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Abstract

We present a goodness of fit test for time series models based on the discrete spectral average
estimator. Unlike current tests of goodness of fit, the asymptotic distribution of our test statistic
allows the null hypothesis to be either a short or long range dependence model. Our test is
in the frequency domain, is easy to compute and does not require the calculation of residuals
from the fitted model. This is especially advantageous when the fitted model is not a finite
order autoregressive model. The test statistic is a frequency domain analogue of the test by
Hong (1996) which is a generalization of the Box-Pierce (1970) test statistic. A simulation study
shows that our test has power comparable to that of Hong’s test and superior to that of another
frequency domain test by Milhoj (1981).
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1 Introduction

Most conventional goodness-of-fit tests for time series models are based on the autocorrelations
of residuals from the fitted model. Examples of such tests include the portmanteau statistic
of Box and Pierce (1970) and its generalization, based on arbitrary kernel functions, by Hong
(1996). The Box-Pierce statistic is obtained as a particular case of the Hong statistic by using the

truncated uniform kernel. Simulations by Hong show that his statistic computed using kernels



other than the truncated uniform kernel gives better power than the Box-Pierce statistic against
autoregressive (AR) processes and fractionally integrated processes.

Box and Pierce (1970) derived the null distribution of their test for autoregressive moving
average (ARMA) models and Hong derived the his null distribution only for finite order autore-
gressive models. Both these results require assumptions that rule out long memory processes
which have hyperbolically decaying correlation functions and spectral densities unbounded at
the origin. Furthermore, both tests requires the computation of residuals from the fitted model,
which can be quite tedious when the model does not have a finite order autoregressive represen-
tation. Also, in such cases, the residuals are not uniquely defined.

A test statistic which circumvents the computation of residuals from the fitted model was pro-
posed by Milhoj (1981). To test the hypothesis that the observations x¢, t = 1,..., n, are from a
process with spectral density f(\), he suggested the test statistic, M¢ = {Z;‘:—ll Vj}iz E;‘;ll 1%
where V; =1()\;)/f(A\), I(N) = (2mn)” ‘Zt_ Mtr is the periodogram of the observations
and \j = 27rj /n is the jth Fourier frequency. Though Milhoj’s test statistic is easily computed,
his theoretical results are restricted to short memory time series models with bounded spec-
tral densities. Assuming Gaussianity, Beran (1992) extended Milhoj’s results to long memory
time series models which have unbounded spectral densities at the origin. Examples of long
memory processes are the autoregressive fractionally integrated moving average (ARFIMA) pro-
cess (see Hosking (1981)). Beran stated that the null distribution of M in the presence of
long memory is the same as that derived by Milhoj (1981) in the case of short memory. Be-
ran obtained his results by claiming that M¢ is asymptotically equivalent to its integral version
My = {J3TVINAN} 5T VAN where V (3) = I()/F(A).

However, Deo and Chen (2000) showed that even in the case of Gaussian white noise, M2
and M, do not have the same asymptotic distribution and that the variance of M, is two thirds
that of M¢. Thus, the asymptotic distribution of M¢ in the long memory case is still an open
question.

In this paper, we introduce a test statistic which is a frequency domain analogue of Hong’s
statistic. We derive the asymptotic null distribution for both short memory models and long

memory models. Since our test does not require the calculation of residuals, it can be easily



applied to long memory processes such as the ARFIMA models which do not possess finite order
AR representations. Our test delivers uniformly better power than the periodogram-based test
M¢Z of Milhoj.

In the next section, we define our test statistic and provide the theoretical results on its
asymptotic null distribution for short and long memory models. The power properties of our
test are studied in section 3 through simulations. The proofs are relegated to the Appendix at

the end.

2 The test statistic

To motivate our test statistic, it is instructive to consider Hong’s statistic to test the null hypoth-
esis that the observations, x¢, t = 1, 2, ...,n, are from an AR(p) process, x; = ag+aqxe—1+ -+
apT_p + &, where g are zero mean white noise. Let e; be the residuals from the fitted model,

e = Ty — Qg — Q Ty — -+ - — QuTy_p, Where Gp,ay, .., @, are the estimates of the parameters

ag, a1, .., ap. Hong’s (1996) test statistic is

n—1

Hn = Z kQ(]/pn)le,Ja
7j=1

where k () is a suitable kernel function, pej = 7ej/7e,0 are the sample autocorrelations of the

residuals and 7, ; are their sample autocovariances,

N 1 & - - .
Yej== > (e —=e)(es_;| =), j=0,%£1,...,£(n—1).
t=ljl+1

By Parseval’s identity, H, can be written as

— _1 = . IR - _1 2 -2 o S
Hn =75 (/——%—1) K2(j /pn)Pe; — 1) =3 { (/0 fe()\)dA) (%/O f ()\)dA) - 1} (1)
where
ﬁ(A) :2_; Z k(j/pn):}?e,jeiw\j. (2)
lil<n

The kernel function k here is also called the lag window, and fe(/\) the lag-weights spectral
density estimator. Let I, . be the mean corrected periodogram of the residuals given by
2
1

Ine(N) = o

n

Z (et . _6) 6fi)\t

t=1




Using the relation
2 o
Geg = [ Inelw)eidw,
0

we have an equivalent form of ﬁ(A) in the frequency domain,

) = /0 T WO = w) (@) (3)

where W, the spectral window corresponding to the lag window k is its Fourier transform
1 .
W =5 > klh/pn)e thA (4)
™
|h|<n
Expressions (1) and (3) provide the motivation for our test statistic. To test a general null
hypothesis that the observations x; are from a process with spectral density f(-), we propose the

following test statistic

"o

271_71—1~ —2 ot n—1
Tnz{—ZfeW)} {XZEW)}; (5)

where

= Z S O A0y

and I is the periodogram of the observations zy, ..., z,,. Note that f, is a discrete version of f,
in (3) with I, replaced by I/f. Thus, we whiten the process in the frequency domain instead
of in the time domain. This not only avoids the computation of residuals but also allows one
to easily test for arbitrary spectral densities. Furthermore, T}, is obtained by discretizing the
integral in (1) with f. replaced by f.. Also note that T}, is mean invariant because f. is evaluated
only at Fourier frequencies. This is especially favourable in the presence of long memory, since
the sample mean is not fully efficient in that case.(See Beran, 1994, p. 6)

Hong (1996) established the asymptotic normality of Hy, for AR models. We show that T}, is
asymptotically normal under a null hypothesis which can be either short memory or long memory
if the process is Gaussian. The properties of a long memory process differ substantially from
those of a short memory process and hence the proof of the asymptotic results for long memory
models requires a more delicate approach than that for short memory models. We now state the

assumptions we make and our main results.



