Using STAMP to Understand Recent Increases in Malicious Software Activity

by
David S. Zipkin

B.A. Computer Science
Dartmouth College, 1997

Submitted to the Engineering Systems Division
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Technology and Policy

at the
i ' [MASSACHUSETTS INSTITUTE
Massachusetts Institute of Technology OF TECHNOLOGY
June 2005

JUN 0 1 2005

©2005 Massachusetts Institute of Technology.

All rights reserved. LIBRARIES

¢ 2
Signature of Author..............c.cc L n froeees Nt e e an e ren e gt e tae ettt e e
T;ohéalogy and Policy Program, Engineering Systems Division

May 13, 2005

/1
N
Certified by.... y.(ceevnen. R B et S
Nancy G. Leveson
_ Professor of Aeronautics and Astronautics
Professor of Engineering Systems
Thesis Supervisor
Ve -~ » P
Accepted by........oviiiiii T T S e e PP PPN
‘ (Dava J. Newman

Professor of*Aeronautics and Astronautics and Engineering Systems
Director, Technology and Policy Program

ARCHIVES

Using STAMP to Understand Recent Increases in Malicious Software Activity
by
David S. Zipkin

Submitted to the Engineering Systems Division on May 13, 2005
in Partial Fulfillment of the Requirements for
the Degree of Master of Science in Technology and Policy

Abstract

My advisor, Professor Leveson has developed an accident modeling framework called
STAMP (Systems Theoretic Accident Modeling and Processes.) Traditional accident
models typically focus on component failure; in contrast, STAMP includes interactions
between components as well as social, economic, and legal factors.

My research extends Leveson’s STAMP accident model and applies it to a security
problem. I'have chosen to investigate the threat posed by malicious computer software
such as computer viruses. The problem is especially interesting because surrounding the
technical aspects of malicious software is a rich socio-technical system.

The first part of the thesis investigates two recent computer worm outbreaks and
identifies the numerous ways in which the security system failed. For both outbreaks,
there were multiple points of failure including the existence of un-patched workstations,
software organizations that distributed insecure software, the lack of sufficient legal
disincentives to dissuade hackers, as well as many others.

The thesis goes on to examine why the system was operating in such an insecure manner.
As is generally the case when modeling an accident, the explanation goes beyond any
single factor. I argue that that lack of Internet security can be largely attributed to the fact
that those providing critical parts of Internet security do not have sufficient incentives to
make good security decisions; instead they often make decisions at odds with Internet
security.

The thesis concludes with a discussion of policy and technical recommendations for
addressing computer security.

Thesis Supervisor: Dr. Nancy G. Leveson
Professor of Aeronautics and Astronautics
Professor of Engineering Systems

To Abby

for making my final week of thesis writing forever memorable

Table of contents

Chapter 1—Introduction and Background............cc.cccoveevimiiiinninnencinieeeeeeeseeeeereaene 6
Chapter 2—STAMP Background and Applying STAMP to Securityc.ccceeuvennne.e. 14
Chapter 3—STAMP Static Control StrUCKUTE..........coccecuevererenerierreeresene et sre e seeenas 22
Chapter 4—STAMP Structural Dynamics...........ccoceevueeimnienieiereeeiescese e 38
Chapter 5—STAMP Behavioral Dynamics..........cocoeveeiiiiinenineeiinteieeesreseeee e 50
Chapter 6—Addressing Internet SECUMILYcccoiiuiviriiiiniiciiiicieece et 68
Chapter 7—SUIMIMATYccoiiiiiiiiii ettt s s st 79

Chapter 1—Introduction and Background

This thesis has a dual purpose. Its principal purpose is to test the hypothesis that
Leveson’s STAMP (Systems Theoretic Accident Modeling and Processes) framework
can be successfully applied to a problem in the security realm. To test this hypothesis, 1
used STAMP to analyze the increasingly critical problem of malicious software
(malware) that is threatening the utility of the Internet.

The secondary purpose of the thesis is a complete analysis of the systemic causes
of malicious software using STAMP. I believe this thesis contains an analysis that yields
significant understanding about the causes of the malicious software problem, which is a
strong indication that STAMP can be used to analyze security problems as well as safety
accidents.

