A Small Sample Study of Goodness-of-fit Tests for Time Series
Models

Willa. W. Chen and Rohit S. Deo!
New York University

Abstract

We study the small sample behaviour of two goodness-of-fit tests for time series models which
have been proposed recently in the literature. Both tests are generalizations of the popular Box-
Ljung-Pierce portmanteau test, one in the time domain and the other in the frequency domain.
The tests are found to be oversized under the null of white noise but undersized under other
null hypotheses. The cause for this effect is investigated and a finite sample correction proposed
which ameliorates this effect. It is found that the corrected versions of the tests have markedly
better size properties. The correction is also found to result in an overall increase in power which
can be significant in certain alternatives. Furthermore, the corrected tests also have uniformly
better power than the Box-Ljung-Pierce portmanteau test, unlike the uncorrected versions.

Keywords: frequency domain, portmanteau test.

1 Introduction

A popular goodness-of-fit test in time series is the Box-Pierce test (1970) given by

Pn
BP,=n)_p?
i=1
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and its asymptotically equivalent modified version, the Box-Ljung-Pierce (1978) test
Pn
Bn:n(n+2)2(n_i)_1[)i2a (1)
i=1
where p; is the i*" sample correlation of the residuals from the fitted model and p,, is such that

pn — 00 and p,/n — 0. Hong (1996) proposed a generalization of the Box-Pierce test, given by

H, = }pn:i# L) 2
n="n P Pi 5
=1 n

where k (+) is a suitably chosen kernel. The statistic BP, is a particular version of H,,, obtained
by using the truncated uniform kernel k(x) = I (Jx| <1). The choice of kernels k (z) which
decay for large x will downweight the importance given to correlations at high lags which are
estimated less efficiently.

A frequency domain version of the Hong test was proposed recently by Chen and Deo (2000)
as follows. Given a kernel & (-), compute the spectral window W (-) as

W) =5 S kljme®  —msasn
jl<n

The statistic is then

where

£ () is the spectral density of the fitted model and I (\) = (2rn) ™" |37, @ exp (—itA)[? is the
periodogram of the observations z;. The statistic 7;, has the advantage of whitening the data
in the frequency domain and does not need an easily obtainable autoregressive representation
of the observations x+ to compute the time domain residuals. Chen and Deo (henceforth CD)
proved that H, and nz'l,, — 0.5n have the same asymptotic null distribution and hence are
asymptotically equivalent. However, CD obtained the asymptotic distribution of 7;, under null
hypotheses which allow the spectral density f(-) of the fitted model to be unbounded at the
origin. This encompasses long memory models such as the Autoregressive Fractionally Integrated

Moving Average (ARFIMA) models (see Hosking, 1981) which have hyperbolically decaying



correlations. The distributions of H,, and BF, under such long memory null hypotheses are not
yet known.

In their simulation study, CD found that the finite sample size and power performance of
H,, and T, were very similar under a variety of null and alternative hypotheses and when using
different kernels k (-). However, they found that both the tests were oversized when the null
hypothesis was that of white noise. On the other hand, when the null hypothesis was not
white noise, both tests were under sized, in some cases quite seriously. In the next section, we
investigate the cause of this phenomenon and then propose a small sample correction to rectify
it. The effect of our correction on the tests is then studied in section 3 through a Monte Carlo

study.

2 Small Sample Behaviour

Hong (1996) established that when p,, — oo and p,, = o0 (n),

(m(;n—%(’“)> D N(0,1), (2)

where .
o (1) = Z (1= i/n) ¥ (i/pn) 3)

and -
o2 (k) = 222(1 —ifn) (1= i+ 1) 1) ). T

Since, as noted earlier, CD have shown that H,, is asymptotically equivalent to n7T,, — 0.5n, we

also have

(mrTn — 0.51n — fup, (k)
on (k)

In all of these results, it is assumed that & (-) is continuous with k£ (0) =1 and that k() — 0 as

>B>N(0,1). (5)

x — 0Q.
The mean and variance of H,, may be obtained by treating all the correlations p; as indepen-
dent normal random variables with mean zero and variance n~2 (n — i) and then noting that H,

is a simple quadratic form in them. The pretense in this heuristic argument that p; is normally



distributed with variance n=2 (n — i) follows from the belief that the correlation p; of the residu-
als is asymptotically equivalent to that of the innovations, 7;, which has mean zero and variance
n=2(n—1i).

