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Abstract

We study the small sample behaviour of two goodness-of-¯t tests for time series models which

have been proposed recently in the literature. Both tests are generalizations of the popular Box-

Ljung-Pierce portmanteau test, one in the time domain and the other in the frequency domain.

The tests are found to be oversized under the null of white noise but undersized under other

null hypotheses. The cause for this e®ect is investigated and a ¯nite sample correction proposed

which ameliorates this e®ect. It is found that the corrected versions of the tests have markedly

better size properties. The correction is also found to result in an overall increase in power which

can be signi¯cant in certain alternatives. Furthermore, the corrected tests also have uniformly

better power than the Box-Ljung-Pierce portmanteau test, unlike the uncorrected versions.

Keywords: frequency domain, portmanteau test.

1 Introduction

A popular goodness-of-¯t test in time series is the Box-Pierce test (1970) given by

BPn = n
pnX

i=1
½̂2i

1 Corresponding Author: R.S.Deo, 8-57 KMEC, 44 West 4th St., New York University, New York, N.Y. 10012,
U.S.A. email: rdeo@stern.nyu.edu
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and its asymptotically equivalent modi¯ed version, the Box-Ljung-Pierce (1978) test

Bn = n (n +2)
pnX

i=1
(n ¡ i)¡1 ½̂2i ; (1)

where ½̂i is the ith sample correlation of the residuals from the ¯tted model and pn is such that

pn! 1 and pn=n ! 0. Hong (1996) proposed a generalization of the Box-Pierce test, given by

Hn = n
pnX

i=1
k2

µ
i

pn

¶
½̂2i ;

where k (¢) is a suitably chosen kernel. The statistic BPn is a particular version of Hn, obtained

by using the truncated uniform kernel k (x) = I (jxj · 1) : The choice of kernels k (x) which

decay for large x will downweight the importance given to correlations at high lags which are

estimated less e±ciently.

A frequency domain version of the Hong test was proposed recently by Chen and Deo (2000)

as follows. Given a kernel k (¢) ; compute the spectral window W (¢) as

W (¸) =
1
2¼

X

jjj<n
k (j=pn) e¡ij¸ ¡¼ · ¸ · ¼:

The statistic is then

Tn =
(

2¼
n

n¡1X

i=0
f̂ ( i̧)

)¡2 (
2¼
n

n¡1X

i=0
f̂2 ( i̧)

)
;

where

f̂ (¸) =
2¼
n

n¡1X

j=1

W (¸ ¡¸j) I (¸j)
f ( j̧)

;

f (¢) is the spectral density of the ¯tted model and I (¸) = (2¼n)¡1 jPnt=1 xt exp(¡it¸)j2 is the

periodogram of the observations xt: The statistic Tn has the advantage of whitening the data

in the frequency domain and does not need an easily obtainable autoregressive representation

of the observations xt to compute the time domain residuals. Chen and Deo (henceforth CD)

proved that Hn and n¼Tn ¡ 0:5n have the same asymptotic null distribution and hence are

asymptotically equivalent. However, CD obtained the asymptotic distribution of Tn under null

hypotheses which allow the spectral density f (¢) of the ¯tted model to be unbounded at the

origin. This encompasses long memory models such as the Autoregressive Fractionally Integrated

Moving Average (ARFIMA) models (see Hosking, 1981) which have hyperbolically decaying
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correlations. The distributions of Hn and BPn under such long memory null hypotheses are not

yet known.

In their simulation study, CD found that the ¯nite sample size and power performance of

Hn and Tn were very similar under a variety of null and alternative hypotheses and when using

di®erent kernels k (¢). However, they found that both the tests were oversized when the null

hypothesis was that of white noise. On the other hand, when the null hypothesis was not

white noise, both tests were under sized, in some cases quite seriously. In the next section, we

investigate the cause of this phenomenon and then propose a small sample correction to rectify

it. The e®ect of our correction on the tests is then studied in section 3 through a Monte Carlo

study.