Throughout the rest of this paper, we assume that {z:} is a stationary linear process of the

form,

Te=p+ Y Vi, (6)

§=0
where the innovations e; satisfy the following assumption.
Assumption 1 The series {et} is independently and identically distributed with mean zero,

variance 0% and E(g§) < co.
We also make the following assumptions about the kernel k(-) and the bandwidth py,.

Assumption 2a The kernel function k : R — [—1,1] is a symmetric function that is continuous
at zero and at all but a finite number of points, with k(0) = 1. If the kernel function k is of

unbounded support, then for some § > 1, 2°|k(2)| < 00 as z — .

Assumption 3 The bandwidth p, satisfies log® n/pn — 0 and pp/n — 0. If the kernel function

k is of unbounded support, the bandwidth py, also satisfies prH/ 2 log n/n‘S — 0.

More restrictive assumptions are made on the bandwidth when the kernel is of unbounded
support with the choice of bandwidth depending on the rate of decay of the kernel. The faster
the kernel decays, the less restrictive the condition on p,. It is worth noting that all the kernels
used in practice satisfy Assumption 2a. The next theorem states the asymptotic distribution of

Ty, when {z;} is a short memory process.

Theorem 1 Let xq,...,z, ben observations from a stationary linear process defined by (6) with
coefficients ; such that 3-7° ]@sz|j1/2 < 00 and innovations gy satisfying Assumption 1. Let f(-)
be the spectral density of the process such that infy f(X) > 0. Let Ty, be as in (5) and W be defined
by (4) with kernel function k satisfying Assumption 2a and bandwidth py, satisfying Assumption

3. Then
n (Tn — Cu(k))

Dz N
in distribution as n — oo, where
Cult) = 50— )+
" o " 2



and

- z_: (1 3/m)(1 = (G + 1)/m) G o).

It can be shown that a process satisfying the assumptions in Theorem 1 has bounded spectral
density and autocovariances that are absolutely summable (Brockwell and Davis, 1991, ex 3.9).
Such a process is a short memory process, an example of which is the autoregressive moving
average (ARMA) model. If the chosen kernel is of compact support, assumptions 2a and 3a on
the kernel function k& and bandwidth p, are identical to the assumptions made by Hong (1996)
for the test statistic Hy,. However, the assumptions on the process {x+} of Theorem 1 are satisfied
by a broad range of short memory models while the asymptotic theory of H,, is established only
for autoregressive (AR) models.

To establish the asymptotic normality of T}, when the process is a long memory process, we
restrict the process {x:} to be Gaussian. We also require additional assumptions on k and py,

which we state next.

Assumption 2b In addition to Assumption 2a, the kernel function k is differentiable almost

everywhere and satisfies [ |k (2) k (2)|dz < cc.

All the kernels used in practice satisfy Assumption 2b. We now state the asymptotic distri-
bution of T}, when {z} is a long memory process. For the long memory case, we make the extra
assumption that the process z; is Gaussian. We feel that this assumption can be relaxed just as
in the short memory case in Theorem 1, though at the expense of much greater complexity in

the proof.

Theorem 2 Let x1,...,x, be n observations from a stationary Gaussian linear process defined
by (6) that has a spectral density f(X) ~aX™2¢, as X\ — 0, where a is a constant and d € (0, 0.5).
Also let the spectral density satisfy infy f(\) > 0. Let T, be defined as in Theorem 1 with kernel
function k satisfying Assumption 2b and bandwidth py, satisfying Assumption 3b. Then

n(Tn — Cn(k))

D VO

where Cy(k) and Dy (k) are as in Theorem 1.



A stationary linear process which has a spectral density satisfying the assumption of Theorem
2 is a long memory process. It can be shown that the autocovariances decay to zero hyperbolically
and are not summable for such a process (Theorem 2.24, Zygmund, 1959) Examples of long
memory processes satisfying Assumption 2 are autoregressive fractionally integrated moving-
average (ARFIMA) models (Granger & Joyeux,1980 and Hosking, 1981) and fractional Gaussian
noise (Mandelbrot and Van Ness, 1968).

In applications, the null hypothesis of interest is the composite hypothesis that the process
has spectral density f (0,-) for some unknown 6 in the parameter space ©. Under this composite

null, the test statistic becomes
= o n—1 o —2 o n—1 R
Tn (0) :{WZfe(aa)‘f)} {_Zfe?(ea)%)}? (7)
£=0

where

and 0 is some estimator of @ based on the sample z, ..., x,,. Under certain additional assumptions,
we show in the next two theorems that the asymptotic mull distribution of 7},(6) remains the
same as that of T;, in Theorem 1 and in Theorem 2. We first state the additional assumptions

we need.

Assumption 4 Let Oy be a compact subset of ©, where © is a finite dimensional parameter
space. Let the spectral density of the process {x:} be f(6o,-), where Qg is the true parameter

vector that lies in the interior of ©g. Assume that the estimator 0co satisfies H@ —OOH =

Op (nfl/ 2) .
The following is an assumption on the spectral density for short memory process.

Assumption 5 The spectral density f (0, \) satisfies the following conditions for (8,\) € © X
0,27]

(i) f(8,)\) and f~1(6,\) are continuous at all (6,)).

) g}jf_l (6, ) and E%f_l (6,)) are continuous and finite at all (0,\).

It is very easy to establish that Assumptions 4 and 5 are satisfied by all ARMA models. The

~

next theorem states the asymptotic distribution of 7;,(6) when {z:} is a short memory process.



Theorem 3 Let 1, ..., x, be n observations from a stationary linear process satisfying the same
assumptions as those of Theorem 1. Let the estimated parameter vector 0 satisfy Assumption 4
and the spectral density of the process {x} satisfy Assumption 5. Also let T,,(8) be defined by (7)
with kernel function k and bandwidth p, satisfying the same assumptions as those of Theorem

1. Then R
n (Tu(8) — Cu(k))
Dn (k)1/2

in distribution as n — oo, where Cp (k) and Dy(k) are defined as in Theorem 1.

— N(0,1)

~

To establish the asymptotic distribution of 7;,(€) when {z:} is a long memory process, we

need the following assumption on @ and the spectral density f£(6,-).

