
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this bound copy of a doctoral thesis by

Wolfgang Ketter

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Maria Gini

Name of Faculty Advisor

Signature of Faculty Advisor

Date

GRADUATE SCHOOL





Identification and Prediction of Economic Regimes to Guide

Decision Making in Multi-Agent Marketplaces

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Wolfgang Ketter

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Maria Gini, Advisor

January 2007



c© Wolfgang Ketter January 2007



Dedication

To my parents

i



Acknowledgments

There are many people who I am deeply indebted to, and without whom this work

would never have been finished. First and foremost I would like to thank my advisor

Maria Gini. It was a real apprenticeship, whenever I wanted to rush away with my

grandiose visions she channeled my energy to what matters most, and guided me to

think very deep about our current research problems. She has the remarkable ability

to see and articulate the core problem in a maze of confusion. She also has taught me

to think about the big picture and present my work accordingly. Maria was always

willing to take time out of her busy schedule when important or usual issues came

up.

I like to send my gratitude to the other members of my committee John Collins,

Alok Gupta, and Paul Schrater. Few people are fortunate enough to have such a

fantastic committee. John Collins, who has helped me and the whole MinneTAC

team with his expert supervision, great design skills, hands-on analysis, and so much

more was indispensable. Especially in this last semester he devoted a lot of his time

to discuss urgent research problems. John repeatedly reminded me that the most

important thing about a dissertation was having finished it, and while teaching with

him I learned how to design good class projects and exams.

Alok Gupta was my window into the business and economics community and helped

me in more ways than he possibly can imagine. He gave me multiple times a forum

for testing some of my ideas with his students in his courses at the Carlson School

of Management, as well as at the INFORMS 2005 conference in San Francisco. He

taught me the principle of analytical eyeballing, meaning to test out an idea quickly

before embarking totally with possibly no output. Another very useful principal I

learned from him is the theoretical lens. Everybody has a theoretical background

that shapes his or her view on a problem. Develop alternative views on the same

problem and your insight will be magnified.

Paul Schrater deepened my knowledge of the beautiful subject of machine learning.

Over the course of many research meetings we had great discussions and he taught

me how to take a loose idea or result and push it to its limits by discovering variations

and generalizations, implications and applications.

I’m grateful to all former and current members of the MAGNET and MinneTAC

ii



research team, especially: Alexander Babanov, John Collins, Steve Damer, Maria

Gini, Roman Kulik, Elena Kryzhnyaya, and Eric Sodomka. I really enjoyed working

with Alex the first two years on the evolutionary framework, feel honored that he

came to my thesis defense all the way from Seattle. I’m looking forward to attend

his Ph.D. defense whenever it will be.

I also would like to thank the members of the machine learning group for stimulat-

ing discussions, and the opportunity to present my work to this critical audience.

Thanks to Bonnie Bennett who was so nice to offer me to give a thesis presentation

at Adventium Labs two days before my thesis defense.

I would like to thank the organizers of the TAC SCM game for a stimulating research

problem and the whole TAC SCM community for great presentations and discus-

sions at the workshops for trading agent design and analysis. I also would like to

acknowledge the help from TAC SCM researchers who made this work possible by

making their agents available for others to use. Thanks to the American Association

for Artificial Intelligence for selecting me to present my work at the 2005 Doctoral

Consortium in Pittsburgh. It was great to present my work and to get feedback from

senior researchers and other doctoral students in the field.

Thanks to the many in the wider research community who have taken the time to

discuss my work and explain their work, including, Gedas Adomavicius, Alexander

Babanov, Ravi Bapna, Arun Batchu, Gary Berosik, Anindya Ghose, Otto Koppius,

Steve Miller, David Pardoe, Michael Smith, Katia Sycara, Eric van Heck, Harini

Veeraraghavan. I would also like to extend my gratitude to the many anonymous

reviewers of our papers. Their knowledge and scientific rigor were crucial in building

and shaping this work.

The majority of our work is done using open-source software, including gnu/Linux,

LaTeX, ant, log4j, and other tools from the Apache project, emacs, and many others.

Thanks to the talented folks who make all this possible. A big thanks to our systems

staff who were always there when their help was most needed.

Fortunately, my years in St. Paul and Minneapolis were not all work and no play.

I especially want to thank Ulyana and Alexander Babanov, Rima Parikh and Arun

Batchu, Heda and Matt Batalden, Barb and Gary Berosik, Saladin Cerimagic, Nicole

Grewling, Ascan and Reka Körner, Anna and Helen Kryzhnyaya, Vladimir Kryzh-

iii



niy, Thomas Jabusch, Ashutosh Jaiswal, Easwar Lakshminarayanan, Dennis Ley,

Lidia Ley, Mel McManus, Jan Makowski, Tim Meier, Cheryl Quellette, Henning

Sjurseth, Michele Tertilt, Amy Thoren, Nikolas Trawny, Harini Veeraraghavan, Ar-

mando Vilchez, Janel and Jon Wittmayer, and Arno Wünschmann, for being such
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Abstract

Supply chain management is commonly employed by businesses to improve organiza-

tional processes by optimizing the transfer of goods, information, and services between

buyers and suppliers. Traditionally, supply chains have been created and maintained

through the interactions of human representatives of the various companies involved.

However, the recent advent of autonomous software agents opens new possibilities

for automating and coordinating the decision making processes between the various

parties involved.

Autonomous agents participating in supply chain management must typically make

their decisions in environments of high complexity, high variability, and high uncer-

tainty since only limited information is visible.

We present an approach whereby an autonomous agent is able to make tactical de-

cisions, such as product pricing, as well as strategic decisions, such as product mix

and production planning, in order to maximize its profit despite the uncertainties in

the market. The agent predicts future market conditions and adapts its decisions on

procurement, production, and sales accordingly.

Using a combination of machine learning and optimization techniques, the agent first

characterizes the microeconomic conditions, such as over-supply or scarcity, of the

market. These conditions are distinguishable statistical patterns that we call economic

regimes. They are learned from historical data by using a Gaussian Mixture Model to

model the price density of the different products and by clustering price distributions

that recur across days.

In real-time the agent identifies the current dominant market condition and forecasts

market changes over a planning horizon. Methods for the identification of regimes

are explored in detail, and three different algorithms are presented. One is based on

exponential smoothing, the second on a Markov prediction process, and the third on

a Markov correction-prediction process. We examine a wide range of tuning options

for these algorithms, and show how they can be used to predict prices, price trends,

and the probability of receiving a customer order.

We validate our methods by presenting experimental results from the Trading Agent

Competition for Supply Chain Management, an international competition of software
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agents that has provided inspiration for this work. We also show how the same

approach can be applied to the stock market.
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Chapter 1

Introduction

Business organizations have an increasing need for software that can assist decision

makers by gathering and analyzing information, making recommendations, and sup-

porting business decisions. Advanced decision support systems and autonomous soft-

ware agents promise to address this need by acting rationally on behalf of humans

in numerous application domains. Examples include procurement [Sandholm, 2006,

CombineNet, 2006], scheduling and resource management [I2, 2006, Collins et al.,

2001], and personal information management [Berry et al., 2006, Mark and Perrault,

2006].

1.1 Objective

In this thesis, we show how machine learning techniques can be used to support ra-

tional decision making by an autonomous agent that operates in a market for durable

goods to sell products. We are particularly interested in environments that are con-

strained by capacity and materials availability. We demonstrate our approach in the

context of an autonomous agent that is designed to compete in the Trading Agent

Competition for Supply Chain Management (TAC SCM) [Collins et al., 2005].

Our method characterizes market conditions by distinguishable statistical patterns,

that we call economic regimes. We show how such patterns can be learned from

historical data and subsequently identified in real time from observable data. We

describe how to identify regimes and to forecast regime transitions. This prediction,

in turn, can be used by the agent to allocate resources to current and future sales
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in a way that maximizes resource value. While this type of prediction about the

economic environment is commonly used at the macro economic level [Osborn and

Sensier, 2002], such predictions are rarely done for micro-economic environments.

1.2 Agents for Electronic Marketplaces

What is an agent? The term “Agent” has been used in a rather vague way in industry

and academic literature. According to Webster’s Third New International Dictionary,

an agent is “one that acts or exerts power... a means or instrument by which a guiding

intelligence achieves a result... one that acts for or in the place of another by authority

from him.” Russell and Norvig [Russell and Norvig, 2002] say that “An agent is just

something that acts (agent comes from the Latin agere, to do)”. Bradshaw [Bradshaw,

1997] reviews in detail the various meanings of the term as it has been used in the

research community.

The meaning we use focuses primarily on the “agency” and “intelligence” dimensions

as used by Bradshaw. By “agency”, we refer to the notion that agents have persistent

existence and identity within an environment in which they can perceive, act, and

observe the effects of their actions. By “intelligence”, we mean that the agents are

rational to the limits of their computational capabilities. We use the term “rational”

in the decision-theoretic sense to mean that an agent acts to maximize its own utility.

As an example, a TAC SCM agent exists in a market environment where it competes

with other agents, and its utility is measured in economic terms.

TAC SCM agents can be characterized as autonomous, self-interested, and hetero-

geneous. They are “autonomous”, in the sense that once a game starts there is no

human intervention. This means that they are not directed by commands coming

from a user (or another agent), but by a set of utility and learning functions, which

can take the form of individual goals to be achieved. They are “self-interested” in

that they are expected to behave in a way that maximizes their own utility, without

regard to the utilities of other agents or of the society as a whole. They are “het-

erogeneous” in the sense that agents differ in their capacities, and in general must

find other agents to supply the resources they need to satisfy their own goals. A

second type of heterogeneity is that agents of the same type are often implemented

in different ways. In TAC SCM each team provides its own agent which complies

with the rules of the market, but internally runs different algorithms to achieve the
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external goal as its competitors.

1.3 Motivating examples

To make the ideas more clear, here are several example scenarios from different in-

dustries where our proposed approach could be applied if the vision behind economic

regimes were to be further developed and commercialized.

Supply-chain management –

In TAC SCM [Collins et al., 2005], each of the competing agents plays the part

of a manufacturer of personal computers. Agents compete with each other in

the procurement market where they buy computer components, and in the sales

market where they sell finished computers. Each game runs for 220 simulated

days, which take approximatively an hour of real time. Each agent starts with

no inventory and an empty bank account, and so must borrow money (and

pay interest on it) to build up an initial parts inventory before it can begin

assembling and selling computers. The agent with the largest bank account at

the end of the game is the winner.

Other examples where agents are used in supply-chain management include pro-

curement [Sandholm, 2006, CombineNet, 2006], scheduling and resource man-

agement [I2, 2006, Collins et al., 2001], and personal information management

[Berry et al., 2006, Mark and Perrault, 2006].

Financial markets – The Penn-Lehman Automated Trading Project [Kearns and

Ortiz, 2003] is a broad investigation of algorithms and strategies for automated

trading in financial markets and related environments. The project makes use

of the Penn Exchange Simulator, a simulator for automated trading that uses

real-world, real-time stock market data.

Auction-based contracting – The MAGNET [Collins et al., 2002a] automated

contracting environment is designed to support negotiation among multiple,

heterogeneous, self-interested agents over the distributed execution of complex

tasks that have time and precedence constraints. MAGNET is highly config-

urable and extensible, and has been used for several statistical studies aimed at

understanding the decision processes for a Customer agent.
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Travel arrangements – In the TAC classic game [Wellman et al., 2001], each agent

is a travel agent, with the goal of assembling travel packages from TACtown

to Tampa, during a notional 5-day period for its clients. Each agent acts on

behalf of eight clients, who express their preferences for various aspects (hotel,

entertainment, etc) of the trip. The objective of the travel agent is to maximize

the total satisfaction of its clients (i.e. the sum of the client utilities).

1.4 Contributions

The key contributions of this dissertation are:

1. We present a mathematical formulation of an economic regime. Economic

regimes are microeconomic conditions, such as over-supply or scarcity, of a

market. Regimes are learned from historical data by using a Gaussian Mixture

Model to model the price density of the different products and by clustering

price distributions that recur across days. An innovative aspect of our work is

that we treat economic regimes at the micro-economic level. So far the existence

of regimes has only been reported at the macro-economic level.

2. We develop methods for dynamic identification of regimes and for prediction of

regime distribution over a planning horizon. We present three different algo-

rithms (plus an additional one in the Appendix). The first is based on expo-

nential smoothing, the second on a Markov prediction process, and the third

on a Markov correction-prediction process. We examine a wide range of tuning

options for these algorithms, and show how they can be used to predict prices,

price trends, and the probability of receiving a customer order.

3. We present principles and algorithms for tactical decision making, such as calcu-

lation of customer offer prices, for strategic decision making, such as allocation

of products over the planning horizon, and for market manipulation. We show

how knowledge of the current and future regime distribution facilitates tactical

and strategical decision making by the agent.

4. We demonstrate the value of prediction within supply-chain environments, and

how predictions impact all aspects of the supply-chain, such as procurement

and production. We also demonstrate that the identification and prediction of
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economic regimes is valuable outside of supply-chain management domain, such

as for financial markets.

Our proposed method has the advantage that it works in any market for durable

goods, since the computational process is completely data driven and no classifica-

tion of the market structure (monopoly vs competitive, etc) is needed. A regime

encapsulates a whole set of market parameters, with their appropriate range tailored

to a specific market condition, i.e. the dimensionality of the parameter space is de-

creased.

Economic regimes provide more degrees of freedom than ordinary regression based

approaches, since the full price distribution is available for decision making. Classical

time-series models assume a stationary environment, which is not true for micro-

economic environments. Economic regimes are a tool specially suited to make predic-

tions in non stationary environments. Economic regimes also provide an opportunity

of niche learning, i.e. an agent is able to apply different approaches and actions when

specific regimes are dominant.

1.5 Guide to the thesis

Here we outline the main contents of the chapters that follow.

Chapter 2 - Literature Review – We present a categorization of related work.

In particular, we examine work in multi-agent marketplaces, identification and

prediction of regimes, price prediction, order probability prediction, opponent

modeling, and agent design.

Chapter 3 - Simulation of a Multi-agent Supply-Chain Environment – We

describe the TAC SCM game, and we outline the architecture and design of our

MinneTAC agent.

Chapter 4 - Tactical and Strategic Sales Decision – We describe what an agent

needs to know to be able to make strategic and tactical sales decisions.

Chapter 5 - Economic Regimes – We introduce the concept of “economic regime”

and its representation based on learned probability density functions.
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Chapter 6 - Performance Evaluation – We show how our method is used in an

automated trading agent in TAC SCM and in financial markets, and we analyze

experimentally the performance of the method.

Chapter 7 - Conclusions – We conclude with a review of our contributions along

with considerations of future work in the area of economic regimes.

Appendix – For reader’s convenience, we present a summary of our notation and

details of some algorithms.

Figure 1.1 shows graphically the different parts of the decision processes of the agent

and maps them to chapters in this thesis.

Internal Agent Data

Derived Data

External Input Data

Economic Regime

Model − Ch. 5

Daily Price
Report − Ch. 5.3

Price Monitor
Ch. 5.3

Price Density
Ch. 5.5

Ch. 5.5

Ch. 5.6

Ch. 4.2

Ch. 4.2 Ch. 4.1

Inventory Status
Ch. 4.1

Cost Basis
Ch. 4.1

Ch. 3.1

Ch. 4.1

Calculation of
Offer Prices
Ch. 4.2

Median Price
Prediction
Ch. 5.5

Demand
Prediction

Current 
DemandConstraints

ResourceYesterday’s
Accepted Offers

Sales
Performance

Probability of
Order Model

Trend
Prediction

Allocation

Ch. 4.1

Figure 1.1: Pricing Chain. Allocation and regime modeling (double borders) are the
focus of the thesis. These are tools for strategic decision making. The calculation of
the offer prices is a tactical decision.
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Chapter 2

Literature Review

This work draws from several fields. In Computer Science, it is related to Artificial

Intelligence and autonomous agents, especially machine learning, planning, and rea-

soning under uncertainty. In Economics and Information Decision Science, it draws

from the framework of auction theory, probability theory, decision theory, and game

theory. From Operations Research, it draws from work in combinatorial optimization

and supply-chain management.

In this Chapter we explore previous work on world modeling, regime formulation,

model selection, opponent modeling, machine learning, and predictions in dynamic

multi-agent environment, especially electronic market places. We also review the work

on agent limitations, focusing primarily on handling limitations within the context of

decision making, and the connecting perception problem.

2.1 Electronic Commerce

2.1.1 Architectures and Auctions

Markets play an essential role in the economy, and market-based architectures are a

popular choice for multiple agents (see, for instance, [Chavez and Maes, 1996, Sycara

and Pannu, 1998, Wellman and Wurman, 1998, Collins et al., 2002a, Karacapilidis

and Moräıtis, 2001, Choi and Liu, 2001]). Traditional economic approaches based on

common knowledge often do not work in electronic marketplaces, since the agents

usually lack large background information and the sophisticated reasoning ability of
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their human counterparts. In our research we focus on the study of economies of

manufacturer and customer agents, where physical goods are the objects of exchange.

Specifically, we are interested in how an agent manufacturer of physical goods can

efficiently learn about changing market conditions and use this knowledge to steer its

internal operations and adapt to the preferences of the customer population.

2.1.2 Issues

Electronic commerce has brought many opportunities and even more challenges.

[Gupta et al., 1996] discusses the economic challenges that electronic commerce will

present. The article deals with a wide range of issues from Internet traffic pricing to

information pricing to online micro payment to competitive markets. [Gupta et al.,

1997] discusses the problems that congestion will create and showed that it may be

detrimental for both customers and access providers to not have volume based traffic

pricing.

With the increasing number of companies doing business in the Internet, security and

trust in multi agent system to protect against fraud have gained an important role,

for instance in [Jaiswal et al., 2003] the authors identify the security vulnerabilities

of MAGNET and present a solution that overcomes these weaknesses.

2.2 Agents and Domain Modeling

2.2.1 Characterization of an Agent

All agents have three key attributes: perception, reasoning, and action. These three

components operate within the context of some environment. The percepts an agent

receives depends on the environment, and the actions an agents performs affects

the environment. We will characterize different types of environments an agent, or

multiple agents, can be in and the coupling between them. With general but careful

assumptions about the environment, agents can effectively reason about appropriate

actions to select.

2.2.2 Characterization of the Domain

In [Sutton and Barto, 1998] the authors define a model of the environment as anything

that an agent can use to predict how the environment will respond to its actions.
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Given a state and an action, a model produces a prediction of the resultant next

state and the next reward. If the model it stochastic then there are several different

possible next states and rewards and each has a attached a probability of occurrence.

