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TESTING FOR LONG MEMORY
IN VOLATILITY

CLIFFORD M. HURVICH
New York University

PHILIPPE SOULIER
Université d’Evry Val d’Essonne

We consider the asymptotic behavior of log-periodogram regression estimators of
the memory parameter in long-memory stochastic volatility mgdeider the null
hypothesis of short memory in volatilityVe show that in this situatignif the
periodogram is computed from the log squared retutimsn the estimator is as-
ymptotically normalwith the same asymptotic mean and variance that would hold
if the series were Gaussiam particular for the widely used GPH estimatdgpy

under the null hypothesishe asymptotic mean ah¥2dgpy is zero and the as-
ymptotic variance isr?/24 wheremis the number of Fourier frequencies used in
the regressionThis justifies an ordinary Wald test for long memory in volatility
based on the log periodogram of the log squared returns

1. INTRODUCTION

Many recent works have discussed the phenomenon of long memory in the
volatility of financial and economic time serieBarly empirical observations

on persistence in volatility were given by DinGrangeyand Engle(1993 and

de Lima and Crat¢1993. Two models that capture this phenomenon are the
fractionally integrated GARCHFIGARCH) model of Baillie Bollersley and
Mikkelsen (1996 and the long memory stochastic volatilitMSV) model
proposed independently by Breid@ratq and de Lima 1998 and Harvey(1998.
Semiparametric estimation of the memory parameter in LMSV models is justi-
fied theoretically by Deo and Hurvict2001), who consider the widely used

log periodogram(GPH) estimator of Geweke and Porter-Hud@lo83, com-
puted from the logarithms of the squared returns of the seies and Hur-

vich (200)) establish the consistency and asymptotic normality of this estimator
under conditions that require the assumption that long memory is in fact present
in the volatility. Although this justifies the use of the estimator under certain
circumstancesit does not justify the widespread practice of using the GPH
estimator to construct a test for long memory in volatilityysing this method

on squared returpgndersen and Bollerslefd 9972 19970 and AnderserBol-

Address correspondence @lifford M. Hurvich, New York University 44 W. 4th StreetNew York, NY 10012
USA; e-mait churvich@stermyu.edu

© 2002 Cambridge University Press  0266-4668 $950 1291



1292 CLIFFORD M. HURVICH AND PHILIPPE SOULIER

lersley Diebold and Laby¥2001) find evidence of long memory in volatility
The difficulty is that to construct a test for long memory in volatilityis nec-
essary to know the asymptotic distribution of the test statistic under the null
hypothesis of short memory in the volatilitg case that is not covered in the
semiparametric theory of Deo and Hurvi€2001) or in the theory for the fully
parametric case presented by Hos¢$897). Herg we derive the asymptotic
distribution of the GPH estimator based on log squared return data under an
LMSV model in the short-memory cas€his serves to justify the correspond-
ing test for long memory in volatilityin practice it is important to have such a
test as the long-range forecasts of volatility are crucially altered by the pres-
ence of long memory in volatility
Giraitis, Kokoszka and Leipug1999 have constructed a test for long mem-
ory in volatility, but the model generating the stochastic volatilitgveloped in
Giraitis, Robinsonand Surgailig2000, is quite different from either the LMSV
or FIGARCH frameworksand the test does not yield a corresponding estimator
of the memory parametefurthermoreLobato and Robinsofl1998 provide a
test for long memory of a linear processd this test is used by Lobato and Savin
(1998 on squared stock returns to test for long memory in volatiRtyl. Rob-
inson in his discussion of the paper of Lobato and S&i#98, conjectures that
their test statisticapplied to squared returnisas the appropriate? limit distri-
bution under the (0) null hypothesisunder suitable strong mixing conditians
The LMSV model for returngr,} takes the fornr, = n exp(Y;/2)e. where
n > 0 is a scale parametefe,} are independent and identically distributed
(i.i.d.) shocks with zero meamnd{Y;} is a stationary Gaussian procesxle-
pendent of{e}, with spectral density,(x) ~ Cx 2% asx — 0" (C > 0) and
memory parametat such that 0= d < 3. Deo and Hurvich2001) assume that

fy(x) = |2 sin(x/2)|~2%g*(x),

whereg*(-) is continuous oi—, 7], bounded above and bounded away from
zera In this paper we focus on the cade= 0. Under the LMSV modelthe
logarithms of the squared return§ = log(r?), may be expressed as

Xe=p+Yet+Z, 1)

whereu = logn? + E[loge?] and{Z;} = {loge? — E[loge?]} is i.i.d. with
mean zero and varianee?.
Define the periodogram of the observatiofs..., X, at thekth Fourier fre-
quencyx, = 27k/n by
n 2
E Xt eitxk .
t=1

The GPH estimator adl using the firstm Fourier frequencies may be written as

|rz<k= i
’ 2mn

1 m
Oopy = ——— > acloglX,,
GPH 23ka§=:1 k109 10«
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wherea, = W, — W, W, = log|2 sin(x,/2)| (k=1,...,m), W=m"13" W,
andS,, = 2iL; ag.