Assumption 6 Let ©g be a compact subset of O, where © 1is a finite dimensional parameter
space. Let the spectral density of the process {xi} be f(6o,-), where 8y = (B,do) is the true
parameter vector that lies in the interior of ©g x [61,0.5— &1] for some 0 < & < 0.5. Assume

that the estimator 8 € © satisfies H@ — BOH =0, (n_l/g) .

Assumption 7 Let @ = (B3,d)", where (8,d) € © x (0,27), d € (0,0.5). For any § > 0, the
spectral density f(0,\) satisfies the following conditions:
(i) f(0,)) is continuous at all (0,)\), f~1(0,)) is continuous at all (6, )\) and

f@.,\)=0 (|)\]_2d) as A — 0.

(ii) (%f‘l (6, \) and ﬁj;‘%kf_l (6,)\) are continuous at all (6,\) and

0 -1 _ 2d—6
aejf (6, %) = O (]A*?) as A= 0,
&P _ 246

aejaekf 0,2) =0 (|A%7) as X —0.

(iii) There exists a constant C with

|f(61,)) — (02, \)| < C||01 — 02]|f (B2, )

8



uniformly for all X and all 61 = (Bl,dl)/ and 02 = (Bs, dg)/ such that di < ds.

All the conditions of Assumptions 6 and 7 are satisfied by fractional Gaussian noise and
ARFIMA processes (See Dahlhaus (1989)). We now state the asymptotic distribution of 75, (é)

when {z:} is a long memory process.

Theorem 4 Let 1, ..., x, ben observations from a stationary Gaussian linear process satisfying
the same assumptions as those of Theorem 2. Let the estimated parameter vector 0 satisfy
Assumption 6 and the spectral density of {x+} satisfy Assumption 7. Also let T, (9) be define by
(7) with kernel function k and bandwidth p, satisfying the same assumptions as those of Theorem

2. Then ~
n (Tn(8) — Cu(k))
Dn (k)1/2

— N(0,1)

in distribution as n — oo, where Cp(k) and Dy (k) are defined as in Theorem 1.

3 Simulation Studies

We generated 5000 replications of Gaussian series of length n = 128 and 512 from a variety of
AR and ARFIMA processes. The algorithm of Davies and Harte (1987) was used in the data
generation of ARFIMA models. For each series, we computed the three test statistics: (i) Our
statistic Ty,. (ii) Hong’s statistic Hy. (ili) The Milhoj statistic M,,. The statistics were suitably
normalized so that they would have an asymptotic standard normal distribution under the null.
For T,, and H,, we used the following three kernels:
(i) Bartlett k(2) =1 —|z], |2| <1,
=0 otherwise,

(ii) Tukey k(2) = 3 (cos(zm) +1), |2] <1,

=0 otherwise,
(iii) Quadratic Spectral (QS), k(z) = 32 (%%5&1 - cos(67rz/5)) , 2 € (—00,00) .

For computing T}, and H,,, we used three bandwidths, p, = [3n°?] , [3n%3] and [3n°*] . Note

that there is no bandwidth involved in computing M,,.



In Tables I and II, we report the sizes of the three tests under the null hypothesis of an AR(1)
and an ARFIMA(0,d,0) respectively. The AR(1) parameter was set to 0.8 while the long memory
parameter d in the ARFIMA(0,d,0) was set at 0.4. It can be seen that for both the models, all
three statistics are undersized at both the 5% and 10% level. The amount by which they are
undersized decreases as the bandwidth p,, increases. The M, statistic is least undersized, while
the sizes of T,, are comparable to those of H,,.

To compare the power of the tests, we considered the following four cases: (a) fitting an AR(1)
to data generated by an AR(2), ¢y = 0.824—1 — 0.1ay—2 + & (b) fitting an ARFIMA(1,d,0) to
data generated by an ARM(1,1), zx = 0.8z¢—1 +¢&¢ + 0.254_1. (c) fitting an ARMA(1, 1) to data
generated by an ARFIMA(0, d, 0), (1 — B)** 2; = &; where B denotes the backshift operator (d)
fitting an ARFIMA(0,d,0) to data generated by an ARFIMA(1, d, 0), (1 — B)** (1 — 0.1B) 2y =
€t. The results are reported in tables II1, IV, V and VI respectively.

It is seen that both the tests T, and H, have significantly higher power than M, in all the
alternatives considered. This is not surprising, since the tests 1, and H,, give decreasing weights
to higher lag sample correlations, while M, gives uniform weight at all lags. It might be tempting
to believe that this property of M,, may be useful in detecting long memory alternatives. This
belief is however belied by Table V, where we fit a short memory model to a long memory series
and yet M, is outperformed by a wide margin by both the other tests. On the other hand, it
is seen that the power of T, is very similar to the power of Hy, with neither test outperforming

the other significantly in any situation considered.

4 Appendix: Proofs

We will only provide the proofs for long memory models. The proofs for short memory models
are similar though much simpler and are available from the authors. In this appendix, we will

often use the following decomposition of I(\),

I =[NP L) + 1) = [» NI,
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where 1 (\) = 3222 o ke~ and I (\) is the periodogram of the innovations &; in (6). Then

I _2n
) = 2L + RO, )
where
RO =550 - F ). ©

Let 9¢,; be the 5% sample covariance of the &; given by 7 ; = n~! >t jl41 (et —€) (g5 —e), for
il <n—1.
Proof of Theorem 2

Let I.(\) = (2rn)~! ‘Zle et ? be the periodogram of the innovations & without mean
correction. For the Fourier frequencies, Ay, k = 1,..., (n — 1), we have I.(\;) = I c(\), where

I, is the periodogram of the mean corrected innovations e; — . Also define

fea () =

£=0
n | 2r = 4r? or ! 4 ~
Y2 {7 ST Ra -5 X kQ(]/pn)%?,jE = op(1),
P 7 =0 j=—(n-1) )

. n [ or vl 2 or 2-I
7 [{; D fe(/\e)} - (o) | =)
Also, by Lemma 3, {(27r/n) S (277/02)f5,d(>\e)}2 = (4n?/0*)72, and /n(fep—0?) =
Op (1). The Theorem now follows by Theorem 1 of Hong (1996) and the fact that p,, Dy (k) —
D(k) = [5° k*(2)dz < 00 as n — oo by assumption 2a.
Proof of Theorem 4
By Theorem 1 it suffices to show that

pT”/z (T2(80) — T (8)) = 0 (1), (10)