2 Small Sample Behaviour

Hong (1996) established that when pn ! 1 and pn = o (n) ;

µHn ¡¹n (k)
¾n (k)

¶
D! N (0;1) ; (2)

where

¹n (k) =
n¡1X

i=1
(1 ¡ i=n)k2 (i=pn) (3)

and

¾2
n (k) = 2

n¡2X

i=1
(1 ¡ i=n) (1 ¡ (i +1)=n)k4 (i=pn) : (4)

Since, as noted earlier, CD have shown that Hn is asymptotically equivalent to n¼Tn¡ 0:5n; we

also have µ n¼Tn¡ 0:5n ¡¹n (k)
¾n (k)

¶
D! N (0;1) : (5)

In all of these results, it is assumed that k (¢) is continuous with k (0) = 1 and that k (x) ! 0 as

x ! 1:

The mean and variance of Hn may be obtained by treating all the correlations ½̂i as indepen-

dent normal random variables with mean zero and variance n¡2 (n ¡ i) and then noting that Hn

is a simple quadratic form in them. The pretense in this heuristic argument that ½̂i is normally
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distributed with variance n¡2 (n ¡ i) follows from the belief that the correlation ½̂i of the residu-

als is asymptotically equivalent to that of the innovations, r̂i; which has mean zero and variance

n¡2 (n ¡ i) :

However, Box-Pierce (1970) showed that for ¯xed h and large n and an idempotent matrix

Q;

½̂ ¼ (I¡ Q) r̂; (6)

where ½̂ =(½̂1; :::; ½̂h)0 and r̂ =(r̂1; :::; r̂h)0 are the sample correlations of the residuals from the

¯tted model and the true innovations respectively. The matrix Q was shown to be of rank p;

where p was the number of parameters ¯tted and its elements depend on the structure of the

underlying model. Thus, for any ¯xed i; the correlation ½̂i of the residuals is not asymptotically

identical to the corresponding correlation r̂i of the innovations. If pn is not very large, it is then

easy to see that using the expressions ¹n and ¾n above will result in distortions in size and also

a®ect power. To obtain better approximations to the mean and variance of Hn; we have to thus

exploit (6).

For ease of exposition in what follows, we will assume that the variance of r̂i is n¡1 rather than

n¡2 (n ¡ i) : Then, V ar (½̂) ¼ n¡1I and hence E (Hn) = tr
©
K2 (I ¡Q)

ª
; where K =diag (k1; :::; kn¡1) :

Letting qii denote the ith diagonal entry of Q; we get

tr
n
K2 (I¡ Q)

o
=

X

i
k2i ¡

X

i
k2i qii =

X

i
k2i ¡

X

i
qii ¡

X

i

³
k2i ¡ 1

´
qii:

Since Q is idempotent with rank p; we have
P
i qii = tr (Q) = p: Furthermore, from equation

(2.31) of Box-Pierce (1970), we note that

qij ! 0 as max(i; j) ! 1: (7)

Since k (x) ¼ 1 for x close to 0, it follows that
P
i
¡
k2i ¡ 1

¢
qii is negligible. Hence,

E (Hn) ¼
n¡1X

i=1
k2i ¡ p: (8)

It is immediately apparent from this approximation that the mean ¹n in (3) will overestimate

the mean of Hn: This is the cause of the tests based on Hn and Tn being undersized when a

model was ¯t, as found in CD.
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Similarly, we have

V ar (Hn) = 2 tr
n
K2 (I¡ Q)K2 (I ¡Q)

o

= 2

8
<
:

X

i
k4i ¡ 2

X

i
k4i qii +

X

i;j
k2i k

2
jqij

9
=
;

= 2
X

i
k4i ¡

X

i
qii ¡ 4

X

i

µ
k2i ¡ 1

2

¶2
qii +2

X

i;j

³
k2i ¡ 1

´ ³
k2j ¡ 1

´
qij

¼ 2
X

i
k4i ¡ p ¡ 4

X

i

µ
k2i ¡ 1

2

¶2
qii; (9)

where we have once again used (7) and the fact that k (x) ¼ 1 for x close to 0. Note that the

last term in (9) is not negligible, since k2i ¡ 1=2 will not be close to zero for small i: However,

since this term is negative, using 2
P
i k4i ¡p as an approximation for the variance of Hn will be a

conservative measure. From this argument, we also see that the variance ¾2
n in (4) will overesti-

mate the true variance of Hn causing the test based on Hn to be undersized. The approximation