However, Box-Pierce (1970) showed that for fixed h and large n and an idempotent matrix
Q,

pr~(1-QF, (6)

where p = (py, ..., p)" and # = (74, ...,7;) are the sample correlations of the residuals from the
fitted model and the true innovations respectively. The matrix Q was shown to be of rank p,
where p was the number of parameters fitted and its elements depend on the structure of the
underlying model. Thus, for any fixed ¢, the correlation p; of the residuals is not asymptotically
identical to the corresponding correlation #; of the innovations. If p, is not very large, it is then
easy to see that using the expressions u, and o, above will result in distortions in size and also
affect power. To obtain better approximations to the mean and variance of H,, we have to thus
exploit (6).

For ease of exposition in what follows, we will assume that the variance of #; is n~! rather than
n~2(n —1). Then, Var (p) ~n~'Tand hence E (H,) =tr {K? (I —Q)}, where K =diag (k1, ..., kn—1) -
Letting ¢;; denote the i*" diagonal entry of Q, we get

““{KZ(I—Q)} :Zkg—zkgqiizzkg—Zqz'i—Z(kg—l)qn'.

Since Q is idempotent with rank p, we have >, ¢i; = tr (Q) = p. Furthermore, from equation
(2.31) of Box-Pierce (1970), we note that

gij — 0 as max (i,j) — oo. (7)
Since k (z) ~ 1 for z close to 0, it follows that 3", (k2 — 1) g;; is negligible. Hence,
n—1
B(Ha) ~ Y k2= p ®
=1

It is immediately apparent from this approximation that the mean pu, in (3) will overestimate
the mean of H,. This is the cause of the tests based on H, and 7, being undersized when a

model was fit, as found in CD.



Similarly, we have
Var (Hy) = 2tr{K*(I- QK>(1-Q)}
- 2{2 K =2 Klgai+) kfk?qzj}
i i 4]
4 2 1 2 2 2
= 22k a4 (K 5) w k22 (1) (- 1)

.7
1 2
~ 227%4—17—42(’%2—5) Qi (9)
7 7

where we have once again used (7) and the fact that k (x) ~ 1 for = close to 0. Note that the
last term in (9) is not negligible, since k? — 1/2 will not be close to zero for small i. However,
since this term is negative, using 2 3", k* —p as an approximation for the variance of H,, will be a
conservative measure. From this argument, we also see that the variance o2 in (4) will overesti-
mate the true variance of H, causing the test based on H,, to be undersized. The approximation
2> k:;1 — p that we obtain above for the variance of H,, will also tend to overestimate it but not
by as much as 2.

In the development above if we had assumed, more appropriately, that the variance of 7; is

n~2 (n — i), then similar though more tedious arguments show that

n—1
E(Hp) ™ png= > (L—i/n)ki —p (10)
i=1
and
Var (Hy) %o%nyQZ(l—i/n)(l—(i—i—l) /n) kt —p. (11)

We propose that (10) and (11) be used instead of , and o, in computing the statistic based on
H,.

As noted above, CD had also found that the tests H, and T, were oversized when the null of
white noise was being tested. This may be attributed to the fact that these tests were essentially
quadratic forms in normal variables and though asymptotically normal, would have finite sample
distributions that were right skewed. A simple transformation that would help improve the

normal approximation for such variables is the square root transformation, which we suggest be



taken before the tests are carried out. A standard delta method argument shows that
2 Hn,f —— D
=0y~ JTag) 2N (0.1 (12)
n,
and since H,, is asymptotically equivalent to nz'l,, — 0.5n, it also follows that
2/bnf ( " ——\ D
p (VT = 0.5~ Jimy) 5 N (0,1). (13)
In the next section, we study the effects of the mean and variance corrections as well as that

of the square root transformation through Monte Carlo simulations.