Our special domain of interest are automated and mixed-initiative multi-agent sys-

tems in electronic markets. The characteristics of such an environment are listed

below:

• complex (many governing variables, spatio-temporal patterns)

• heterogeneous (different types of agents, different strategies)

• dynamic (structure is changing, interests are changing, patterns of communica-

tion/interaction are changing)

• limited resources (economic realities) and limitations on reasoning capability

• competitive environment (many direct or indirect opponents)

• not centralized and not centralizable, because their participants are self-interested,

rational, and economic agents

• unlimited time frame (no closing date)

• open market/system (influenced by other markets, external parameters)

• high degree of uncertainty (the participating agents have only limited knowledge

of the state of the world)

• strategic (agents need to implement many different strategies to compete in

the market) and strategic behaviors of agents (perform market manipulation to

exploit the environment to gain an advantage)

In Table 2.1 we characterize multi-agent systems 1 and classify TAC SCM in the given

schema.

1Table format taken from [Weiss, 1999].

9



Attribute Range TAC SCM

number from two upward 6
uniformity homogeneous

. . . heterogeneous
heterogeneous

Agents goals contradicting
. . . complementary

contradicting

architecture reactive . . . deliberative deliberative
abilities (sensors, effec-
tors, cognition)

simple . . . advanced medium

frequency low . . . high depends on type
persistence short-term . . . long-term long-term
level signal-passing

. . . knowledge passing
signal passing

Interaction pattern (flow of control) decentralized
. . . centralized

decentralized

variability fixed . . . changeable changeable
purpose competitive

. . . cooperative
competitive

predictability foreseeable
. . . unforeseeable

partial foreseeable

accessibility and know-
ability

unlimited . . . limited limited

Environment dynamics fixed . . . variable variable
diversity poor . . . rich rich
availability of resources restricted . . . ample restricted

Table 2.1: Characterization of multi-agent systems and relationships with TAC SCM.
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2.3 Regime Formulation

The analysis in [Massey and Wu, 2005] shows that the ability of decision makers to

correctly identify the onset of a new regime can mean the difference between success

and failure. Furthermore they found strong evidence that individuals pay inordinate

attention to the signal (price in our case), and neglect diagnosticity (regime dynamics)

and transition probability (Markov matrix), the aspects of the system that generates

the signal. Individuals who do not pay enough attention to regime identification and

prediction have the tendency to over- or underreact to market conditions. The degree

to which used products cannibalize new product sales for books on Amazon.com is

analyzed empirically in [Ghose et al., 2006]. In their study they show that product

prices go through different regimes over time.

Marketing research methods have been developed to understand the conditions for

growth in performance and the role that marketing actions can play to improve sales.

For instance, [Pauwels and Hanssens, 2002, Pauwels and Hanssens, 2004] provide

marketing research methods to gain a dynamic understanding of the conditions for

performance growth and of the role marketing actions play to improve sales perfor-

mance in mature markets. The authors analyze how strategic windows of performance

change alternate with long periods of performance stability in mature economics mar-

kets.

All these methods fail to take into account market conditions that are not directly

observable. They are essentially regression models, and do not represent qualitative

differences in market conditions. Our method, in contrast, is able to detect and fore-

cast a broader range of market conditions. Regression based approaches (including

non-parametric variations) assume that the functional form of the relationship be-

tween dependent and independent variables has the same structure. An approach

like ours that models variability and does not assume a functional relationship pro-

vides more flexibility and detects changes in relationship between prices and sales

over time.

An analysis of the TAC SCM 2004 competition ([Kiekintveld et al., 2005]) shows

that supply and demand (expressed as regimes in our method) are key factors in

determining market prices, and that agents which were able to detect and exploit

these conditions had an advantage.
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2.4 Model Selection

Model selection is the task of choosing a model of optimal complexity for the given

(finite) data. A good overview about concept, theory and different methods of model

selection is given in [Cherkassky and Mulier, 1998]. Brooks et al. [Brooks et al.,

2002] addresses the problem of a monopolist producer agent selecting a model of a

population of customer agents to learn when it must account for the cost of learning.

2.5 Opponent Modeling

Since the success of a TAC SCM agent is likely to depend greatly on the strategies of

other agents, it is reasonable to assume that learning the behaviors of other agents

may be vital to good performance. The problem is that an agent in the TAC SCM

domain does not have direct contact with its opponents, e.g., while bidding for a

customer RFQ it only knows if it received an offer or not, but not which other agents

bid and at what price. Our suggest method of estimating and using regimes for price

prediction and other agent goals is a way of indirectly modeling opponents. Opponent

modeling is a hard problem in multi-agent systems and is successful only is smaller

settings so far.

Urszula Chajewska, Daphne Koller and Dirk Ormoneit [Chajewska et al., 2001] show a

method for predicting the future decisions of an agent based on it past decisions. They

are learning the agent’s utility functions by observing its behavior. Their approach

is based on the assumption that the agent is a rational decision maker. According

to decision theory, rational decision making amounts to the maximization of the

expected utility [von Neumann and Morgenstern, 1947]. In TAC SCM we cannot

assume that all the agents are rational.

Michael Littman [Littman, 1994] describes reinforcement learning approach to solv-

ing two-player zero-sum games in which the “max” operator in the update step of

standard Q-learning algorithm is replaced by a “minimax” operator that can be evalu-

ated by solving a linear program. He demonstrates the performance of his minimax-Q

learning algorithm on a grid-soccer scenario, where his algorithm plays against a ran-

dom player and a player of its own kind. The algorithm minimax-Q correctly extends

Q-learning to find optimal probabilistic policies. We could use the idea of grid-soccer

to implement our own learning algorithms and test them in this scenario.
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Carmel and Markovitch [Carmel and Markovitch, 1993] describe a game-player that

tries to analyze and learn the strategy of its opponent. They discuss the benefits

of using a model of the opponent s strategy, and give an algorithm called M* that

attempts to exploit the opponent s strategy.

2.6 Prediction Methods

Andrew Ng and Stuart Russel [Ng and Russell, 2000] show that the agent’s decisions

can be viewed as a set of linear constraints on the space of possible utility (reward)

functions. The simple reward structure they used in their experiments will not scale

to our future needs, i.e. offer price prediction in TAC SCM, we will need to extend

this.

2.6.1 Price Prediction

Predicting prices is an important part of the decision process of agents or human

decision makers. [Kephart et al., 2000] explored several dynamic pricing algorithms

for information goods, where shopbots look for the best price, and pricebots adapt

their prices to attract business. [Wellman et al., 2003] analyzed and developed metrics

for price prediction algorithms in the TAC Classic game, similar to what we have done

for TAC SCM.

TAC participants recognized early on that price prediction in connection with overall

agent performance is important [Stone and Greenwald, 2005]. [Stone et al., 2003] lists

a diversity of price prediction methods among TAC-Classic 2001 agents.

Brooks et al. [Brooks et al., 2002] designed pricing strategies for agents which exchange

information goods, they assessed their performance, and how well they adapt to

changing environmental situations. In our research we focus on agents which deal

with the exchange of physical goods, we intend to look into the implications when

dealing with information goods.

The University of Michigan team demonstrate a method [Kiekintveld et al., 2004]

for predicting future customer demand in the TAC SCM game environment, and use

the predicted future demand to inform agent behavior. Their approach is specific to

the TAC SCM situation, since it depends on knowing the formula by which customer

demand is computed. Note that customer demand is only one of the factors for
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characterizing the multi-dimensional regime parameter space.

The problem of allocating finite resources to producing a set of products in a way that

maximizes some measure of utility is the well-known “product-mix” problem ([Hillier

and Lieberman, 1990]).

Similar techniques have been used outside TAC SCM to predict offer prices in first

price sealed bid reverse auctions for IBM PCs ([Lawrence, 2003]), or PDA’s on eBay

([Ghani, 2005]).

In [Schapire et al., 2002] the problem of predicting prices of goods in auctions is

solved via a machine-learning approach. There method is based on logistic regression

and boosting which is explained in detail in [Collins et al., 2002b, Witten and Frank,

2000].

[Gupta et al., 2000] proposes alternative approaches for pricing Internet access dy-

namically. We are thinking to adapt parts of their non-parametric statistical tech-

nique to predict the daily order price range for different computer types.

2.6.2 Probability of Order Prediction

The problem of predicting the probability of order in sealed bid auctions is commonly

approached through statistical methods as those surveyed in [Papaioannou and Cas-

saigne, 2000]. These kinds of methods require large amounts of observed data in terms

of opponents bidding behavior and a static environment. TAC-SCM on the other side

is a highly dynamic and uncertain environment and therefore nearly all agents in the

TAC SCM competition use some dynamic way of modeling the probability of receiving

an order. Botticelli [Benisch et al., 2004] uses a linear CDF to determine the relation-

ship between offer price and order probability. We use a reverse CDF and take other

factors into account, such as quantity and due date. TacTex [Pardoe and Stone, 2004]

uses the lowest and highest offer price, which are provided for each product every day

by the game server, and determines the probability of an order by linear interpola-

tion. Their estimates depend only on the type of computer requested and the reserve

price, whereas we use more parameters in our previous work [Ketter et al., 2004c,

Ketter et al., 2004a, Ketter et al., 2004b] (6 parameters for the MaxEProfit strategy

and 5 parameters for the DemandDriven strategy). RedAgent [Keller et al., 2004], the

winner of last year TAC SCM , uses an internal marketplace structure with competing
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bidders to set offer prices. PackaTAC [Dahlgren and Wurman, 2004] lets other agents

set the price and tries to follow. The Jackaroo team [Zhang et al., 2004] applied a

game theoretic approach to set offer prices, using a variation of the Cournot game for

modeling the product market. PSUTAC [Sun et al., 2004] employs an expert system

for decision making. They are able to express market strategies and knowledge in

a human-understandable form. Pindyck et al. [Pindyck and Rubinfeld, 1998] give a

good overview of the science and art of building and using forecast models.

Since we estimated the bottleneck was going to be in the supply and not in the

production [McMillen, 2003], we did not worry, as other teams [Benisch et al., 2004,

Pardoe and Stone, 2004], about optimizing the production of our agent.

2.6.3 Evaluation of Predictive Quality

If competitions such as TAC-Classic and TAC-SCM are to be successful in facilitating

research, it will be necessary to separately evaluate methods that have been applied

to individual tasks [Stone, 2003], such as procurement and sales. Many of these

interesting tasks in such complex environments are not strictly separable, which makes

the evaluation of those tasks harder.

The University of Michigan team analyzed post-competition performance of the TAC

SCM winning agents and explored relationships between total profit and other mea-

surements of performance [Kiekintveld et al., 2005, Jordan et al., 2006]. The same

team [Wellman et al., 2006] translates end of game profit into a new metric, demand-

adjusted profit (DAP), which attempts to factor out profit variations caused by dif-

fering amounts of game demand. This use of control variates greatly reduces the

amount of variance in profit, and it is quite useful as a benchmark for agent perfor-

mance. DAP effectively controls the most influential market parameter, but there are

undoubtedly other market factors affecting profit, and if these were also accounted

for, variance could be reduced by an even greater margin.

Attempts have been made to control the profile space as well. For instance, [Wellman

et al., 2005] introduced a variation of the TAC games, called SCM↓3, which uses half

as many distinct agents per game and significantly reduces the profile space.

To facilitate analysis of TAC SCM games, the Supply Chain Trading Analysis and

Instrumentation Toolkit (AIT) has been developed [Benisch et al., 2005] and made
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available to the community. The tool simplifies downloading and parsing game data,

and provides support for analysis of agent performance, prices, market shares, average

daily prices, etc.

In [Babanov et al., 2003b], [Babanov et al., 2003a] and [Ketter et al., 2003] we describe

how an evolutionary framework could be used as a platform for systematic testing

of agent strategies and illustrate the idea with results from a simple supply-demand

model.

2.7 Agent Design

Most agent design efforts have focused on either the autonomous behavior aspects

of agency, or on interaction among agents. Shoham’s Agent-Oriented Program-

ming [Shoham, 1997] examines a cognitive and societal view of computation. Brad-

shaw’s KAoS agents [Bradshaw et al., 1997] are BDI agents in a CORBA environment.

Agents have capabilities based on existing document management applications. Nor-

man et al. [Norman et al., 1997] describe agent societies that model organizational

structures and automate business processes. These ADEPT agents negotiate over ser-

vice agreements that can involve many parties and many dimensions. JADE [Moraitis

et al., 2003] is an agent framework that has been used to build trading agents, and

could have been used for MinneTAC. However, its primary emphasis is on building

multi-agent systems that comply with FIPA specifications for inter-agent commu-

nications, and with flexible deployment in a network environment. This is not a

requirement for the TAC SCM domain. The MinneTAC design is compositional in

the sense of Brazier et al. [Brazier et al., 2002], but not hierarchically so. The DESIRE

method from Brazier et al. does not seem applicable to the MinneTAC situation, since

we are dealing with a single agent in an existing environment, and the blackboard

approach used in MinneTAC is not easily modeled with DESIRE. RETSINA [Sycara

and Pannu, 1998] suggests both a multi-agent architecture with a variety of agent

roles, and an architecture for individual agents that provides communications, plan-

ning, scheduling, and execution monitoring. This architecture could probably be

adapted to the TAC SCM domain, but its planning and communication capabilities

would not be especially useful. Vetsikas and Selman [Vetsikas and Selman, 2003] show

a method for studying design tradeoffs in a trading agent. This approach could be

likely be used effectively in MinneTAC.
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A few of the participants in TAC SCM have described their agent designs. He et

al. [He et al., 2006] have adopted a design consisting of three internal “agents” to

handle Sales, Procurement, and Production/Shipping. Sales decisions use a fuzzy

logic module. Some algorithmic detail is given, but there is little further detail on

the architecture of the agent. TacTex05, the winner of the 2005 competition [Pardoe

and Stone, 2006] is based on two major modules, a Supply Manager that handles

procurement, and a Demand Manager that handles sales, production, and shipping.

These modules are supported by a supplier model, a customer demand model, and a

pricing model that estimates sales order probability.

Ultimately, the TAC SCM problem domain does not require the sort of flexible cogni-

tive and social elements of these more “traditional” agent designs. Instead, our focus

has been on separating the decision tasks and supporting research needs, and we have

found the component-oriented model to be ideal.
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Chapter 3

Simulation of a Multi-Agent

Supply-Chain Environment

Electronic commerce is one of the more compelling application areas for autonomous

agents. In most electronic commerce applications, decisions can be relatively clear-

cut (buy or sell, set a price, submit a bid, award bids, etc.), and communications

among agents and between agents and their environments can be constrained and

highly scripted.

One way to drive development and understanding of decision making processes by

autonomous agents in complex domains is to hold competitions. An example of

such a competition is the Supply-Chain Management Trading Agent Competition

(TAC SCM) [Collins et al., 2005], an international tournament which engages agents

in simultaneous buying, selling, production scheduling, and inventory management

problems.

This Chapter provides an overview of TAC SCM and outlines the design of the Min-

neTAC trading agent, which has competed effectively in TAC SCM for several years.

The design has attempted to respond both to the challenges of the game scenario as

well as to the need to support multiple relatively independent research efforts that are

focused on meeting one or more of those challenges. We evaluate the success of our

design both in terms of the competitiveness of the agents that have been implemented

with it, and in terms of its ability to support our research agenda.
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3.1 TAC SCM Game Description

In a TAC SCM game, each of the competing agents plays the part of a manufac-

turer of personal computers. In an instance of a TAC SCM game six autonomous

agents compete with each other in the procurement market, where they buy computer

parts, and in the sales market, where they sell computers to customers, as shown in

Figure 3.1.

Offers

RFQs

Orders

Shipments

MinneTAC

TACTex

PSUTac

RedAgent

DeepMaize

Mertacor

RFQs

Offers

Orders

Shipments

Pintel

IMD

Basus

Macrostar

Mec

Queenmax

Watergate

Mintor

Suppliers Agents Customers

Figure 3.1: Schematic overview of a typical TAC SCM game scenario. Six autonomous
agents compete to buy parts from suppliers and to sell finished computers to cus-
tomers.

Availability of parts and demand for computers varies randomly through the game

and across market segments (low, medium, and high computer price). The market

is affected not only by variations in supply and demand, but also by the actions

of the other agents. The small number of agents and their ability to adapt and to

manipulate the market makes the game highly dynamic and uncertain. Each agent is

self-interested and tries to maximize its profit, while competing with the other agents

for raw materials (parts) and customer orders.

The simulation takes place over 220 virtual days, each lasting fifteen seconds of real

time. Each agent starts with no inventory and an empty bank account, and must

borrow money (and pay interest) to build up an initial parts inventory before it can

19



begin assembling and selling computers. Agents pay for the parts they buy, pay

interest on the money they borrow, and pay storage costs for their inventory. If they

ship computers late, they pay late penalty. Agents earn money by selling computers.

Any inventory left at the end of the game has no residual value. The agent with the

largest bank balance at the end of the game wins.

A Component Catalog, see Table 3.1, and Bill of Materials, see Table 3.2, are sent

to each agent at the beginning of the game. The Component Catalog lists each part,

along with its base price and the list of suppliers who can produce it. Each part is

produced by one or two suppliers; each supplier provides two different types of parts.

The Bill of Materials lists 16 different combinations of parts that can be assembled

into personal computers (PC). Each of these computer types is identified uniquely by

a stock keeping unit number. Each computer type is assigned a number of processing

cycles that specifies how much time it takes to assemble that type of computer from

raw materials. These PCs are the finished goods of the TAC SCM supply chain.

To obtain parts, an agent must send a request for quotes (RFQ) to an appropriate

supplier. Each RFQ specifies a part type, a quantity, and a due date. The next day,

the agent receives a response to each of its requests.

Suppliers respond by evaluating each RFQ to determine how many parts they can

deliver on the requested due date and how long it would take to produce all the

parts requested, considering the outstanding orders they have committed to and the

RFQs they have already responded to in this turn. If the supplier can produce the

desired quantity on time, it responds with an offer that contains the price of the parts

supplied. If not, the supplier responds with two offers: (1) an earliest complete offer

with a revised due date and a price, and (2) a partial offer with a revised quantity

and a price. The agent can accept either of these alternative offers, or reject both.

Suppliers may deliver late, due to randomness in their production capacities. If a sup-

plier has excess capacity, the price offered for its parts will be discounted; discounted

prices may be as low as 50% of the base price.

Once an agent has parts to assemble computers, it must schedule the assembly tasks in

its production facility. Each computer model requires a specified number of assembly

cycles, and the assembly capacity of each agent is limited. Assembled computers are

added to the agent’s finished-goods inventory, and may be shipped to customers to
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satisfy outstanding orders.

Every day each agent receives a set of RFQs from potential customers. Each customer

RFQ specifies the type of computers requested, along with quantity, due date, reserve

price, and late penalty. Each agent may choose to bid on some or all of the day’s

RFQs. Customers accept the lowest bid that is at or below their reserve price, and

notify the winning agent the following day.

The agent must ship customer orders on time, or pay a penalty for each day an order

is late. If a product is not shipped within five days of the due date the order is

canceled, the agent receives no payment, and no further penalties accrue.

