( `̧)
)2

¡
µ2¼

¾2

¶2
b°2
";0 = Op(n¡1 log2 n) (36)

and (
2¼
n

n¡1X

`=0
f̂";d(¸`)

)2

= b°2";0:

Proof. The proof of the second claim of the lemma is contained in the proof of the ¯rst claim,

which we show below. By (8),

2¼
n

n¡1X

`=0

efe( `̧) =
2¼
n

n¡1X

`=0

2¼
n

n¡1X

j=1
W (¸`¡j)

µ 2¼
¾2 I"(¸j)+ R( j̧)

¶

=
2¼
n2

n¡1X

j=1

n¡1X

q=¡(n¡1)
kqe¡i¸jq

µ
2¼
¾2 I"(¸j) +R(¸j)

¶ n¡1X

`=0
ei `̧q

=
2¼
n

n¡1X

j=1

2¼
¾2 I"( j̧) +

2¼
n

n¡1X

j=1
R( j̧):

Let In;" be the mean corrected periodogram of "t. Then I"( j̧) = In;"(¸j) = 1
2¼

P b°";he¡i̧ jh and

In;"(0) = 0: We have the ¯rst term of the last line,

2¼
n

2¼
¾2
n¡1X

j=0
In;"( j̧) =

2¼
n

2¼
¾2

1
2¼

n¡1X

j=0

n¡1X

h=¡(n¡1)
b°";he¡i j̧h

20



=
1
n

2¼
¾2

n¡1X

h=¡(n¡1)
b°";h

n¡1X

j=0
e¡i̧ jh

= 2¼
¾2b°";0:

Thus, the LHS of (36) is

2 ¢ 2¼
¾2b°";0

0
@2¼

n

n¡1X

j=1
R(¸j)

1
A +

0
@2¼

n

n¡1X

j=1
R( j̧)

1
A
2

: (37)

We will show that the second term is Op(n¡2 log4 n): It follows by Chebyshev's inequality and

the fact that b°";0 = Op (1) that the ¯rst term is Op(n¡1 log2n). Now

E

0
@
n¡1X

j=1
R( j̧)

1
A
2

= E

0
@

log2 nX

j=1
R( j̧)

1
A
2

+2E

0
@
log2nX

j=1

n¡1X

h=log2 n

R( j̧)R(¸h)

1
A +E

0
@
n¡1X

j=log2n

R(¸j)

1
A

2

:

By lemma 5, the ¯rst term is O(log2 n), the second term is O(log4n) while the third term is

O
³
log4 n

´
and hence (37) is Op

³
n¡1 log2 n

´
:

Lemma 4 Under the assumptions in Theorem 2,

E [R( j̧)I"(¸h)R(¸k)I"( `̧)] = O(j¡dhd¡1k¡d`d¡1 log h log `) (38)

and

E [R(¸j)R(¸h)R(¸k)R( `̧)] = O(j¡dhd¡1k¡d`d¡1 log h log `) (39)

uniformly for log2n · j < h · n; log2 n · k < ` · n:

Proof. The development of this proof closely matches that of Lemma 2 of Hurvich, Deo and

Brodsky (1998). We'll use the following notations,

Ij = I( j̧); fj = f( j̧) and I"j = I"( j̧):

The LHS of (38) is

E
"Ã

Ij
fj

¡ 2¼¾¡2I"j

!
I"h

µ Ik
fk

¡ 2¼¾¡2I"k
¶

I"`

#
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= E
"Ã

Ij
fj

¡ 1 ¡ 2¼¾¡2I"j +1
!

I"h
µ Ik

fk
¡ 1 ¡ 2¼¾¡2I"k + 1

¶
I"`

#

= E
"Ã

Ij
fj

¡ 1
!

I"h
µ

Ik
fk

¡ 1
¶

I"`

#
¡E

·³
2¼¾¡2I"j ¡ 1

´
I"h

µ
Ik
fk

¡ 1
¶

I"`
¸

(40)

¡E
"Ã

Ij
fj

¡ 1
!

I"h
³
2¼¾¡2I"k ¡ 1

´
I"`

#
+E

h³
2¼¾¡2I"j ¡ 1

´
I"h

³
2¼¾¡2I"k ¡ 1

´
I"`

i
:

Note that the last expectation of (40) is zero. Let

E
"Ã

Ij
fj

¡ 1
!