11



which we do by establishing that

1/2{ Z_: ( 200, M) — f2 (é7>‘é))} = 0p(1) (11)
Dn £=0
and , ,
L= o ZJ_p'
We will prove only (11) since the proof of (12) is similar. Let
1 1
Go o ) =05 Fo o)

Then the LHS of (11) is

2

?/2277 /2 ZW)\Z— )\Z)\ (QWZW)\Z_J Z\

\ n (/\])/ (/\J)}
271' 2 n—1 n—1

= 1/2 S WO )W (X)) T(A)I(An) (goo(%»)\h) —G5(A;, /\h)) -
D' =0 jh=1
By a similar argument of deriving (28), the RHS of the above equation is
1/2 Z I(A (Qoo (Aj, An) — QA()\j,Ah)) Kn(Aj-n), (13)

”pn J,h=1

where K,,(A\;_p,) is defined as (29). For every A; and \y,we have by a Taylor series expansion,

G (Aj, M, 00) — G ()\j, )\h,é)
1 9f7(\;,600) 1 9f (.00 /1~
-2(® T =) (3 -0,

(M) 00y fo, () 00y
_ , 8%G (M\j, An,0)
+% (6 6) % (0-60).

where éjh =0y + ajp, (é — 00> for some 0 < a;jp, <1 and

829 (/\27 Ah, 9) — 1 82f71()‘j7 9) + of~ (/\]7 0) of~ (Afw )
00? foOw) 002 06 00
1 0% O 0) | 9f 7 (n6) 9f1(N,0)’ 14)
fo(j) 08 6 06

12



To prove (11), we will show that (13) is op (1) by verifying, for each w,

S 1 0f'(\n,600)\ /4
npflz /? thlf (foo( \j) 96y ) (9” - 90u) Kn(Aj—n) = 0p (1),
and o ( é)
IS o) / >\J’ >‘h7 .
215 5 10000 (0 00) =i (000 Ky =0 1)
We first show (15). Let
_ 9 f(\ 6)
9N =",
then
L 0f'On,80) 1 1
fo,(Aj) 00, T fe,(\)) fﬂo()\h)g()\h)'

Since 8 — 6y = O, (n_l/Q), (15) is true if

I I
jﬁzlfﬁiAj)f&KAh>

By (8), it is thus enough to show that

9OWKn(Nj—n) = 0p (n*2p}/?) .

Z I( WIARKn(Nj_) = 0p (n*?p}/?) ,

7,h=1

S L0 Ry (g K g 1) = 0y (n¥2pl?),
Jh=1

and

n—1
>~ Roy(N) Ray(n)g(Mn)Kn(Aj-n) = 0p (n*/2p3f?) .

J:h=1

(15)

(16)

(17)

(20)

Since g(A\) = O ()\_5 ) by assumption 7, (19) and (20) can be shown by an argument similar to

that used to establish (30) and (31). To show (18), we let

n—
Am = Z g<>\h)€_i>\hm.

The LHS of (18) is

n—1 / n—1 _ n—1 ‘ \

> LO)I(An)g(n) ! ST RN 12 Rk pethi P }
- —1

13



- (2mn)? Z kz Z 885t5u5vzg (An)e —iAn(u—v—p) Ze—z)\ ; (s—t+p)

p=— (n 1) s,t,u,v

n—1
Z hphn—p D € eteuevzg Je~hn (=v=p) $™ id;(s—t+p)
s,t,u,v j=1
1 ( ol n—1 \
- Am2n, Z kp Z %—v—pgtgt—pgugv +2 Z kpkn—p Z au—’v—pgtst—pgugv
\p=—(n—1) t,uv p=1 t,u,v }
1 / n—1 n—1 \
T An2n2 Yook Y tuvpsscieuso+2 ) kpknp D Gu-vpEsercucy | - (21)
™n \p:—(n—l) S,t,u,v p=1 st u,v }

We will show that both terms of the last expression in (21) have second moments of order o(n3p,).

By the Cauchy Schwarz inequality, we have

( n—1 n—1 \2
FE \p Z ]{3127 Z Ay—v—pEt€t—pEuv + 2 Z k’pkn—p Z aufvfpgtftfpgugv}

=—(n—1) t,u,v p=1 tuw
1 n—1
= - 2 1.2
= O 167m4n2 Z kplkm Z gy —v1—p1 Cug —va—pa
p1,p2=—(n—1) t1,t2,u1 U201 ,U2
XE (€4, €15 €t1—p1 Eto—paEur EuzCrrEus))
1 n—1
2 2
+O( 1674n2 Z kn p1 k” —P2 Z Auy —v1 —p1 Qua—v2 —p2
plvm:_(n_l) t1,t2,u1,u2,v1,v2

X E (&t; €ts €t1—p1 Eto—paEur Euz€vi Eva))

Since ¢ are independent with zero mean, the above expectation is positive only when the random
variables inside the parentheses consist of products of even powers of the €. Thus, the above
expression is dominated by two cases: one is when p; = p2 = 0, u3 = w2 and v; = v while the
other is when p; = p2 =0, u1 = viand uz = vo. Using lemma 6, the order of these two cases is

O(n‘2 Z ail_uQ+n_2 Z a%)

t1,t2 u1 ,u2 t1,t2,u1,u2
- 0 (n—2n5+25 + n—2n4+25)

— o(w'm).

It can be shown that the second moment of the second term in (21) is also of order o(n’p,) by

similar arguments. We have thus established (15).