Deo and Hurvich(2001) have established that for the LMSV model
mY2(dgpy — d) is asymptotically normal with mean zero and varianc¥24
assuming that & d < 3, subject to restrictions om that become more strin-
gent agd approaches zerd he results in Deo and Hurviot2001) are based on
the fact that wher > 0 the spectral density of, dominates that oZ, at low
frequenciesTherefore it does not seem likely that the methodology used in
Deo and Hurvich2001) can be easily generalized to treat the cdse 0.

Theorem 1 establishes that/2dgpy, is asymptotically normal with mean zero
and variancer?/24 whend = 0, thereby justifying the usual Wald test df= 0
versusd > 0 based ordgpy in the LMSV model Note that the asymptotic
distribution ofdgpy in this case is the same as that derived earlier for Gaussian
processes by Robinsdi1995 and Hurvich Deqg, and Brodsky(1998. Theo-
rem 1 was conjectured by Deo and Hurvi@002 on the basis of simulation
results fordgpy in the case ofl = 0. Combining Theorem 1 with the results of
Deo and Hurvich2001), it is clear that the Wald test af= 0 would be consis-
tent against any alternativke= d, > 0 but that its local power would be loWn
the other hangt is not clear that any other test would have higher local power

As in Hurvich et al (1998 and Deo and Hurvicli2001), we avoid the need
for trimming of low frequencies imlgpy. The low frequencies present no spe-
cial problems herebecause our theory is derived for the case 0. Because
the noise ternZ; does not affect the regularity of the spectral densityXpf
whend = 0, we are also able to avoid the restrictive conditionsmrequired
in Deo and Hurvich2007).

Theorem 2which includes Theorem 1 as a special gastablishes the as-
ymptotic normality of a general linear combination of Igf whend = 0.
Theorem 2 can be easily generalized to include the FEXP estimator proposed
by Janacek(1982, and studied in Robinso1994), Moulines and Soulier
(1999, and Hurvich and Brodsky2001), although the properties of the frac-
tional exponential FEXP) estimator wherd > 0 in the LMSV model have
not yet been established

Theorem 2 only requires th&@; have finite moments up to the fourth order
This is a less stringent assumption than was made in Deo and HUROEH)
for d > 0. Those authors assumed tt&thas finite moments up to the eighth
order Theorem 2 is first proved under the provisional assumption Zhdias
finite moments of all ordersThe proof is by the method of momentssing
Edgeworth expansions for discrete Fourier transfofBETs) of an ii.d. series
developed in Fay and Soulié2001). Lemma 2 then shows that the moment
assumption orZ,; can be weakened’heorem 2 does not require conditions on
the characteristic function such as those assumed by Ve(@2868) on the in-
novations in his work on log-periodogram regression for linean-Gaussian
processesWe are able to avoid such assumptions by conditioning first on the
DFTs of Z;, so that the Edgeworth expansion is for the density of a smooth
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function of the DFTs o#;. This point and also the overall validity of our Edge-
worth expansiongs explained more fully in Section.3

2. ASSUMPTIONS AND MAIN RESULT

We now introduce a precise assumption on the proded$3ecause we only
consider functions of the periodogram at nonzero Fourier frequeneeset
© = 01in (1) without loss of generality

(A1)

(1) Yis a centered stationary Gaussian process with spectral déngit is bounded
above and away from zero and

2 ploov(Yo,Yp)| < co. @

p=1

(2) Zis a sequence ofiid. centered random variables with varianeé and finite
moments up to the fourth order

(3) The processe¥ andZ are independent

Assumption(2) implies thatf is continuously differentiable over the whole
frequency range
Definen = [(n — 1)/2].

THEOREM 1 Suppose that Assumption (A1) holds. Béte the largest real
number in[1,2] for which there exist positive reals*»and c such that for all
X € [-Xx*,X*],

| fy(x) = fy(0)] = c|x|~. 3)

Let m:= m(n) be a nondecreasing sequence of integers such lthat, .,
m~t + m?#*1n=28 = 0. Then n¥?dgpy, is asymptotically normal with zero mean
and variancer?/24.

