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Multistep forecasting of long memory series using fractional
exponential models
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Abstract

We develop forecasting methodology for the fractional exponential (FEXP) model. First, we devise algorithms for fast
exact computation of the coefficients in the infinite order autoregressive and moving average representations of a FEXP
process. We also describe an algorithm to accurately approximate the autocovariances and to simulate realizations of the
process. Next, we present a fast frequency-domain cross validation method for selecting the order of the model. This model
selection method is designed to yield the model which provides the best multistep forecast for the given lead time, without
assuming that the process actually obeys a FEXP model. Finally, we use the infinite order autoregressive coefficients of a
fitted FEXP model to construct multistep forecasts of inflation in the United Kingdom. These forecasts are substantially
different than those from a fitted ARFIMA model.  2002 International Institute of Forecasters. Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction Granger and Joyeux (1980), is convenient for
forecasting as the coefficients of the best linear

Multistep forecasting of long-memory series predictor may be determined rather easily. In
has received considerable attention in recent some cases, there is even an explicit formula for
years. See, for example, Crato and Ray (1996), these coefficients. Nevertheless, estimation and
Ray (1993), Brodsky and Hurvich (1999), Tiao model selection for ARFIMA models are some-
and Tsay (1994). Most of these works focus on what problematic. Estimation is typically carried
the autoregressive fractionally integrated mov- out by means of numerical optimization, which
ing average (ARFIMA) model, which is a long- can only be reliably achieved when the dimen-
memory generalization of the well-known sion of the model is small. Further difficulties
ARIMA models. The ARFIMA model, pro- may arise from the need to constrain the auto-
posed independently by Hosking (1981) and regressive and moving average parameters for

stationarity and invertibility. In addition, al-
though there is some literature on the selection*Tel.: 11-212-998-0449; fax: 11-212-995-4003.
of ARFIMA models (e.g., Beran, Bhansali &E-mail address: churvich@stern.nyu.edu (C.M. Hur-

vich). Ocker, 1998), the focus in this literature is on
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consistent selection of the true model order, is pooled (averaged) before taking logs, as
ˆassuming that the series actually obeys a low- shown by Robinson (1995) for d and byGPH
ˆdimensional ARFIMA model. No methodology, Moulines and Soulier (1999) for d .FEXP

however, seems to have been proposed on The fitting of FEXP models by least-squares
selection of an ARFIMA model for the purpose regression of the log periodogram provides us
of multistep prediction, in a setting where the not only with an estimator of d, but also with an
ARFIMA models are viewed merely as approxi- estimator of the spectral density at all frequen-
mations to the true process. cies. Moulines and Soulier (2000) showed if the

In this paper, we wish to develop forecasting dimension, p, of the FEXP model is chosen to
methodology for a different class of long-mem- minimize Mallows’ (1973) C criterion (see Li,L

ory models, known as the fractional exponen- 1987), then the resulting spectral estimator is
tial, or FEXP models. The FEXP model is a asymptotically optimal in terms of mean inte-
long-memory generalization of the exponential grated squared error of the log spectrum, once
model originally proposed by Bloomfield again assuming that the true process is not a
(1973). Under the exponential model, the finite-order FEXP. In view of the results of
logarithm of the spectral density of the process Shibata (1980, 1981), it seems plausible that the
is assumed to have a finite order Fourier series C method provides an optimal selection ofL

expansion. The parameters in the model are the FEXP models for one-step ahead forecasting.
coefficients in this expansion. The FEXP model The question then arises: How do we compute
has been discussed by Janacek (1982), Beran the forecasts, and how should we select a model
(1993, 1994) and Robinson (1994), among if we are interested in multistep forecasting? A
others. perhaps even more basic question is: How do

Recently, there has been interest in using we calculate the coefficients in the one-sided
FEXP models for semiparametric estimation of infinite order autoregressive (AR(`)) and mov-
the long-memory parameter d. Moulines and ing average (MA(`)) representations of the
Soulier (1999) (see also Hurvich & Brodsky, process? We will provide answers to these
2001) determined the asymptotic properties of questions here.