3 Simulation study

We generated 5000 replications of Gaussian series of length n = 128 and 512 from a variety of AR
and ARFIMA processes. The AR(1) processes were generated by drawing the initial observation
from the marginal stationary distribution of the process. To generate ARFIMA(1,d,0), we first
generated observations from an ARFIMA (0, d, 0) using the algorithm of Davies and Harte (1987).
These observations were then used as innovations in the AR(1). In such cases, the AR(1) was
initialized from 0 and then the first n observations were discarded.

For each series, we computed five statistics: (i) The Box-Ljung-Pierce statistic By, given in
(1). (ii) Hong’s uncorrected statistic Hy, given in (2). (iii) The uncorrected Chen-Deo statistic 15,
from (5). (iv) The corrected Hong statistic, denoted here by H/, from (12). (v) The corrected
Chen-Deo statistic, denoted here by 77, from (13). The following three kernels were used in
computing the Hong and the Chen-Deo statistics:

(i) Bartlett k(z) =1 —|z], |2| <1,

=0 otherwise,

(i) Tukey k(z) = 3 (cos(zm) +1), |2 <1,

=0 otherwise,

(ili) Quadratic Spectral (QS), k(2) = 22 (%5&1 - cos(67rz/5)> , 2 € (—00,00).

In computing the tests we used three bandwidths, p, = [3n%2], [3n%3] and [3n%4]. The
sample sizes and bandwidths we have chosen here are identical to those used in CD. In all

computations of size and power, the test B, was compared to a X%n—p distribution, where p
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was the number of estimated parameters, while the other tests were compared to the standard
normal distribution. In computing tests based on residuals from the fitted model, the residuals
were computed by truncating the infinite autoregressive representation of the process.

In Tables I, IT and III, we report the sizes of all the tests under the null hypothesis of white
noise, an AR(1) and an ARFIMA(0,d,0) respectively. The AR(1) parameter was set to 0.8 while
the long memory parameter d in the ARFIMA (0, d, 0) was set at 0.4. It is seen from Table I that
both the uncorrected tests T, and H,, as well as B,, are oversized under the white noise null.
This effect is significant even at samples as large as 512. Furthermore, the amount by which
they are oversized increases as the bandwidth p,, increases. On the other hand, when the null is
not white noise, as in Tables IT and II, both the tests 1;, and H, are undersized. The B, test,
on the other hand continues to be oversized.

A visual understanding of this phenomenon can be obtained from the plot on the left in Figure
1. We have made boxplots of the 5000 replications of the 7;, statistic using the Tukey kernel
for p, = 13, n = 128. In the white noise case, the distribution of T}, is seen to have a median
of roughly 0, but is extremely right skewed which explains why the test is oversized. On the
other hand, the distribution of 7}, under the AR(1) and ARFIMA(0,d,0) null, though still right
skewed, has a median which is much below zero. This shift in location is significant enough to
compensate for the right skewness and cause the tests to be undersized.

On the other hand, the corrected tests based on the Tukey and QS kernel in Tables I, IT and
IIT have much better size properties. In the case of white noise, the square root transformation
reduces the skewness and hence the size, whereas in the other two cases, the mean and variance
adjustment also corrects the bias in the tests. This can be seen visually in the boxplots on the
right side of Figure 1. The distribution of the corrected Ty test using the Tukey kernel is seen
to be centered almost around zero and the skewness has been drastically reduced.

The corrected tests based on the Bartlett kernel however tend to be oversized in the cases
when the null is not white noise. This is due to the fact that the Bartlett kernel is tent shaped and
hence drops off rapidly from 1 near the origin. This non-smoothness causes our approximations
in (10) and (11) to be poor, resulting in the oversized tests. The Tukey and the QS kernel

however do not drop off rapidly from 1 near the origin and the tests based on them are well



behaved.

The effect of the square root transformation can be seen independently in Figure 2. We have
made normal probability plots of the T,, statistic before and after the square root transformation
in the case of white noise. It is seen that though the transformation does not achieve normality,
it goes a long way towards reducing the extreme right skewness of the distribution.