Table 3.1 shows the part catalog for a typical game, with information about each

part, its base price, and the suppliers that produce it.

Part Base price Supplier Description

100 1000 Pintel Pintel CPU, 2.0 GHz
101 1500 Pintel Pintel CPU, 5.0 GHz
110 1000 IMD IMD CPU, 2.0 GHz
111 1500 IMD IMD CPU, 5.0 GHz
200 250 Basus, Macrostar Pintel motherboard
210 250 Basus, Macrostar IMD motherboard
300 100 MEC, Queenmax Memory, 1 GB
301 200 MEC, Queenmax Memory, 2 GB
400 300 Watergate, Mintor Hard disk, 300 GB
401 400 Watergate, Mintor Hard disk, 500 GB

Table 3.1: Part Catalog

There is a total of 10 different parts, which can be combined to build 16 different PC

configurations, as described in the Bill of Materials given in Table 3.2.

Computer types are classified into three market segments: High range, Mid range,

and Low range. For each of these market segments, at the start of each day, d, cus-

tomers exhibit their demand by issuing N customer RFQs, according to the following

distribution (described in [Collins et al., 2005]):

N = poisson(Qd) (3.1)

where Qd is the “target average” number of customer RFQs for day d issued in each
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SKU Parts Cycles Market segment

1 100, 200, 300, 400 4 Low range
2 100, 200, 300, 401 5 Low range
3 100, 200, 301, 400 5 Mid range
4 100, 200, 301, 401 6 Mid range
5 101, 200, 300, 400 5 Mid range
6 101, 200, 300, 401 6 High range
7 101, 200, 301, 400 6 High range
8 101, 200, 301, 401 7 High range
9 110, 210, 300, 400 4 Low range
10 110, 210, 300, 401 5 Low range
11 110, 210, 301, 400 5 Low range
12 110, 210, 301, 401 6 Mid range
13 111, 210, 300, 400 5 Mid range
14 111, 210, 300, 401 6 Mid range
15 111, 210, 301, 400 6 High range
16 111, 210, 301, 401 7 High range

Table 3.2: Bill of Materials. Each row shows the components needed to build each
computer type and the corresponding market segment.

market segment. Qd is varied using a trend τ that is updated by a random walk:

Qd+1 = min(Qmax ,max(Qmin , τdQd)) (3.2)

τd+1 = max(τmin ,min(τmax , τd + random(−0.01, 0.01)) (3.3)

Q0, the start value of Q, is chosen uniformly in the interval [Qmin , Qmax ] (see Ta-

ble 3.3), and τ0, the start value of the τ , is 1.0. The trend τ is reset to 1.0 when

the random walk exceeds the minimum or maximum boundaries. In other words, if

τdQd < Qmin or τdQd > Qmax then taud+1 = 1.0 . This reduces the bimodal tendency

of the random walk.

3.1.1 Game Parameters

Table 3.3 gives the parameter settings for the standard TAC SCM competition games.

Values for most of these parameters are sent to the agents at the start of every game.

Table 3.4 and Table 3.5 specify the visibility of the game parameters during the games.
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Parameter Standard Game Setting
Length of game 220 days
Agent assembly cell capacity 2000 assembly cycles / day
Nominal capacity of supplier assembly lines
Cnom

500 parts / day

Start capacity of the suppliers assembly lines Cnom ± 35%
Supplier price discount factor δ 0.5
Down payment due on placement of supplier
order

10%

Acceptable purchase ratio for single-source
suppliers

0.9

Acceptable purchase ratio for two-source sup-
pliers

0.45

Initial reputation endownment 2000
Reputation recovery rate 100 units/day
Computer types in the low range market 1, 2, 9, 10 and 11.
Computer types in the mid range market 3, 4, 5, 12, 13 and 14.
Computer types in the high range market 6, 7, 8, 15, and 16.
Average number of customer RFQs
[Qmin , Qmax ] in the High and Low range
markets

25 – 100 per day

Average number of customer RFQs
[Qmin , Qmax ] in the Mid range market

30 – 120 per day

Interval between Market Reports 20 days
RFQ volume trend for customers [τmin , τmax ]
(all market segments)

[0.95, 1/0.95]

Range of quantities for individual customer
RFQs [qmin , qmax ]

[1, 20]

Range of lead time (due date) for customer
RFQs [duemin , duemax ]

3 to 12 days from the day the
RFQ is received

Range of penalties for customer RFQs
[Ψmin ,Ψmax ]

5% to 15% of the customer re-
serve price per day

Customer Reserve Price 75 – 125% of nominal price of
the PC parts

Annual bank debt interest rate [αmin , αmax ] 6.0 – 12.0%
Annual bank deposit interest rate [α′

min , α′
max ] 0.5α

Annual storage cost rate [Smin , Smax ] 25% – 50% of nominal price
Short-term horizon for supplier commitments
Tshort

20 days

Down payment due on supplier order 10%
Daily reduction in supplier available capacity
for long-term commitments z

0.25%

Table 3.3: Parameters used in the TAC SCM game.23



The parameter average unit sales price, which is listed in Table 3.5, is computed every

20 days for the previous 20 days in the following manner:

AvergeUnitSalesPrice =

∑
i∈I

OrderQuantity(i) ×OrderUnitPrice(i)

∑
i∈I

OrderQuantity(i)
(3.4)

Parameter Visibility
Parts inventory for each agent. None
Total quantity per part produced by the sup-
pliers since the last market report.

Every 20 days in market report

Total quantity per part delivered by the sup-
pliers since the last market report.

Every 20 days in market report

Table 3.4: Parameter visibility in the raw-material market of the TAC SCM game.

Parameter Visibility
Customer RFQs (RFQid, computer type, due
date, penalty, reserve price)

Full

Total number of bids per customer RFQ. None
Total number of computers offered per cus-
tomer RFQ.

None

Unit offer price per customer RFQ per agent. None
Inventory by computer type of each agent. None
Total quantity per computer type ordered by
the customers since the last market report.

Every 20 days in market report

Average unit sales price per computer type or-
dered by the customers since the last market
report (see Equation 3.4).

Every 20 days in market report

Lowest and highest unit order price per com-
puter type.

One day delayed in price re-
port.

Table 3.5: Parameter visibility in the customer market of the TAC SCM game.

3.2 The design of the MinneTAC trading agent

To address the design challenges of the MinneTAC agent, we follow a component-

oriented approach [Szyperski, 1998]. The idea is to provide an infrastructure that

manages data and interactions with the game server, allowing individual researchers

24



to encapsulate agent decision problems within the bounds of individual components

that have minimal dependencies among themselves. Two pieces of software form the

foundation of MinneTAC: the Apache Excalibur component framework [Foundation,

2006], and the “agentware” package distributed by the TAC SCM game organizers.

Excalibur provides the standards and tools to build components and configure working

agents from collections of individual components, and the agentware package handles

interaction with the game server.

The MinneTAC agent is a set of components layered on the Excalibur container,

as shown in Figure 3.2. Four of these components are responsible for the major

decision processes: Sales, Procurement, Production, and Shipping. All data that

must be shared among components is kept in the Repository, which acts as a black-

board [Buschmann et al., 1996]. The Oracle is host to a large number of smaller

components that maintain the market and inventory models, and do analysis and

prediction. The Communications component handles all interaction with the game

server. The components themselves are identified by their roles; in several cases

multiple components have been built to fill those roles. It is an explicit goal of this

architecture to minimize couplings between the components. Ideally, each component

depends only on Excalibur and the Repository.

Repository

Shipping Sales

Procurement Production

Communications Oracle

Avalon Container

Figure 3.2: MinneTAC Architecture. Arrows indicate API dependencies.

The agent opens three configuration files when it starts. The system configuration file

specifies the set of roles that make up the system. The component configuration file

specifies runtime configuration options for each component. For example, the Sales

component may have a parameter that controls the maximum level of overcommit-
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ment of its existing inventory or capacity when it makes customer offers. The log

configuration file controls the names and locations of log files that are produced by

the running agent, the general format of log entries, and for each component, the

level of detail to be logged.

3.2.1 MinneTAC components

The MinneTAC agent consists of seven components. We describe these components

and their responsibilities briefly here. More details on the architecture and imple-

mentation are in [Collins et al., 2007].

Repository is the unifying element of the MinneTAC design, the one component

that is visible to the other components. It serves as an internal database,

maintains the state of the system, and notifies other components of changes in

state. All other activity is driven by these state changes. Ii also provides the

core elements of the Evaluation subsystem.

Communications handles communication with the game server. This includes join-

ing games, acquiring initial game parameters, importing start-of-game and daily

data into the Repository, and retrieving agent decisions from the Repository for

communication back to the game server.

Procurement procures parts. It may build and maintain target inventory levels,

it may attempt to procure parts to meet customer orders, or it may use some

other decision process. It must issue RFQs to suppliers and decide whether to

accept offers that are returned.

Production schedules the manufacturing facility. It may build and maintain target

finished goods inventory levels, or it may build only to meet existing customer

orders.

Sales makes offers in response to customer RFQs. It must decide, for each RFQ,

whether to bid and what price to quote, based on available and predicted inven-

tories and current market conditions. A sophisticated Sales component might

attempt to predict the probability of order acceptance in order to maximize

profits.
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Shipping ships product to customers. In general, there is a benefit in shipping

product as late as possible, because this gives the agent an opportunity to

minimize penalties for late deliveries. Late deliveries can happen, for example,

if predicted inventories do not materialize due to late supplier shipments.

Oracle maintains market models and predicts future demand and availability. This

is done primarily through a set of Evaluators.

To minimize coupling between the various components we use evaluations that are

accessible through the various data elements in the Repository. The general idea is

that when a component needs to make a decision, it will inspect the available data

and run some utility-maximizing function. The available data consists of any data it

maintains internally, and the data in the repository. Any data reductions or analyses

that are performed on Repository data can be encapsulated in the form of Evaluations,

and made available to other components. These analyses are implemented by the

Oracle component through a configurable set of evaluators.
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Chapter 4

Tactical and Strategic Sales

Decision

We are primarily interested in competitive market environments that are constrained

by resources and/or production capacity. In such an environment, a manager who

wants to maximize the value of available resources should be concerned about both

strategic and tactical decisions.

The basic strategic decision is to allocate the available resources (financial, capacity,

inventory, etc.) over some time horizon in a way that is expected to return the

maximum yield. For example, in a market that has a strong seasonal variation, one

might want to build up an inventory of finished goods during the off season, when

demand is low and prices are weak, in order to prepare for an expected period of

strong demand and high prices.

For the purpose of this work, tactical decisions are concerned with setting prices

to maximize profits, within the parameters set by the strategic decisions. So, for

instance, if the forecast sales volume for the current week is 100,000 units, we would

want to find the highest sales price that would move that volume.

We will show how our technique of modeling the economic regimes in a market can

be used to inform both the strategic and tactical decision processes. In Figure 4.1

we show this process in a schematic way. In our formulation, a regime is essentially

a distribution of prices over sales volume. We characterize the market in terms of
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Regime Identification Regime Prediction

Tactical

Decision Process Decision Process

Strategic

Figure 4.1: Process chart – Regime identification is a tool for tactical decision making
and regime prediction is a tool for strategic decision making.

regimes. For tactical decisions, we approximate the probability of selling a product

at a given asking price. This combined with demand information leads directly to

(nearly) optimal pricing decisions.

To make strategic decisions, we need to forecast regime shifts in the market. If our

forecast shows an upcoming period of low demand and weak prices, we may want to

sell more aggressively in the short term, and we may want to limit procurement and

production to prevent driving an oversupply into the market. On the other hand, if

our forecast shows an upcoming period of high demand and strong prices, we may

want to increase procurement and production, and raise short-term prices, in order

to be well-positioned for the future.

We wish to maximize the profit the agent can expect to earn over some reasonable

period in the future. Our approach is to treat procurement, production, and sales

as separate components each with its own decision process, and to keep interactions

among the components to a minimum. This is common in industries where procure-

ment, and often production as well, are driven by relatively long-term forecasts, while

sales is expected to move the products it has available to sell (and expects to have in

the future) at the best possible price.

In the MinneTAC agent, sales interact with procurement primarily through current

and expected inventories. Both sales and procurement have access to projections

of future customer demand (see [Kiekintveld et al., 2004]) and to customer pricing

models. Production is primarily to order, except that small inventories of finished

goods are maintained to support short lead-time demand.
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Sales decisions must allocate the agent’s resources over two dimensions, product mix

and time, in a way that maximizes value. In the TAC SCM environment, the small

number of competitors means that individual agents have capacity to supply a signifi-

cant fraction of the total market, and therefore the power to depress prices by offering

too much product. Production is primarily driven by sales, which also determine what

is produced. Because procurement is at least partly driven by projected inventories

and by predicted customer demand, sales activity also influences procurement. But

procurement typically operates over a longer time horizon, and sales must be focused

on getting the highest possible prices for the products it has available. If inventory

is sold out during a period when prices are low, then there may be nothing available

to sell when prices recover.

4.1 Strategic decision – resource allocation1

Sales decisions can be informed both by experience in the past and by current ob-

servations. We first focus on the information that is visible to the agent during the

game. In TAC SCM, game data include the following:

• C is the set of all available component types.

• G is the set of all goods (product types) that can be built and sold. Each good

is made up of a set Cg of components. This means that in turn, each component

c is a part of some set of products Gc.

• On each day d, customer demand is represented by a set Rd of customer RFQs

received by the agent. Each RFQ r ∈ Rd specifies a product type gr, a lead

time of ir days, a quantity qr, and a reserve price ρr. Reserve price is uniformly

distributed between ρmin and ρmax. Details and semantics are given in [Collins

et al., 2005].

• Customer demand is projected into the future over some planning horizon h.

In the TAC SCM scenario, we model customer demand following the method

given in [Kiekintveld et al., 2004]. For each market segment m, and for each

future day over some planning horizon h, this produces expected values for

mean demand Qm
d,i, i = 0 . . . h, and for demand trend τm

d,i.

1We are indebted to John Collins for the development of the material in this Section.
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• At the beginning of each day d, the agent has an inventory of raw materials

consisting of Id,c for each component type c ∈ C, and an inventory of finished

goods consisting of Id,g for each type of good g ∈ G.

• On each day d, there is a set of outstanding customer orders Ocust
d that have

not yet been shipped or canceled, and a set of outstanding supplier orders Osupp
d

that have not yet been received.

From this data, we would like to find a way to set prices and respond to customers’

RFQ to maximize the agent’s overall profits. On any given day d, the total demand

Dd,g for a given good g among Rcust
d is the total of the of the requested quantities

among requests for good g, given by

Dd,g =
∑

r∈Rcust
d,g

qr (4.1)

We assume that the price priced,g = f(Dd,g, Ad,g) sustainable by the market for a given

product p on a particular day d is a function of the demand Dd,g and the quantity of

product the agent wishes to sell represented by the allocation or sales quota Ad,g for

good g on day d.

The profit per unit for product p to be sold on day d at price priced,g is given by

Φd,g = discount(d)(priced,g − cost(Cg)) (4.2)

We include the discount term as a rough approximation of inventory holding cost. It

can also be used to encourage early selling, as a hedge against the uncertainty of the

game.

For any given day d, there is an unsold inventory I ′
g of good g, and an expected

uncommitted inventory I ′
d,c of parts of type c. This includes parts in current inventory,

and parts that are expected to be delivered by day d, and excludes parts that are

committed to producing goods for outstanding customer orders.

The effective demand function Deff
d,g = f(Dd,g, priced,g) for our goods will be some

function of the prices priced,g we wish to charge. In the TAC SCM environment,

there is a linear distribution of reserve prices among customer RFQs. The effective

demand, then, is the portion of total demand with reserve prices ρ ≥ priced,g at or
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above the price we want to sell at:

Deff
d,g =

ρmax
g − priced,g

ρmax
g − ρmin

g

Dd,g (4.3)

where ρmax
g is the maximum reserve price for good g. This assumes that actual demand

is uniformly distributed across the range of reserve prices, which is only approximately

correct.

The total profit Φ over a planning horizon of h days for the set of goods G is then

Φ =
h∑

d=0

∑

g∈G

Φd,gAd,g (4.4)

This is what we wish to maximize, by computing values for Ad,g, subject to the

following constraints:

1. We can’t sell more of any product than the effective demand at the price we

wish to charge:

∀d,∀g,Ad,g < Deff
d,g (4.5)

2. For any given period of time from now until the planning horizon h, we can sell

goods that we have in inventory, and goods for which we have the necessary

parts in inventory. Note that this is unnecessarily conservative, since we are

asking for goods or their parts to be available at the time we propose to sell

them, not when we expect to ship them. This means that we cannot easily

discriminate on lead time.

∀m ∈ 1..h,∀c ∈ C,
m∑

d=1

∑

g∈Gc

Ad,g ≤ I ′
m,c +

∑

g∈Gc

I ′
g (4.6)

Note that this constraint limits commitments of the sets of goods that share a

given component. If we don’t carry any uncommitted finished goods inventory,

in other words if ∀g ∈ Gc, I
′
g = 0, then this is a sufficient expression of inventory

constraint. Otherwise, imbalances in the finished-goods inventories of individual

goods sharing a component could lead to overcommitment. This is easy to see if

for some component c, I ′
m,c = 0. Then the sum of individual product inventories

constrain the whole set of products. In this case, it is also necessary to constrain
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every subset of product types that can share some component. This requires

that we replace Equation 4.6 with

∀m ∈ 1..h,∀c ∈ C,∀G ′c ⊆ Gc,
m∑

d=1

∑

g∈Gc

Ad,g ≤ I ′
m,c +

∑

g∈G′
c

I ′
g (4.7)

3. The agent’s factory has limited daily capacity F . If each unit of good g requires

yg production cycles, then

∀m ∈ 1..h,
∑

g∈G

yg

(
m∑

d=1

Ad,g − I ′
g

)
≤ mF − F commit

m (4.8)

where F commit
m is the factory capacity that is committed to manufacture all

outstanding customer orders that are due on or before day m and are not

satisfiable by existing finished goods inventory.

The outcome of our objective function (Eq. 4.4) is daily sales quotas Ad,g for each

good. The next step is to set prices so that we sell what we intend to sell, in a

competitive market. Assume we have a formula for probability of a customer placing

an order as a function of price P (order |price), produced by some learning process

(see Sect. 5.6). But the quantity we sell is just the effective demand multiplied by

the probability of order at the price we set. So to make our sales quota, we need

Ad,g = P (order |priced,g)D
eff
d,g (4.9)

In the TAC SCM environment, with its linear distribution of reserve prices, this gives

Ad,g = P (order |priced,g)
ρmax

g − priced,g

ρmax
g − ρmin

g

Dd,g (4.10)

which is quadratic in priced,g, assuming that P (order |priced,g) is linear. Combining

Equation 4.4 with Equations 4.2 and 4.10, we have

Φ =
n∑

d=1

∑

g∈G

discount(d)
(
priced,g − cost(Cg)

)
P (order |priced,g)

ρmax
g − priced,g

ρmax
g − ρmin

g

Dd,g

(4.11)

which is at least cubic in priced,g.
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Because the formula for sales quota allocations above is probably unsolvable given the

time constraints of the TAC SCM game environment, there is a need for heuristics

and simplifications. An obvious simplification is to assume that the partial derivative

of the order probability function with respect to price is very steep. This is equivalent

to saying that (most) sales occur at a “market clearing price,” or alternatively that

the probability of order is much more sensitive to price than is profit. Then the

per-unit profit and the effective demand can be computed separately, by substituting

an estimated clearing price priceest
d,g for the actual sales price into Eq. 4.2. We will

explore a way to compute priceest
d,g in the next section.