ˆthe FEXP estimator d , obtained by fitting The outline of the paper is as follows. First,FEXP

the model to the log periodogram by least- we define the exponential model, and give
squares, and allowing the dimension of the recursive formulas for its AR(`) and MA(`)
model to grow slowly with the sample size n. coefficients, as well as a fast algorithm for
Assuming that the series is Gaussian but does approximating its autocovariances. Next, we
not obey a finite-dimensional FEXP model, define the FEXP model and use the results

ˆMoulines and Soulier (1999) showed that d described above to give fast algorithms forFEXP

is asymptotically normal, with a mean squared exact calculation of its AR(`) and MA(`)
error that can be as small as O[(log n) /n] if the coefficients, and approximation of its au-
true spectral density is sufficiently smooth. This tocovariances. Next, we present a fast fre-
compares favorably with the log-periodogram quency-domain cross validation method for

ˆregression estimator d of Geweke and Por- selecting the order p of the FEXP model. ThisGPH

ter-Hudak (1983) (justified theoretically by model selection method is designed to yield the
Robinson, 1995; Hurvich, Deo & Brodsky, value of p which provides the best multistep
1998), which has mean squared error no better forecast for the given lead time, without assum-

24 / 5than O(n ) in general. The efficiency of both ing that the process actually obeys a FEXP
estimators can be improved if the periodogram model. We view the suggestion of this method
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as merely a first step and defer research into its will provide some additional algorithmic details.
theoretical and practical performance to a later It follows from Kolmogorov’s formula (see
paper. We do, however, explore the practical Brockwell & Davis, 1991, p. 191) that the

2performance of multistep forecasts of inflation innovation variance s and u are related by0
2in the United Kingdom, based on FEXP and u 5 log[s /(2p)], so we can express the spec-0

ARFIMA models, without model selection. The tral density as
FEXP multistep forecasts are computed using p2

sour algorithm for the AR(`) coefficients of the ]g(l) 5 exp O u cos(kl) .F Gk2p k51fitted FEXP model, and these forecasts differ
substantially from the ARFIMA ones. Define the complex-valued function

p
1 k
]j(z) 5 exp O u zS Dk2. The exponential model 2 k51

where z is a complex variable. Note that j(0) 5Bloomfield’s (1973) exponential model gives
1. It can be shown that all roots of j(z) liethe spectral density of a process hZ j ast
outside the unit circle. Denoting the complex

p ]conjugate of z by z, we obtain
g(l) 5 exp O u cos(kl) ,F Gk

pk50 1] k]]j(z) 5 exp O u z ,S Dl [ [2p, p] (1) k2 k51

where the model order p is a positive integer, so that
and u , . . . ,u are real-valued parameters. The0 p p

2 kprocess is stationary and invertible for all uj(z)u 5 exp O u Re(z ) ,F Gkparameter configurations. For forecasting pur- k51

k kposes, it is essential to derive a one-sided where Re(z ) is the real part of z . Now, define
moving average representation of the process, of

pform 12il 2ilk
]A(l) 5 j(e ) 5 exp O u eS Dk` 2 k51

Z 5O b ´ , (2)t j t2j so thatj50

p2 2
s swhere b 5 1 and h´ j is a white noise process 20 t ] ]uA(l)u 5 exp O u cos(kl) 5 g(l).F G2 k2p 2psuch that E[´ ] 5 0 and var[´ ] 5 s for all t, k51t t

and E[´ ´ ] 5 0 if s ± t. For notational simplici-t s The MA(`) coefficients hb j of the process arejty, we assume that the mean of the series is
the Fourier coefficients of A(l), or equivalently,

zero. In practice, we may add the sample mean
the coefficients in the Taylor expansion j(z) 5

to a forecast based on the de-meaned data. ` jo b z . Therefore,j50 jThe construction of the MA(`) representation
( j )(2) proceeds by spectral factorization techniques j (0)