The thesis contains seven chapters. The remainder of the first chapter is devoted
to giving the reader an understanding of computer security and an appreciation of the
magnitude of the problem at hand. Chapter 2 provides background about STAMP and
discusses why I believe STAMP can be used in a security context.

Chapters 3, 4, and 5 constitute the STAMP analysis. Chapter three defines the
Internet Security System (ISS) in detail, which is the collection of components whose
interactions determine the ability of the Internet to withstand attacks. Chapter four
investigates how the ISS has repeatedly failed. It dissects two examples of security
failures and details which parts of the ISS failed to protect against the malicious software.
Chapter 5 discusses the changes to the ISS that occurred over the past decade and
explains how these changes weakened the ISS. It also provides a discussion of the forces
that drove those changes.

Chapter 6 is devoted to a discussion of technical and policy-oriented approaches
intended to improve the Internet’s resilience to malicious software and chapter 7 is a brief
summary of the report.

I believe that STAMP served as a very useful tool for conducting the security
analysis. Using STAMP, I was able to take a diverse and complex security system and
develop a strong understanding of how the system responds to the challenges it faces. By

conducting the STAMP analysis, I arrived at the central conclusion presented in chapter

5: those providing critical parts of Internet security do not have sufficient incentives to
make good security decisions; instead they often make decisions at odds with Internet

security.

Defining the problem

Attacks on the Internet can be divided roughly into two groups: targeted attacks
and broad attacks. This thesis focuses on broad attacks in which an attacker uses an
attack method, such as a type of computer virus known as a worm, to reach as wide an
audience as possible.'

Broad attacks have evolved beyond their early incarnations, when the author’s
main purpose was frequently to draw attention to his programming prowess by creating
as wide an impact as possible. In recent years, attackers have found creative ways to earn
money from broad attacks and the popularity of broad attacks are increasing. Attackers
use these attacks to compromise large numbers of computers, installing a piece of
malicious software on those computers without the computer owner’s knowledge or
acquiescence that gives the attacker use of the victim’s computer.

The author of this malicious software can make money by charging others for use
of the computers he has compromised. Others are willing to pay for the use of these
compromised computers and put them to a variety of unsavory uses, including:

e Sending spam

e Extortion and Blackmail via Denial of Service Attacks

e Stealing personal or financial information

¢ Running “Phishing” Servers

e Adbvertising click fraud

e Terrorism

The mechanics of malicious software
In order to understand the scope and threat posed by malicious software, it is

useful to know more about its inner workings. As varied as the purposes of broad attacks

' An example of a targeted attack is when a hacker attempts to gain access to or disable a computer
resource belonging to a specific person or organization.

can be, all rely on infecting as many computers as possible with malicious software.
Malicious software spreads in two primary ways:
® auser unintentionally, but voluntarily runs a piece of malicious software. The
malicious software can be delivered in various ways; it may be an email
attachment or perhaps a link included in an instant messenger (IM) message
e the malicious software can install itself without any human intervention by
exploiting a vulnerability in software already running on the computer
Once a computer has been infected with the malicious software, two things
happen: propagation and payload installation. First, the newly infected computer assists
the spread of the malicious software by attempting to infect other computers. See Figure

1 and Figure 2 below.

2 9

s N
S
9 2

—

-
\ u
ja

Figure 1—A single computer is infected Figure 2—Infected computers work to find

other vulnerable computers

The software installed during the propagation phase contains instructions to
spread the malicious software. It also contains a payload. Depending on the malicious
software’s intentions, the purpose of the payload can vary. The three common payload
types are:

® Remote control—this type of payload allows the compromised computer to be

used for one of the financial ventures described above. Such payloads might

make a computer into an email relay or instruct it to participate in a denial of
service attack

® Backdoor—this type of payload allows additional software (usually remote
control) to be installed at a later time by the malicious software author

® Destructive—destructive payloads cause damage to data and computers. For

instance, a destructive payload may erase data from a hard drive.

Regardless of the type of payload installed, the result is a compromised computer.
Perhaps surprisingly, destructive payloads are uncommon. Rather, computers
compromised with remote control payloads are frequently instructed to join networks of
compromised computers called botnets.

A botnet (short for robot network) is a collection of compromised computers that
take instructions from a single leader. Some botnets consist of upwards of 50,000
computers2 and researchers estimate that more than a million computers are members of
at least one botnet.