14



Next, we establish (16). Let Ayy(\j, M, @) denote the (u, )™ element of the matrix

902G (A, An, 051
90*

Then, by (14) and Assumption 7,
Auo( N My ) = O (A?djhkidjhkj-_‘sAf) , (22)
i 205 3 1/2
where 05 = (,th, djh) . Since 8 — 09 = O, (n_ / ) , (16) will follow if for every (u,v)

n—1
> IO IO Aw (A A, 830)Kn (A1) = 0p (n?p}/?)
Jh=1

To show this, it suffices, by (8), to prove that

n—1 ~
7 £(80,29) £ (B0, M) T-(A) T (An ) Ao (g Ans O3 K Nj—n) = 0 (?p3/2) . (23)
=1

n—1
Z f(007 )‘])f(007 )\h)I&‘()‘])ROo()\h)AU’U()\j7 )\}u ajh)lcn()\j—h) =0p (n2p71/2) ’
Jh=1

and

n—1
> £(B0, A7) F(80, An) Ray (\g)Re (M) Aus (g Ans 83n) Ko (s 1) = 0 (n?pl/2) .
Jh=1

We will prove only the first of these, since the proof for the other two is similar. Letting
n—1 _
Y, = Y f(00, \) F(00, M) I (M) I (M) Ay (Mg Aps 05 K (X ),
j,h=1
we have

Yo =1(d>do)Yn+1(d<do)Yy. (24)

First consider d > dy. Then d}-h > dj for all j,h. Hence, by Assumption 7 and (22), we have

£ (80, 1) f (B0, M) Aus (N A, B5) = O (A72X;%) for all j, h. Also, by the Cauchy Schwarz in-
equality, sup; », E'[I:(A\j) Ie(An)| < K < oo and it follows from (32) that

E‘I (dz do) Yn’ =0 ( "z—:l )\j_‘s)\,:‘sn (j —h)_1/ =0 (n2 logn) = o(nQp,IL/Q) . (25)



Now consider d < do. Then 0 < th < dp for all j, h. By part (iii) of Assumption 7 we get that
f<007 )‘j)f<607 )\h)f_1<bjh7 )‘j)f_l(éjha Ah) = (1 + A]) (1 + Ah) 5

where |Aj] < K||é—00\|)\j_2d0 for all j. Furthermore, f(0;n,A\;)f(0jn,An)Aus(Nj, M, Oi1n) =
0 ()\;6)\;6) by (22). Using these bounds and the fact that sup; j, £/ |I:(A\;)Ic(An)| < K < 0o, we
get

E ‘I (af < do) Yn‘ = O(n2 logn) + 0 (n3/2 logn)
+I(d <1/4)O (nlogn) + 1 (d > 1/4) O (n**** logn)
= o(n®}/?). (26)

Thus, (23) follows from (24), (25) and (26).

Lemma 1 Under the assumptions in Theorem 2,

&{%Zﬂf@o‘ﬁﬁdwﬂ}zwn. @0

£=0

Proof. The LHS of (27) is

n@ingwaMM_J&ﬁgwwwﬂﬁﬂ
TR Z_O{\nj_l Tiow) T\ & j }J
n—1

W)W Ae-n) {I:(Aj) RAR) + L-An) R(Aj) + R(A;) B(M)} -

j=

Letting ks = k(s/pn) and ®(\j, An) = Le(A\j)R(An) + L (An) R(Nj) + R(Aj)R(An), the last line of
the above equation becomes

n—1 n—1

1/2 Z > Z kiphige 71 Me-PTH-n 0 (Aj, An)

npn 0= th—lpq_—(n 1)

n—1
_ 21/2 Z Z kg OB (), A 3 e Aelp )

Pn jh=1p,g=—(n-1) £=0

2n /Zl (N, \n) ( S ]{;2ei)‘jhp_|_2nz_:lkpkn_pei)‘jhp\\. (28)
5 = /)

np'n, \j,hzl
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Let
Kn(Xs) = 2 k:2 - hp+22k Koy p@ti=hP, (29)

p:
We will show that (28) is o,(1) by venfymg

BY ROOLOWKL )| = o (nlf?) 30)

G,h=1

and »
E| Y ROGROWK(Nj-n)| = o (npi/?). (31)

j,h=1

To prove the above two equations, we will need a bound for K,(\s). Using the facts that
Pt k| = O(1) and Y5_, e = O(A~1) uniformly in @ and b for 0 < A < 7 (see Zyg-
mund, 1977, p. 2), by applying summation by parts and by Assumption 2b, for s # 0 we

obtain
n—1 n—1
S ke = 23 kZcos(Agp) +1
p=—(n-1) p=l

n—2 P n—1
= 2 Z (k:g — k:gJA) Z cos(Asu) + 2k2_, Z cos(Asu) + 1

= 22 (kp — kps1) (kp + kpy1) Zcos/\u)—i—O()

u=1

n—2
= O(Zpl ~(kp + kpt1) ZcosAu))

m=1 " u=1

= oY,

S

where p < p < p+ 1. Similarly,

and hence

Kn(As) =00H). (32)

We shall only derive (30) and (31) when j # h, since the proofs for j = h are similar and simpler.
To prove (30) we note that the LHS of (30) is bounded by

log?n n—1 log® n
B Y 3 RONLOWKA )| +2B] Y Y ROWEWKa(y-n)
J=1 h#j j=log?n+1 h=1

17



n—1 n—1
> Y. ROHILAK(Nj-n)| -

j=log? n+1 h=log? n+1

+E

Using the Cauchy Schwarz inequality, lemma 5, equation (32) and the fact that max; E (I2 (\j)) <

oo, the first term and second term of the equation above are of the order

log?n n—1 log?n
o( 3 Zucn(xj_h)u > |’Cn()‘j—h)|)

J=1 h#j i=log2 n+1 h=1
log?n —1 log?n \
= Z Z /\J 1h+ Z Z j— h
\J 1 h#j j=log? n+1 h=1 }
= 0 (n log? n) .
1/2

To verify the third term is o(npr’”), we will show that

2
n—1 n—1

> Y. ROGYL(w)Ka(Aj-n)

j=log®n+1 j#£h=log?>n+1

E = o(n2pn).

By Assumption3, lemma 4 and (32),

n—1 n—1 2

> Y ROYLARK(Nj-n)
j=log® n+1 j£h=log® n+1
n—1 h1—1 n—1 ha—1

=2 > > > > EERMNG)LEOn) RN ()
hi=log®n+1 ji=log? n+1 hy=log? n+1 jo=log? n+1
xXKn (>‘Jl h1)lC ( )‘Jz hz)

2 Y Y YT BROLOWRALO)
hi=log? n+1J1=h1+1 ho=log? n+1 j2=ha+1
XICn (Ajy —hy ) Ko (= Ajy—hy )

/ n—1 h1 n—1 h2 \
=0 Y > > Yoo grhfT g log hilog hoj JQ_hZ}

hi=log? n+1 j; =log? n+1 ho=log? n+1 jo=log? n+1
= 0 (n2 log® n) .

E

Thus (30) is proved. The proof of (31) is similar to that of (30).