I"h
µ Ik

fk
¡ 1

¶
I"`

#
= E (³j³h³k³`) ;

and

À =

0
@ Axj

f1=2j
;

Bxj
f1=2j

;
p

2¼
¾

A"h ;
p

2¼
¾

B"h;
Axk
f1=2
k

;
Bxk
f1=2
k

;
p

2¼
¾

A"`;
p

2¼
¾

B"`

1
A
0

= (À1; À2;À3; À4; À5;À6; À7;À8)0

where

Aaj =
1p
2¼n

nX

t=1
at cos ( j̧t) ; Baj =

1p
2¼n

nX

t=1
at sin(¸jt) :

The vector À has a eight-dimensional multivariate Gaussian distribution with mean zero and

covariance matrix §. De¯ne ª = §¡1: Partition § and ª as

§ =

2
64

§11 §12

§21 §22

3
75 and ª =

2
64

ª11 ª12

ª21 ª22

3
75 ;

where §ij and ªij are 4 £ 4 matrices. By the formulas for the inverse of a partitioned matrix,

ª11 = §¡1
11 + §¡1

11 §12
³
§22¡§21§¡1

11 §12
´¡1

§21§¡1
11 ;

ª12 = ¡§¡1
11 §12

³
§22¡§21§¡1

11 §12
´¡1

and

ª22 =
³
§22 ¡§21§¡1

11 §12
´¡1

:

Letting Vaj = Aaj or Baj ; we have from Lemma 4 of Moulines and Soulier (1999),

E

0
@ Vxj

f1=2
j

Vxk
f1=2
k

1
A = O

³
j¡dkd¡1 log k

´
: (41)
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for 1 · j < k · n=2: Following similar arguments of this lemma, it can be shown that for

1 · j < k · n=2

E
Ã

V2
xj
fj

!
=

1
2

+O
³
j¡1 log j

´
; (42)

E
Ã

V"jVxk
f1=2
k

!
= O

³
j¡dkd¡1 log k

´
and E

0
@VxjV"k

f1=2
j

1
A = O

³
j¡dkd¡1 log k

´
: (43)

Letting

R = §¡1
2
I8 =

0
B@

R11 R12

R21 R22

1
CA

where I8 is a 8 £ 8 identity matrix, we see from (41), (42) and (43) that R = o(1) for log2 n <

j < h · n=2; log2 n < k < ` · n=2: By the fact that (I +A)¡1 = I¡ (I+ A)¡1 A, we get

ª = 2I8 ¡ 2R(I8 +2R)¡1 = O(1). Let

eª =

2
64

ª11 0

0 ª22

3
75

and de¯ne ª = ª ¡ eª: We have

E (³j³h³k³`) = (2¼)4 jªj1=2
Z

¢ ¢ ¢
Z

³j³h³k³`e¡
1
2 À

0ªÀdÀ

= (2¼)4 jªj1=2
Z

¢ ¢ ¢
Z

³j³h³k³`e¡
1
2 À

0eªÀdÀ (44)

+(2¼)4 jªj1=2
Z

¢ ¢ ¢
Z

³j³h³k³`e¡
1
2 À

0eªÀ n
e¡

1
2 À

0ªÀ ¡ 1
o

dÀ (45)

Let À(jh) = (À1;À2; À3;À4)0; À(k`) = (À5;À6; À7; À8)0, the ¯rst term of the above equation is

(2¼)4 jªj1=2
ZZZZ

³j³he
¡1

2À
0
(jh)ª11À(jh)dÀ(jh)

ZZZZ
³k³`e

¡1
2À

0
(k`)ª22À(k`)dÀ(k`): (46)

The ¯rst quadruple integral of (46) is
ZZZZ

³j³he
¡1

2 À
0
(jh)§

¡1
11 À(jh) e¡

1
2À

0
(jh)M11À(jh)dÀ(jh) (47)

where

M11 = §¡1
11 §12

³
§22 ¡ §21§¡1

11 §12
´¡1

§21§¡1
11 :