It is frequently assumed in the literature that for a short-memory progess
fy is C? on [—a, 7], which implies that(2) holds and(3) holds with3 = 2
(because a spectral density is eybence its first derivative vanishes at 0
Under this assumptigrthe GPH estimator is asymptotically normal for any
choice ofm, such that lim_,,. m3/n* = 0.

3. A THEOREM FOR GENERAL LINEAR COMBINATIONS
OF LOG-PERIODOGRAM ORDINATES

Theorem 1 is a consequence of a more general result for linear combinations of
log-periodogram ordinatesVe will require the following conditions on the
weights in the linear combinations
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(A2) (Bnk)1=k=nis a triangular array of real numbers such that

A
> Bi=1, (4)
k=1
bn = max |:8n,k| = 0(1)’ (5)
1=k=n
Mo+ = #{k:Bn,k # 0} = o(n), (6)
Oe>0,0C(e), wmnbi=Cle)ps. (7)

Remark Assumptiong4) and(5) are the classical Lindeberg—Liapounov con-
ditions that ensure asymptotic normality of a weighted S, Bk Yn x> for
i.i.d. summandsy, . Assumption(6) is not necessaryit is assumed here only
to simplify the proof of Theorem.2Assumption(7) is a technical restriction
that is easily checkedNote that Assumptiong}) and(5) imply that u,, tends to
infinity. Define X = Y + Z and letf = f, + (6%/27) be the spectral density of
the proces«. Lety = 0.577216... be Euler’s constant

THEOREM 2 If Assumptions (A1) and (A2) hold, theRy_; B, X
[log(1X/f (%)) + y] tends weakly to the Gaussian distribution with zero mean
and variancer?/6.

Proof of Theorem 2 We first introduce more notatiomhroughout the pa-
per, a standard complex Gaussian variable means a complex random variable
with i.i.d. A/(0,3) componentsA function h of v complex variables will be
identified with a function of 2 real variables and will be denoted indifferently
h(z), h(zy,...,z,), h(u), or h(uy,...,u,,) or using any other convenient sym-
bol. For any procesbl, denotedy, = (27n) Y2 XL, U e™« andl Yy = [dY, |2
Let € be a zero mean Gaussian white noise with variaméeand define the
processt = Y + € so thaté is a Gaussian process with spectral densityor
z € C, denote¢(z) = log(|z|?) + y and ¢, (2) = log(|z|%/f (X)) + y. It is
well known that if¢ is standard complex Gaussjd{ ¢(£)] = 0 andE[$2({)] =
T2/6.

The main tools used to prove Theorem 2 are Lemnfapplied witha = 1),
which is stated and proved in Sectior23and Edgeworth expansions of the
joint density of DFTs of a white noisédased on the results of Fay and Soulier
(200)). The theory of Edgeworth expansions for DFTs is reviewed and shown
to be valid in the present context in Sectioi3.3

The proof of Theorem 2 is based on the method of momdritas we first
assume that all moments of the noigdare finite Under that assumptigmwe
must first prove that the moments ¢f, ,(dy,) are bounded uniformly with
respect tan andk.
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LEMMA 1. If Assumptions (A1) and (A2) hold andff| Zy|?] < oo for some
integer q= 2, then for all sufficiently large n, there exists a constagtsich
that

E[]¢n k(di)|?] = Cq.

Proof of Lemma 1 As will be shown in Section .3, a first-order Edgeworth
expansion is valid and yields

E[| ¢ 1 (dX0)191 = E[| by ((d )91 + 0(n~Y/2),

where the ternb(n~2) is uniform with respect tk (but not necessarily).
Applying Lemma 5(with @ = 1) we also have

E[| (s 1) |91 = E[[6(£)]9] + O(n~Y2),

where/ is standard complex Gaussian and the t&@tm~%?) is uniform with
respect tok (but not necessarily). Becausep(() is distributed as thécen-
tered logarithm of an exponential random variajitefollows thatE[|¢(£)]]
is finite for all g, and the proof of Lemma 1 is complete u

DefineS, = >p_; B k®n k(d). We now prove that if all moments & are
finite, the the moments 0§, tend to those of a Gaussian variable with zero
mean and variance %/6; i.e., for all even positive integers,
ol (7%/6)%2
(q/2)1292
and lim_,., E[SY] = O for all odd integers.