4.2 Tactical decision – sales offer pricing

Once the strategic sales process has determined daily sales quotas, the next step is to

set prices for our goods that will yield the maximum profit. This amounts to finding,

for each good, the value for priced,g that satisfies the relation

Ad,g

Deff
d,g

= P (order |priced,g) (4.12)

which is a simple rearrangement of Eq. 4.9.

This could be solved analytically or numerically, assuming we have reasonable func-

tions for Deff
d,g and P (order |priced,g). In general, however, one or both of these func-

tions are likely to be empirically-derived. Under the previous assumption of most sales

occurring close to a market clearing price, we can approximate Deff
d,g using priceest

d,g,

reducing the computation to finding the value of priced,g that satisfies

Ad,g

Deff
d,g(price

est
d,g)

= P (order |priced,g) (4.13)

When prices are set in this way, the resulting customer orders provide an additional

signal from the market that can be used to refine our estimate of priceest
d,g. If Od,g is

the number of orders placed for good g on day d (as a result of offers made on day

d− 1), then a refined estimate of the actual market prices on that day priceact
d−1,g can

be found by finding an adjusted probability distribution P adj (order |priced−1,g) such

34



that
Od,g

Deff
d−1,g(priced−1,g)

= P adj (order |priced−1,g) (4.14)

and computing an estimated actual price priceact
d−1,g such that

Ad−1,g

Deff
d−1,g(priced−1,g)

= P adj (order |priceact
d−1,g) (4.15)

See Fig. 4.2 for a graphical visualization of this relationship. For simplicity, we

illustrate an approximate adjustment made by shifting the location of the probability

curve along the price axis without changing its shape.

P (order |price)

pricepriceact

P

O/Deff

price

P adj

A/Deff

Figure 4.2: Estimating actual market price, given order volume O and an estimate of
the order probability function P .

The resulting estimate priceact
d−1,g is subject to the randomness of the market, and

therefore we use an exponentially smoothed offset to produce a refined value of priceest
d,g

each day, as

priceest
d,g = pricepred

d,g + δd,g (4.16)

where pricepred
d,g is the predicted market price for product g (see Sect. 5.5), and δd,g is

updated daily as

δd,g = αδd−1,g + (1− α)(priceact
d−1,g − priced−1,g) (4.17)

for some appropriate value of α.
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Chapter 5

Economic Regimes

Market conditions change over time, and this should affect the strategy used by

an agent in procurement, production planning, resource allocation, and pricing of

goods. For example, in order to make the strategic allocation decision described in

Section 4.1, the agent needs predictions of the future values of P (order |price).

Economic theory [Kearl, 1989] suggests that economic environments exhibit three

dominant market patterns: scarcity, balanced, and oversupply. We define a scarcity

condition if there is more customer demand than product supply in the market, a

balanced condition if demand is approximately equal to supply, and an oversupply

condition if there is less customer demand than product supply in the market. When

there is scarcity, prices are higher, so the agent should price more aggressively. In

balanced situations, prices are lower and have more spread, so the agent has a range

of options for maximizing expected profit. In oversupply situations prices are lower.

The agent should primarily control costs, and therefore either do pricing based on

costs, or wait for better market conditions.

5.1 Interpretation of order probability

Since the prediction of the probability of receiving a customer order for a given price,

P (order |price), is an integral part of any sales agent we need to consider which

parameters are available during the game, and decide how to use them. From a sales

perspective it would be ideal to know all the offer and order prices and their associate

quantities, but as described in Chapter 3, this is not the case in TAC SCM. We
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have only limited price visibility, and do not know the associated quantities at all.

Everyday the agent receives a price report with the minimum and maximum product

order prices from the previous day. Since the agent has only access to the accepted

offer prices we need to produce a formulation of the probability of order that only

includes those, and not the rejected offers.

We define RFQ j
i as the number of RFQs per computer type i over a particular time

period j . What is not observable during the TAC SCM game is the level of supply

Offers j
i , i.e., the number of all the offers made per computer type i during period j .

Typically Offers j
i > RFQ j

i . In each time period j the following condition between

RFQ j
i and Offers j

i holds

Offers j
i = E

(
βj

i

)
× RFQ j

i (5.1)

E
(
βj

i

)
represents the expected mean number of bids per computer type i over the

time period j. If we assume that all six agents always bids on every RFQ then β = 6;

on the other hand, if all the agents are equally likely to bid or not to bid then β = 3.

However, if we assume that bidding is stable, i.e., the expectation on the number

of bids can be computed in an unbiased manner, then for every price the number

of accepted bids affects the probabilities at higher prices in a similar manner. This

implies that probabilities are scaled up in a similar fashion. Consider the relationship

between the actual order probability P (Sj
i |price) which includes rejected bids and the

cumulative demand order probability P (Dj
i |price) which does not consider rejected

bids. We can calculate P (Dj
i |price) as we will show in Equation 5.33. However the

question remains on what is the relationship between P (Dj
i |price) and P (Sj

i |price)

and how to use P (Dj
i |price) for making optimal pricing decisions.

Let’s consider the relationship between the two measures first. Let Aj
i (price) be the

number of accepted offers for computer type i in time period j at or below price, and

Xj
i the total number of accepted offers for computer type i in the same time period

j. Then we get

P (Dj
i |price) =

Aj
i (price)

Xj
i

(5.2)

By definition the total number of bids for computer type i in time period j equals
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βj
i ×Xj

i . Therefore

P (Sj
i |price) =

Aj
i (price)

βj
i ×Xj

i

(5.3)

=
P (Dj

i |price)

β
(5.4)

Equation 5.1 implies that for every sale there were on average β offers made. Therefore

the actual order probability is simply scaled by β as compared to our estimated

cumulative demand order probability P (Dj
i |price), as Equation 5.3 indicates. From

Equation 5.3, we can derive

P (Sj
i |price1)

P (Sj
i |price2)

=
P (Dj

i |price1)

P (Dj
i |price2)

(5.5)

i.e., the relative order probability at two prices is the same. Therefore, if we want to

calculate the relative likelihood of a sale at two different prices then both measures

can be used to arrive at the same optimal price choice through revenue maximization

and a mathematical programming model. Therefore we can base our order proba-

bility curves only on accepted offers. This of course assumes that the TAC SCM

environment is dynamically stable. Based on observed game data we have evidence

that this assumption holds.

Figure 5.1 shows sample curves for P (order |price), the probability of receiving an

order for a given offer price. The shape of the curve and its position changes over

time. According to economic theory, consistent high prices correspond to a situation

of scarcity, where price elasticity is small, while a less steep slope corresponds to a

balanced market where the range of prices is larger.

We believe that even though the market is constantly changing, there are some under-

lying dominant patterns that characterize the aforementioned market conditions. We

define a specific mode a market can be in as a regime. A way of solving the decision

problem an agent is faced with is to characterize those regimes and to apply specific

decision making methods to each regime. This requires the agent to have methods

for figuring out what is the current regime and for predicting which future regimes

to expect in its planning horizon.
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Figure 5.1: The reverse cumulative density function represents the probability of
order. Typical order probability curves during scarcity (left top), balanced (left mid-
dle) and oversupply (left bottom) regimes and experimental order probability curves
(right).

5.2 Learning from historical sales data

The first phase in our approach is to identify and characterize market regimes by an-

alyzing data from past sales. The assumption we make is that enough historical data

are available for the analysis and that historical data are sufficiently representative

of possible market conditions. Information observable in real-time in the market is

then used to identify the current regime and to forecast regime transitions.

Since prices are likely to have different ranges for different goods, we normalize them.

39



We call npg the normalized price for good g and define it as follows:

npg =
priceg

AssemblyCostg +
∑numParts

j=1 NominalPartCostg ,j

(5.6)

where NominalPartCostg ,j is the nominal cost of the j-th part for good g, numParts

is the number of parts needed to make the good g, and AssemblyCostg is the cost of

manufacturing the good g. An advantage of using normalized prices is that we can

easily compare price patterns across different goods. In the following we just use np,

since we normalized goods across one market.

Historical data are used to estimate the price density, p(np), and to characterize

regimes. We estimate the price density function by fitting a Gaussian mixture model

(GMM)( [Titterington et al., 1985]) to historical normalized price, np, data.

We present results using a GMM with fixed means, µi, and fixed variances, σi, since

we want one set of Gaussians to work for all games off-line and online. We use the

Expectation-Maximization (EM) Algorithm ([Dempster et al., 1977]) to determine the

prior probability, P (ζi), of the Gaussians components of the GMM. The means, µi,

are uniformly distributed and the variances, σ2
i , tile the space. Specifically variances

were chosen so that adjacent Gaussians are two standard deviations apart.

The density of the normalized price can be written as:

p(np) =
N∑

i=1

p(np|ζi) P (ζi) (5.7)

where p(np|ζi) is the i-th Gaussian from the GMM, i.e.,

p(np|ζi) = p(np|µi, σi) =
1

σi

√
2π

e
[−(np−µi)

2

2×σ2
i

]
(5.8)

where µi is the mean and σi is the standard deviation of the i-th Gaussian from the

GMM. An example of a GMM is shown in Figure 5.2.2.

5.2.1 Reasons for selecting a Gaussian Mixture Model

We use a GMM since it is able to approximate arbitrary density functions. Another

advantage is that the GMM is a semi-parametric approach which can be computed
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fast and uses less memory than other approaches. The GMM is one way of modeling

a probability density function p(x), given a finite number of data points Xn, n =

1,. . . ,N drawn from that density.

We decided to advocate this model over other possible models for various reasons.

First, there are three alternatives to approach the density estimation problem: para-

metric, non-parametric and semi-parametric. In parametric methods one assumes a

specific functional form for the density model. Its parameters are then optimized by

fitting the model to the data set, e.g. functional form: normal or Gaussian distribu-

tion and parameters: the mean µ and standard deviation σ of that distribution. The

drawback is that the functional form might not be consistent with the data and may

result in unsatisfactory estimation.

In non-parametric estimation methods the form of the density is determined entirely

by the data, i.e. no particular functional form is assumed, e.g., histograms, kernel-

based methods, K-nearest-neighbors and Parzen window [Bishop, 1995, Duda et al.,

2000, Nabney, 2001]. The drawback is that huge data sets are needed for good models

and that parameter tuning is critical for performance of the method.

In semi-parametric estimation methods a general class of functional forms is allowed

and the number of adaptive parameters can be adapted in a systematic way allowing

even more flexible models, e.g. more hidden units, multi-layer perceptrons, radial

basis functions and Gaussian mixture models. The advantage of this method is that

it combines the best characteristics of parametric and non-parametric methods. This

is especially important in electronic marketplaces where the demand might be low for

a long period, but then rapidly change to high. The complexity of the model only

increases with the total number of parameters in the model, and not simply with the

size of the data set.

The demand characteristics in electronic marketplaces have been found to be fractal,

that is the short-term demand pattern has much larger variation and mean than

the long-term time-averaged demand pattern [Gupta et al., 1997]. This means that

while there are periods of no or little demand there will be periods when demand

will be extremely high. The pricing strategy of an agent needs to take this into

account. Traditionally parameterized econometric models perform extremely poor

in these situations. On the contrary, non-parametric approaches do an excellent job

in estimation, but these methods are usually computationally too expensive. In the
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TAC SCM domain we need to make decisions fast and do not have time to make time

consuming calculations. Therefore, we decided to adopt a semi-parametric approach,

and in particular the GMM.

5.2.2 Determination of optimal number of Gaussians for a GMM

We developed an algorithm (see Appendix C) to find the optimal number of Gaussians

in a GMM and applied it to the training data. The algorithm iterates over 1 to N

Gaussian components and for each set of Gaussians it fits a GMM to all collected

historical normalized prices, np, of the training set. New normalized price samples are

generated from each fitted GMM model via Monte-Carlo sampling, with the number

of new samples matching the original data size. Price histograms are generated using

the same bins for original and sampled data, and are compared with the help of

the KL-divergence ([Kullback and Leibler, 1951, Kullback, 1959])1. For each set of

Gaussians we iterate the resampling and the KL-divergence steps. Finally we calculate

the mean KL-divergence of all sets of Gaussians. The set with the minimum mean

KL-divergence is the set that most closely reproduces the original distribution.

The results of the optimization algorithm are shown in Figure 5.3, which shows the

mean KL-divergence of 10 fits for 4 to 25 Gaussians and their corresponding standard

deviations (left).

Figure 5.2.2 shows that the price density function, p(np), (right) estimated by the

GMM with 16 components fits well the historical normalized price data (left y-axis

represents good quantity) for a sample market. The optimal number of Gaussians for

this sample market is 24.

While the optimization algorithm suggests a choice of 24, the number of Gaussians’,

should reflect a balance between accuracy and computational overhead. We consider

mean prediction accuracy instead of accuracy of fit. Creating a model with a very

good fit to the observed data does not usually translate well into predictions. If the

model has too many degrees of freedom there is high likelihood of overfitting([Mitchell,

1997], [Russell and Norvig, 2002]). Therefore, we decided to take N = 16 Gaussians

to avoid overfitting the training data and better able to adapt to unseen instances.

1With the KL-divergence we are able to measure the closeness of two distributions. If the two
distributions are completely the same, then the KL-divergence is zero. A deeper discussion about
the KL-divergence can be found in Section 6.

42



0 0.2 0.4 0.6 0.8 1 1.2
0

5

x 10
4

P
ro

du
ct

 Q
ua

nt
ity

Normalized  Price (np)
0 0.2 0.4 0.6 0.8 1 1.2

0

2

p(
np

)

0 0.2 0.4 0.6 0.8 1 1.2
0

2

Product Quantity
p(np)

Figure 5.2: The price density density function, p(np), (right y-axis) estimated by the
GMM with 16 components fits well the historical normalized price data (left y-axis
represents good quantity) for the medium market segment. Data are from 18 games
from semi-finals and finals of TAC SCM 2005.

For N = 16 Gaussians the KL-value is around 0.01, which is close enough to have a

very good fit to the actual data. A similar approach was used by [Zhang and Cheung,

2005] and [Beygelzimer and Rish, 2003] to select an appropriate model that reduces

the computational complexity of graphical models in the medical domain.

5.2.3 Regime definition

Next, coming back to our regime method, we apply Bayes’ rule to determine the

posterior probability:

P (ζi|np) =
p(np|ζi) P (ζi)∑N

i=1 p(np|ζi) P (ζi)
∀i = 1, · · · , N (5.9)
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Figure 5.3: Mean KL-divergence of 10 fits for 4 to 25 Gaussians and their correspond-
ing standard deviations. The KL-divergence values for one to three Gaussians are not
displayed since the values are much larger and would make it impossible to see the
KL-divergence values of the other Gaussians. The mean KL-divergence value for one
Gaussian equals 2.64, for two Gaussians equals 0.58, and for three Gaussians equals
0.44. Data are from 18 games from semi-finals and finals of TAC SCM 2005.

We then define the posterior probabilities of all Gaussians’ given a normalized price,

np, as the following N-dimensional vector:

~η(np) = [P (ζ1|np), P (ζ2|np), . . . , P (ζN |np)]. (5.10)

For each normalized price npj we compute the vector of the posterior normalized price

probabilities, ~η(npj), which is ~η evaluated at each observed normalized price npj.

The intuitive idea of a regime as a recurrent economic condition is captured by dis-

covering price distributions that recur across days. We define regimes by clustering

price distributions across days. This is done with the k-means algorithm, using a

similarity measure on the probability vectors ~η(npj) and normalized prices np. The

clusters found by this method correspond to frequently occurring price distributions

with support on contiguous range of np. We have found that sometimes data points
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corresponding to specific regimes are close in probability space, but not in price space.

Specifically it can happen that one regime dominates the extreme low and the extreme

high price range, with different regimes in between. This regime is more difficult to

interpret in terms of market concepts like oversupply or scarcity. To circumvent this

problem we perform clustering in an augmented space formed by appending a rescaled

version of np to the probability vector. Specifically, the mean of np is subtracted and

np is scaled so that its standard deviation matches the largest standard deviation of

the probability vectors.

The center of each cluster (ignoring the last component which contains the rescaled

price information) is a probability vector that corresponds to regime r = Rk for

k = 1, · · · ,M , where M is the number of regimes. We selected a priori the number

of regimes, after examining the data and looking at economic analyses of market

situations. In our experiments we found out that the number of regimes chosen does

not significantly affect the results on price trend predictions. We tried computing

the GMM and k-means clustering with different initial conditions, but consistently

converged to the same results.

Collecting these vectors into a matrix yields the conditional probability matrix P(c|r).
The matrix has N rows, one for each component of the GMM, and M columns, one

for each regime.
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Figure 5.4: Learned regime probabilities, P (Rk|np), over normalized price np, for a
sample market after training.
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In Figure 5.4 we distinguish five regimes, which we can call extreme oversupply (R1

or EO), oversupply (R2 or O), balanced (R3 or B), scarcity (R4 or S), and extreme

scarcity (R5 or ES). We decided to use five regimes instead of the three basic regimes

which are suggested by economic theory because in this way we are able to isolate

outlier regimes, such as extreme oversupply and extreme scarcity. Regimes R1 and R2

represent a situation where there is a glut in the market, i.e. an oversupply situation,

which depresses prices. Regimes R3 represents a balanced market situation, where

most of the demand is satisfied. In regime R3 the agent has a range of options of price

vs sales volume. Regimes R4 and R5 represent a situation where there is scarcity of

goods in the market, which increases prices. In this case the agent should price as

close as possible to the estimated maximum price a customer is willing to pay.

We marginalize the density of the normalized price, np, given the i-th Gaussian of

the GMM, p(np|ζi), and the conditional probability clustering matrix, P (ζi|Rk), over

all Gaussians ζi. We obtain the density of the normalized price np dependent on the

regime Rk:

p(np|Rk) =
N∑

i=1

p(np|ζi) P (ζi|Rk). (5.11)

The probability of regime Rk dependent on the normalized price np can be computed

using Bayes rule as:

P (Rk|np) =
p(np|Rk) P (Rk)∑M

k=1 p(np|Rk) P (Rk)
∀k = 1, · · · ,M. (5.12)

where M is the number of regimes. The prior probabilities, P (Rk), of the different

regimes are determined by a counting process over past data. Figure 5.4 depicts

the regime probabilities for a sample market in TAC SCM. Each regime is clearly

dominant over a range of normalized prices.