2
P
i k4i ¡ p that we obtain above for the variance of Hn will also tend to overestimate it but not

by as much as ¾2
n:

In the development above if we had assumed, more appropriately, that the variance of r̂i is

n¡2 (n ¡ i) ; then similar though more tedious arguments show that

E (Hn) ¼ ¹n;f ´
n¡1X

i=1
(1 ¡ i=n)k2i ¡ p (10)

and

V ar (Hn) ¼ ¾2
n;f ´ 2

X

i
(1 ¡ i=n) (1 ¡ (i +1) =n)k4i ¡ p: (11)

We propose that (10) and (11) be used instead of ¹n and ¾n in computing the statistic based on

Hn:

As noted above, CD had also found that the tests Hn and Tn were oversized when the null of

white noise was being tested. This may be attributed to the fact that these tests were essentially

quadratic forms in normal variables and though asymptotically normal, would have ¯nite sample

distributions that were right skewed. A simple transformation that would help improve the

normal approximation for such variables is the square root transformation, which we suggest be

5



taken before the tests are carried out. A standard delta method argument shows that

2p¹n;f
¾n;f

³p
Hn ¡ p¹n;f

´
D! N (0;1) (12)

and since Hn is asymptotically equivalent to n¼Tn ¡ 0:5n; it also follows that

2p¹n;f
¾n;f

³p
n¼Tn ¡ 0:5n ¡p¹n;f

´
D! N (0;1) : (13)

In the next section, we study the e®ects of the mean and variance corrections as well as that

of the square root transformation through Monte Carlo simulations.

3 Simulation study

We generated 5000 replications of Gaussian series of length n = 128 and 512 from a variety of AR

and ARFIMA processes. The AR(1) processes were generated by drawing the initial observation

from the marginal stationary distribution of the process. To generate ARFIMA(1; d;0), we ¯rst

generated observations from an ARFIMA(0; d; 0) using the algorithm of Davies and Harte (1987).

These observations were then used as innovations in the AR(1). In such cases, the AR(1) was

initialized from 0 and then the ¯rst n observations were discarded.

For each series, we computed ¯ve statistics: (i) The Box-Ljung-Pierce statistic Bn given in

(1): (ii) Hong's uncorrected statistic Hn given in (2). (iii) The uncorrected Chen-Deo statistic Tn

from (5). (iv) The corrected Hong statistic, denoted here by H 0
n; from (12). (v) The corrected

Chen-Deo statistic, denoted here by T 0
n; from (13). The following three kernels were used in

computing the Hong and the Chen-Deo statistics:

(i) Bartlett k(z) = 1 ¡jzj ; jzj · 1;

= 0 otherwise,

(ii) Tukey k(z) = 1
2 (cos(z¼) +1) ; jzj · 1;

= 0 otherwise,

(iii) Quadratic Spectral (QS), k(z) = 25
12z2

³
sin(6¼z=5)
6¼z=5 ¡ cos(6¼z=5)

´
; z 2 (¡1;1) :

In computing the tests we used three bandwidths, pn =
£
3n0:2¤

;
£
3n0:3¤

and
£
3n0:4¤ : The

sample sizes and bandwidths we have chosen here are identical to those used in CD. In all

computations of size and power, the test Bn was compared to a Â2
pn¡p distribution, where p
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was the number of estimated parameters, while the other tests were compared to the standard

normal distribution. In computing tests based on residuals from the ¯tted model, the residuals

were computed by truncating the in¯nite autoregressive representation of the process.

In Tables I, II and III, we report the sizes of all the tests under the null hypothesis of white

noise, an AR(1) and an ARFIMA(0,d,0) respectively. The AR(1) parameter was set to 0.8 while

the long memory parameter d in the ARFIMA(0; d; 0) was set at 0.4. It is seen from Table I that

both the uncorrected tests Tn and Hn as well as Bn are oversized under the white noise null.

This e®ect is signi¯cant even at samples as large as 512. Furthermore, the amount by which

they are oversized increases as the bandwidth pn increases. On the other hand, when the null is

not white noise, as in Tables II and II, both the tests Tn and Hn are undersized. The Bn test,

on the other hand continues to be oversized.