Denoten, x = d’n,k(dék)-

E(S)) = EE

lim E[S{] = (8)

v,q q | n(ql’ ’qv)’

An(ql""’qv) = E;’,n H IBT?,JKJE|:H nr?,lk,:|
j=1 i=1

The term3, , extends on alb-tuples of positive integer&y,, ...,q,) such that
o + -+ + g, =qgandX;, extends on alb-tuples(k,,...,k,) of pairwise
distinct integers in the randd, ..., n}. For av-tuple (q,...,q,) such that,; +

- + 0, = q, let s be the number of indiceissuch thatg; = 1 and letu be the
number of indices such thatg, = 2. We will consider three cases

s=0and 21 < g (or equivalently 2 < q): the corresponding sums are easily proved
to beo(1);

s=0and 21 = q (or equivalently 2 = g): these terms are the leading teranfirst-
order Edgeworth expansion proves tFatan be replaced by,

s > 0O: for these terms we will use a higher order Edgeworth expansion and Lemma 3
in Fay and Soulief2002) to prove that they do not contribute to the limit
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Case 1(s= 0, 2u < ). Becauses= 0 and 21 < g, it follows that 2 < q.
Becausay, + --- + ¢, = g, we moreover find thad;_,(g, — 2) =g — 2v > 0.
Applying Lemma 1 and Holder’s inequaljtig always holds thakE[[];_, n,‘{‘ki
is uniformly bounded byC,. Recall thath, = maxx=n|Bn «|. Thus

v q] v
|An(@y,...,0,)| = CobT 2 XTI B2 =C, b22“<k2 ﬁﬁ,k> = Cgb3.
i=1 -1

By assumptionb,, = o(1), and thusA,(qy,...,q,) = 0(1).

Case 2(s= 0, 2u = ). In this caseu =v = g/2 andq, = --- = q, = 2.
Denotek = (Kky,...,Kq2) and letyy be defined as
/2
P (Uyg,...Ugp) = [H Ba (dX ) dT = uy,. "dnz,kq/z = Uq/z]

= E{ﬁ di (dy i + U )}
i=1

With this notation we get

92
IE|:1__[ ”’IE, ki:| E[wk(dn (SN n kq/z)]
i=1
A first-order Edgeworth expansion yields

E[(pk(dn ko n kCI/Z):| IE:I:lﬁk(dlﬁ, [CERRRR] ﬁ,kq/z)] + 0(”71/2),

where the terno(n~%2) is uniform with respect t&. By definition of the pro-
cess¢ and the functionsp,, k,

q/2
E[l!'k(dﬁ, Kpoeees dﬁ,kq,z)] = E{l_[l d’r%, ki (di ki):| .

Applying Lemma 5 we now get that

/2
E[h bz ki(df, ki)} = (7%/6)¥2 + O(n~v?),
i=1

where the termO(n~%/2) is uniform with respect td,...,kq. Recall that
Sio1 B2, =1 andb, = max—y=n|Bn|- Thus it is easily seen that

q/2

Eq/ZnHIBnk—l Eq/anIBnk_l+O(b2)

HenceA,(2,...,2) = (7%/6)¥?(1 + O(b?)) + O(n~%?), Because it is assumed
thatb,, = o(1), we conclude that lig, .. A,(2,...,2) = (7%/6)¥?.
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Case 3(s > 0). Denotek = (ky,...,k,) andq = (q,...,0,), and letyy 4 be
defined as

v

i q(Ug,...,U,) = E{H o (dY  + dE ) dEy, = ug,...,d5, =u,
i-1

= E[ﬁ G (dy, + Ui)}-
i-1

With this notation we get

E[Hlnr?'k] E[¢ q(diy,, .-, A )]

Using the notation of Section.3 an sth-order Edgeworth expansion can be
written as

E[¢y q(diy,,-- -, On,)] = Zonfr/zEr[l/’k,q] +o(n"92),

where the termo(n~%2) is uniform with respect tok, Eo[¢w 4] =
E[i o(d5 k,»---» 05 )] and forr =1,

E, [¢k,q] g Er tEr t, k(Vl’ <5 Vts ¢k,q),

whereX; ; and the quantitieE, , « are defined in(19) and(20), which follow.
Define

v
— N " 4
S’I,I’,t(Vl""7Vt) =n vz EU,nHBn:kiEr,t,k(Vl"-"Vt’lrllk,q)’
i=1

r

1
S",f :21 zr tSnrt(Vl’ R4 )

Two kinds of arguments will be used to prove that the teBns; are asymp-
totically negligible The orthogonality properties of the sine and cosine func-
tions computed at Fourier frequencies will restrict the number of multi-indices
(Ky,...,k,) such that, ¢ \(v4,..., 7, ¥ q) # 0 and the expectations appearing
in E; ¢ will be bounded by Lemma.9.et U be a 2-dimensional Gaussian
vector whose components are the real and imaginary pad,skp/\/(az/47r ,

i =1,...,v. Because is a Gaussian white noisthe components dfl are ii.d.
N(0,1). Following Section 3B, E, ¢ «(v1,..., 7, ¥k q) IS expressed as

Xy (K)o x,, (K)

| | E[HV1+...+V‘(U)wk,q(dlﬁ,kl’""d;,ku)]’
Vil...Vi!