The owners of these botnets rent out the processor time of the computers they
control. The going rate for a compromised computer ranges from approximately $0.04 to
$0.08° per week of use. (Appendix 1 contains online advertisements offering the use of a
botnet.) A small botnet of 1000 computers can supplement the owner’s income by a few
thousand dollars a year. Larger botnets can provide significant income to malicious
software programmers. (A 50,000-computer botnet, fully utilized, can yield close to
$200,000 a year.)

Uses of Botnets
As outlined above, there are a number of creative uses for such a distributed
network of computing power. It enables bad actors to more effectively engage in

multiple kinds of nefarious behavior:

2 Know your Enemy: Tracking Bots. 13 Mar. 2005. The Honeynet Project & Research Alliance. 2 Apr.
2005 <http://http://www.honeynet.org/papers/bots/>.

<http://http://www.honeynet.org/papers/bots/>.

3 LaMacchia, Brian A. Security Attacks and Defenses. Working Group on Dependable Computing and
Fault Tolerance. Information Systems and Organizations. Puerto Rico, US. 29 Jan. 2005. 1 Apr. 2005
<http://www laas.fr/IFIPWG/Workshops&Meetings/47/WS/08-LaMacchia.pdf>.

Sending spam

Botnets are well suited for sending spam. By using hijacked home and office
computers, spammers can circumvent common anti-spam techniques used by ISPs and
firms, such as blacklisting, to stop spam. Additionally, they save on bandwidth costs
because they use bandwidth stolen from the hijacked computer. Researchers estimate

that hijacked computers send 66% of the spam on the Internet today.*

Extortion and Blackmail via Denial of Service Attack

The owner of a botnet can attempt to disable a service (such as a website) that is
running on another server. By concentrating the resources of the botnet on this service,
the attacker can overwhelm it and render it inaccessible to others.” This is known as a
distributed denial of service attack (DDoS). In June 2004, a botnet DDoS attack on
Akamai Technologies brought down the websites of Google, Microsoft, and Yahoo.®

Consider a botnet of 5000 home computers on average broadband connections. If
each computer devoted 200 kbps (kilobits per second) to the DDoS attack, the resulting
1000 mbps (megabits per second) would be sufficient to occupy nearly all of the DDoS
victim’s bandwidth.

With their ability to disable websites proven, botnet owners have been able to
extract tens of thousands of dollars in “protection fees” from high-revenue websites in

return for not launching denial of service attacks’.

Stealing personal or financial information
The owner of a botnet can also instruct the compromised computers under his
command to search their hard drives for sensitive information such as social security

numbers or financial information. Some types of malicious software can be instructed to

* LaMacchia.
5 A useful analogy for understanding denial of service attacks is a fast food restaurant. These restaurants
can comfortably serve 20 or so customers. A denial of service attack on a fast food restaurant would be
like thousands of people waiting in line to buy food, but not actually purchasing anything. Any legitimate
customers would be forced to wait in extraordinarily long lines and effectively denied service.
5 Biever, Celeste . "How zombie networks fuel cybercrime.” New Scientist 3 Nov. 2004. 5 Mar. 2005
7<http ://www.newscientist.com/channel/info-tech/electronic-threats/dn6616>.

Biever.

10

search computers for the license information of well-known software. 89 Later, this

information can be sold.

Running “Phishing” Servers

In a “phishing” attack, a user receives a forged email designed to appear as if it
came from a legitimate organization. The email requests that the user updates his
personal information, such as a credit card number or bank account password. If the user
follows the link given in the email, he is taken to a website that looks like the legitimate
organization’s site but, of course, is not. Compromised computers are often employed to

host the counterfeit websites and capture the sensitive information.

Advertising click fraud"

Botnets have also been used to tamper with online advertising. Google and
Yahoo developed a popular advertising business model where advertisers pay each time
their ad is clicked. Advertisers bid for popular keywords; the cost of each click is
typically around $1 but very popular keywords can exceed $30. (Appendix 4 contains
pricing information for select keywords.)

An extension of this business model allows web publishers to devote a portion of
their web pages to hosting advertisements. Here, the web publishers receive a portion of
the revenue generated.