A visual understanding of this phenomenon can be obtained from the plot on the left in Figure

1. We have made boxplots of the 5000 replications of the Tn statistic using the Tukey kernel

for pn = 13; n = 128: In the white noise case, the distribution of Tn is seen to have a median

of roughly 0, but is extremely right skewed which explains why the test is oversized. On the

other hand, the distribution of Tn under the AR(1) and ARFIMA(0; d;0) null, though still right

skewed, has a median which is much below zero. This shift in location is signi¯cant enough to

compensate for the right skewness and cause the tests to be undersized.

On the other hand, the corrected tests based on the Tukey and QS kernel in Tables I, II and

III have much better size properties. In the case of white noise, the square root transformation

reduces the skewness and hence the size, whereas in the other two cases, the mean and variance

adjustment also corrects the bias in the tests. This can be seen visually in the boxplots on the

right side of Figure 1. The distribution of the corrected Tn test using the Tukey kernel is seen

to be centered almost around zero and the skewness has been drastically reduced.

The corrected tests based on the Bartlett kernel however tend to be oversized in the cases

when the null is not white noise. This is due to the fact that the Bartlett kernel is tent shaped and

hence drops o® rapidly from 1 near the origin. This non-smoothness causes our approximations

in (10) and (11) to be poor, resulting in the oversized tests. The Tukey and the QS kernel

however do not drop o® rapidly from 1 near the origin and the tests based on them are well
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behaved.

The e®ect of the square root transformation can be seen independently in Figure 2. We have

made normal probability plots of the Tn statistic before and after the square root transformation

in the case of white noise. It is seen that though the transformation does not achieve normality,

it goes a long way towards reducing the extreme right skewness of the distribution.

To compare the power of the tests, we considered the following four cases: (a) ¯tting an AR(1)

to data generated by an AR(2), xt = 0:8xt¡1 ¡ 0:1xt¡2 + "t: (b) ¯tting an ARFIMA(1; d;0) to

data generated by an ARMA(1,1), xt = 0:8xt¡1 +"t+0:2"t¡1: (c) ¯tting an ARMA(1; 1) to data

generated by an ARFIMA(0; d; 0), (1 ¡ B)0:4 xt = "t where B denotes the backshift operator (d)

¯tting an ARFIMA(0; d;0) to data generated by an ARFIMA(1; d; 0), (1 ¡ B)0:4 (1 ¡ 0:1B)xt =

"t. The results are reported in tables IV, V, VI and VII respectively.

As observed in CD, the power of Tn is similar to that of Hn in all the alternatives considered,

irrespective of the choice of kernel. However, the power of these two tests can be quite di®erent

from that of Bn; depending on the alternative. Neither of these two tests dominates Bn clearly.

However, the use of the corrected tests T 0n and H 0
n changes this. The corrected tests have

signi¯cantly higher power than their uncorrected versions. Though the corrected tests based on

the Bartlett kernel show dramatic improvement, this should be discounted since the these tests

are oversized as noted above. However, the corrected tests based on the Tukey and QS kernel

also show signi¯cant improvement in power that cannot be disregarded. Furthermore, these

corrected tests now outperform Bn uniformly in all the alternatives considered. The corrections

also can have a dramatic e®ect even for sample size n = 512; as seen from Tables V and VI.

The Monte Carlo study seems to suggest that the use of corrected versions T 0n and H0
n based

on kernels which decline from 1 near the origin in a gradual manner will have sizes close to

the nominal and also be more powerful than the standard Box-Ljung-Pierce portmanteau test.

Furthermore, the frequency domain based test T 0n has the added advantage of computational

simplicity and also has been theoretically justi¯ed for long memory models.
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TABLE I
Rejection Rates in Percentage Under Normal White Noises

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 7.22 10.16 7.56 10.98 8.26 13.04 6.98 10.80 7.46 11.32 7.64 12.16
TUK 7.30 10.04 7.62 10.72 8.08 12.52 7.10 10.70 7.30 10.98 7.70 12.02
QS 7.46 10.36 7.88 11.80 9.94 14.64 6.96 11.24 7.56 11.52 7.78 13.02

Τ′n BAR 4.50 7.82 5.14 8.92 6.22 10.50 4.54 8.06 5.00 9.14 5.86 10.24
TUK 4.42 7.66 5.00 8.58 5.96 10.08 4.52 8.08 4.76 9.00 5.64 10.32
QS 4.90 8.26 5.52 9.74 7.22 12.30 4.58 8.42 5.42 9.70 5.98 11.26