The intuition behind regimes is that prices communicate information about future

expectations of the market. However, absolute prices do not mean much because the

same price point can be achieved in a static mode (i.e., when prices don’t change),

when prices are increasing, or when prices are decreasing. In the construction of

a regime the variation in prices (the nature, variance, and the neighborhood) are

considered thereby providing a better assessment of market conditions.
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5.3 Real time regime identification

Every day the agent receives a report which includes the minimum and maximum

prices of the computers sold the day before, but not the quantities sold. The mid-

range price, np, i.e. the price midway between the minimum and maximum, can be

used to approximate the mean price. However, this is not always an accurate estimate

of the mean price, because of local fluctuations in minimum and maximum prices.

and because the distribution of prices is not known, only the minimum and maximum

price.
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Figure 5.5: Minimum, maximum, mean, mid-range, and smoothed mid-range daily
normalized prices of computers sold, as reported during the game every day for the
medium market segment in the 3721@tac3, one of the final games. The mean price is
computed after the game using the game data, which include complete information
on all the transactions.

An example which shows how the mid-range value differs from the mean value is in

Figure 5.5. The mean value was computed after the game, when the entire game

data are available. In this example, especially on day 110, 120, 140 and at the end,

we observe a high spike in the maximum price. This was caused by an opportunistic

agent who discovered a small amount of unsatisfied demand, but most of that day’s

orders were sold at a much lower price. To lower the impact of sudden price changes

we implemented a Brown linear (i.e. double) exponential smoother ([Brown et al.,
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1961]) with α = 0.5. The general form of this smoother is:

ñp′
d−1 = α · npd−1 + (1− α) · ñp′

d−2 (5.13)

ñp′′
d−1 = α · ñp′

d−1 + (1− α) · ñp′′
d−2 (5.14)

where ñp′ denotes the singly-smoothed mid-range normalized price series obtained by

applying simple exponential smoothing to mid-range normalized price np, and ñp′′

denotes the doubly-smoothed normalized price series obtained by applying simple

exponential smoothing (using the same α) to ñp′. We model yesterday’s smoothed

price estimate ñpd−1 is given by:

ñpd−1 = 2 · ñp′
d−1 − ñp′′

d−1 (5.15)

Finally, since we only have the minimum and maximum prices from the previous day

and not the mean, we model ñpd−1 as follows:

ñpd−1 =
ñpmin

d−1 + ñpmax
d−1

2
(5.16)

where ñpmin
d−1 is the exponentially smoothed minimum normalized price and ñpmax

d−1 is

the exponentially smoothed maximum normalized price from the previous day. This

results in a better approximation of the real mean price than smoothing only the mid-

range price from the previous day. Figure 5.5 shows that the smoothed mid-range

price, ñp, is closer to the mean price.

During the game, on day d the agent estimates the current regime by calculating

the smoothed mid-range normalized price ñpd−1 for the previous day (recall that the

agent every day receives the prices for the previous day) and by selecting the regime

which has the highest probability, i.e.

R̂max1 s.t.max1 = argmax
1≤k≤M

~P (R̂k|ñpd−1). (5.17)

Figure 5.6 shows how to use the smoothed mid-range price to identify the corre-

sponding regime probabilities online over the course of a game. The graph shows

that different regimes are dominant at different points in the game, and that there

are brief intervals during which two regimes are almost equally likely. An agent could
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use this information to decide which strategy, or mixture of strategies, to follow.
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Figure 5.6: Regime probabilities computed online every day for the medium market
segment in game 3721@tac3.

The smoothed mid-range price can be used to identify the corresponding regime in

real time, as shown in Figure 5.7 (right). The data are from game 3721@tac3, which

was not in the training set of games used to develop the regime definitions. The top

left, middle left, and bottom left parts of Figure 5.7 show respectively the probability

of receiving an order in an extreme scarcity, balanced and in an extreme over-supply

situation for different prices. Scarcity typically occurs early in the game and at other

times when supply is low. These probabilities are computed from past game data for

each regime.

A measure of the confidence in the regime identification is the entropy of the set S

of probabilities of the regimes given the normalized mid-range price from the daily

price reports ñpday, where

S = {P (R1|ñpd), · · · , P (RM |ñpd)} (5.18)

and

Entropy(S) ≡
M∑

k=1

−P (Rk|ñpd) log2 P (Rk|ñpd) (5.19)

An entropy value close to zero corresponds to a high confidence in the current regime
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Figure 5.7: Game 3721@tac3 (Final TAC SCM 2005) – Regimes over time for the
medium market computed online every day (right), probability of receiving an order
by normalized price for an extreme scarcity situation (R5 indicated by ES) (top
left), for a balanced situation (R3 indicated by B) (middle left) and for an extreme
oversupply situation (R1 indicated by EO) (bottom left).

and an entropy value close to its maximum, i.e. for M regimes log2 M , indicates that

the current market situation is a mixture of M almost equally likely regimes. An

example for the medium market segment in game 3721@tac3 is shown in Figure 5.8.

In Section 6.1.2 we develop an alternative measure for regime confidence, and a more

precise measure for regime uncertainty.
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Figure 5.8: Daily entropy values of the five regimes for the medium market segment
in game 3721@tac3. Notice how the entropy values match the regime probabilities
shown in Figure 5.6.

Figure 5.9 (left) shows the percentage of the factory utilization (FU), the ratio of

offer to demand, which represents the portion of the market demand that is satisfied,

and the normalized price (np) over time. On the right side we display the quantity of

the unsold finished goods inventory (FG) instead of factory utilization2. The regimes

identified by our approach are superimposed, where ES (or R5) represents extreme

scarcity, S (or R4) scarcity, B (or R3) balanced, O (or R2) oversupply, and EO (or

R1) extreme oversupply. These factors clearly correlate with market regimes, but

they are not directly visible to the agent during the game. For example, the figure

shows that when the offer to demand ratio is high (i.e. oversupply) prices are low

and vice versa. We can observe that the ratio of offer to demand changes significantly

during the game. For instance, on day 111 the ratio of offer to demand is 1.95 and

prices are high. On day 208 the ratio of offer to demand is much higher, 5.38, and

prices are lower. We can also observe that prices tend to lag changes in ratio of offer

to demand.

We have reported results on correlation between regimes and market parameters

in [Ketter et al., 2005].

2The quantity of the finished goods inventory is affected by other factors, such as storage cost,
which have changed in the TAC SCM 2005 games. In 2005 and 2006 games agents tend to build to
order and keep most of their inventory in the form of parts, not finished products.
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Figure 5.9: Game 3721@tac3 (Final TAC SCM 2005) – Relationships between regimes
and normalized prices in the medium market. On the left axis, we show in the left
figure the daily factory utilization and in the right figure the available finished goods
inventory for all agents. In both figures we also display on the left axis the ratio
of offer to demand (which ranges from 0 to 5.38), which is scaled to fit between
the minimum and maximum values of the left axis. On the right axis we show the
normalized prices. The dominant regimes are labeled along the bottom.

5.4 Regime prediction

Since the behavior of the agent should depend not just on the current regime but

also on expected future regimes, the agent needs to predict future regimes. In this

Section we describe three different methods to generate regime predictions. The first

a Markov prediction process, the second is a Markov correction-prediction process,

and the last is based on exponential smoothing. Each of these methods has other

characteristics and should be used for different purposes. The exponential smoother

regime prediction process is an ideal candidate to estimate the current regime dis-

tribution, since it is more reactive to the current market condition than any other

method. The Markov prediction process is a good choice for short-term and mid-term

predictions, and the Markov correction-prediction process is suited more for long-term

predictions.

5.4.1 Markov prediction

We model the prediction of short-term future regimes for tactical decision making as

a Markov prediction process [Isaacson and Madsen, 1976]. The prediction is based

on the last price measurement.
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We construct a Markov transition matrix, T(rd+n|rd), off-line by a counting process

over past games. This matrix represents the posterior probability of transitioning on

day d+n to regime rd+n given the current regime on day d, rd. We distinguish between

two types of Markov prediction: (1) interval and (2) repeated 1-day prediction. The

interval prediction is based on training a separate Markov transition matrix for each

day in the planning horizon h, i.e. Tn(rd+n|rd), where ∀n = 1, · · · , h. The same type

of prediction can be done by repeating a single day prediction matrix, Th
1(rd+1|rd),

rather than training an interval prediction matrix.

The prediction of the posterior distribution of regimes n days into the future,
~P (r̂d+n|{ñpd−1}), is done recursively as follows:

1. Interval prediction:

~P (r̂d+h|{ñpd−1}) =
∑

rd+h

. . .
∑

rd−1

{
~P (r̂d−1|{ñpd−1}) ·Tn(rd+n|rd+n−1)

}
(5.20)

2. Repeated 1-day prediction:

~P (r̂d+h|{ñpd−1) =
∑

rd+h

. . .
∑

rd−1

{
~P (r̂d−1|{ñpd−1) ·Th+1

1 (rd|rd−1)
}
, (5.21)

where

Th+1
1 (rd|rd−1) =

h∏

n=0

T1(rd|rd−1) (5.22)

5.4.2 Markov correction-prediction

We model the prediction of long-term future regimes for strategic decision making as

a Markov correction-prediction process, where the prediction part is similar to the

Markov prediction described above but taking the entire price history into account.

The method is based on two distinct operations:

1. a correction (recursive Bayesian update) of the posterior probabilities for the

regimes based on the history of measurements of the smoothed mid-range nor-

malized price ñp obtained since the time of the first measurement until the

previous day, d − 1. We use ~P (r̂d−1|{ñp1, . . . , ñpd−1}), to indicate a vector of

the posterior probabilities of all the regimes on day d− 1.

53



2. a prediction of regime posterior probabilities for the current day, d. The

prediction of the posterior distribution of regimes n days into the future,
~P (r̂d+n|{ñp1, . . . , ñpd−1}), is done recursively as follows:

(a) Interval prediction:

~P (rd+h|{ñp1, . . . , ñpd−1})

=
∑

rd+h

. . .
∑

rd−1

{
~P (rd−1|{ñp1, . . . , ñpd−1}) ·Tn(rd+n|rd+n−1)

}
(5.23)

(b) Repeated 1-day prediction:

~P (rd+h|{ñp1, . . . , ñpd−1})

=
∑

rd+n

. . .
∑

rd−1

{
~P (rd−1|{ñp1, . . . , ñpd−1}) ·Th+1

1 (rd|rd−1)
}
, (5.24)

where

Th+1
1 (rd|rd−1) =

h∏

n=0

T1(rd|rd−1) (5.25)

On the first day in TAC SCM we set the prior regime probability to 100% extreme

scarcity, since all the agents start out with zero inventory on the first day. This has

a strong effect on pricing. Whoever has something to sell early on is able to sell it at

a high price.

5.4.3 Exponential smoother prediction

As an alternative to the Markov prediction process, we designed a method for regime

predictions based on exponentially smoothed price predictions. In Equations 5.13

to 5.16 we describe how to obtain an estimate of the smoothed mid-range price from

the previous day, ñpd−1. As the first step in predicting prices we calculate the price

trend, trd−1, using the results from Equation 5.13 and Equation 5.14, as:

trd−1 =
α

1− α
· (ñp′

d−1 − ñp′′
d−1) (5.26)

Since we estimate the smoothed mid-range price using the daily minimum and max-

imum price, see Equation 5.16, we have to do the same while calculating the trend
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estimate:

t̃rd−1 =
t̃r

min

d−1 + t̃r
max

d−1

2
(5.27)

where t̃r
min

d−1 is the exponentially smoothed minimum normalized trend and t̃r
max

d−1 is

the exponentially smoothed maximum normalized trend from the previous day. Using

the trend and yesterday’s price estimate, see Equation 5.16, we estimate today’s and

future daily smoothed prices as:

ñpd+n = ñpd−1 + (1 + n) · t̃rd−1, ∀n = 1, · · · , h (5.28)

We obtain the density of the normalized price, ñpd+n, dependent on the regime Rk:

p(ñpd+n|R̂k) =
N∑

i=1

p(ñpd+n|ζi) P (ζi|Rk). (5.29)

The predicted probability of regime Rk dependent on the predicted exponentially

smoothed normalized price n days into the future ñpd+n can be computed using

Bayes rule as:

P (R̂k|ñpd+n) =
p(ñpd+n|R̂k) P (Rk)

∑M
k=1 p(ñpd+n|R̂k) P (Rk)

∀k = 1, · · · ,M. (5.30)

where M is the number of regimes. The prior probabilities, P (Rk), of the differ-

ent regimes are determined by a counting process over past data after the k-means

clustering. We also developed a semi-Markov prediction process. Its description and

some results can be found in Appendix D.

Examples of regime predictions for game 3721@tac3 for the medium market segment

are shown in Figure 5.10 and Figure 5.11. The figures show the real regimes measured

after the game from the game data and the predictions made by our method during

the game. As it can be seen in the figures, the match between predictions and real

data is very good.

Figure 5.10 shows a predicted change from an oversupply situation to a balanced sit-

uation. This means that the agent should sell less today and build up more inventory

for future days when prices will be higher. On the other hand we see in Figure 5.11 a

predicted change from scarcity to the balanced regime. In this case the agent should

try to sell more aggressively the current day, since prices will be decreasing in the
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Figure 5.10: Regime predictions for game
3721@tac3 starting on day 80 for 20 days
into the future for the medium market
segment. Data are shown as computed
after the game using the complete set of
data, and as predicted by our method
during the game.

110 115 120 125 130 135 140

EO

O

B

S

ES

O
ff−

lin
e

110 115 120 125 130 135 140

EO

O

B

S

ES

Time in Days

P
re

di
ct

io
n

Figure 5.11: Regime predictions for game
3721@tac3 starting on day 110 for 30 days
into the future for the medium market
segment.

next days.

5.5 Prediction of price distribution and price trend

In this Section we describe a method for generating price trend prediction based on

regime prediction. An agent successful at price trend prediction can use this infor-

mation for guiding its procurement, production, and pricing decisions. Equation 5.31

describes a computation that calculates a price prediction distribution based on a

given predicted regime distribution. M represents the number of different regimes

and N the number of Gaussians used in the GMM (see Equation 5.7). A point

p(n̂pd+n|{ñpd, . . . , ñpd−1}) on the distribution, given a value for normalized price np,

is given by

p(n̂pd+n|{ñp1, . . . , ñpd−1}) =
M∑

i=1

p(np|Ri) P (R̂i,d+n|{ñp1, . . . , ñpd−1})

=
N∑

j=1

M∑

i=1

P (ζj|Ri) P (R̂i,d+n|{ñp1, . . . , ñpd−1})︸ ︷︷ ︸
P (ζj,d+n)

p(np|ζj)
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=
N∑

j=1

P (ζj,d+n) p(np|ζj), ∀n = 1, · · · , h (5.31)

where P (R̂i,d+n|{ñp1, . . . , ñpd−1}) is one element of the predicted regime probability

vector given by Equations 5.21, 5.20, 5.24, and 5.23. To obtain a predicted price

distribution we sample Equation 5.31 for every day over the planning horizon h with

values for np between 0 and 1.25. Examples of price distributions are given in Fig-

ure 5.12 (left) and in Figure 5.13 (left).

After sampling the mixture distribution over the set of np values, the distribution

is renormalized to sum to one. This discretizes the continuous distribution, which

simplifies all subsequent probability calculations. For instance the mean of the dis-

tribution can be computed as:

E[n̂pd+n] =
Ns∑

j=1

pnorm

(
n̂pd+n(j)|{ñp1, . . . , ñpd−1}

)
· np(j), ∀n = 1, · · · , h (5.32)

To predict price trends we use also the 10%, 50%, and 90% percentile of the predicted

price distribution, which are interpolated from the discretized cumulative distribution.

Figure 5.12 (left) shows the forecast price density, based on a 1-day trained Markov

matrix, for game 3717@tac3, for 20 days starting at day 115. The dashed curve

represents the price density for the first forecast day, the thick solid line shows the

price density for the last forecast day, and the thin solid curves show the forecast

for the intermediate days. As expected the predicted price density broadens as we

forecast further into the future, reflecting a decreasing certainty in the prediction.

We can also compare the actual price trends with our predictions. Figure 5.12 (right)

shows the real mean price trend along with forecast price trends based on the different

predictors, the expected mean Markov prediction, the 10%, 50% and the 90% Markov

density percentiles, and the exponential smoother. All the curves in the figure rep-

resent a relative price trend – to better compare the different predictors which each

other graphically, we subtracted from each forecast value the first predicted value, so

that they all start at zero.

The exponential smoother prediction in this example is not good3, since the smoother

3Usually the exponential smoother predicts much better (see Section 6), but we use this example
to explain one of the advantages of our method.
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is too myopic, i.e. it puts a weight that is too high on recently observed prices.

Figure 5.5 shows that before day 115 the prices were increasing. When performing

a prediction the exponential smoother takes the recent slope and extrapolates it into

the future. On the contrary, our method learns during training how long, dependent

on the preconditions, a particular regime is active.
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Figure 5.12: Predicted price density (left) and predicted price trend (right) using the
repeated 1-day trained Markov matrix for game 3717@tac3 from day 115 until day
135 in the low market segment. In the price density figure (left), the thick dashed
curve is the price density estimate for the current day, the thick black solid curve is
the price density estimate for the last day in the planning horizon, and the thin solid
curves are the estimates for the intermediate days.

Figure 5.13 (left) shows the forecast price density, based on a n-day trained Markov

matrix, for game 3717@tac3, for 20 days starting at day 115. We observe that the

predicted price density, which is generated using an n-day Markov matrix, broadens

much less than the one using a 1-day Markov matrix. This reflects an increasing

certainty in the prediction when switching from a 1-day to a n-day Markov matrix.

Figure 5.13 (right) shows the appropriate relative price trend. The increased certainty

in prediction is also reflected in the limits of the predicted density. The 10% and 90%

percentiles forming a good prediction envelope for the tracked price.

5.6 Prediction of order probability

Mathematically speaking the curves in Figure 5.1 represent different order probability

distribution functions P (order |np). Because np represents normalized order prices,

the cumulative density function CDF (np) describes the proportion of orders that will
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Figure 5.13: Predicted price density (left) and predicted price trend (right) using
n-day trained Markov matrix for game 3717@tac3 from day 115 until day 135 in the
low market segment.

be placed at or below a value of normalized price np.

P (order |np) = 1− CDF (np) (5.33)

Where the CDF is related to a probability density function p(np) (see Equation 5.31

and left side of Figures 5.12, 5.13) by

CDF (np) =
∫ np

0
p(np′) dnp′ (5.34)

in the TAC SCM case npmax = 1.25, so that CDF (npmax) = 1.