Lemma 2 Under Assumptions 1a, 2a and 3a,

21~ 2 g
i/{ SDIVNEE DY k%/pn)vzﬁzop(l).
pi- L7 =0 j=— (1) J

18



Proof. Since I.(\j) = Ine(\j) and I, .(0) = 0, we have

£
1 ’I’L—l
~  _—i\h .
fs(Aj)=2—7T > Aepe N forj=1,..,(n—1).
h=—(n—1)
Now
1
21 %
<7 72
n Zfs,d(Af)
/=0
27\ 3 (= i i iXi hi i\ h
- 7) Ar2oh Z > Kpy kpyYehy Ve hp € LM e AT T2
£,j1,j2=0py ,pa,hy ho=—(n—1)
i i i
= B > Fpn pﬂehﬁehzZe Tt Z e~ Z ¢ A mr?
p1,p2,h1,ha=—(n—1) 71=0 72=0
or 9 4 ' IR
4 Z k (76p+75p7€n \M) o4 kakn—ﬁ (76,17"'78’17767%—13)-
p=—(n—1) p=1

Hence, to show Lemma 2, it is sufficient to prove that

> Foku iz, = 0p(n”'py/?) (33)
p=—(n-1)
and .
> (R hpkasip) B pFen—p = 0p(n"'pY?). (34)
p=—(n—1)

In the steps which follow next, we will assume that k has unbounded support. If £ has bounded
support, all terms involving kyk,,_|, are zero in both (33) and (34) and the proof is extremely
simple. By Assumptions 2a and 3,

IA

22
1/2 Z kpkn—p7z.p
p'n p=1

1/2 Z |k’Pk'n 10|

Pn p=1
n/2 1 n/2 5

p Py
= = 2 lhphn- pr( + L) =5 Il

é
Dn' p=1 n2 Pn p=1 (n—p)

pitl n/2
= ( P 1/2pnz|kp‘) = o

since pj, ! Zn/Q |kp| = O (1). We now verify equation (34).
2[5 )
\Z (k‘ +k k‘n_|p‘) ’yg’p’ygn p/
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Z (k?o + kpkn—lpl) i E (ﬁg,pﬁz,nﬂ))

P
+ Z (kg + kpkﬂ—lpl) ("73 + qun—lql) E (JepVen—pYeqTen—q) - (35)
p7q

By Lemma 1 on page 186 of Grenander and Rosenblatt (1957), F (ﬁfpﬁgn p) = 0 (n~?) while

E (e pYen—pYe.qlen—q) = O(n~3). Hence, by Assumption 2a, the first term of (35) is
2 2 1) _ H(Pn
0 (Z (kp +kpkn*\p|) nz) =0 <n2> ’
p
while the second term of (35) is
2
p
(_3 > (k2 + kpknpp) (Ko + qun—|q|)) =0y (;%) :
p#q
and the lemma is established.
Lemma 3 Under the assumptions in Theorem 2,
o ol 21 2A _
{5 o } - (%) 32 = 0uln o) 30
and
{ Z fea(\) } =320

Proof. The proof of the second claim of the lemma is contained in the proof of the first claim,

which we show below. By (8),

o 2 or Tl o il o
_Zfe N) = —Z ZW/\ZJ ( I()‘)+R()‘j))
j=
27(” 1 n-1 N n—1 N
= 22 Z ke a4 L) +R(N) ) D e
j=1g=—(n— £=0
2 & 127r 277” !

- ZY Zrop+Zy noy

Let I, ¢ be the mean corrected periodogram of e;. Then Ic () = Ine(Aj) = 52 2. Fepe™ ™
I :(0) = 0. We have the first term of the last line,

2m 2m omror 1 b
ZX hety) = ZE0Y K que
n 0% n027rjom(n1)
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127

-5 Y T
no iy
27

= 0_2’780

Thus, the LHS of (36) is
n—1 n—1 2
2T 27 2
2. 300 ( E R(A ) ( E R(\ ) . (37)

We will show that the second term is Op(n2log?n). It follows by Chebyshev’s inequality and
the fact that 4z,0 = O, (1) that the first term is O,(n~' logZn). Now

( ) \1f§:nR ) Yy \l?:h:%:‘;n}z(xj)}z(xh)) tE (j:gzn}z(xj)) .

By lemma 5, the first term is O(log? n), the second term is O(log*n) while the third term is
0 (10g4 n) and hence (37) is O, <7fllog2 n) .

Lemma 4 Under the assumptions in Theorem 2,
E [RO\) L= (M) R(Ow) I=(Ae)] = O R k=% log hlog () (38)

and

E [R(\) RO R(Ae) R(A)] = O~ h* k=4 log hlog () (39)
uniformly forlog?n < j< h<n,logZn <k <{<n.

Proof. The development of this proof closely matches that of Lemma 2 of Hurvich, Deo and

Brodsky (1998). We'll use the following notations,
Li=1(%), fj = f() and Lej = L:(X;).

The LHS of (38) is

I I
E l(}l — 2o~ IEJ) I (fk —2mo I€k> Isg]
J
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I 1
= E[(}l —1—-2m0~ Ia]+1> I <f_]]: —1—27T0'_2IEI€+1> IE€‘|
J

I I _ I
= E (7% 1) I, (7’; —1) 154 ~E {(277(7 2L —1) Ly (7: - 1) 184 (40)
| (§ 1) (oo =) ] B (om0 1) 2= 1) 1]

Note that the last expectation of (40) is zero. Let

E l(—% — 1) I, (J{: 1) Igg] = E(¢h&<),

and
N T )
= (v1, va,v3, v4, V5,06, U7, U8)
where

\/Q—Zatcos )\t Zatsm )\t
™

The vector v has a eight-dimensional multivariate Gaussian dlstrlbutlon with mean zero and

covariance matrix X. Define ¥ = X1, Partition X and ¥ as

e R
{221 EzzJ {‘1’21 ‘1’22J

where ¥;; and W;; are 4 X 4 matrices. By the formulas for the inverse of a partitioned matrix,
-1
Uy =35+ 35S0 (222—221 IR 212) DI
—1 ~1 -1
Wio =37 312 (222—221 XU Z312)

and

Yoo = (222 - 22121_11212)_1

Letting Va; = Aqj or Bgj, we have from Lemma 4 of Moulines and Soulier (1999),

E (Vi V. | =0 (57" logk) . (41)

\f1/2 1/2}
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for 1 < j < k < n/2. Following similar arguments of this lemma, it can be shown that for