Ηn BAR 6.82 9.74 6.90 10.46 7.68 11.04 6.88 10.44 7.14 10.80 7.02 11.48
TUK 6.78 9.72 6.98 10.28 7.36 11.54 7.00 10.32 6.96 10.56 6.92 11.50
QS 6.92 10.14 7.22 10.70 7.42 11.42 7.04 10.90 7.10 10.90 6.90 11.70

Η′n BAR 4.32 7.50 4.60 8.08 4.94 9.38 4.42 7.92 4.86 8.66 5.20 9.46
TUK 4.10 7.32 4.40 8.00 4.62 8.92 4.44   7.86 4.80 8.62 5.04 9.68
QS 4.28 7.72 4.64 8.46 5.44 9.66 4.46 8.12 5.06 9.16 5.16 9.94

Bn 5.26 10.20 6.36 11.26 7.42 12.38 5.40 10.56 5.72 10.42 6.12 11.16
Note: Model  xt ~ Ν(0,1).

TABLE II
Rejection Rates in Percentage Under an AR(1) Model

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 3.08 5.02 4.04 6.12 4.90 7.80 3.82 5.82 4.32 6.98 5.06 8.02
TUK 3.04 4.96 4.04 6.12 6.30 9.68 3.98 5.82 4.56 7.10 5.16 8.40
QS 3.64 5.64 4.52 6.90 5.04 7.74 4.06 6.52 4.74 7.64 5.58 9.26

Τ′n BAR 6.84 12.40 5.94 10.36 6.54 11.06 6.10 10.50 5.56 9.86 5.90 10.40
TUK 4.38  8.08 4.68 8.56 5.52 9.86 4.78 8.20 4.98 8.96 5.48 9.90
QS 4.52 8.40 5.10 9.54 6.88 12.02 4.92 8.86 5.06 9.34 5.86 10.64

Ηn BAR 3.30 5.08 3.82 5.82 4.26 6.76 3.62 5.72 4.20 6.54 4.76 7.34
TUK 3.16 4.90 3.78 5.92 4.46 6.96 3.76 5.78 4.26 6.84 4.88 7.48
QS 3.52 5.52 4.22 6.44 4.82 7.40 4.02 6.20 4.36 7.12 5.08 8.36

Η′n BAR 6.98 12.34 5.72 9.78 5.56 9.74 5.96 10.58 5.22 9.58 5.58 9.56
TUK 4.14 8.44 4.38 8.12 4.98 8.70 4.64 8.44 4.86 8.66 5.26 8.98
QS 4.42 8.30 4.76 8.52 5.56 9.34 4.68 8.82 4.74 8.74 5.48 9.64

Bn 5.98 11.06 6.48 12.08 7.60 12.70 5.44 10.26 5.76 11.08 6.04 11.02
Note: Model  xt − 0.8 xt-1 =εt.



Table III
Rejection Rates in Percentage Under an ARFIMA (0,d,0) Model

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 2.62 4.08 3.52 5.28 4.90 7.42 2.64 4.60 3.74 6.00 4.80 8.20
TUK 2.52 4.00 3.46 5.58 4.96 7.50 2.92 4.78 3.86 6.14 5.10 8.42
QS 3.22 4.98 4.34 6.78 6.62 9.60 3.30 5.74 4.40 7.06 5.58 9.08

Τ′n BAR 5.44 10.26 5.16 9.70 6.30 10.46 4.92 8.94 5.04 9.16 5.78 10.42
TUK 3.38 6.72 4.40 7.84 5.54 9.50 3.64 7.02 4.52 8.20 5.32 10.00
QS 3.96 7.46 5.02 8.94 7.12 11.90 4.08 7.70 4.86 8.76 5.92 10.56

Ηn BAR 2.28 3.76 3.02 4.86 3.54 5.88 2.56 4.42 3.42 5.86 4.22 7.00
TUK 2.20 3.52 3.20 5.10 3.90 5.88 3.12 5.32 4.14 6.52 4.70 7.86
QS 2.82 4.46 3.66 5.36 4.10 7.04 2.72 4.54 3.70 5.98 4.44 7.44

Η′n BAR 5.08 9.90 4.70 8.24 4.72 8.58 4.62 8.74 4.64 8.56 4.96 9.14
TUK 3.10 6.50 3.92 6.84 4.26 7.96 3.34 6.84 4.08 7.62 4.74 8.66
QS 3.74 6.70 4.28 7.46 4.58 8.76 3.76 7.48 4.38 8.18 4.92 9.04

Bn 5.34 10.50 5.70 10.80 6.48 11.52 5.18 9.88 5.32 10.42 5.94 10.78
Note: Model  xt = ARFIMA (0,d,0) with d = 0.3.