Let ¿11 be the largest absolute entry of M11: Since jeu¡ 1j · juj ejuj for all u;

e¡
1
2 À

0
(jh)M11À(jh) = 1 +O

½
¿11

°°°À(jh)
°°°
2
e
3
2 ¿11kÀ(jh)k2

¾
:
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Thus (47) is equal to
ZZZZ

³j³he
¡1

2 À
0
(jh)§

¡1
11 À(jh)dÀ(jh)

+O
½ZZZZ

j³j³hj ¿11
°°°À(jh)

°°°
2
e¡

1
2 À

0
(jh)(§

¡1
11 ¡3¿11I4)À(jh)dÀ(jh)

¾
: (48)

The second term is O (¿11) = O(j¡2dk2d¡2 log2 k1(j<k) + k¡2dj2d¡2 log2 k1(j>k)) by (41), (42)

and (43). Note that

§¡1
11 = 2I4 ¡ 2R11 (I4 + 2R11)¡1 = 2I4 + o (1) :

Let ´11 be the largest absolute entry of 2R11 (I4 + 2R11)¡1 ;

e
1
2À

0
(jh)(2R11(I4+2R11)¡1)À(jh) = 1 + O

½
´11

°°°À(jh)
°°°
2
e
3
2´11kÀ(jh)k2

¾
:

Thus the ¯rst term of (48) is
ZZZZ

³j³he
¡ 1

2À
0
(jh)2I4À(jh)dÀ(jh)

+O
½ZZZZ

j³j³hj´11
°°°À(jh)

°°°
2
e
1
2 À

0
(jh)((2¡3´11)I4)À(jh)dÀ(jh)

¾

=
ZZ

³je
¡1

2 À
0
(j)2I2À(j)dÀ(j)

ZZ
³je

¡1
2 À

0
(h)2I2À(h)dÀ(h)

+O
½ZZZZ

j³j³hj´11
°°°À(jh)

°°°
2
e
1
2 À

0
(jh)((2¡3´11)I4)À(jh)dÀ(jh)

¾
:

The ¯rst term of the RHS of the above equation is zero since the ¯rst double integral is

the expectation of ³j assuming the covariance matrix is 0:5I4: The second term is O(´11) =

O(j¡dhd¡1 log h): We have shown that the ¯rst quadruple integral of (46) is O(j¡dhd¡1 log h +

j¡2dk2d¡2 log2 k1(j·k)+j2d¡2k¡2d log2 j1(k·j)): It can be shown in the same fashion that the sec-

ond quadruple integral of (46) is O(k¡d`d¡1 log `+j¡2dk2d¡2 log2 k1(j·k)+j2d¡2k¡2d log2 j1(j>k)):

Hence (44) is O(j¡dhd¡1k¡d`d¡1 log h log `):

Now we consider (45). By the mean value theorem, jeu ¡ 1 ¡uj · (1=2)u2ejuj for all u: Thus

e¡
1
2 À

0ªÀ ¡ 1 = ¡1
2
À0ªÀ +O

³
¿2 kÀk4 e2¿kÀk

2´
;

where ¿ is the largest absolute entry of ª: Note that ¿2 = O(j¡2dk2d¡2 log2 k1(j·k)+j2d¡2k¡2d log2 j1(k·j)):

Hence (45) is

(2¼)4 jªj1=2
Z

¢ ¢ ¢
Z

³j³h³k³`¡
1
2
À0ªÀe¡

1
2 À

0eªÀdÀ

+O
½
¿2

Z
¢ ¢ ¢

Z
j³j³h³k³`j kÀk4 e¡

1
2 À

0¡eª¡4¿ I8
¢
ÀdÀ

¾
:
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The second term is O(¿2): The ¯rst term is the linear combination of Eeª [³j³h³k³`AjAk] ;

Eeª [³j³h³k³`AjBk] ; Eeª [³j³h³k³`AjA`] ; Eeª [³j³h³k³`AjB`] ;...,etc., where Eeª denotes the expec-

tation assuming that À is multivariate normal with mean zero and covariance matrix eª: Since

cov(À) = eª implies that the vectors (Aj ; Bj ;Ah; Bh), (Ak;Bk; A`;B`) are independent. Thus,

for example, Eeª [³j³h³k³`AjAk] = Eeª [³j³hAj ] Eeª [³k³`Ak] ; and both of these expectations are

zero because the ³j³h and ³k³` are even functions of (Aj ;Bj ; Ah;Bh) respectively, and because

the densities for (Aj ;Bj ; Ah ;Bh) and (Ak; Bk; A`; B`) are also even functions. We have shown

that (45) is O(¿2) = O(j¡2dk2d¡2 log2 k1(j·k) + j2d¡2k¡2d log2 j1(k·j)). Hence

E
"Ã

Ij
fj

¡ 1
!