]]]b 5 , (3)developed by Wiener (1949) and Kolmogorov j j!
(1941), and described for example, by Priestley

( j )(1981, pp. 730–735). Many of the details which where j (0) denotes the jth derivative of j(z)
we present here for the model (1) were given in evaluated at z 5 0. We have j(z) 5 exp[h(z)]

p kBloomfield’s (1973) original paper, although we where h(z) 5 1/2 o u z . Since j 9(z) 5k51 k
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` `h9(z)j(z), it follows from the product rule for
˜differentiation that for j . 0, c 5O O b b E[´ ´ ]r j k t2j t2r2k

j50 k50

j `
j 2 1( j ) (k) 2

j (0) 5O h (0) 5 s O b b (r $ 0). (8)S D j j2rk 2 1k51 j5r

j
1 Since it can be shown that b → 0 exponen-j 2 1( j2k) ( j2k) j]j (0) 5O k!u j (0),S D k2 tially fast as j increases, we can obtain a veryk 2 1k51

˜good approximation to c by using the truncatedr
2 N21where we set u 5 0 if k . p. We conclude from ˜version c 5 s o b b by taking Nk r,N j5r j j2r

(3) that b 5 j(0) 5 1, and sufficiently large. (In practice, it should suffice0

to check that b is very nearly zero for j near N.)jj
˜1 We may compute the c efficiently using ther,N]b 5 O ku b ( j . 0). (4)j k j2k2j fast Fourier transform (FFT). By Bloomfieldk51

(1976, p. 166) we have
Similarly, we can obtain the AR(`) representa- N 921 N 921

2tion ˜ 9c 5 (s /N9) O O bUr,N j
t50 j50

`
2O a Z 5 ´ , (5)j t2j t U3exp(2i2pjt /N9) exp(i2ptr /N9)j50

r 5 0, . . . , N 2 1 (9)where a 5 1. The AR(`) coefficients a are the0 j

Fourier coefficients of 1 /A(l), or equivalently, 9where N9 5 2N, b 5 b for 0 # j # N 2 1 andj j˜ N21the coefficients in the Taylor expansion j(z) 5 ˜9b 5 0 for N # j # N9 2 1. Thus, hc j mayj r,N r50` j jo a z wherej50 be computed in O(N log N) operations by two
applications of the FFT.

p
1 k˜ ]j(z) 5 1/j(z) 5 exp 2 O u z ,S Dk2 k51

3. The FEXP model
so that

We will say that the series hX j obeys at
( j )˜ FEXP( p) model if the series has spectral densityj (0)

]]]a 5 . (6)j j! p2
s 2il 22d
]f (l) 5 u1 2 e u exp O u cos(kl) ,F Gp k2pA similar argument to that given above yields k51

˜the conclusion that a 5 j(0) 5 1/j(0) 5 1, and0 where d [ (20.5, 0.5). Equivalently, we have
2d

j X 5 (1 2 B) Z where hZ j is given by (2), andt t t1
B is the backshift operator. Note that hX j has]a 5 2 O ku a ( j . 0). (7) tj k j2k2j k51 long memory if d ± 0, while if d 5 0 then hX jt
has short memory and obeys an exponentialIt should be emphasized that if j . p, the upper
model. Settinglimit of summation in Eqs. (4) and (7) is p.