TABLE IV
Rejections Rates in Percentage under AR(2)  Alternative

fitting Model AR(1)

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 22.48 28.60 22.92 29.04 22.88 29.62 80.18 84.96 76.02 81.64 68.54 75.74
TUK 21.94 28.16 22.80 28.58 22.40 28.76 79.96 82.18 74.76 81.06 65.66 73.26
QS 22.44 28.64 22.80 28.96 22.74 29.74 78.20 83.42 70.56 77.68 61.04 69.96

Τ′n BAR 34.06 44.68 28.50 38.66 26.58 35.62 85.40 90.78 79.24 86.26 71.08 79.36
TUK 25.88 36.74 25.02 34.68 23.80 32.88 82.18 88.38 76.38 84.10 66.72 76.20
QS 25.72 35.88 24.44 33.38 24.14 33.26 80.26 86.76 72.02 80.54 61.94 72.00

Ηn BAR 23.58 30.22 23.42 29.66 22.42 28.70 80.62 85.46 75.84 81.86 68.24 75.26
TUK 23.18 29.36 23.22 29.42 21.98 28.22 80.32 85.24 74.90 80.90 65.02 72.66
QS 23.28 29.90 22.76 28.54 21.12 27.40 78.34 83.96 70.46 77.14 59.60 68.88

Η′n BAR 35.74 46.58 29.14 38.96 26.08 34.64 85.86 90.86 79.28 86.34 70.52 78.56
TUK 27.50 38.90 25.40 35.04 23.38 31.72 82.48 88.64 76.16 84.20 66.20 75.32
QS 26.34 36.52 24.44 33.62 22.28 30.68 80.48 86.76 71.84 80.28 60.70 71.00

Bn 22.46 32.40 20.08 28.72 18.70 26.84 64.92 75.34 52.24 64.34 41.26 53.00
Note: Model  xt − 0.8 xt-1 + 0.15 xt-2  = ut.



TABLE V
Rejections Rates in Percentage Under ARMA(1,1) Alternative

fitting Model ARIMA(1,d,0)

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 9.50 13.38 8.44 12.58 8.96 13.04 31.84 40.74 28.36 36.56 25.10 34.24
TUK 7.24 11.28 8.04 12.06 8.80 12.80 31.34 40.54 26.94 35.12 23.36 32.48
QS 8.74 12.26 8.04 12.02 10.04 14.74 29.20 37.80 25.00 33.62 22.78 31.50

Τ′n BAR 50.50 68.44 25.38 37.72 19.66 29.88 66.30 78.92 47.06 60.68 36.68 48.88
TUK 16.00 30.34 16.70 27.26 14.76 23.62 50.30 65.78 38.18 52.64 31.08 43.76
QS 18.10 29.72 15.68 25.34 15.46 24.98 44.82 59.56 34.50 48.02 28.96 40.46

Ηn BAR 12.68 17.04 11.28 15.52 8.92 13.20 33.02 42.28 28.94 37.36 24.82 33.70
TUK 7.98 12.12 8.20 12.32 8.66 12.96 32.66 41.88 27.70 35.72 23.12 31.88
QS 11.48 15.70 10.18 14.40 9.06 13.68 30.32 38.70 25.30 33.72 21.78 30.10

Η′n BAR 52.92 70.82 26.82 38.20 19.18 28.84 67.60 79.72 47.62 61.68 36.12 48.40
TUK 17.26 32.70 17.24 27.92 14.74 23.22 52.04 67.00 38.76 52.94 30.88 43.06
QS 18.86 30.92 15.76 24.84 14.46 22.08 45.54 60.58 34.84 43.38 27.78 39.44

Bn 15.12 24.58 14.08 22.30 13.00 20.56 30.10 44.14 23.40 36.46 19.28 29.44
Note: Model  xt = 0.8xt-1 +ut + 0.2 ut-1.