As an example, in Figure 5.14 we see the curve for P (order |np) = 1 − CDF (np)

corresponding to the estimated current day density shown as the dashed curve in

Figures 5.12 and 5.13 (left side).

59



0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

80

90

100

Normalized Price [np]

O
rd

er
 P

ro
ba

bi
lit

y 
[%

]

Markov C−P
Markov P
Exp Smoother

Figure 5.14: Real-time order probability curve, P (order |np) = 1−CDF (np), for day
115 for the low market segment in game 3717@tac3.

60



Chapter 6

Performance Evaluation

A critical element of a trading agent is the determination of the current market

prices, probability of order, prediction of prices, price trends, resource allocation, and

setting of sales prices. We have presented methods in Chapters 4 and 5 to facilitate

tactical and strategic decision via economic regimes. In this Chapter we focus on the

evaluation of those methods.

We begin by presenting compelling off-line results in the TAC SCM domain. Since all

our explanations so far were based on market segments we continue this in our off-line

experiments. We selected market segments over products because the movements of

markets, e.g. the movement of the low end computers vs high end computers, are

more intuitive than individual products, and a company can make decisions on an

entire market instead of individual products. In the second part of this Chapter, we

will cover the real-time experiments. We have implemented our methods in a real

agent, MinneTAC. Since the supply for individual products in one market segment

may vary, we implemented our methods for this set of experiments at the product

level. This makes the agent more reactive to the supplier market. Finally, we present

an application of economic regimes to financial markets and we are also able to show

compelling results in this domain.

6.1 TAC SCM - Off-line

Our method is useful to the extent that it characterizes and predicts real qualities of

the market. There are many hidden variables in a competitive market, such as the
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inventory positions and procurement arrangements of the competitors. Our method

uses observable historical and current data to guide tactical and strategic decision

processes. In this Section we evaluate the practical value of regime identification,

prediction and the estimation of order probability in TAC SCM.

6.1.1 Experimental setup

For our experiments, we used data from a set of 28 games (18 for training1 and 10

for testing2) played during the semi-finals and finals of TAC SCM 2005. The mix of

players changed from game to game, the total number of players was 12 in the semi-

finals and 6 in the finals. Since supply and demand in TAC SCM change in each of

the market segments (low, medium, and high) independently of the other segments,

our method is applied to each individual market segment. Each type of computer

has a nominal cost, which is the sum of the nominal cost of each of the parts needed

to build it. In TAC SCM the cost of the facility is sunk, and there is no per-unit

assembly cost. We normalize the prices across the different computer types in each

market segment.

6.1.2 Identification of regime uncertainty

An automated agent can use the entire daily estimated regime distribution as input

to other algorithms to facilitate decision making. On the contrary a human decision

maker might just want to have an estimate of the daily dominant regime to get a

quick and intuitive estimate of the current market condition.

For each training game we calculate everyday the 1-norm between the estimated daily

online regime probability and the actual off-line regime probability. After all games

are processed we compute the RMS error between online and the off-line regime prob-

abilities over 2% probability bins from 0% to 100%. The off-line regime probability

is calculated based on the actual price on a given day, where the estimated online

regime probabilities are based on price estimates and Markov matrices. During train-

ing we used a Markov prediction, a Markov correction-prediction, and an exponential
13694@tac3, 3700@tac3, 4229@tac4, 4234@tac4, 7815@tac5, 7821@tac5, 5638@tac6, 5639@tac6,

3719@tac3, 3720@tac3, 3721@tac3, 3722@tac3, 3723@tac3, 4255@tac4,4256@tac4, 4257@tac4,
4258@tac4, 4259@tac4 – To obtain the complete path name append .sics.se to each game num-
ber.

23697tac3, 4235tac4, 7820tac5, 5641tac6, 3717tac3, 3718tac3, 3724tac3, 4253tac4, 4254tac4,
4260tac4
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smoother process to calibrate different online regime probability estimates.
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Figure 6.1: RMS Error for identification of daily regime probabilities based on the
training data.

Figure 6.1 presents the RMS error in the daily regime probability identification for

the three predictors. From the Figure we can determine that the Markov prediction

process has the lowest error in identifying the current regime probabilities followed by

the exponential smoother process and last the Markov correction-prediction process.

This results make sense, since the Markov prediction process is myopic and therefore

relies strongly on the current market situation, tactical decision, whereas the Markov

correction-prediction process is designed for long-term, strategic decision.

Our online approach to signal regime uncertainty is based on using the learned look-

up table for each identified regime probability to determine the appropriate RMS

regime probability error. We subtract the error, Err(P (R̂max1)), from the probabil-

ity of R̂max1, which is the regime with the highest probability, and add the error,

Err(P (R̂max2)), to the probability of R̂max2, the regime with the 2nd highest prob-

ability, and take the difference between them. If the difference is positive, which

means that the error regions don’t cross, than there is no uncertainty in the regime

identification, otherwise there is as expressed. Please see the following Equation 6.1
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for details:

RU =





0 if {P (R̂max1)− Err(P (R̂max1))}
−{P (R̂max2)) + Err(P (R̂max2))} ≤ 0

P(R̂max2)
P(R̂max1)

otherwise

(6.1)

In addition we have defined regime confidence as:

RC =
P (R̂max1)

P (R̂max2)
(6.2)

The top row of Figure 6.2 shows regime confidence, RC, results and the bottom row

shows regime uncertainty, RU , results for game 3717tac3 for the low market segment.

The left two quadrants of Figure 6.2 were generated using a Markov prediction process

and the two quadrants to the right using an exponential smoother process. We observe

that in testing, as we did in training, on a daily basis the Markov prediction process

has less uncertainty than the exponential smoother process in identifying the current

dominant regime.
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Figure 6.2: Game 3717@tac3 - low market segment: Uncertainty in the identification
of the daily dominant regime based on Markov prediction process (left) vs exponential
smoother regime prediction (right).

6.1.3 Relationship between identified regime and market variables

We expect identified regimes to qualitatively represent the status of important hidden

market factors. A correlation analysis of market parameters of the training set is

shown in Figure 6.3. The p-values for the correlation analysis are all less than 0.01.
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Regime EO (extreme oversupply) correlates positively with quantity of finished goods

inventory, negatively with percent of factory utilization, positively with the ratio of

offer to demand, and negatively with normalized price. On the other hand, in Regime

ES (extreme scarcity) we observe a negative correlation with the amount of unsold

finished goods inventory, with the percent of factory utilization, and the ratio of offer

to demand, and positively with normalized price.
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Figure 6.3: Training set (18 games) – Correlation coefficients between regimes and
quantity of finished goods inventory, factory utilization, the ratio of offer to demand,
and normalized price (np) in the medium market segment. All values are significant
at the p = 0.01 level.

An advantage of using five regimes instead of three regimes is that we gain two

degrees of freedom. This enables better decision making, by isolating the outliers in

the market. For example, regime EO (extreme oversupply) is different from Regime

O (oversupply) since it presents a potential price war situation. Another difference

between regime EO and regime O is that regime EO is universally unprofitable

and that regime O is marginally profitable for most agents. Regimes B and S are

universally profitable and in regime ES some agents have left the market. The major

difference between the scarcity regime, S, and the extreme scarcity regime, ES, is
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that in regime S the factory runs at full capacity, because of excess demand, while

in regime ES we observe a scarcity of parts, which results in underutilization of the

production capacity.

Another way to evaluate the quality of regime identification is given by an interpre-

tation of the k-means clustering algorithm. Essentially, it finds points along the path

that connects the regime centers in the regime probability space. In Figure 6.4 we

represent the results of the k-means clustering algorithm, or the learned regime prob-

abilities. For ease of visualization we use only three regimes to explain the learned

behavior; the five regime case produces similar results, but they are harder to visu-

alize. We can see that the learned regime probabilities in the posterior probability

space connect the regimes in the “expected” way. In other words, we do not see

points directly between scarcity and oversupply; instead, the path leads from scarcity

through balance to oversupply.

[0 0 1]
S

[1 0 0]
O

[0 1 0]
B

P(R|np)

Figure 6.4: An example of learned regime probabilities, P (Rk|np), for the medium
market segment in TAC SCM after training.

We expect a dynamic regime prediction algorithm to move along this path of learned

regime probabilities.

6.1.4 Prediction of dominant regime

We measure the accuracy of regime prediction by counting how many times the regime

predicted is the correct one. As ground truth we measure the number of regime

switches and when they happen off-line using data from the game. Starting with

day 1 until day 179, we forecast every day the regimes for the next 40 days and
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we forecast when a regime transition would occur. Experimental results for discrete

regime change prediction are shown in Figure 6.5 using a 1-day (left) vs a n-day

(right) Markov matrix. We observe that when using a n-day as opposed a 1-day

Markov matrix, the prediction accuracy increases on average about 10% in all market

segments starting from 15 days into the future.
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Figure 6.5: Success rate of correct regime shift prediction using a 1-day (left) vs a
n-day (right) Markov matrix.

6.1.5 Prediction of regime distribution

The above results are based on discrete regimes, i.e., using only the dominant regime

of each predicted day to the actual value of any given day. One measure which can be

used in determining the closeness of all individual predicted regime probabilities to

the actual ones is called the Kullback-Leibler (KL) divergence [Kullback and Leibler,

1951, Kullback, 1959]. This is a quantity which measures the difference between

two probability distributions in bits, meaning the smaller the measure the closer

the predictions are to optimal. We can calculate the Kullback-Leibler divergence,

KL(~P (R̂)‖ ~P (R)) as:

KL(~P (R̂)‖ ~P (R)) =
∑

r∈R

~P (R̂) log




~P (R̂)

~P (R)


 (6.3)

The KL difference can be interpreted in terms of how much additional data is needed

to achieve optimal prediction performance. The precision of this data is given by

the number of bits in the KL-divergence measure. For example a 1 bit difference

would require an additional binary piece of information [Shannon, 1948], like: “Were
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yesterday’s bids all satisfied?” If the difference between the two distributions is 0

than the predictions are optimal in sense that the predicted and actual distributions

match.

If the time-dependent distribution of a Markov process, in our case ~P (R̂), converges

to a limit
~Π = lim

m→∞
{ ~P (R̂)}m (6.4)

then Π is called the stationary distribution. When the stationary distribution exists

it is characterized by the fix-point equation

~Π = ~Π ·Tn (6.5)

There are several ways to compute the stationary distribution, Π, but all involve

solving the eigenvalue problem specified in the above equation. The reason for intro-

ducing the n-day Markov matrix is that we hypothesized that it takes longer to reach

the stationary distribution of its Markov process than opposed a 1-day Markov ma-

trix, and therefore deliver a better prediction performance. We prove this hypothesis

empirically by calculating the stationary distribution for the 1-day and each n-day

Markov matrix and compare it with Markov predicted regime distribution. For this

we utilize again the KL-divergence measure:

KL(~P (R̂)‖~Π) =
∑

r∈R

~P (R̂) log




~P (R̂)

~Π


 (6.6)

In Figure 6.6 we show prediction results in terms of KL-divergence for a GMM with

16 components using a 1-day Markov matrix (left) vs using a n-day Markov matrix

(right). The KL-divergences are computed using 5 regimes for the low market seg-

ment over the testing set. Points represent the KL-divergences between the Markov

predicted regime distribution and the actual distribution, KL(~P (R̂)Markov‖ ~P (R)).

Diamonds represent the KL-divergences between the double exponentially smoothed

predicted distribution and the actual distribution KL(~P (R̂)ExpS‖ ~P (R)), and pluses

represent the KL-divergences between the Markov predicted regime distribution, and

the stationary distribution KL(~P (R̂)Markov‖~Π) over the planning horizon.

Our predictions differ between 0.28 bits (current day), 0.80 bits (20 days), and 0.95

bits (40 days) of information when using the repeated 1-day Markov matrix, and
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Figure 6.6: KL-divergence between predicted, actual, and stationary regime distri-
bution using a repeated 1-day (right) vs n-day (left) Markov matrix. KL-divergence
between the Markov predicted regime distribution and the actual distribution (point),
the double exponentially smoothed predicted distribution and the actual distribution
(diamond), and the Markov predicted regime distribution,and the stationary distri-
bution (plus) over the planning horizon. KL-divergences computed using five regimes
for the low market segment over the testing set. The left figure is generated using a
repeated 1-day trained Markov matrix and the right figure with n-day trained Markov
matrices.

between 0.28 bits (current day), 0.66 bits (20 days), and 0.81 bits (40 days) of infor-

mation when using the n-day interval Markov matrix, as opposed to the Exponential

Smoother predictions which vary between 0.09 bits (current day), 3.55 bits (20 days),

and 12.62 bits (40 days). It is typically acceptable having a KL-divergence less than

or close to one [Zhang and Cheung, 2005]. There will not be significant gains by

obtaining more information in the estimation procedure. We only show values of

KL-divergences up to 4, since we want to highlight the initial exponential smoother

and the Markov predictions. The current day exponential smoother predictions are

approximately 1.14 times better as the repeated 1-day and n-day interval Markov pre-

dictions. On the other hand the 20 and 40 days exponential smoother predictions are

approximately 6.73 and 3259 times worse than the repeated 1-day Markov predictions

and 7.42 and 3591 times worse than the n-day interval Markov predictions.

The KL-divergences calculated using the n-day interval Markov matrix are always

smaller than the one using a repeated 1-day Markov matrix, especially in the long-

term. This indicates a better fit between the predicted and the actual regime prob-

abilities for the n-day interval Markov matrix and as a consequence should be used
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for strategic decision making as opposed to the predictions generated by the repeated

1-day Markov matrix. The best estimate for the short-term (current day up to 4 days

into the future) is given by the exponential smoother and as a result should be used as

an input to generate the price densities for the short-term (explained in Section 5.5)

and sales offer prices for the current day, i.e. for tactical decision making.

6.1.6 Price distribution

Every day we forecast the price density for the next n days into the future, where

p(n̂pd)
3 is the predicted price density for the current day, and p(n̂pd+n) is the predicted

price density on the n-day into the future of the planning horizon h. In our experi-

ments we choose h = 40. We calculated the expected mean price (see Equation 5.32),

and track different areas (10%, 50%, and 90%) of the price density curve. We fur-

thermore calculated the expected mean price using exponential smoother regime and

density prediction and the pure exponential smoother price prediction. We calcu-

late the root mean square error, RMSE(n̂pn, npn), between the predicted normalized

price, n̂pn, and the actual normalized price, npn, over a prediction interval, n, be-

tween the current day and the end of the planning horizon, h, averaged across days

and games, to determine the accuracy of the price prediction as:

RMSE(n̂pn, npn) =

√√√√√√

NG∑
γ=1

ND−n∑
d=1

(n̂pn,γ
d − npn,γ

d )2

NG · (ND − n)
, ∀n = 1, · · · , h (6.7)

where ND is the length of a TAC SCM game in days and NG is the number of test

games.

Figure 6.7 shows the RMS error of the Markov predictors using a repeated 1-day

matrix (left) vs an interval matrix (right) and compares it to the RMS error of the

price generated by exponential smoother regime lookup and to the pure implementa-

tion of the exponential smoother. An RMS error of 0.05 corresponds to an average

prediction error of 4% and an RMS error of 0.25 corresponds to an average prediction

error of 20%. We observe that when switching from a repeated 1-day to a n-day

interval Markov matrix the overall price prediction using the density improves, espe-

cially at the limits of the distribution. Looking at the n-day interval Markov matrix

3For simplicity we leave out the dependence on historical normalized prices.
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results shows that on the current day the pure exponential smoother is doing best

when compared to the real mean price and on the second day the pure exponential

smoother and the price prediction using regime lookup via the exponential smoother

is the best. Since the differences in terms of price prediction between the pure ex-

ponential smoother and the regime look-up via exponential smoother are so small

we think it is best to go with the predicted price density generated via exponential

smoothed regime look-up, since you have the whole price density available to make

an informed decision instead only having the mean price. From day 3 until the end

of the planning horizon the expected mean and median Markov price predictions are

the best and about the same in quality, followed by the 10% and 90% Markov price

predictions, followed by the predicted price using regime lookup via the exponential

smoother and last on all the days is the price prediction by the pure implementation

of the exponential smoother.
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Figure 6.7: RMS price prediction error based on a repeated 1-day (left) vs n-day
interval (right) trained Markov matrix.

We tested whether the Markov correction-prediction predicted normalized prices, n̂pn,

were different from the actual observed prices, npn, for any day, n, in the planning

horizon, h, using a pairwise T-test and failed to reject the equality of price hypothesis

at p = 0.05 significance level. This indicates that our predicted prices, n̂pn, are

statistically following the real prices npn.
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6.1.7 Price trend

To obtain the price trend, for every day, n, over the planning horizon, h, we take the

forecast from the different predictors and apply it to compute:

T̂rn = sgn(n̂pd+n − n̂pd), ∀n = 1, · · · , h (6.8)

where T̂rn represents the price trend for n days into the future, n̂pd is the predicted

price for the current day, and n̂pd+n is the predicted price (a point on the predicted

price distribution, e.g. in our examples 10%, 50%, and 90%) n number of days into

the future. Each day the agent has access only to the minimum and maximum prices

of the previous day, so it needs a one day forecast to estimate the price for the current

day. If T̂rn is positive, then the predicted prices are increasing, and if T̂rn is negative,

then predicted prices are decreasing. Otherwise we predict prices will remain stable

at the current level.

Figure 6.8 displays the success rate of price trend sign prediction using a repeated 1-

day Markov matrix (left) and a n-day interval Markov matrix (right) over the planning

horizon. Since the price trend is used for tactical decision making, we calculate the

success rate only after five days in the future. We observe that the n-day interval

Markov correction-prediction process forms a nice line along the 70% success rate and

outperforms the Markov prediction process in terms of predicting correctly the sign

of the price trend.
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Figure 6.8: Success-rate of price trend sign prediction based on repeated 1-day (left)
vs n-day interval (right) trained Markov matrices.
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Often (especially in the short-term) applying a n-day interval trained Markov matrix

results in better performance in terms of predicting falling or rising prices compared

to the repeated 1-day trained Markov matrix. The reason for the behavior might

be that any prediction further out than one day needs to be estimated by the 1-day

trained Markov matrix which is is multiplied n-times, whereas the n-day interval

trained Markov matrix is based on actual observed regime changes. Each time we

apply the 1-day trained Markov matrix to itself the uncertainty in regime prediction

increases.

Next, we analyze the sensitivity of the price trend prediction when using a different

number of regimes and compare it to results obtained using an additional prediction

method, which we call “Q Bayes Net.”

To evaluate the quality of the predictions, we compare the performance of regime-

based price trend prediction with two “baseline” methods, one which is based on

predicted demand, the other based on an exponential smoother. The demand-based

predictor is based on the economic theory that prices are influenced by demand. For

TAC SCM, customer demand is generated by a random walk algorithm, as specified

in [Collins et al., 2004]. We can use a Bayesian inversion of this algorithm to predict

demand, as shown in [Kiekintveld et al., 2004]. In Table 6.1, this prediction is labeled

“Q Bayes Net.” The exponential predictor is based on a Brown’s linear (i.e., double)

exponential smoother with α = 0.5. In Table 6.1, this prediction is labeled “Exp

Smoother.” The other predictors are the 5%, 10% and 50% percentiles of the Markov

model.