`
2d jUsing the MA(`) representation (2), we *c*(B) 5 (1 2 B) 5O c Bj50 j˜conclude that hZ j has autocovariances c 5t r

E[Z Z ] given by we obtaint t2r
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` p*(B)X 5 Z ,t t

*X 5 c*(B)Z 5O c Z , (10)t t j t2j
j50 *where p are the AR(`) coefficients of anj

ARFIMA(0, d, 0) model with unit innovation*where c are the MA(`) coefficients of anj
variance,ARFIMA(0, d, 0) model with unit innovation

variance, given by Brockwell and Davis (1991,
G( j 2 d)p. 522) as

* ]]]]]p 5 .j G( j 1 1)G(2d)
G( j 1 d)

* ]]]]]c 5 .j
`G( j 1 1)G(d) Writing (5) as a(B)Z 5 ´ where a(B) 5 ot t j50

j
a B we conclude that a(B)p*(B)X 5 p(B)Xj t tThe MA(`) representation for hX j ist
so that

`

X 5 c(B)´ 5O c ´ , (11)t t j t2j p(B) 5 a(B)p*(B).
j50

` jwhere c(B) 5 o c B . Substituting (2) into Thus, the AR(`) coefficients of hX j arej50 j t

(10) yields
j

X 5 c*(B)b(B)´ , (12)t t *p 5O p a . (14)j k j2k
k50

` jwhere b(B) 5 o b B . Comparison of (11)j50 j

and (12) yields Again, the p can be efficiently calculated, asj

` ` described in Appendix A.
j1k*c(B) 5 c*(B)b(B) 5O O c b B . Next, we present an algorithm to accuratelyk j

k50 j50 approximate the autocovariances and to simu-
late realizations of hX j. The spectral density ofThus, the MA(`) coefficients of hX j are tt

2il 22dhX j is f (l) 5 u1 2 e u g(l) where g(l) ist pj
given by (1). We can express g(l) in terms of*c 5O c b . (13)j k j2k the autocovariances of the exponential model,k50

that is,
We can use the FFT to efficiently compute

`c , . . . , c for any positive integer N. We0 N21 1
N21 ˜]g(l) 5 O c exp(irl),*start by evaluating hc j at a cost of O(N) rj j50 2p r52`N21operations, and evaluating hb j recursivelyj j50

2from Eq. (4) at a cost of O( p 1 pN) opera- ˜where the hc j are given by (8) for r $ 0 andrN21tions. Since the sequence hc j is the convo- c 5 c . Furthermore, we havej j50 2r r
N21 N21*lution of the sequences hc j and hb j itj j50 j j50

`follows from Bloomfield (1976, p. 87) that we
2il 22d *u1 2 e u 5 O c exp(isl),scan now compute c , . . . , c in O(N log N)0 N21 s52`

operations using the FFT, as described in Ap-
pendix A. *where the hc j are the autocovariances of ans

Similarly, the AR(`) representation of hX j is ARFIMA(0, d, 0) process with unit innovationt
` j

p(B)X 5 ´ where p(B) 5 o p B . Setting variance, given (cf. Brockwell & Davis, 1991, p.t t j50 j
d ` j*p*(B) 5 (1 2 B) 5 o p B , we obtain 522) byj50 j
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which are correct to several decimal places. InG(1 2 2d)
˜ ˜* ]]]]c 5 , practice, we would use c (9) in place of c in0 2 r,N r

G (1 2 d) (16).
n21

G(s 1 d)G(1 2 2d) The sequence hc j can then be usedL,Approx L50* ]]]]]]]]c 5s in conjunction with the fast algorithm of DaviesG(s 2 d 1 1)G(1 2 d)G(d)
and Harte (1987) (see also Beran, 1994, pp.*(s . 0), c 5 c .2s s 216–217) to simulate a zero-mean Gaussian
realization X , . . . , X from the FEXP processThus, hX j has lag-L autocovariance 1 nt

hX j. The algorithm is exact, in the sense that thetp

autocovariances of the simulated realizationsc 5E f (l) exp(2iLl) dlL p
2p exactly match those given as input to the

` `p algorithm.1
˜] *5 E O O c cr s2p 2p r52` s52`

`

4. Multistep forecasting using FEXP models˜ *3 exphi(r 1 s 2 L)lj dl 5 O c cr L2r
r52` with fixed coefficients

`

˜ ˜* * *5 c c 1O c (c 1 c ). (15)0 L r L2r L1r It is shown in Koopmans (1974, p. 229–231)
r51

that if a weakly stationary zero-mean series hX jt
The exponential model has short memory, has moving average coefficients c for j $ 0,j