I"h
µ Ik

fk
¡ 1

¶
I"`

#
= O(j¡dhd¡1k¡d`d¡1 log h log `):

It can be shown in a similar way that the rest of the second and the third expectations of (40)

are both O(j¡dhd¡1k¡d`d¡1 log h log `) uniformly in log2 n · j < h · n=2; log2 n · k < ` · n=2:

The order in (39) can be derived following the same lines as above.

Lemma 5 Under the assumptions of Theorem 2,

E [R(¸j)R(¸h)] = O(j¡1h¡1 log h log j + j¡2dh2d¡2 log2h)

and

E
h
R2( j̧)

i
= O

³
j¡1 log j

´
:

uniformly for log2n · j < h · n: Also max1·j·nE
£
R2 ( j̧)

¤
< 1:

The proof of the ¯rst two bounds stated in this lemma is similar to that of lemma 4. The

last bound is obtained by using the bounds (41), (42) and (43) and the Gaussianity of the

observations.

Lemma 6 Let g(¸) be de¯ned as (17). Then, under assumption 7,

n¡1X

h=1
g (¸h) e¡i¸hm = O

³
n±

´
if m = 0;

= O
³
n1+±m¡1

´
if m 6= 0:
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Proof. We'll prove the lemma by showing that

2¼
n

n¡1X

h=1
g (¸h) e¡i¸hm = O

³
n¡1+±

´
if m = 0;

= O
³
n±m¡1

´
if m 6= 0 and jmj · n (49)

We ¯rst derive the result for m = 0: Note that
2¼Z

0

g(¸)d¸ = 0:

Hence, the LHS of (49) is

2¼
n

n¡1X

h=1
g(¸h) =

0
@2¼

n

n¡1X

h=1
g(¸h) ¡

2¼Z

0

g(¸)d¸

1
A

=
n¡1X

h=1

¸hZ

¸h¡1

(g(¸h) ¡ g(¸))d¸¡
¸nZ

¸n¡1

g(¸)d¸

=
n¡1X

h=1
g0( ȩh)

¸hZ

¸h¡1

(¸h¡¸)d¸¡
¸1Z

0̧

g(¸)d¸;

where ¸h¡1 < ¸eh < ¸h and we use the fact that g(¸) is symmetric around ¼=2: By assumption

7, the last equation above is

O
Ã nX

h=1
¸¡1¡±h ¢ 1

2

µ
2¼
n

¶2
+ ¸1¡±1

!
= O

³
n¡1+±

´
:

For m 6= 0; we have by summation by parts

2¼
n

n¡1X

h=1
g(¸h)ei¸hm

=
2¼
n

n¡2X

h=1
(g(¸h) ¡ g(¸h+1))

hX

`=1
ei¸`m +

2¼
n

g(¸n¡1)
n¡1X

`=1
ei¸`m

=
2¼
n

n¡2X

h=1
g0(¸eh) (¸h¡ ¸h+1)

hX

`=1
ei¸`m +

2¼
n

g(¸n¡1)(¡1):

Because
Pb
`=a ei¸` = O(¸¡1) uniformly in a and b for 0 < ¸ < ¼ (see Zygmund, 1977, p. 2); this

is

O
Ã

1
n

n¡2X

h=1
¸¡1¡±h ¸1¸¡1m +

1
n1¡±

!
= O

Ã
n±

m

!
:

26



REFERENCES

[1] Beran, J. (1992) \A Goodness-of-¯t test for time series with long range dependence", J. R.
Statist. Soc. B, 54, 749-60.

[2] Billingsley, P. (1986), \Probability and Measure", 2nd ed., John Wiley.

[3] Box, G. E. P., and Pierce, D. A. (1970), \Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models", Journal of American Sta-
tistical Association, 65, 1509-26.