To compare the power of the tests, we considered the following four cases: (a) fitting an AR(1)
to data generated by an AR(2), zx = 0.8x4—1 — 0.1as—2 + & (b) fitting an ARFIMA(1,d,0) to
data generated by an ARMA(1,1), x; = 0.8x¢—1 +e¢+0.2:—1. (c) fitting an ARMA(1, 1) to data
generated by an ARFIMA (0, d, 0), (1 — B)** 2, = &; where B denotes the backshift operator (d)
fitting an ARFIMA(0,d,0) to data generated by an ARFIMA(1, d, 0), (1 — B)**(1 - 0.1B) 2y =
€t. The results are reported in tables IV, V, VI and VII respectively.

As observed in CD, the power of Ty, is similar to that of H,, in all the alternatives considered,
irrespective of the choice of kernel. However, the power of these two tests can be quite different
from that of By, depending on the alternative. Neither of these two tests dominates B, clearly.
However, the use of the corrected tests 7}, and H] changes this. The corrected tests have
significantly higher power than their uncorrected versions. Though the corrected tests based on
the Bartlett kernel show dramatic improvement, this should be discounted since the these tests
are oversized as noted above. However, the corrected tests based on the Tukey and QS kernel
also show significant improvement in power that cannot be disregarded. Furthermore, these
corrected tests now outperform B, uniformly in all the alternatives considered. The corrections
also can have a dramatic effect even for sample size n = 512, as seen from Tables V and VI.

The Monte Carlo study seems to suggest that the use of corrected versions 7] and H], based
on kernels which decline from 1 near the origin in a gradual manner will have sizes close to
the nominal and also be more powerful than the standard Box-Ljung-Pierce portmanteau test.
Furthermore, the frequency domain based test 77, has the added advantage of computational

simplicity and also has been theoretically justified for long memory models.
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Figure 1. Boxplots of Standard Nomalized T,
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Figure 2. QQ Plots of 7, under Gaussian White Noises

n=128, p,= 13, Tukey Kernel
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TABLE I
Rejection Rates in Percentage Under Normal White Noises

n 128 512
P 8 13 21 11 20 37
%  10% 5%  10% 5% 10% 5% 10% 5% 10% 5%  10%
T, BAR 722 1016 756 1098 826 13.04 698 1080 746 1132 764 12.16
TUK 730 1004 762 1072 808 1252 7.10 1070 730 1098  7.70 12.02
Qs 746 1036 788 11.80 994 1464 696 1124 756 1152 7778 13.02
TG BAR 450 782 514 892 622 1050 454 806 500 9.14 586 1024
TUK 442 766 500 858 596 1008 452 808 476 900 564 1032
Qs 490 826 552 974 722 1230 458 842 542 970 598 11.26
H, BAR 6.82 974 690 1046 7.8 11.04 688 1044 7.14 1080 7.02 1148
TUK 678 972 698 1028 736 1154 7.00 1032 696 1056 692 11.50
Qs 692 1014 722 1070 742 1142 7.04 1090 7.10 1090 690 11.70
H¢, BAR 432 750 460 808 494 938 442 792 486 866 520 946
TUK 410 732 440 800 462 892 444 7.86 480 862 504 9.68
Qs 428 772 464 846 544 966 446 812 506 916 516 994
B, 526 1020 636 1126 742 1238 540 1056 572 1042 6.2 11.16
Note: Model x,~N(0,1).
TABLE 11
Rejection Rates in Percentage Under an AR(1) Model
n 128 512
P 8 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T, BAR 308 502 404 612 490 780 382 582 432 698 506 8.02
TUK 304 496 404 612 630 968 398 582 456 710 516 840
Qs 36 564 452 690 504 774 406 652 474 764 558 9.26
TG, BAR 6.84 1240 594 1036 654 11.06 6.10 1050 556 986 590 1040
TUK 438 808 468 856 552 986 478 820 498 896 548 990
Qs 452 840 510 954 688 1202 492 886 506 934 586 10.64
H, BAR 330 508 382 582 426 676 362 572 420 654 476 734
TUK 316 490 378 592 446 696 376 578 426 684 483 748
Qs 352 552 422 644 482 740 402 620 436 712 508 836
H¢, BAR 698 1234 572 978 556 974 596 1058 522 958 558  9.56
TUK 414 844 438 812 498 870 464 844 486 866 5206 898
Qs 442 830 476 852 556 934 468 882 474 874 548 9.64
B, 598 11.06 648 12.08 7.60 1270 544 1026 576 11.08 6.04 11.02

Note: Model x,- 0.8 x,; =€.