Er,t,k(yl’”"’/t’lpk,q) =
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wherey;, j = 1,...,t are multi-indices iNN2 such that(21) (which follows)
holds and the multidimensional Hermite polynomtd) is defined in(22). Re-
call thats among the indicess,...,q, are equal to 1Assume for convenience
and without loss of generality thag = --- = g; = 1. Let a, b, andc be the
number of indiceg = s such thatv(2j — 1) + v4(2j) + --- + (2] — 1) +
1(2j) = 0, = 1, and= 2, respectivelyBy definition, a + b + ¢ = s. Assume
also for simplicity that forj = a, »1(2) — 1) + v4(2j) + --- + »(2) — 1) +
1¢(2j) = 2. ThenH, actually does not depend on its firsa 2argumentsThe
following arguments are the key tools to conclude the evaluatidy @f, ... ,q,).

Let ¢,k be a function defined onC? by ¢n(z1,22) = ¢ (No¥2mz, +
\[fy(x)Z,). Then &, \, considered as a function of four real variableas Her-

mite rank 2 Indeed it is easily checked that if; and{; are ii.d. standard complex
GaussianthenE[{; ¢, «(£1,{2)] = 0 (i = 1,2). Now define

&)k,q(zl’--" ZZu) = Hv(\/i(zlr' cey Zu)) 1:[1 (Z)‘nq,lki(zziflr Zyi )

As was noted previousl\H,,, considered as a function ofcomplex Gaussian
variables actually does not depend an,...,z,. Hence &, 4 obviously has
Hermite rank at least®2— b — 2c, because it can be written as

a
Dy o(24,...,25,) = I1 ¢r?,'ki (Zoi—1, 25 ) Oy q(Zas15 -+ -5 Z2p),
i—1

whered is implicitly defined Applying Lemma 5 yields

E[Hy1+---+ut(u )l/ik,q(dri [SERRRE] drﬁ,ku)]

=E[H,, . (W) T bt (05 i + d) 9)
i-1

= B[y o(dS . /No72m,dY 1 /T (X, ..., dE 1/

NoZ/2m,dY . /\F (X)) (10)
= E[®y ({1, .05 L2p)] + O(NSHEHD2) (11)

uniformly with respect tdk. Moreover if ¢ < s the last expectation vanishes
because the Hermite rank &  is then positive

If vq,...,v satisfy (21), with ¢ defined as beforethen it is shown in the proof of
Lemma 3 in Fay and Soulief200) the number ofk € NY such that
X, (K) ... x,,(K) # O is of orderuy*"~©/2~1 at most This is a consequence of the

orthogonality properties of the sine and cosine functions evaluated at the Fourier

frequencies
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Thus forr <'s,
Shr = O(pp* (7972 Lpdn=sD/27e02) = O(( /) 20™527bS) = 0(1),

The last bound is a consequence of the fact that by definitiog of and g,
v — /2 = g/2 and AssumptiortA2) (7).

Forr = s, because by assumptiqn, = o(n), and becaus&(y q) is uni-
formly bounded with respect th, we get thaM’S/Z]Es(l//k,q) = O((un/n)®) =
0(1). Finally, we conclude that

ZO nis/ZEr [wk,q] =o(1).

Hence lim_,,An(dy,...,0,) = 0 in the cases > 0.

There now only remains to prove that we can get rid of the assumption that
all moments ofZ are finite For any integeiM, definerM) = Z;1z,=m; and
XM =Y+ 7ZM Foreach\, S\(M) := 3¢, /Bn’k¢(d,ﬁw) converges weakly
to V(0,72/6). Lemma 2 implies that

n 2
m |imsupEKkz B (A — ¢<d,¥fk““>}) ] =0.
n =1

li
M—oo
Hence we can apply Theoren?4n Billingsley (1968 to conclude tha§, con-
verges weakly toV (0, 7%/6). [
3.1. Proof of Theorem 1

In the case of the GPH estimatare apply Theorem 2 witlf,, , = —ak/\/SWW,

using the convention that, = 0 for k > m. By construction >p_, Bnk=0.
Thus

kZan,klog(ln(xk)) = kZan,k[log(ln(xk)) +7v]
= kE Bak[109(1(x)/F (X)) + ¥]

+ kZan,kIOQ( f(x)/f(0) =: S, +R,.