TABLE VI
Rejections Rates in Percentage Under ARFIMA(0,d,0) Alternative

fitting Model ARMA(1,1)

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 6.46 9.38 7.50 11.10 8.90 13.30 37.28 44.78 38.54 46.16 37.02 45.06
TUK 6.54 9.10 7.50 11.32 8.68 13.14 38.06 45.20 39.14 46.74 36.20 44.42
QS 7.20 10.22 8.24 12.56 10.44 15.34 39.70 46.54 37.90 45.72 34.36 43.00

Τ′n BAR 42.30 60.50 23.14 33.64 19.02 28.46 63.04 73.32 53.82 63.56 46.92 57.46
TUK 12.76 23.94 15.32 24.90 15.14 24.00 52.08 63.30 48.88 59.20 43.44 53.58
QS 15.84 25.80 15.54 24.68 16.08 24.52 51.60 61.72 46.62 56.54 40.70 51.50

Ηn BAR 5.26 7.54 6.22 8.90 6.84 10.34 36.14 43.38 37.28 44.80 35.00 42.88
TUK 5.32 7.48 6.46 9.12 6.92 10.54 37.16 44.08 37.90 45.46 34.22 42.36
QS 6.04 8.64 6.68 10.18 7.32 10.78 38.42 45.56 36.72 44.56 32.26 40.10

Η′n BAR 38.40 56.44 19.50 30.36 15.10 23.28 61.78 72.44 52.56 62.12 45.08 55.22
TUK 10.54 21.32 12.60 21.60 12.30 19.66 51.02 62.18 47.92 57.86 41.20 52.26
QS 12.82 22.78 12.34 20.54 11.32 18.74 50.16 60.60 45.28 55.08 38.04 48.78

Bn 13.30 22.04 11.80 19.16 10.96 17.90 42.24 53.80 33.26 44.92 27.02 36.54
Note: Model  xt = ARFIMA (0,d,0) with d = 0.4.



TABLE VII
Rejections Rates in Percentage Under ARFIMA(1,d,0)  Alternative

fitting Model ARFIMA(0,d,0)

 n 128 512
pn 8 13 21 11 20 37

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

Τn BAR 8.52 12.48 8.76 12.68 9.68 14.16 16.92 22.42 14.94 21.14 13.32 19.42
TUK 8.16 12.10 8.10 12.14 9.10 13.60 16.26 21.78 14.50 20.50 12.80 18.32
QS 8.24 11.74 8.82 12.86 10.88 15.54 15.76 21.34 13.16 19.22 12.62 18.24

Τ′n BAR 16.46 25.96 12.20 20.12 11.92 18.96 22.94 32.92 18.24 26.98 15.08 23.76
TUK 10.72 18.90 9.64 16.56 10.22 16.58 18.90 27.82 15.84 23.92 13.44 21.18
QS 9.96 16.94 9.82 16.70 11.80 18.06 17.40 26.24 14.36 22.34 13.14 20.54

Ηn BAR 7.54 10.84 7.54 11.42 7.98 11.56 16.22 21.78 14.22 20.14 12.32 17.74
TUK 7.36 10.68 7.26 11.06 7.60 11.36 15.28 20.38 12.52 18.14 10.88 16.32
QS 7.32 10.70 7.32 11.34 8.12 11.53 15.84 20.98 13.88 19.68 11.60 16.82

Η′n BAR 14.42 23.78 11.22 18.00 9.92 14.78 22.22 32.30 17.50 26.08 13.64 21.74
TUK 9.34 16.80 8.82 14.68 8.32 14.10 17.90 27.16 15.08 23.26 12.20 19.38
QS 9.22 15.08 8.42 14.12 8.82 13.56 16.72 25.16 13.70 21.56 11.30 18.28

Bn 8.60 15.74 8.80 15.10 9.90 15.50 12.38 21.60 10.30 17.66 9.26 15.82
Note: Model  xt − 0.1 x t-1  = ut, ut = ARFIMA (0,d,0) with  d = 0.4.