1<j<k<n/2

E (%) :—; 10 (j—l logj) . (42)
(5] =0 (704 hos) ana \V—%) = 0(7 e osk). )
Letting
1 Ru R
R=3_-Tg = ( \I
2" | Ry Ry )

where Ig is a 8 x 8 identity matrix, we see from (41), (42) and (43) that R = o(1) for log?n <
j < h<n/2 log>n < k < £ < n/2. By the fact that T +A)™" = I—-(I+A)" A, we get
v = 2Ig — QR(Ig +2R)_1 = O(l) Let
g | ¥ 0]
o v

and define ¥ = ¥ — ¥. We have
EGGG6) = o' [ [ [ GatGe ¥
= @0 1 [ [ Gadrse P (44)
T+ w2 [ [Goace R et 1w )
Let v(jny = (v1,V9,13,v4), V(o) = (U5, V6, U7, vg)', the first term of the above equation is

et 90 [ a3t [ i i

The first quadruple integral of (46) is

_ 41 /. 2*1 . _d I M .

where

1 1 -1 -1
M1 =373 (222 — 913 212) IDIDIT
Let 711 be the largest absolute entry of Mj;. Since |e* — 1] < |u] elul for all u,

_d. ) 2 2
e 2VunmMitvGn +O{7'11 H’U(jh)H esmullvnll } )
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Thus (47) is equal to

//// Gine 2 PV gy
2 1y 1 _3r1L)v,
+0 {/// |Cj(:h| 1 Hv(jh)H e 2 (Jh)(zn 3r11y) (Jh)dv(jh)} ) (48)

The second term is O (111) = O(j 2% % 21og? k1(jx) + k2429 21og? k1(j=1)) by (41), (42)
and (43). Note that

S = 2L — 2Ry (Is+ 2Ry) ' = 2L +0(1).
Let 11 be the largest absolute entry of 2Ry (I4 + 2R11)71 ,
eévbh)(2R11(I4+2R11)71)U(jh) =140 {7711 H,U(jh)H2eg7711||v(jh)H2} .

Thus the first term of (48) is

Gié —é“'(-h)ﬂ‘l”(jh)d )
j6he = Y U(jn)

2 1, _ Vs
+O{/// (Gihlma [on |2V om{EmmIR) (]h)dv(jh)}
— // Qje_évl(j)zlw(j)dv(j) // gje_é”'(mzlw(h)dv(h)

2 ']"U’, _ v,
+O{//// |<j§h|7711 Hv(jh)H e2 (]h)((Q 3n11)L) (]h)dv(jh)}-

The first term of the RHS of the above equation is zero since the first double integral is
the expectation of (; assuming the covariance matrix is 0.5L;. The second term is O(ni1) =
O(5~%h?1log h). We have shown that the first quadruple integral of (46) is O(j~?h% 1 logh +
j2d}2d—2 502 k1i<k) + j2d=2—2d )52 J1(k<j))- It can be shown in the same fashion that the sec-
ond quadruple integral of (46) is O(k~%~ log (+j724k?~2 1og? k1 j<j)+j22k~241og? j1(js 1))
Hence (44) is O(j~%h4 k=441 log hlog ().

Now we consider (45). By the mean value theorem, |¢* —1 —u| < (1/2)uZel for all u. Thus

AT 1= T 40 (7 ol ),

where 7 is the largest absolute entry of W. Note that 72 = O(j—2dg2d—2 log? kl(jgk)+j2d_2k_2d 10g2j1(k§j)).
Hence (45) is

1 — ' I
(2%)4\\1111/2/- "/CjCthCK— E'v’\Iﬁue—é“ v v

+0{72 [ [1Gtaal ol e - E)vay ).
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The second term is O(72). The first term is the linear combination of Eg [(;CnCkrAjAk],
Eg [CiChlkCeA; Br], Eg [CiChleCeAj Ad, Eg [(iChCkCeA;Bil ,....ete., where Eg denotes the expec-

tation assuming that v is multivariate normal with mean zero and covariance matrix W. Since

cov(v) = W implies that the vectors (A;, Bj, Ap, By), (Ag, By, Ap, By) are independent. Thus,
for example, Eg [(;ChCrCeAjAr] = Eg (GG Aj] Eg [GrCeAx] , and both of these expectations are
zero because the ;¢ and (;(, are even functions of (A;, B;, Ay, By,) respectively, and because
the densities for (Aj, Bj, An, Br) and (Ag, By, As, By) are also even functions. We have shown
that (45) is O(72) = O(j~2k*~2 Jog? k1 j<p) + j2A—2p—2d 10g2j1(k§j)). Hence

> K% _ 1) L (%’z _ 1) Id] = O h* k=4 log hlog ¢).
J

It can be shown in a similar way that the rest of the second and the third expectations of (40)
are both O(j~4hd~1k~d4¢d—11og hlog () uniformly in log®n < j < h <n/2,log>n <k < £ <n/2.

The order in (39) can be derived following the same lines as above.

Lemma 5 Under the assumptions of Theorem 2,
E[RM\)R(Mn)] = O *h oghlogj 4 j 72?42 10g? h)

and
E [R2(Aj)} =0 (j—l logj) .
uniformly forlog?n < j < h < n. Also maxi<j<n E [R? (\;)] < oo

The proof of the first two bounds stated in this lemma is similar to that of lemma 4. The
last bound is obtained by using the bounds (41), (42) and (43) and the Gaussianity of the

observations.
Lemma 6 Let g(\) be defined as (17). Then, under assumption 7,

n—1
Z g (An) e”Pwm — O (n‘s) ifm=0,
h=1

= O (n”‘sm_l) if m# 0.
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Proof. We'll prove the lemma by showing that
—> g(A)e ™™ = O (n_1+6) ifm=0,
"=
= O (n‘sm_l) ifm#0and |m|<n

We first derive the result for m = 0. Note that
2
/ g\ = 0.
0

Hence, the LHS of (49) is

28 00 = %fg@h)—?g(xm\
[y \ " k=1 0 }
n—1 An An
— M) — g(\) d\ — A)dA
};A/ (90w) — 9(N) An/_l g(V)
n—1 A M
_ };gf@%)%/l o= ) d)\—A{g(A)d)\,

where A\p—1 < A3 < A, and we use the fact that g()) is symmetric around 7/2. By assumption

7, the last equation above is
= 1 /27m\?2
—-1-6 1 1-6 | _ —1+6
o<h§_jlxh 2<—n> +A7?) =0 (n ).