It has been shown that max.-m|Bn x| = O(log(m)/m) (seg e.g., Hurvich et al,
1998. Thus AssumptiorfA2) holds as long as, = o(n). Hence Theorem 2
implies thatS, is asymptotically normal with zero mean and variancg6.
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We must now prove that lim,., R, = 0. By applying Holder’s inequality
we get

1/2

f 2 ( m, m, 1/2
IRl = {2 Bﬁ,k} {2 |092(f(Xk)/f(0))} = {2 log®( f(Xk)/f(O))} :
k=1 k=1 k=1

Becausd is bounded away from zertog( f) has the same regularity &Be-
causem/n — 0, for large enough, x, < x*; hence

My

1/2
IRl = C{E (k/n)zﬁ] =Cmi*2n7F = 0(1),
k=1

where the constar@ depends only on the functiohn
To conclude the proof of Theorem fote that lim,_,.,m 'S,y = 3. [ |

3.2. Lemmas

LEMMA 2. If Assumptions (Al) and (A2) hold, then

lim |ImSUDE[(EBn dp(dX) — (d”“))}) ]

M—oo

Proof of Lemma 2 Defineog = E[Z¢ 17, =m} ], 614 = E[Z¢1;7,~m}], and
zM =z, 1z, =m- Recall thatn, = ¢, (dX}) and denote S|m|IarIy7,(1'\f<) =
¢(dX‘ "). Then

[( > Boidb(dX) — ¢<an‘£“>}> ]

f

= B2 E[(Mni — 1]

M
+ E IBn,jBn,kE[(ﬂn,j - nr(1,j))(77n k — Tn, k))] n Viaa Bn,M-

1=j#k=n

The termA, y would be easily dealt with if the functio#(x) = log(|x|?) +
was replaced by a bounded function with polynomially bounded derivatives
To that purposewe must use a tightness argument

Let ¢ denote eitherp or a C* function with compact support or a linear
combination of theself Z has three finite momentsve get by a first-order
Edgeworth expansiofwhich is shown to be valid in Section® and follow-
ing the same line of reasoning as in the proof &)

E[F(dX/\Tx)] = E[F2(dE /\F(x)] + o(n¥2),
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where agair¢ denotes a Gaussian process with the same spectral den3ity as
Applying Lemma 5 then yields

E[$2(d5/\F(x))] = E[$2()] + O(n~V2),

where( is a standard complex Gaussidn the last two equationghe terms
o(n~%2) and O(n~%2) are uniform with respect t&. Hence given that

2221 Br%,k = 1’

lim > B2 E[S2(dX/f (x)] = E[$*()]. (12)

N—coo k=1

Let ¢ be a sequence @ > functions with compact support such that
lim E[{(2) = du())?] =

The sequence,, can be chosen such that §m || éule.dym = 0, wheredy, is
the first derivative of the functiorpy, and|.|., is the supremum nornNow
An v is split into three terms

nM —323n k]E[{(b(d k) ¢M(d k)} ]

(M)

k )_¢M(dr?|<

M)

+ 3ng§,kE[{¢(d3< k 2]

(M)

n
+ 3211,35,kE[{¢M (A — b (X 2.
Applying (12) with ¢ = ¢ — ¢\, we get
i
limsup glﬁﬁ,kE[{cb(d W) — dw (dX)}?]

X (M) x (M)

= “mSUp;lBrik]E[{¢(d K )_¢M(d e )]

=E[{¢(0) — dm (D21
Applying the mean value theorerit is trivially seen that
n
2 BiELdu (e - b (B V2] = | pial2 o
=1
Altogether we get that

lim lim supAn m=0.

M—coo
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Consider now the terrB,, . It can be expanded as

Bn,M = Z Bn,jBn,kE[nn,jnn,k] + 2 IBn,jBn,kE[nrg!\?)ngvll()] (13)

1=j#k=n 1=j#k=n

—2 3 BojBuElnnmnk ] (14)
1=j#k=n
The terms that involve only one noise can be dealt with easily using the same
arguments as in the proof 68). A second-order Edgeworth expansjevhich
is valid as soon a& has four finite momentssee Section.3), and an applica-
tion of Lemma 5 yield

lim 2 Bn,j IBn,kE[nn,j nn,k] =0 (15)

N—% 1<j#k=n

Because all that is needed fd5) to hold is thatZ has four finite momenighe
preceding limit obviously holds withy,} instead ofn,, .. Thus we need only
consider the termey ( j,k) = E[7, 1\, "]. For short definea, = o4/27 and

az, = 6y3/2m. Define
¥ (U,0) = E[¢(dyy + ayu+ ayv)p(dy; +ayu)].

With this notation
e}, k) = E[g(antdZy, aytdZ ).