˜and it can be shown that its autocovariances hc j then the minimum mean squared error L stepr

decline to zero exponentially fast. Thus in ahead linear forecast may be expressed as
`ˆpractice it should be possible to determine a lag X (t) 5 [c (B) /c(B)]X , where c (B) 5 oL L t L j50

j˜r such that sup uc u is negligible for the c B . This result, which may be proved usingmax r.r r j1Lmax

purpose at hand. (We will not present a rigorous the spectral representation of hX j, gives thet

method for achieving this here, but in practice it forecast as a linear combination of present and
˜should suffice to select r such that uc u , past values of the series, where the coefficientmax rmax jTol, where Tol is a predetermined tolerance of X is equal to the coefficient of B in at2j

210factor, e.g., 10 .) We can then approximate c Taylor series (about zero) for the functionL

by c (B) /c(B). It follows that the mean squaredL
ˆr error of the forecast X (t) may be expressed asmax L

˜ ˜* * * 2c 5 c c 1O c (c 1 c ). (16)L,Approx 0 L r L2r L1r ˆE[X 2 X (t)]t1L Lr51
p

L21 2Since the choice of the truncation point r inmax 2il( j2L ) 2il
5E O c e /c(e ) f(l) dl, (17)U Uj(16) is governed by the exponential decay of the

j50
2p˜hc j, we can obtain very accurate approxima-r

n21 n21tions to hc j using hc j for any where f(l) is the spectral density of hX j. It isL L50 L,Approx L50 t

integer n . 0. The idea described above was noteworthy that (17) remains valid even if c(B)
originally given by Bertelli and Caporin (in is not the MA(`) transfer function of hX j. Ast

press) in the context of approximating the long as the function c(B) has a Taylor series
autocovariances of ARFIMA and other long- expansion with coefficients c , and the functionj

2il 2ilmemory models. In this context, Bertelli and c (e ) /c(e ) has a one-sided Fourier seriesL

Caporin (in press) demonstrated that their algo- expansion whose partial sums converge in the
2 2il 2ilrithm is extremely accurate, giving results space L ( f ) to c (e ) /c(e ), then the pre-L
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ˆdictor X (t) 5 [c (B) /c(B)]X for any zero- log I(v) 1 g, where v 5 (v , . . . , v )9 and g 5˜L L t 1 n] ]
mean weakly stationary series hX j with spectral 0.577216 . . . is Euler’s constant. Then we cant

density f(l) is well-defined (but not necessarily write y 5 m 1 e, where m 5 log f(v) 5 2 2d
]

optimal), and yields mean squared error given logu2 sin(v /2)u 1 log f *(v) and e 5 log[I(v) /
] ] ]

by (17). (See Theorem 4.10.1 of Brockwell & f(v)] 1 g. In the case where hX j is Gaussiant]
˜Davis, 1991, p. 154). white noise, the entries e j 5 1, . . . , n of e ares dj

2In particular, if we take c(B) to be the iid with mean zero and variance p /6.
MA(`) transfer function of a FEXP( p) model We assume that

2il 2with hc j given by (13), then uc(e )u 5 `j
2(2p /s )f (l), and we obtain log f *(l) 5O g cos(kl), l [ [2p, p],p k

k50
p

2
s2 where the hg j are unknown constants. Thus,ˆ k]E[X 2 X (t)] 5 Et1L L `2p log f *(v) 5 o g V , where V 5 cos(kv). Ink50 k k k2p ] ]

the special case where hX j is FEXP( p), thenL21 2 t
2il( j2L ) g 5u for k 5 0, . . . , p where u are thek k k3 O c e f(l) / f (l) dl, (18)U Uj p

j50 parameters in the exponential model (1) and
p

g 5 0 for k . p, so that log f *(v) 5 o u V .k k50 k k]as long as hX j is weakly stationary with meant The above discussion serves to motivate azero and spectral density f(l), and the con-
regression estimator, constructed as follows.ditions on the hc j mentioned above are satis-j For any given positive integer p, define X 5fied. It should be emphasized that (18) remains ˜ ˜[V , V , . . . ,V , V ], where V 5 logu2 sin(v /2)u.0 1 p ]valid even if hX j is not FEXP( p).t Define