For m # 0, we have by summation by parts

fiad Z g(/\h)ez/\hm
[y}
21 n—2 h " 21 n—1 "
= - > (9(A) — g(Ang1)) D e+ 79()\71—1) > eten
h=1 =1 =1
27T n—2 / h idsm 27T
= 2 9% On = M) e+ g (A ) (1),
h=1 =1

Because Y°0_, ¢ = O(A~1) uniformly in a and bfor 0 < A < 7 (see Zygmund, 1977, p. 2), this

is

1 —1-6y -1 1 _ n’®
0] Ez/\h /\1)\m—|—m =0(— .

h=1 m
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TABLE I
Rejection Rates in Percentage Under an AR(1) Model

n 128 512
D 13 21 11 20 37
%  10% 5%  10% 5%  10% 5%  10% 5%  10% 5%  10%
T, BAR 308 502 404 612 490 780 382 58 432 698 506 8.02
TUK 304 496 404 612 630 9.68 398 58 456 7.0 516 840
Qs 364 564 452 690 504 774 406 652 474 764 558 926
H, BAR 330 508 382 582 426 676 362 572 420 654 476 734
TUK 316 490 378 592 446 696 376 578 426 684 488 748
Qs 352 552 422 644 482 740 402 620 436 7.2 508 836
M, 4.34 at 5% 7.12 at 10% 5.14 at 5% 8.88 at 10%
Note: Model x,- 0.8 x,; =€.
TABLE 11
Rejection Rates in Percentage Under an ARFIMA (0,d,0) Model
n 128 512
D 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T, BAR 262 408 352 528 490 742 264 460 374 600 480 820
TUK 252 400 346 558 496 750 292 478 386 614 510 842
Qs 322 498 434 678 662 9.60 330 574 440 7.06 558 9.08
H, BAR 228 376 302 486 354 588 256 442 342 586 422  7.00
TUK 220 352 320 510 390 588 312 532 414 652 470 786
Qs 282 446 366 536 410 704 272 454 370 598 444 744
M, 4.70 at 5% 7.58 at 10% 4.50 at 5% 8.18 at 10%
Note: Model x, = ARFIMA (0,d,0) withd =0.3.
TABLE 11
Rejections Rates in Percentage under AR(2) Alternative
fitting Model AR(1)
n 128 512
D 8 13 21 11 20 37
5%  10% 5%  10% 5% 10% 5%  10% 5% 10% 5%  10%
T, BAR 2248 28,60 2292 29.04 2288 29.62 80.18 8496 76.02 81.64 6854 7574
TUK 2194 2816 2280 2858 2240 2876 7996 82.18 7476 81.06 6566 73.26
Qs 2244 2864 2280 2896 2274 29.74 7820 8342 70.56 77.68 61.04 69.96
H, BAR 2358 3022 2342 29.66 2242 2870 80.62 8546 7584 8186 6824 7526
TUK 2318 2936 2322 2942 2198 2822 8032 8524 7490 8090 6502 72.66
Qs 2328 2990 2276 2854 21.12 2740 7834 8396 7046 77.14 59.60 68.88
M, 8.84 at 5% 13.78 at 10% 17.78 at 5% 25.96 at 10%

Note: Model x,- 0.8 x,,+0.15x,, =u,



TABLE IV
Rejections Rates in Percentage Under ARMA(1,1) Alternative
fitting Model ARIMA(1,d,0)

n 128 512
D 8 13 21 11 20 37
%  10% 5%  10% 5%  10% 5%  10% 5%  10% 5%  10%
T, BAR 950 1338 844 1258 896 13.04 31.84 40.74 2836 3656 2510 3424
TUK 724 1128 804 1206 880 12.80 3134 4054 2694 3512 2336 3248
Qs 874 1226 804 1202 10.04 1474 2920 3780 2500 33.62 2278 31.50
H, BAR 1268 17.04 1128 1552 892 1320 33.02 4228 2894 3736 2482 33.70
TUK 798 1212 820 1232 866 1296 32.66 4188 27.70 3572 23.12 31.88
Qs 1148 1570 10.18 1440 9.06 13.68 3032 3870 2530 3372 21.78 30.10
M, 542 at5% 8.76 at 10% 6.44 at 5% 10.38 at 10%
Note: Model x,=0.8x,; tu, +0.2 uy;.
TABLE V
Rejections Rates in Percentage Under ARFIMA(0,d,0) Alternative
fitting Model ARMA(1,1)
n 128 512
P 8 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T, BAR 646 938 750 11.10 890 1330 3728 4478 3854 46.16 37.02 45.06
TUK 654 910 750 1132 868 13.14 38.06 4520 39.14 4674 3620 4442
Qs 720 1022 824 1256 1044 1534 3970 4654 3790 4572 3436 43.00
H, BAR 526 754 622 890 6.84 1034 36.14 4338 3728 44.80 3500 42.88
TUK 532 748 646 912 692 1054 37.16 4408 3790 4546 3422 4236
Qs 6.04 864 668 10.18 732 10.78 3842 4556 36.72 4456 3226 40.10
M, 5.34 at5% 8.92 at 10% 11.56 at 5% 17.96 at 10%
Note: Model x, = ARFIMA (0,d,0) withd =0.4.
TABLE VI
Rejections Rates in Percentage Under ARFIMA(1,d4,0) Alternative
fitting Model ARFIMA(0,d,0)
n 128 512
D 8 13 21 11 20 37
5%  10% 5%  10% 5% 10% 5%  10% 5% 10% 5%  10%
T, BAR 852 1248 876 1268 9.68 1416 1692 2242 1494 21.14 1332 1942
TUK 816 1210 810 1214 9.10 13.60 1626 21.78 1450 20.50 12.80 18.32
Qs 824 11.74 882 1286 10.88 1554 1576 2134 13.16 1922 12.62 1824
H, BAR 7.54 1084 754 1142 798 1156 1622 2178 1422 2014 1232 1774
TUK 736 1068 726 1106 7.60 1136 1528 2038 1252 18.14 10.88 16.32
Qs 732 1070 732 1134 812 11.53 1584 2098 1388 19.68 11.60 16.82
M 6.14 at 5% 9.92 at 10% 6.82 at 5% 11.40 at 10%

n

Note: Model x,- 0.1x,,=u, u,=ARFIMA (0,d,0) with d =0.4.