A second-order Edgeworth expansioncgf( j, k) can be shown valid as in Sec-
tion 8.1 in Fay and Soulief2001) and can be written as

cw (], k) = E[¢ ({1, + n71/2E1[¢j,k] +0(n™t),

where/; and{, are ii.d. standard complex Gaussian and the tedm™?') is

uniform with respect td andj. If the processy were Gaussian white noisthe

termsE[y; «({1,{2)] andE,[; ] would vanish identicallyHere using Lemma
5, it is seenE[y; ({1, {2)] = O(n~1) andE4[¢; «] = O(n~Y2), uniformly with

respect tk andj. Hence

> |BniBnjcu(i k)| = O(u,/n).
1=k<j=n
Note that all the previous bounds dependMnbut for any fixedM, we have
proved that

LEMMA 3. Let & be a function such that|®|? = (27) ¥2 X
fRa(Dz(x)e‘XTX/2 dx < oo and with Hermite rank at least. Let X be an a-
dimensional centered Gaussian vector with covariance matrsxich that the
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spectral radiusp of |, — I' satisfiesp < 3 — € for some0 < € < 1. Then there
exists a constant(e, r,a) that depends only oa 7, and a such that

[E[®(X)]| = c(e,7,a)| ] p™2
Proof of Lemma 3 DenoteA =T~ — | andv = [(7 + 1)/2].

T T dx
IT|Y2E[®(x)] = fRatb(x)e xTAx/2g=x"x/2 @

S (_1/2)kf P (x) (xTaxrexz —
k=0 K R? (2m)¥?
+f o0, (e —2X

R? : (27m)¥/?

wherer, is the remainder term in theth order Taylor expansion o X A/2,
Becauseb has Hermite rank, the terms in the sum from 0 to— 1 all vanish
Moreover it is well known that

[xTAX|”

T
e|x Ax\/z.
2"yl

I, (X)] =

Let 6 be the spectral radius af.

dx
T2 [E[®(x)]| = f O (X)||xTAX|7elx 2xI/2g=xTx/2
ITHEE[@ (]| = 5 Ra\ ()[Ix"Ax| G
§? f . . dx 1/2
= d XTX 2ue5x X@—X X/2 .
o | |{ O™ oy

If 6§ = 5 — e for somee > 0, then the last integral in the preceding expression
is finite and depends only on 7, anda. Moreover by continuity of the func-
tion det |T'| is bounded away from zeyrand thus there exists a constant that
depends only om, 7, anda such that

IE[®(X)]| = c(e,7,a)|®[8” = c(e,7,a)| D672

Finally, it is easily seen that as soon &s< 1, T is invertible andl' ™ — I, =
S (I, — Tk thusp = 8/(1 — §), andd < 3 — € impliesp < 3 — €' for
somee’ > 0. This concludes the proof of Lemma 3 u

LEMMA 4. Let U be a stationary process with finite second moment. j.et f
be the spectral density andbe the covariance function of U. }f satisfies the
following condition:

> ply(p] < oo, (16)
p=0
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for somea > 0, then foralll=k#j =,
E[19] = fy (%) + O(n~ (),
|E[dr%fkdhjj]| + |E[d#kaul]| = O(n~(e™),

Proof of Lemma 4 Forl=k=nand—-n=j=n,

n—1 n

Eldpdyj] = @mn)™ X y(pePe Y Lnogy pen €5
p=1-n s=1

Note thatfy(x) = (27)™* Zpezy(p)eipx. If k+ j = 0, under assumptiofil6),
denotingzL := 37, p|y(p)| we get

n—1

IE[12] = fu(x)| = (7n)™2 X [plly(p)| + 71 X [y(p)l

p=1 p=n

=77 S pely(p)| = Ln~(,
p=1

If1=[k+j|=2m then|Z oo Lpesspn) €50« | = p; thus

n—1 0
[E[ddy;]l = (7)™ X ply(p =770~ 3 p*ly(p)|=Ln . =
p=1 p=1

Let T, denote the covariance matrix of the vector of DFTH#”kl/
\lfu(xkl),...,drﬁfku/\/fU(xku), considered as av2dimensional real Gaussian
vector Lemma 4 yields, = 3l,, + An,, where the spectral radius af, , is of
orderO(n~“™), Thus Lemmas 3 and 4 yield the following lemma

LEMMAS. Let U be a stationary Gaussian process with spectral dengity f
that satisfies condition (16) for somee< (0,1]. Let{,...,{, bei.i.d. standard
complex Gaussian. Leb be a function defined o©" such that|®|? :=
E[®2({4,...,{,)] < oo. If the Hermite rank ofb — E[®({4,...,{,)] is 7, then

E[® (¥, /\[To i), O /A T R D] = E[@ (&1, 2]
= c(r,u)|®|n""/2

uniformly with respect to k..., k.