21ˆ ˆ ˆ ˆ*b 5 (X9X) X9y 5 (u , . . . , u , 2 2d )9, (19)p 0 p
5. Multistep forecasting of fitted FEXP

which may be viewed as the ordinary leastmodels
*squares estimator of the parameter b 5p

Suppose we have data X , . . . , X from a (g ,g , . . . , g , 2 2d)9. We will sometimes refer1 n 0 1 p
2ˆweakly stationary process hX j with spectral ˆto u as s /(2p). A FEXP( p) forecast of Xt 0 n1L

density is now given by
2il 22d 22df(l) 5 u1 2 e u f *(l) 5 u2 sin(l /2)u f *(l) ˆ ˆ ˆ ˆ*X (n, b ) 5 [c (B) /c(B)]X , (20)L p L n

where f *(l) is a positive and continuous func- ˆ ˆwhere c (B) and c(B) are versions of c (B)L Ltion on [2p, p]. The process hX j does nott and c(B) as defined earlier, with the FEXP
necessarily follow a FEXP model. Corre- ˆ *parameters (u , . . . , u , 2 2d)9 replaced by b .0 p pspondingly, f *(l) is not necessarily the spectral

We use the form (20) for the forecast in
density of an exponential model. Nevertheless,

deriving our model selection criterion, but an
we are going to fit FEXP models to the data.

explicit formula for the predictor coefficients in
Define the periodogram by

(20) would be difficult to obtain. Therefore,
n 2 to actually calculate the forecast we suggest1

]]I 5 I(v ) 5 O X exp(2iv t) ,U Uj j t j to use the estimated AR(`) coefficients2pn t51 j ˆˆ ˆ * ˆ ˆ *p 5 o p a where p 5 [G(k 2 d ) /j k50 k j2k k˜j 5 1, . . . , n, ˆ ˆ ˆG(k 1 1)G(2d )], a 5 1 and a 5 2 1/(2j)0 j
j ˆ˜ ˆ ˆwhere v 5 2pj /n and n 5 (n 2 1) /2. Let y 5 o ku a ( j . 0). (The p may be efficient-j k51 k j2k j
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ˆ2 22d pˆ ˆly calculated as described in Appendix A). The where f (l) 5 s /2p u2 sin(l /2)u exp ofp k51
jˆ ˆ ˆ ˆ ˆ* *forecast takes the form u cos(kl) , c 5 o c b , c 5 [G(k 1gk j k50 k j2k k

jˆ ˆ ˆ ˆn d ) /G(k 1 1)G(d )], b 5 1 and b 5 1/(2j) o0 j k51
˜ ˆ * ˆ ˆˆX (n, b ) 5 2O p X , ku b ( j . 0).1 p j n112j k j2k

j51 We now construct an approximately unbiased
L21 estimator of MSE ( p) in (21) using frequency-L

˜ ˜ˆ ˆ* *ˆX (n, b ) 5 2O p X (n, b ) domain cross validation. We start by definingL p j L2j p
j51 ˆ *b , obtained by omitting the jth observationp( j )

n1L21 y as well as the jth row of the X matrix fromjˆ2 O p X (L . 1)j n1L2j the regression in (19), that is,
j5L