Table III
Rejection Rates in Percentage Under an ARFIMA (0,d,0) Model

n 128 512
Dn 8 13 21 11 20 37
%  10% 5%  10% 5% 10% 5% 10% 5% 10% 5%  10%
T, BAR 262 408 352 528 490 742 264 460 374 600 480 820
TUK 252 400 346 558 496 750 292 478 386 614 510 842
Qs 322 498 434 678 662 960 330 574 440 706 558 9.08
TG BAR 544 1026 516 970 630 1046 492 894 504 916 578 1042
TUK 338 672 440 784 554 950 364 702 452 820 532 10.00
Qs 396 746 502 894 712 1190 408 770 486 876 592 10.56
H, BAR 228 376 3.02 486 354 588 256 442 342 586 422 7.00
TUK 220 352 320 510 390 588 312 532 414 652 470 786
Qs 282 446 3,66 536 410 704 272 454 370 598 444 744
H¢, BAR 508 990 470 824 472 858 462 874 464 856 496 9.14
TUK 310 650 392 684 426 796 334 684 408 762 474 8.66
Qs 374 670 428 746 458 876 376 748 438 818 492 9.04
B, 534 1050 570 1080 648 1152 518 988 532 1042 594 10.78
Note: Model x, = ARFIMA (0,d,0) withd =0.3.
TABLE IV
Rejections Rates in Percentage under AR(2) Alternative
fitting Model AR(1)
n 128 512
P 8 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T, BAR 2248 28,60 2292 29.04 2288 29.62 80.18 8496 76.02 81.64 6854 7574
TUK 2194 2816 2280 2858 2240 2876 79.96 82.18 7476 8106 6566 73.26
Qs 2244 2864 2280 2896 2274 29.74 7820 8342 70.56 77.68 61.04 69.96
TG, BAR 3406 44.68 2850 38.66 2658 3562 8540 90.78 7924 8626 71.08 79.36
TUK 2588 36.74 2502 3468 2380 3288 82.18 8838 7638 84.10 66.72 7620
Qs 2572 3588 2444 3338 24.14 3326 8026 8676 72.02 80.54 6194 72.00
H, BAR 2358 3022 2342 2966 2242 2870 80.62 8546 7584 8186 6824 7526
TUK 2318 2936 2322 2942 2198 2822 8032 8524 7490 8090 6502 72.66
Qs 2328 2990 2276 2854 21.12 2740 7834 8396 7046 77.14 59.60 68.88
H¢, BAR 3574 4658 29.14 3896 26.08 3464 8586 9086 79.28 8634 70.52 7856
TUK 2750 3890 2540 3504 2338 31.72 8248 88.64 7616 8420 6620 7532
Qs 2634 3652 2444 3362 2228 30.68 8048 8676 71.84 8028 60.70 71.00
B, 2246 3240 20.08 2872 18.70 26.84 64.92 7534 5224 6434 4126 53.00

Note: Model x,- 0.8 x,,+0.15x,, = u,



TABLE V
Rejections Rates in Percentage Under ARMA(1,1) Alternative
fitting Model ARIMA(1,d,0)