3.3. Edgeworth Expansions

In this sectionwe check the validity of the Edgeworth expansions used in the
proof of Theorem 2It can be deduced from Theorenil3 in Gétze and Hipp
(1978 that if ¢ is aC®> function with polynomially bounded derivatives of all
order such that(i) supecali()]/(1 + [£]%) < oo and (i) E[|Zo|*"?] < o,
then for anya-tuple of pairwise distinct integets= (k, ..., k,), an Edgeworth
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expansion off[ (d% ,...,d7, )] up to the ordesis valid, and the remainder
term is uniform with respect t&,,..., k, and depends only on bounds for the
function ¢ and its derivatives(For more detailssee Fay and Soulie2001,
Sec 8.1.) In the present contexall the functionsys considered areC* and
their derivatives are polynomially bounddskcause they can be written as con-
volutions of the Gaussian kernéWloreover they are uniformly bounded by a
power of log|/|]). Thus the second-order expansions used in Lemma 2 are
valid if Z has finite fourth moment_et us illustrate this claim with the case of
the functionys defined onC asy (u) = E[log|dY(x,) + ul?]. Identifying C and

R?, and denotind’;,  the covariance matrix of the real and imaginary parts of
dY(x,), we have

dx

Th-1
50) = [ togllx+ upyer e L
. 2711, 72

Under the assumptions on the spectral density,df, «/fv(xx) converges uni-
formly with respect tok to 3l,, wherel, is the two-dimensional identity ma-
trix. Becausefy is assumed bounded above and away from ,zdrere exist
positive constants < C such that for allk € R? and for all sufficiently large
n, c|x|? = x'I, ¢x = C|x|?. Thus to prove(i), it is enough to check that
[z log?(| x| e~ *uI* dx = Clog?(Jul)), and to prove thats is C* with uni-
formly (with respect tak andn) polynomially bounded derivative# suffices
to prove that for all positive integer, [q2|x|”log?(|x|2)eI*ul* dx is
bounded by a power ofu| on R?. Splitting the integral over the domains
{Ix] = 1} and{ x| = 1}, we get

| i togexe - axes e 2 [ og(jxlpldx= G,
{Ixl=1}

tixl=1

f{ I }HXHV log?([xlpe " dx = J |x+ u]” log?(| x + ul)e~"I* dx.
X[ >1

{Ix+ul>1}

If |x+ ul > 1, then log|x + u) = log(|x|) + log(Jul) and log|x + u]) =
[x + u]. This yields

f log2(|x + ul)e~XI* dx
{Ix+ul>1}
=2 [log2(Ixe "+ 2log?(ul) [ &1 dx=A-+ Blog?(lul),
f Ix + ul” log2(|x + u])e~XI* dx
{Ix+ul>1}

<20 [t + ul e dw= C + DJul

whereA, B, C, andD are numerical constants
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We now give an explicit expression for this valid Edgeworth expandien
U,,...,U,, be 2ai.i.d. A(0,1) random variables and dendte= (U, ...,Us,)".
Let 4 be a function such thak[42(No%4mU)] < co. A formal Edgeworth
expansion oft[¢ (d7, ,...,d% )] up to thesth order can be written as

E[(dk,,-.., AT )] = 2 n772E, () + n~20, Ry (), a7
r=0

where the sequenag, depends only on the distribution @f, ands and satis-
fies lim,_, v, = 0; R, (¢) is uniformly bounded with respect toandkj, ..., k,:

Eo,k(¥) = E[¢y(NoZ/4mwU)], (18)
r 1 .
IEr,k('r//) = zl t_' r,tEr,t,k(‘//), (19)

X, (K)o x,, (K)

vil.ooyy!

B k(i) = E[H, ..., (W) y(NoZ4mU)],  (r>0);

(20)

>r¢ extends over alt-tuplesy of multi-indices v, := (1(2),...,1»(2a)) €
N22| =1,...,t such that

t

Inl =) +-+r(a)=3, |I=1...,t and > |y|=r+2t; (21)
=1

fork € {1,...,K}?2 andy € N?2, y,(k) = 2'”‘/2K‘V|A,}(k) with

n a
A, (k) =n"t 2 H Coitxkj)”zj—l Sin(tka)sz;
t=1j=1
andk,, is the cumulant of ordew| of Z,; H, denotes a multidimensional Her-
mite polynomiai

2a

H,WU) = [TH, )W), (22)
j=1

and fork € N, Hy is the usual Hermite polynomial of ord&r For further de-
tails on multidimensional Hermite polynomiaksee e.g., Arcones(1994.
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