21ˆ *˜ˆ 9 9b 5 (X X ) X yThe two predictors X and X may differ p( j ) ( j ) ( j ) ( j ) ( j )L L

somewhat, due to truncation effects. We will ˆ ˆ ˆ5 (u , . . . , u , 2 2d )9,0( j ) p( j ) ( j )ignore any differences here, however.
A practical question which arises at this point where X is obtained from X by omitting the( j )

is: How should we select p? Here, we describe a 9jth row, denoted by v , and y 5 ( y , . . . ,j ( j ) 1
model selection method based on cross-valida- y , y , . . . y )9. It follows from Chatterjee˜j21 j11 n
tion in the frequency domain, originally pro- and Hadi (1988, p. 115) that
posed by Hurvich (1987) in the context of

21ˆ ˆ* *b 5 b 2 (X9X) v r /(1 2 h ), (22)Multistep forecasting. A useful feature of this p( j ) p j j jj

method is that the selected value of p is allowed
where r is the jth entry of the residual vectorjto depend on the lead time, L. 21r 5 y 2 Hy, H 5 X(X9X) X9 is the hat matrix,We use the definition of the (final) prediction
and h is the jth diagonal element of H. If thejjerror as given by Akaike (1969). That is, the ˆ *series were Gaussian white noise, then b p( j )parameters of the model are first estimated on
would be independent of I , and I would bej jthe series hX j. Then these estimated parameterst exactly unbiased for f 5 f(v ). Thus, it may bej jare used to construct forecasts of an indepen-
hoped that an approximately unbiased estimatordent series hY j having the same stochastict of MSE ( p) is given byLstructure as hX j. The mean squared error fort

2˜predicting Y on the basis of Y , Y , . . . is nn1L n n21 ŝ2 4p ( j )
] ]]then computed, where the expectation is taken MSE ( p) 5 OL n 2pj51with respect to both hX j and hY j. This results int t

L21 2a mean squared error of
2iv (k2L )j ˆˆ3 O c e I / f , (23)U Uk( j ) j p( j )

2 k50ˆ ˆMSE ( p) 5 E E [Y 2 hc (B) /c(B)j Y ] ,L Y n1L L n
ˆ2 22d( j )ˆ ˆwhere f 5 s /(2p)u2 sin(v /2)up( j ) ( j ) jwhere E and E are the expectations with p 2Y ˆ ˆˆexp o u cos(kv ) , s /(2p) 5 u , andf gk51 k( j ) j ( j ) 0( j )respect to hX j and hY j. We conclude from Eq. L21t t ˆhc j are calculated as the MA coefficientsk( j ) k50(18) that ˆ *of a FEXP model with FEXP parameters b .p( j )

2 p We may therefore select p to minimizeŝ 2
]MSE ( p) 5 E EL MSE ( ? ). For the sake of brevity, we will2p L2p

postpone the study of the empirical and theoret-L21 2
2il( j2L ) ˆ ical properties of this model selection method toˆ3 O c e f(l) / f (l) dl, (21)U Uj p

j50 a later paper.
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We conclude by discussing the efficient covering the dates from February 1957 to
computation of (23). First, the matrix X can be December 1997 (a total of 491 observations).
computed in O(np) operations, and using the The data were taken from the International
FFT, y may be computed in O(n log n) opera- Monetary Fund’s International Financial Statis-

ñˆ *tions. Next, b (as well as hh j and r) may tics CD-ROM. The inflation rate is defined asp jj j51
2 3 first difference of the logarithm of the CPI.be computed in O(np 1 p ) operations. For

ˆ *˜ Our goal in this section is simply to exhibiteach j in 1, . . . , n, we may next compute b p( j )
2 an application of some of the methodology offrom (22) in O( p ) operations, and then com-

L21 2ˆ the paper. We will not, however, attempt topute hc j in O( p 1 Lp 1 LlogL) opera-k( j ) k50
2 ˆ carry out any model selection or diagnostics.ˆtions, and finally compute s /(2p) and f in( j ) p( j )

Model parameters were estimated from aO( p) operations. Thus, the cost of computing
2 3 subseries extending from February 1957 to(23) is O(n log n 1 np 1 p 1 nLp 1 nL log L)