[4] Dahlhaus, R. (1989), \E±cient parameter estimation for self-similar processes", Ann. Stat.,
17, 1749-1766.

[5] Davies, R. B. and Harte, D. S. (1987), \Tests for Hurst e®ect", Biometrika, 74, 95-102.

[6] Deo, R. S. and Chen, W. W. (2000), \On the Integral of the Squared Periodogram", Stochas-
tic Processes and Their Applications, 85, 159-76.

[7] Granger, C. W. J. and Joyeux, R. (1980), \An introduction to long memory time series
models and fractional di®erencing.", Journal of Time Series Analysis, 1, 15-29.

[8] Grenander, U. and Rosenblatt, M. (1957), Statistical Analysis of Stationary Time Series,
John Wiley.

[9] Hong, Y. (1996), \Consistent testing for serial correlation of unknown form", Econometrica,
64, 837-64.

[10] Hosking, J. R. M. (1981), \Fractional di®erencing ", Biometrika, 68, 165-76.

[11] Hurvich, C. M., Deo, R. S. and Brodsky, J. (1998), \The mean squared error of Geweke and
Porter-Hudak's estimator of the memory parameter of a long-memory time series", Journal
of Time Series Analysis, 19, 19-46.

[12] Ljung, G. M. and Box, G. E. P. (1978), \On a measure of lack of ¯t in time series models",
Biometrika, 65, 297-303.

[13] Moulines, E. and Soulier, P. (1999), \Broadband log-periodogram regression of time series
with long-range dependence", Ann. Stat., 27, 1415-39.

[14] Mandelbrot, B. B. and Van Ness, J. W. (1968) \Fractional Brownian motions, Fractional
noises and applications", SIAM Review, 10, 422-437.

[15] Milhoj, A. (1981), \A test of ¯t in time series models", Biometrika, 68, 177-87.

27



[16] Zygmund, A. (1977), \Trigonometric Series". Cambridge University press.

28



TABLE I
Rejection Rates in Percentage Under an AR(1) Model

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 3.08 5.02 4.04 6.12 4.90 7.80 3.82 5.82 4.32 6.98 5.06 8.02
TUK 3.04 4.96 4.04 6.12 6.30 9.68 3.98 5.82 4.56 7.10 5.16 8.40
QS 3.64 5.64 4.52 6.90 5.04 7.74 4.06 6.52 4.74 7.64 5.58 9.26

Ηn BAR 3.30 5.08 3.82 5.82 4.26 6.76 3.62 5.72 4.20 6.54 4.76 7.34
TUK 3.16 4.90 3.78 5.92 4.46 6.96 3.76 5.78 4.26 6.84 4.88 7.48
QS 3.52 5.52 4.22 6.44 4.82 7.40 4.02 6.20 4.36 7.12 5.08 8.36

Μn    4.34  at 5%                   7.12 at 10%    5.14 at 5%                    8.88 at 10%
Note: Model  xt − 0.8 xt-1 =εt.

TABLE II
Rejection Rates in Percentage Under an ARFIMA (0,d,0) Model

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 2.62 4.08 3.52 5.28 4.90 7.42 2.64 4.60 3.74 6.00 4.80 8.20
TUK 2.52 4.00 3.46 5.58 4.96 7.50 2.92 4.78 3.86 6.14 5.10 8.42
QS 3.22 4.98 4.34 6.78 6.62 9.60 3.30 5.74 4.40 7.06 5.58 9.08

Ηn BAR 2.28 3.76 3.02 4.86 3.54 5.88 2.56 4.42 3.42 5.86 4.22 7.00
TUK 2.20 3.52 3.20 5.10 3.90 5.88 3.12 5.32 4.14 6.52 4.70 7.86
QS 2.82 4.46 3.66 5.36 4.10 7.04 2.72 4.54 3.70 5.98 4.44 7.44

Μn    4.70  at 5%                   7.58 at 10%    4.50 at 5%                    8.18 at 10%
Note: Model  xt = ARFIMA (0,d,0) with d = 0.3.