For the experiments. every day we forecast the price trend for the next 20 days,

using Equation 6.8. The experiments used the training and testing data sets specified

earlier. In addition to the baseline comparison, we explored the parameter space in

two dimensions: the number of regimes used, and the percentile on the predicted price

distribution used to determine the price trend. The “Success Rate” for our prediction

method is computed using Equation 6.8. The price trend prediction is successful when

the predictor’s forecast price trend has the same sign as the real price trend.

A surprising outcome that can be seen in Table 6.1 is that customer demand is not

a strong predictor (around 50% to 57%), contrary to our initial assumption. We can

see that price trend predictions based on regimes outperform predictions based on

demand projection by a significant margin. Across all market segments our prediction
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Success Rate (%)
Predictors Market

Segment Number of Regimes
3 5

Q Bayes Net Low 54.93 54.93
Exp Smoother Low 66.66 66.66

5 % Markov Low 71.23 71.04
10 % Markov Low 70.95 71.32
50 % Markov Low 67.32 66.48
Q Bayes Net Medium 57.45 57.45
Exp Smoother Medium 66.66 66.66

5 % Markov Medium 70.67 68.34
10 % Markov Medium 71.23 68.99
50 % Markov Medium 72.25 67.78
Q Bayes Net High 56.70 56.70
Exp Smoother High 67.22 67.22

5 % Markov High 69.46 70.39
10 % Markov High 70.11 73.18
50 % Markov High 71.14 70.48
Mean Markov All 70.48 70.00

Table 6.1: Prediction results on the testing set of games from day 1 to day 179 (for
a total of 1074 trials) with a 20 day forecast horizon, i.e. the last day of a forecast is
day 199.

methods outperforms the stable and Q Bayes net prediction results. We can also see

that the prediction quality is not especially sensitive to the number of regimes used or

to the chosen percentile on the predicted distribution. Figure 6.9 depicts the success

rate for the different predictors over a varying planning horizon up to 50 days into

the future for the high market segment.

We tested whether the Markov predictions were different from actual observed price

trends using pairwise Binomial hypothesis test and failed to reject the equality of

trends hypothesis at p = 0.01 significance level. This indicates that our predictions

are statistically following the same trend as the real price trends.

Finally, we tested the influence of different training and clustering methods on price

trend predictions. As an alternative training method we used all order prices on a

given day to determine the dominant regime instead of only the mean price, and as a

second clustering method we used a hard version of the kmeans clustering algorithm
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Figure 6.9: Success rate over the planning horizon over the test set of games for the
high market segments. These are computed off-line from games out of the training
set.

called kmns [McCallum and Nigam, 1988]. The results of these experiments are listed

in Table 6.2.

We expected the results of the experiments which were trained with all order prices

to have a higher success rate than the one with just the mean prices, but the results

are almost equal and the training method does not appear to have a strong influence.

Furthermore, the different clustering methods did not influence the result strongly.

Across all market segments our prediction method outperforms Bayes net prediction

results. We tested the significance between prediction success rates using a pairwise

Binomial hypothesis test and recored a significance at the p = 0.01 level.

6.1.8 Prediction error

We also measured the prediction error for the price distributions generated by our

model. Because the mixture of Gaussians can only approximate the true price dis-

tributions, we measured the difference between observed price frequencies and model
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Success Rate (%)
Clustering Method

Predictors Market kmeans kmns
Segment Training Method

mean price all prices mean price all prices
Q Bayes Net Low 52.89 52.89 52.89 52.89
5 % Markov Low 68.99 69.09 69.09 68.99
10 % Markov Low 68.72 68.90 69.09 68.72
Q Bayes Net Medium 50.37 50.37 50.37 50.37
5 % Markov Medium 66.20 66.48 66.57 65.92
10 % Markov Medium 66.20 66.01 66.20 65.92
Q Bayes Net High 56.61 56.61 56.61 56.61
5 % Markov High 74.12 73.84 75.42 75.88
10 % Markov High 74.21 74.30 74.67 75.79

Table 6.2: Prediction results based on the testing set of games from day 1 to day 179
(altogether 1074 trials) with a 20 day forecast horizon, i.e. the last day of a forecast
is day 199. On average prediction results that differ by more than 5% are significant
at the p = 0.01 level given the sample size.

predictions using a Monte Carlo method. In particular, price frequencies were com-

puted for 64 bins from game data to form an empirical histogram. Simulated price

data was sampled from the mixture model and binned as per real data. Prediction

error was defined as the 1-norm (sum of absolute differences) distance between sim-

ulated and measured histograms, averaged across 1000 simulated data samples. In

Figure 6.10 we present the algorithm used to analyze price predictions when sampling

from the learned GMM with 16 and 25 components. Table 6.3 displays the results

for the fitted GMMs.

low market medium market high market # Gaussians
Prediction Error in % 6.69 6.89 8.99 16
Prediction Error in % 5.75 5.48 5.95 25

Table 6.3: Overall prediction error for a 16 and a 25 GMM in the three market
segments. Results were obtained after averaging over 1000 iterations.

The results show that the total error introduced by the mixture model approximation

varied between 5%− 8%, with more components resulting in slightly lower errors.
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1 Inputs:
2 pnpavg: original normalized price density
3 numBins: the number of histogram bins
4 numNP : number of np in the training set
5 GMM : learned Gaussian Mixture Model
6 maxIter: number of iterations
7 Output:
8 PredErr: the overall mean prediction error
9 Process:

10 for j = 1 until maxIter
11 pnpsamp = Monte Carlo Sampling(GMM ,numNP)

12 Error(j) =
|pnpavg−pnpsamp|

numBins

13 end

14 meanErr = Error
15 PredErr = numBins ·∑meanErr
16 return PredErr

Figure 6.10: Prediction error algorithm.

6.1.9 Order probability

We verify the goodness of the current day order probability estimation by determining

the normalized prices, np, which represent 10%, 25%, 50%, 75%, and 90% of the area

under the cumulative distribution function (see Equation 5.34). If the estimated cu-

mulative distribution function is correct, i.e. mirroring the current market condition,

then this should directly translate into 90%, 75%, 50%, 25%, and 10% daily order

probability (see Equation 5.33). Next, we determine off-line how many auctions we

would have won on each day if we had bid those estimated prices.4 If we take the

percentage of the winning auctions to the overall auctions we get the actual order

probability for each of those prices. For our experiment we estimated 2200 (10 games

times 220 days) order probability curves for a sample market. Figure 6.11 shows the

results of the experiments for the Markov correction-prediction, the Markov predic-

tion, and the exponential smoother process. The y-axis shows the estimated order

probability, and the bar graphs show the actual mean order probability and their

standard deviations. We observe that all three predictors estimate the daily order

probability well. Furthermore we observe, that the Markov correction-prediction pro-

cess estimates the higher order probabilities, 75% and 90%, better than the Markov

4In TAC SCM customers always buy from the cheapest manufacturer agent.
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Figure 6.11: Daily order probability estimation (mean/std) for the 10th, 25th, 50th,
75th, and 90th percentile using different predictors.

prediction and the exponential smoother process, but performs a little less in the

lower percentiles of the order probability estimation.

6.2 TAC SCM - Real-time

In the previous Section we evaluated our approach on data which are available from

the game servers after the games have been played. In this Section we evaluate our

methods in the context of playing against five other agents during a game in real-

time. We focus on regime identification and prediction at the individual product

level instead of the market segment, as described in the previous Section. This allows

an agent to be more reactive in the supplier market, e.g. the market segment of a

particular product might be in an over-supply situation, but one product might miss

a part and therefore it is in a scarcity situation, which has a totally different impact

on sales prices.

6.2.1 Experimental setup

We implemented all three regime identification and prediction methods, i.e. Markov

prediction (MP), Markov correction-prediction (MCP), and exponential smoother

lookup (ExpS) process, with the help of evaluators, as mentioned in Section 3.2.

More details on evaluators are in [Collins et al., 2007]. We also designed a training

78



data evaluator which is shared (superclass) by the individual regime evaluators (sub-

classes). The training data evaluator reads in the configuration of the regime classes,

e.g. 3 vs 5 regimes, which type of training data to use, median vs mean prediction,

etc. and reads in the appropriate off-line learned training data files before the be-

ginning of the game. The different regime evaluators inherit the training data and

update them separately during a game. Figure 6.12 shows the chain of the evaluators

used to make offer prices.

allocation simple−price

available−factory−capacity

available−supply randomized−price

cost−basis

effective−demand

demand

future−demand

Markov Regimes

price−error

Regime Training Data

Exp Smoother Regimes

price−follower Regime Price Trend Adapter median−price order−probability

Figure 6.12: Evaluator chain for sales quota and pricing using regimes to determine
prices, price trends and order probability.

The agents we use for our experiments have been obtained from the TAC SCM agent

repository5. We selected five of the finalists from the 2006 competition and an agent

from the 2005 competition. The agents are:

1. DeepMaize – University of Michigan

2. Maxon – Xonar Inc

3. MinneTAC – University of Minnesota

4. PhantAgent – Politechnica University of Bucharest

5. RationalSCM – Australian National University; competed in 2005.

5
http://www.sics.se/tac/showagents.php
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6. TacTex – University of Texas; winner TAC SCM 2006

Agent performance in TAC SCM is affected not only by the set of agents playing

together but also by random variations in supply, demand, and other market pa-

rameters. To compare different variations of our own agent without having to run

a very large number of games, we use the controlled server [Borghetti et al., 2006,

Sodomka et al., 2007] which has been developed as a tool to evaluate agents. The

controlled server allows for repeatable pseudo-random sequences of any individual

market factor or combination of factors.

We run NG games, each with a different pseudo-random sequence, using MinneTAC,

and then run NG games with the same market factors (the same set of NG pseudo-

random sequences) this time using a different version of our agent, MinneTAC’. In

other words, all the pseudo-random sequences in the first set of NG games are repeated

in the second set of NG games. For our tests, we chose NG = 23. This method removes

the profit variability due to the agents seeing different market conditions, and, at the

same time, allows for testing multiple variations of our agent, one for each set of

games. In this way our agent plays always against five different agents, and not

against its onw clone(s).

Each version of our MinneTAC agent uses a different technique for tactical decisions

(order probability calculation) and for strategic decisions (price and price trend pre-

diction).

At the strategic level we distinguish three different price prediction methods. The

first one uses a price-following method, the second one uses regimes (as described is

Section 5.5), and the third one (called Combo in Table 6.4) also uses regimes, but

reverts to a price-following method if the agent identifies a “price war” situation, i.e.

an extreme over-supply regime. The reason for this combination predictor is based

on our hypothesis that in a extreme-oversupply regime we are faced with a mismatch

between the training data and the actual game data. This means in particular that

we might observe prices in extreme-oversupply regimes during actual games which are

by far lower than the prices we observed during the economic regime training phase.

As a consequence during actual games the regime price prediction might, after some

days, point toward higher prices again, whereas the exponential smoother predictor

will simply follow the actual prices, which in extreme-oversupply are just a low flat
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price line.

At the tactical level we differentiate two methods to calculate order probability, one

based on a linear interpolation between the estimated minimum and maximum good

prices and the other based on regimes (as described is Section 5.6).

6.2.2 Real-time results

Our tests includes eight sets of twenty-three games each, one set for each different

configuration of our MinneTAC agent, using the same twenty-three pseudo-random

sequences for each set. For each method we compare the difference in profit, and

compute the standard error associated with each mean difference. As the primary

measure of agent performance we list in Table 6.4 and Table 6.5 the mean total

profit per agent over a game. From Table 6.4 and Table 6.5 we see that MinneTAC

when playing with this set of agents always comes in fifth, but for the purpose of

testing the different configurations of MinneTAC, we are only interested in its relative

performance.

The results of the different experiments are as follows:

1. In the first experiment MinneTAC uses a linear interpolation to determine the

probability of order and an exponential smoother to predict price trends. Min-

neTAC reaches a final mean profit of 1.347 million.

2. The configuration of the second experiment uses economic regimes (based on

a repeated 1-day Markov prediction) to predict price trends instead of the ex-

ponential smoother predictor. The final result of this combination amounts to

1.813 million. We already reported before that price predictions generated by

economic regime have a higher accuracy and a smaller error in terms of the root

mean square price error, but now we have also empirically shown that regime

price predictions outperform exponential smoother predictions in terms of final

mean profit.

3. In the third experiment we test if our hypothesis that a combination predictor

consisting of economic regimes and exponential smoother beats an agent which

uses pure regime price predictions. Since the final profit of MinneTAC for this

experiment amounts to 1.780 million we have to reject our hypothesis, and
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conclude that it is better to use regime price predictions in all different market

conditions. The resulting small profit difference between experiment two and

three makes intuitively sense, since in an extreme over-supply situation there is

hardly any profit to be made, and it is more important to control losses than

to make profit.

4. Our fourth experiment uses regimes for tactical decisions (determination of

order probability based on exponentially smoothed predicted regimes) and for

strategic decisions (price and price trend prediction based on a repeated 1-day

Markov matrix). The final mean profit for this experiment is 2.017 million and

beats in that respect all other combinations.

5. Experiment five uses a Markov n-day interval prediction to determine price

trends. Its final mean profit comes to 1.567 million. This result shows a differ-

ence when predicting aggregate vs individual product data. We expected that in

real-time the Markov n-day interval prediction would outperform the repeated

1-day Markov prediction as reported in Section 6.1.6, but the outcome of our

experiments shows that a repeated 1-day Markov prediction performs better in

terms of final profit than a Markov n-day interval prediction. The reason could

be that off-line we use for every day in the planning horizon a separately trained

Markov matrix, but since we only have limited time during a game in real-time

we use only a 1, 10, and 20 day Markov prediction matrix. Then we perform

regime and price density predictions for these three matrices and interpolate

the missing prices between them. Here we make the assumption that the prices

in between are related linearly to each other, which is most likely not the case,

since we actually expect prices to flatten out further into the future.

6. In the sixth experiment we use a Markov correction-prediction with a repeated

1-day Markov matrix to determine the price trends. The final mean profit

amounts to 1.889 million. This outcome fits our observation on the market

segment level, where the Markov prediction method outperforms the Markov

correction-prediction method.

7. The seventh experiment uses a Markov correction-prediction process with an

n-day interval trained Markov matrix to determine price trends. Its final mean

profit comes to 1.670 million. This outperforms the results of experiment five,

which uses a Markov prediction with an n-day interval trained Markov matrix
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to determine price trends. Here we observe the same phenomenon as in ex-

periment five, where the n-day interval matrix performs worse than the 1-day

repeated Markov matrix. The most likely reason again is that we interpolated

the predicted prices in between linearly and they might not have a linear form.

We are currently working on an implementation where we use matrices for all

days in the planning horizon.

8. Experiment number eight uses an exponential smoother regime lookup predictor

to determine the order probability and median prices as well as to determine the

future price trends. It has a final mean profit of 1.545 million. The exponentially

smooth look-up regime process works well for determining the current day order

price distribution, but has a price divergence that is too large at the end of the

planning horizon.
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Mean Profit / Standard Deviation (in million)
Experiment # 1 2 3 4 5
Strategic: Price-Follower Regimes (MP 1-Day) Combo Regimes (MP 1-day) Regimes (MP n-day)
Tactical: Linear Linear Linear Regimes (ExpS) Regimes (ExpS)
Agent:

TacTex06 8.752/5.682 8.873/5.600 8.399/5.173 9.205/5.385 9.061/5.331
DeepMaize06F 8.839/4.629 8.713/4.846 8.403/4.710 8.318/4.181 8.652/4.865
PhantAgent06 8.049/5.422 7.991/5.384 7.895/5.326 8.173/5.437 7.953/5.247
Maxon06F 4.243/4.516 3.767/4.288 3.808/4.254 4.019/4.181 3.945/4.396

MinneTAC 1.347/3.703 1.813/4.017 1.780/4.536 2.117/3.764 1.567/3.796

Rational05 0.739/4.912 0.669/4.692 0.710/4.692 1.305/4.527 1.115/4.682

Table 6.4: Experimental setup with controlled market conditions and different variations of MinneTAC for order probability,
price and price trend predictions. Mean profit and standard deviation results are based on 23 games per set of experiments.
Regime MP 1-day stands for regime prediction using a 1-day Markov transition matrix, Regime MP n-day uses the n-day
interval Markov transition matrix, and Regime ExpS does regime prediction via an exponential smoother lookup process.
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Mean Profit / Standard Deviation (in million)
Experiment # 6 7 8
Strategic: Regimes (MCP 1-day) Regimes (MCP n-day) Regimes (ExpS)
Tactical: Regimes (ExpS) Regimes (ExpS) Regimes (ExpS)
Agent:

TacTex06 9.039/5.075 9.311/5.203 9.302/5.343
DeepMaize06F 8.648/4.521 8.515/4.488 8.921/4.733
PhantAgent06 8.082/5.126 7.966/4.940 8.029/5.425
Maxon06F 3.988/3.976 4.138/4.381 4.214/4.628

MinneTAC 1.889/3.740 1.670/3.867 1.545/3.898

Rational05 1.211/4.346 0.668/4.440 1.032/4.898

Table 6.5: Experimental setup with controlled market conditions and different variations of MinneTAC for order probability,
price and price trend predictions. Regime MCP stands for regime prediction via a Markov correction-prediction process,
and 1-day or n-day refer respecitivey to using the 1-day or n-day Markov transition matrix.
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We used the Wilcoxon signed rank test [Gibbons, 1986, Hollander and Wolfe, 2000]

to assess statistical significance between the first four experiments. This is a non-

parametric test of the difference between the medians of two samples that does not

require the samples to come from normal (or even the same) distribution. We focused

on the first four experiments because they constitute improvements steps over the

original method, while the other experiments test the effects of variations in the

price-trend prediction method based on regimes. The Wilcoxon signed rank test is

used to test whether the median of a symmetric population is 0. First, the data

are ranked without regard to sign. Second, the signs of the original observations are

attached to their corresponding ranks. Finally, the one sample z statistic (mean /

standard error of the mean) is calculated from the signed ranks.

Test # 1: Exp 4 - Exp 1 2: Exp 4 - Exp 2 3: Exp 4 - Exp 3 4: Exp 2 - Exp 1
α = 0.05 p h srank p h srank p h srank p h srank

All 0.0138 1 57 0.1137 0 86 0.3155 0 105 0.0727 0 79
Positive 0.0054 1 13 0.2769 0 40 0.7615 0 54 0.0256 1 21
Negative 0.4258 0 15 0.4258 0 15 0.4961 0 16 0.9102 0 21

Table 6.6: Wilcoxon signed rank test of equality of medians. The test were performed
at a significance level of α = 0.05 based on 23 data points. p represents the p-value,
h is the result of the hypothesis test, srank contains the value of the signed rank
statistic.