April 1990 (the 399th observation of the fulloperations.
series). Fig. 1 plots the full series, with a
vertical line at t 5 399 to mark the end of the
subseries.6. Example: UK inflation

Prior to estimating model parameters, we
In this section, we present an analysis of the seasonally adjusted the inflation data by remov-

Consumer Price Index (CPI)-based inflation rate ing a month effect. This was done by taking out
for the United Kingdom, a monthly series the (subseries) average of all observations for

Fig. 1. Consumer Price Index (CPI)-based inflation rate for UK Monthly, February 1957 – December 1997 (n5491).
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the given month. An ARFIMA(1, d, 0) model 0.496, which is much larger than the
was fitted to the seasonally adjusted subseries, ARFIMA(1, d, 0) estimate of d. The estimated
using the S-Plus function, arima.fracdiff. The EXP(1) parameter in the exponential model was
estimated value of d was 0.175 and the esti- 2 0.292.
mated AR(1) parameter was 0.338. Next, a Multistep forecasts were constructed from a
FEXP(1) model was fitted to the seasonally forecast horizon of April 1990, extending all the
adjusted subseries, using log-periodogram re- way to the end of the full series, December
gression on all available Fourier frequencies 1997. First, the seasonally adjusted series was
except the 133rd, which was omitted. This forecasted, and then the (subseries) averages
frequency corresponds to a period of 3 months, were added back to yield forecasts of inflation.
that is, one quarter year. The frequency was For both models, the forecasts of the seasonally
omitted on account of robustness considerations, adjusted series were constructed from the
as the log periodogram of the seasonally ad- AR(`) weights corresponding to the fitted
justed subseries was extremely negative at that model. Fig. 2 plots the actual (out of sample)
ordinate. The resulting FEXP estimator of d was inflation values, together with the FEXP and

Fig. 2. Inflation, and Multistep FEXP and ARFIMA Forecasts from Forecast Horizon of April 1990.
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ARFIMA forecasts. There are noticeable differ- the ARFIMA forecasts as the lead time in-
ences between the two forecasts. Except for the creases. Again, this occurs because the esti-
very first lead (May 1990), the FEXP forecast mated value of d is much larger for the FEXP
always lies above the ARFIMA forecast. This is model than for the ARFIMA model.
presumably due to differences in the estimated It is not possible to judge which model
memory parameters for the two models. The provides better forecasts on the basis of one
estimated seasonal effect has a noticeable peak example. For the given data set and forecast
in the month of April, and this effect continued horizon, in terms of average squared forecast
for 4 to 5 years into the post-subseries observa- error (ASE), the FEXP forecast was better than
tions. the ARFIMA model for the first five leads

25Fig. 3 plots the seasonally adjusted (out of (ASE52.11 3 10 for FEXP, ASE52.37 3
25sample) inflation series, as well as the multistep 10 for ARFIMA), while for the entire set of

FEXP and ARFIMA forecasts of this adjusted 92 leads, the ARFIMA model was much better
25series. Here, it can be seen clearly that the (ASE53.59 3 10 for FEXP, ASE52.75 3

25FEXP forecasts decay much more slowly than 10 for ARFIMA). The overall superiority of

Fig. 3. Seasonally Adjusted Inflation, and Multistep FEXP and ARFIMA Forecasts from Forecast Horizon of April 1990.
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the ARFIMA forecasts here is due to the fact 4. Take the inverse Fourier transform of the
that the seasonally adjusted inflation values sequence in Step (3), where the inverse

N 921were persistently negative for most of the out- Fourier transform of a sequence hJ j ist t50
N 921of-subsample period. Since the inflation value at defined as the sequence hW j , with W 5j j50 j

N 921the time of the forecast horizon was quite high, (1 /N9) o J exp(i2ptj /N9).t50 t
the slower decay of the FEXP forecast was a 5. The first N entries of the resulting sequence
liability, although it would have been an advan- are c , . . . , c .0 N21
tage if a later forecast horizon with a negative
(adjusted) inflation value had been chosen.
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