TABLE III
Rejections Rates in Percentage under AR(2)  Alternative

fitting Model AR(1)

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 22.48 28.60 22.92 29.04 22.88 29.62 80.18 84.96 76.02 81.64 68.54 75.74
TUK 21.94 28.16 22.80 28.58 22.40 28.76 79.96 82.18 74.76 81.06 65.66 73.26
QS 22.44 28.64 22.80 28.96 22.74 29.74 78.20 83.42 70.56 77.68 61.04 69.96

Ηn BAR 23.58 30.22 23.42 29.66 22.42 28.70 80.62 85.46 75.84 81.86 68.24 75.26
TUK 23.18 29.36 23.22 29.42 21.98 28.22 80.32 85.24 74.90 80.90 65.02 72.66
QS 23.28 29.90 22.76 28.54 21.12 27.40 78.34 83.96 70.46 77.14 59.60 68.88

Μn    8.84  at 5%                  13.78 at 10%  17.78 at 5%                  25.96 at 10%
Note: Model  xt − 0.8 xt-1 + 0.15 xt-2  = ut.



TABLE IV
Rejections Rates in Percentage Under ARMA(1,1) Alternative

fitting Model ARIMA(1,d,0)

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 9.50 13.38 8.44 12.58 8.96 13.04 31.84 40.74 28.36 36.56 25.10 34.24
TUK 7.24 11.28 8.04 12.06 8.80 12.80 31.34 40.54 26.94 35.12 23.36 32.48
QS 8.74 12.26 8.04 12.02 10.04 14.74 29.20 37.80 25.00 33.62 22.78 31.50

Ηn BAR 12.68 17.04 11.28 15.52 8.92 13.20 33.02 42.28 28.94 37.36 24.82 33.70
TUK 7.98 12.12 8.20 12.32 8.66 12.96 32.66 41.88 27.70 35.72 23.12 31.88
QS 11.48 15.70 10.18 14.40 9.06 13.68 30.32 38.70 25.30 33.72 21.78 30.10

Μn    5.42  at 5%                    8.76 at 10%    6.44 at 5%                   10.38 at 10%
Note: Model  xt = 0.8xt-1 +ut + 0.2 ut-1.

TABLE V
Rejections Rates in Percentage Under ARFIMA(0,d,0) Alternative

fitting Model ARMA(1,1)

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 6.46 9.38 7.50 11.10 8.90 13.30 37.28 44.78 38.54 46.16 37.02 45.06
TUK 6.54 9.10 7.50 11.32 8.68 13.14 38.06 45.20 39.14 46.74 36.20 44.42
QS 7.20 10.22 8.24 12.56 10.44 15.34 39.70 46.54 37.90 45.72 34.36 43.00

Ηn BAR 5.26 7.54 6.22 8.90 6.84 10.34 36.14 43.38 37.28 44.80 35.00 42.88
TUK 5.32 7.48 6.46 9.12 6.92 10.54 37.16 44.08 37.90 45.46 34.22 42.36
QS 6.04 8.64 6.68 10.18 7.32 10.78 38.42 45.56 36.72 44.56 32.26 40.10

Μn    5.34  at 5%                    8.92 at 10%    11.56 at 5%                   17.96 at 10%
Note: Model  xt = ARFIMA (0,d,0) with d = 0.4.

TABLE VI
Rejections Rates in Percentage Under ARFIMA(1,d,0)  Alternative

fitting Model ARFIMA(0,d,0)

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 8.52 12.48 8.76 12.68 9.68 14.16 16.92 22.42 14.94 21.14 13.32 19.42
TUK 8.16 12.10 8.10 12.14 9.10 13.60 16.26 21.78 14.50 20.50 12.80 18.32
QS 8.24 11.74 8.82 12.86 10.88 15.54 15.76 21.34 13.16 19.22 12.62 18.24

Ηn BAR 7.54 10.84 7.54 11.42 7.98 11.56 16.22 21.78 14.22 20.14 12.32 17.74
TUK 7.36 10.68 7.26 11.06 7.60 11.36 15.28 20.38 12.52 18.14 10.88 16.32
QS 7.32 10.70 7.32 11.34 8.12 11.53 15.84 20.98 13.88 19.68 11.60 16.82

Μn  6.14  at 5%                  9.92 at 10%  6.82 at 5%                  11.40 at 10%
Note: Model  xt − 0.1 x t-1  = ut,  ut = ARFIMA (0,d,0) with  d = 0.4.