In Table 6.6 we show the results of the Wilcoxon test. Rejecting the null hypothesis

means the medians from the two different samples are different. p is the probability

of observing a result equally or more extreme than the one using the data (from both

samples) if the null hypothesis is true. If p is near zero, this casts doubt on this

hypothesis. The field “srank” contains the value of the signed rank statistic.

We performed the tests on the set of all games, on only positive profit games, and on

only negative profit games. As a result of these tests we observe that the configuration

of experiments four and two, and four and three are not significantly different, and we

cannot reject the null hypothesis. On the other hand we find significant differences

between the outcome of experiments four and one. We are able to reject the null

hypothesis of equal median for the set of all games and the set of all positive games,

but not for the set of negative games. The most likely reason why we are not able

to reject the null hypothesis of equal median for the set of negative games is that

in negative games an agent is more concerned with controlling cost than making

profit and so the differences between the configuration is not much apparent. We
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are also able to show significance between the experiments two and one for the set

of all positive games. Although we could not reject the null hypothesis for the set

of all games at α = 0.05 significance level with a p-value of 0.0726, we are able to

reject the null hypothesis for the set of all games at α = 0.1 significance level. We

believe that the test would likely show significance with a larger sample size. With

this we have shown statistical significance between the original configuration and

the regime/regime configuration. Our results also suggests that the regime/regime

configuration performs better than the linear/regime configuration, although we need

more data to show that conclusively.

6.3 Financial markets

In the following we present an application of the regime method to the stock market

domain. An investor could use this to decide whether to keep his stocks, to buy

more, or to sell in time to make a profit. We define that in financial markets regime

R1 represents a more bearish signal, as opposed regime R5 which represents a more

bullish signal. We have done these experiments on different stocks, but present here

the General Electric, GE, stock as an example of many. We are not claiming that

this works better than other time series prediction methods, this is just a proof of

concept on data outside of the TAC SCM domain.

6.3.1 Experimental setup

Stock market prices are characterized by a time series, and when we perform the

regime training we need to pick a continuous price stream, as opposed to TAC SCM

where we randomly pick training games of a pool of games. We obtained the stock

market data from the Yahoo finance6 service.

The left side of Figure 6.13 displays the time series of our training price data from

October 1st 2005 until December 31st 2005 and the right side shows the appropriate

GMM. For these experiments we use a GMM with 20 Gaussians.

Figure 6.14 (left) shows the learned regime probabilities over price. We experimented

with different number of regimes on different stocks and found that 5 regimes results

in the highest success-rate of price trend predictions. Figure 6.14 (right) displays the

6Yahoo finance: http://finance.yahoo.com/
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Figure 6.13: General Electric: Historical prices from Oct 1st 2005 until Dec 31st 2005
(left) and the appropriate GMM (right).

time series of our testing set. We recorded historical prices from January 1st 2006

until September 26th 2006. We calculate the price limits of the GMM as follows:

price limitGMM
max = max((priced + ∆price), highest price in training data) (6.9)

price limitGMM
min = min((priced −∆price), lowest price in training data) (6.10)

where priced is the average stock price for the current day and ∆price is the biggest

price difference over continuous intervals of the length of the planning horizon over

the training set.
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Figure 6.14: General Electric: Learned regime distributions (left) and test data from
Jan 1st 2006 until Sep 26th 2006 (right).
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6.3.2 Off-line results

Figure 6.15 (left) shows the real testing price data, the exponential smoother predic-

tions, and the Markov predictions using a repeated 1-day Markov transition matrix.

The right side of Figure 6.15 displays the Markov predictions using a N-day interval

Markov transition matrix.
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Figure 6.15: Price prediction based on 1-day (left) vs n-day (right) trained Markov
matrix.

Finally Figure 6.16 visualizes the success-rate of price trend predictions using a 1-day

(left) and a n-day (right) Markov transition matrix. We observe that here, the same

as in TAC SCM, using a n-day Markov matrix leads to a higher success rate in terms

of price trend predictions for the overall distribution.
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Figure 6.16: Success-rate of price trend prediction based on 1-day (left) vs n-day
(right) trained Markov matrix.

90



Chapter 7

Conclusions

We have presented an approach for identifying and predicting market conditions in

markets for durable goods. We have demonstrated the effectiveness of our approach

using games played in the semi-finals and finals from TAC SCM 2005 and on a

controlled server environment, and showed initial research on stock market data. An

advantage of the proposed method is that it works in any market for durable goods,

since the computational process is completely data driven and that no classification

of the market structure (monopoly vs competitive, etc) is needed.

7.1 Contributions

Our approach recognizes that different market situations have qualitative differences

that can be used to guide the strategic and tactical behavior of an agent. Unlike

regression-based methods that try to predict prices directly from demand and other

observable factors, our approach recognizes that prices are also influenced by non-

observable factors, such as the inventory positions of other agents. Our approach

learns the dynamics and durations of different regimes, and when to expect a shift in

the dominant regime. This is important information that is difficult to represent with

regression-based methods. For example, regression in an expanding market (where

prices increase) will extrapolate increasing prices using the slope of recent price data.

On the other hand, the regime approach can learn that expansion (or scarcity) regimes

are typically limited in duration and predictably followed by other regimes. When

prices are increasing, it is more important to know if prices will fall by the end of
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the planning horizon, which can be invaluable information for a decision maker. Our

method can enable an agent to anticipate and prepare for regime changes, for example

by building up inventory in anticipation of better prices in the future or by selling in

anticipation of an upcoming oversupply situation.

7.2 Future directions

Our approach maintains the uncertainty in price prediction by maintaining a price

distribution. This allows an agent to avoid over-committing to risky decisions. We

intend to apply our method in other domains where predicting price distributions

appears fruitful, including domains such as Amazon.com, eBay.com, and to further

deepen our research in financial applications like stock tracking and forecasting.

We have implemented the regime identification and prediction method in a TAC

SCM agent and integrated it into the overall decision making process. Currently we

are using regime predictions for tactical and strategic decision making in the sales

component of our agent. Ultimately, we plan to combine probability information

supplied by our method with information about possible consequences of actions to

optimize decision making.

With TAC SCM and the stock market we have presented two applications of our

research. The stock market generates a continuous flow of pricing data, whereas in

TAC SCM we have an artificial start and end. Figure 7.1 shows the minimum and

maximum prices, available in the daily price report, for a typical game, 4260@tac4,

for the low market segment.

We observe that the spread between minimum and maximum prices tends to be

relatively constant for much of the game, but in the last 10 days the minimum and

maximum prices diverge strongly. This is a typical behavior in TAC SCM games,

since unsold inventories have no residual value at the end of the game, and some

agents get very aggressive in attempting to sell it off. We have analyzed the mean,

median, and standard deviation of all prices of all the final games in 2005 TAC SCM

tournament (see Figure 7.2), and found that the price divergence in the last 10 days

is very apparent in the aggregate data. Since the last 10 days of the game do not

appear to exhibit any consistent structure, we are thinking it might be best to apply

a simple linear approximation of the order probability curve to react faster to unseen
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Figure 7.1: 4260tac4 (Final TAC SCM 05) – Minimum and maximum daily prices of
computers sold, as reported during the game every day, and mean price for the low
market segment. The mean price is computed after the game using the game data,
which include complete information on all the transactions.

market conditions.

Based on many games we also found out that the beginning of the game, usually the

first 30 days, has an apparent downward trend. The reason is that all manufacturer

agents start out with nothing in their inventories. Once they have something to offer

they can sell for a high price, since the market is in an extreme scarcity regime. Since

the start effect is quite predictable and the end game effect is hardly predictable we are

considering applying three different models to better determine the order probability.

We have started training a separate GMM for each product for the start phase –

day 1 to day 30 (see Figure 7.2, and one for the mid game – day 20 to day 210 (see

Figure 7.2), and a linear model for the last 10 days of the game. As we can see in

Figure 7.2, high initial prices are reflected in the early GMM through a large density

mass above the point where np = 1.0. Towards the end of the game we hardly see any

prices above 1.0. The reason is that the competition is much stronger after day 30,

i.e. after each agent has enough inventory to respond to the majority of the customer
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Figure 7.2: Mean, median prices and error bars (+/ − 1 standard deviation) for all
final games in TAC 2005 for the low market segment.
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Figure 7.3: The price density density function for product 16, p(np), (right y-axis)
estimated by the GMM with 25 components from day 1 to day 30 (left) and from day
21 to day 210 (right). We clearly observe a shift in the distribution.

We have purposely trained the early and middle GMM model with a time overlap,
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since the initial early model might predict after day 20 a too strong price trend

downwards. We have developed a model combiner that takes a transition length

and the start and end times of the different models as input. Both models together

generate weighted predictions, i.e. medians, price trends and order probabilities.

Their weights assignments are linearly reciprocal, i.e. on the first day the early model

has 100% weight and the middle one 0%, after 10% of the transition time, the first

model has 90% and the middle one has 10%, and so on until the end where the first

model has 0% and the middle model has 100%. We plan to thoroughly test and

analyze the model in the near future.

In addition, we plan to apply reinforcement learning [Sutton and Barto, 1998] to

map economic regimes to internal operational regimes and operational regimes to

actions, such as procurement and production scheduling. Under operational regimes

we understand a state which includes which actions to take next while knowing the

current regime and receiving the regime forecast.

There are several improvements to the prediction process we are also pursuing. We

plan to implement a boosting algorithm [Schapire et al., 2002, Stone et al., 2003] to

perform dynamic model selection between the two Markov, the exponential smoother

and potentially other regime predictors. Since the methods might work well for

different time-steps in the planning horizon, we plan to perform boosting for all days

in the planning horizon, which will provide a way to focus on the most successful

predictors during the online use of the algorithm.

We also would like to research the impact of different training models and their

resulting real-time performance. One way to modify the regime training model is to

train one model for all the products in one market segment, and then in real-time the

agent will update all the products in one market segment individually. The reason

is that all the products in one market segment see the same demand level, and we

normalize the prices across products.
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Appendix A

Summary of notation

Symbol Definition

C Set of all available component types

G Set of all goods (product types)

d Current day

Dd,g Customer demand for a good g on day d

Deff
d,g Effective customer demand for a good g on day d

Φ Total profit

Ad,g Allocated quota for a good g on day d

F Factory capacity

h Planning horizon

np Normalized price

np Mid-range normalized price

ñpmin Smoothed minimum normalized price

ñpmax Smoothed maximum normalized price

ñp Smoothed mid-range normalized price

α Smoothing coefficient

p(np) Density of the normalized price

GMM Gaussian Mixture Model

N Number of Gaussians of the GMM

p(np|ζi) Density of the normalized price, np, given i-th Gaus-

sian of the GMM

µi Mean of i-th Gaussian of the GMM

σi Standard deviation of i-th Gaussian of the GMM
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P (ζi) Prior probability of i-th Gaussian of the GMM

P (ζi|np) Posterior probability of the i-th Gaussian of the

GMM given a normalized price np

~η(np) N-dimensional vector with posterior probabilities,

P (ζi|np), of the GMM

M Number of regimes

Rk k-th Regime, k = 1, · · · ,M
P(c|r) Conditional probability matrix (N rows and M

columns) resulting from k-means clustering

p(np|Rk) Density of the normalized price np given a regime Rk

P (Rk|np) Probability of regime Rk given a normalized price np

P (order |np) Probability of order given a normalized price np

T Markov transition matrix

Π Stationary distribution of a Markov process

KL(~P (R̂)‖ ~P (R)) KL-divergence between the predicted regime proba-

bility distribution and the actual regime probability

distribution
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Appendix B

Parameter determination of a

Gaussian Mixture Model

B.1 Maximum Likelihood

Maximum likelihood estimation [Mitchell, 1997] begins with the mathematical ex-

pression known as a likelihood function of the sample data. Loosely speaking, the

likelihood of a set of data is the probability of obtaining that particular set of data

given the chosen probability model. This expression contains the unknown parame-

ters. Those values of the parameter that maximize the sample likelihood are known

as the maximum likelihood estimates.

B.2 The EM-Algorithm

To calculate the posterior probability P (c|np) Equation 5.9 assumes that we know

the distribution that each training instance came from, and the parameters of the

mixture model. The problem is that we do not know either of these things. Here

we describe how to determine the parameters, µ, σ and prior probability of a GMM

from a data set with the help of an unsupervised clustering method called the EM

algorithm [Dempster et al., 1977].

The EM algorithm does the clustering from a probabilistic perspective. It attaches to

each observation, even training examples, a certain probability of belonging to each

cluster. The EM algorithm presumes that the data are generated from a mixture
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distribution, P . Such a distribution has N components, each of which is a distribution

in its own right. A data point is generated by first choosing a component and then

generating a sample from that component. Let the random variable C denote the

component, with values 1, . . . , N ; then the mixture distribution is given by:

P (x) =
N∑

i=1

{P (x|ci)× P (ci)} (B.1)

where x refers to the values of the attribute for a data point. In our case this corre-

sponds to Equation 5.7 where a mixture of Gaussians is the choice of the components

distributions. In a GMM P (ci) corresponds to the weight of each component, wi,

and P (x|ci) corresponds to the normal distribution N(x;µi,
∑

i) for each component.

In our specific case we are looking only at the density for a particular parameter,

normalized unit order price np, which collapses the covariance matrix to one element,

σi. For general understanding we keep this description open to the multi-parameter

case.

The underlying idea of the EM algorithm is to pretend that we know the parameters of

the mixture model and then infer the probability that each data point belongs to each

component. In a second step each component is re-estimated to fit the entire data

set with each point weighted by the probability that it belongs to that component.

These two steps are iteratively repeated until the procedure converges to a stationary

values for µi. The GMM parameters are initialized arbitrarily and the following two

steps are iterated:

1. E-step: Compute the probabilities pij = P (ci|xj), the probability that datum

xj was generated by component i. With the help of Bayes’ rule we determine

pij = α×P (xj|ci)×P (ci). The term P (xj|ci) is the probability at xj of the ith

Gaussian, and the term P (ci) is the weight parameter or prior probability for

the ith Gaussian. Define pi =
∑

j pij

2. M-step: Compute the new mean, µi, covariance
∑

i, and component weights,

wi, as follows:

µi ←
∑

j

pij × xj

pi
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∑

i

←
∑

j

pij × (xj − µi)× (xj − µi)
T

pi

wi ← pi

In the first phase, E-step or expectation step, the algorithm calculates the expected

values pij of the hidden indicator variables Zij, where Zij is 1 if datum xj was gener-

ated by the ith component and 0 otherwise. In the second phase, M-step or maximiza-

tion step, the algorithm finds the new values of the parameters that maximize the log

likelihood of the data, given the expected values of the hidden indicator variables.
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Appendix C

Optimal number of Gaussians

Inputs:
pnpavg: original normalized price density
maxNumGauss: the maximum number of Gaussians
maxFits: iterations of GMM fitting
NP : set of all normalized prices used for training
numNP : length of NP

Output:
optNumGauss: the optimal number of Gaussians

Process variables:
GMM : Gaussian mixture model
pnpsamp: sampled estimated normalized price density
KL: KL divergence
KLavg: average KL divergence

Process:
1 for comp = 1 until maxNumGauss
2 for fits = 1 until maxFits
3 GMM = Expectation Maximization(NP , comp)
4 pnpsamp = Monte Carlo Sampling(GMM ,numNP)
5 KL(comp, fits) = KL divergence(pnpavg, pnpsamp)
6 end

7 KLavg(comp) = mean(KL(comp))
8 end

9 Index KLmin = min(KLavg)
10 optNumGauss = KLavg(Index KLmin)
11 return optNumGauss

Figure C.1: Algorithm to find the optimal number of Gaussians in a GMM.
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Appendix D

Semi-Markov Process

We hypothesized that regime switches are not exponential (Markov), i.e. the future

depends not only on the present state, but also on the length of time the process has

spent in that state. This requires modeling the regime transition as a semi-Markov

process [Levinson, 1986].

To model this we modify the Markov transition matrix, Tpredict , to be a weighted

sum of two matrices, the steady state matrix Tsteady and the change matrix Tchange .

Tsteady is the M ×M identity matrix, where M is the number of regimes. Tchange is

the Markov transition matrix, which is computed off-line as described earlier.

Tpredict(rt+1|rt) = (1− ω(.))Tsteady + ω(.)Tchange(rt+1|rt) (D.1)

where ω(.) represents the probability of a regime change, and rt represents the current

regime. To compute the value of ω(.), we need to introduce a few variables. We define

∆t as the time since the last regime transition at t0: ∆t = t− t0. We model the time

τi spent in regime Ri before the transition to regime Rj occurs as a random variable

with distribution Fij. τi is estimated from historical data. We hypothesized that

the probability density of τi is dependent on the current regime, Ri, i.e. p(τi|Ri).

We computed the frequency of all values of τi in ascending order and fitted different

distributions. The Gamma distribution, g(t;α, λ) is a reasonable fit to the data. (see

Figure D.1).

The gamma density function, g(t;α, λ), depends on two parameters, α and λ:
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Figure D.1: Fitted Gamma pdf for p(τ |R2) (top); Cumulative distributions: ω(r =
R2,∆t) is the probability of transitioning out of regime R2, ∆t is the elapsed time
since the last regime change (bottom). Data are for the low market segment.

g(t;α, λ) =





λα

Γ(α)
tα−1e−λt for t ≥ 0

0 for t < 0
, (D.2)

where Γ(x) is the gamma function, which is defined as Γ(x) =
∫∞
0 ux−1e−u du x ≥

0, α > 0, λ > 0. The parameters were fitted separately for each regime using a

maximum likelihood procedure. After applying the fitting procedure we obtained

α2 = 0.5193 and λ2 = 0.0264 for regime R2 in the medium market segment. The

probability of a regime transition ω(r, ∆t) from the current regime, r, with respect

to the time ∆t that has elapsed since the last regime transition, t0, is given by:

ω(r = Ri,∆t) =
∫ ∆t

0
p(∆t|r = Ri) d∆t (D.3)

where p(∆t|r = Ri) = g(∆t;αi, λi). Equation D.4 describes a recursive computation

for predicting the posterior distribution of regimes at time t + n days into the future,

where k = n + 1, for the semi-Markov process.

~P (rt+k|npt−1) =
∑

rt+k−1

. . .
∑

rt−1

~P (rt−1|npt−1) ·
k∏

j=1

Tpredict(rt+j|rt+j−1,∆t + j − 1) (D.4)
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When we model the process as a semi-Markov process we obtain in the high market

2989 out of 3184 (i.e. 93.88% success rate), in the mid market 2395 out of 3184 trials

(i.e. 75.22% success rate), and in the low market 2451 out of 3184 trials (i.e. 76.98%

success rate).
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