n 128 512
P 8 13 21 11 20 37
%  10% 5%  10% 5% 10% 5% 10% 5% 10% 5%  10%
T, BAR 9.50 1338 844 1258 896 13.04 31.84 4074 2836 3656 25.10 34.24
TUK 724 1128 804 1206 880 1280 3134 4054 2694 3512 2336 3248
Qs 874 1226 804 12.02 10.04 1474 2920 37.80 2500 33.62 2278 31.50
TG BAR 5050 6844 2538 3772 19.66 29.88 6630 7892 47.06 60.68 36.68 4888
TUK 1600 3034 1670 2726 1476 23.62 5030 6578 3818 5264 31.08 43.76
Qs 1810 29.72 1568 2534 1546 2498 4482 59.56 3450 48.02 2896 4046
H, BAR 1268 17.04 1128 1552 892 1320 33.02 4228 2894 3736 2482 33.70
TUK 798 1212 820 1232 866 1296 3266 4188 27.70 3572 23.12 31.88
Qs 1148 1570 10.18 1440 9.06 13.68 3032 3870 2530 3372 21.78 30.10
H¢, BAR 5292 70.82 2682 3820 19.18 2884 67.60 79.72 47.62 61.68 36.12 4840
TUK 1726 3270 1724 2792 1474 2322 5204 6700 3876 5294 30.88 43.06
Qs 18.86 3092 1576 2484 1446 2208 4554 6058 34.84 4338 27778 3944
B, 15.12 2458 14.08 2230 13.00 20.56 30.10 44.14 2340 3646 1928 29.44
Note: Model x,=0.8x,; tu, +0.2 u,;.
TABLE VI
Rejections Rates in Percentage Under ARFIMA(0,d,0) Alternative
fitting Model ARMA(1,1)
n 128 512
P 8 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
T, BAR 646 938 750 11.10 890 1330 3728 4478 3854 46.16 37.02 45.06
TUK 654 910 750 1132 868 13.14 38.06 4520 39.14 46.74 3620 4442
Qs 720 1022 824 1256 1044 1534 39.70 4654 3790 4572 3436 43.00
TG, BAR 4230 6050 23.14 33.64 19.02 2846 63.04 7332 5382 6356 4692 5746
TUK 1276 2394 1532 2490 15.14 2400 5208 6330 4888 5920 4344 5358
Qs 1584 2580 1554 24.68 1608 2452 5160 61.72 4662 5654 40.70 51.50
H, BAR 526 754 622 890 684 1034 36.14 4338 3728 4480 3500 42.88
TUK 532 748 646 912 692 1054 37.16 4408 3790 4546 3422 4236
Qs 6.04 864 668 1018 732 1078 3842 4556 36.72 4456 3226 40.10
H¢, BAR 3840 5644 1950 3036 1510 2328 61.78 7244 5256 62.12 4508 5522
TUK 1054 2132 1260 21.60 1230 19.66 51.02 62.18 4792 5786 4120 5226
Qs 12.82 2278 1234 2054 1132 1874 50.16 60.60 4528 55.08 38.04 48.78
B, 1330 22.04 11.80 19.16 1096 1790 4224 5380 3326 4492 27.02 36.54

Note: Model x, = ARFIMA (0,d,0) withd =0.4.



TABLE VII
Rejections Rates in Percentage Under ARFIMA(1,d,0) Alternative
fitting Model ARFIMA(0,d,0)

n 128 512
D 13 21 11 20 37
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

T, BAR 852 1248 876 1268 968 14.16 1692 2242 1494 21.14 1332 1942
TUK 816 1210 810 1214 9.10 13.60 1626 21.78 1450 20.50 12.80 18.32
Qs 824 11.74 882 1286 10.88 1554 1576 2134 13.16 1922 12.62 1824

TG, BAR 1646 2596 1220 20.12 1192 1896 2294 3292 1824 2698 1508 23.76
TUK 1072 1890 9.64 1656 1022 1658 1890 27.82 1584 2392 1344 21.18
Qs 996 1694 982 1670 11.80 18.06 1740 2624 1436 2234 13.14 20.54

H, BAR 754 1084 754 1142 798 11.56 1622 2178 1422 20.14 1232 1774
TUK 736 1068 726 1106 7.60 1136 1528 2038 1252 18.14 10.88 16.32
Qs 732 1070 732 1134 812 11.53 1584 2098 1388 19.68 11.60 16.82

H¢, BAR 1442 2378 1122 18.00 992 1478 2222 3230 1750 26.08 13.64 21.74
TUK 934 1680 882 1468 832 14.10 1790 27.16 1508 2326 1220 1938
Qs 922 1508 842 1412 882 1356 1672 2516 1370 21.56 1130 18.28

B, 8.60 1574 880 1510 990 1550 1238 21.60 1030 17.66 926 15.82

Note: Model x,- 0.1x ., =u, u,= ARFIMA (0,d,0) with d =0.4.