Commanding the computers in a botnet to execute searches and click on specific
advertisements will fraudulently inflate the number of times an advertisement is clicked
and will result in increased costs for the advertiser as well as increased revenues for the
web publisher who hosts the advertisements. Botnets have been used to both drive up a

competitor’s advertising costs and to inflate the revenues of the web publisher.'!

How big a problem is this?

8

® Phatbot Trojan Analysis. 15 Mar. 2004. Lurhq Corporation. 2 May 2005

<http://www .lurhq.com/phatbot.html>.

' Vise, David A. "Clicking To Steal.” Washington Post 17 Apr. 2005. 2 May 2005
<http://www.washingtonpost.com/wp-dyn/articles/A58268-2005Apr16.html>.

"! Ives, Nat. "Web Marketers Fearful of Fraud In Pay-Per-Click.” New York Times 3 Mar. 2005, sec. C:1.
Lexis Nexis. 2 May 2005

11

While we do not know the total amount of economic damage caused by malicious
software, we can gauge the intensity with some statistics:

e Over 1,000,000 computers on the Internet are compromised and controlled by
malicious attackers'

e Botnets have been known to constitute upwards of 50,000 computers'

e 2/3 of spam on the Internet is sent by bots'*

e There were approximately 200 denial of service attacks per day at the end of
20047

If the Internet becomes increasingly hazardous and lawless, I expect that people
will begin to go offline, retreating to intensely maintained private corporate networks or
simply choosing not to use the Internet at all.

However, the potential for future damage is significantly worse. While there have
been surprisingly few outbreaks of malicious software with destructive payloads, there
have been a large number of successful worms with remote access payloads. A
successfully propagating worm could just as easily have a destructive payload.

Researchers at Berkeley’s International Computer Science Institute found that a
well-designed worm could, theoretically, tear through the Internet and infect 95% of 1
million vulnerable computers in slightly more than %2 of a second.'® Termed a flash
worm, it could potentially deliver a truly malicious virus to a large amount of computers
at a virtually unstoppable rate.

Such a worm would be appealing to terrorists or enemy states. Rather than
simply leaving behind back doors that might result in more zombie computers, such a

worm could have truly malicious intent, perhaps deleting data or rendering computers

12 Know your Enemy: Tracking Bots.

13 Know your Enemy: Tracking Bots.

' .aMacchia.

15 Symantec Internet Threat Report: Trends for July 04 - December 04. Vol. VIL: Symantec Corporation,
2005. 1-96.

! Moore, David, et al. "The top speed of flash worms." Proceedings of the 2004 ACM workshop on Rapid
malcode (2004): 33-42. 2 May 2005
<http://portal.acm.org/ft_gateway.cfm?id=1029624&type=pdf&coll=GUIDE&dl=GUIDE&CFID=428898
84&CFTOKEN=47157339>.

12

unusable. It could also be used to launch an immense denial of service attack on critical
infrastructure.

In order to achieve phenomenal spread promised by a flash worm, the writer of
the worm would need to detailed information about many computers. Botnets are

uniquely suited to gather this type of information.

The remainder of this thesis
The remainder of this thesis uses STAMP to address the question of how the
Internet arrived in this dangerous, vulnerable state and discusses potential remedies and

mediations.

13

Chapter 2—STAMP Background and Applying STAMP to Security

This chapter introduces STAMP (Systems Theoretic Accident Modeling and
Processes), a technique developed by Prof. Nancy Leveson, to model accidents. As
discussed in the previous chapter, the principle goal of this thesis is to understand if
STAMP can be effectively applied to security. This chapter offers a brief overview of
STAMP and discusses how I apply STAMP to a security problem.

Limitations of Previous Safety Models

Historically, accident investigators have used a number of different techniques to
investigate and analyze accidents. These techniques have significant flaws that may
result in incomplete understanding of the accident being modeled'’. According to
Leveson, most accident models view accidents in a linear fashion, assuming that a chain
of events causes the accident, usually beginning with a component failure. If we trace the
chain-of-events, these models say, we will come to find the cause of the accident.

However, systems have been growing more complex and accidents do not always
fit easily into chain-of-event model. Leveson writes that a number of changes have
occurred to the systems we are trying to safeguard, which make the old accident models
less effective: since World War II, the pace of technological change has increased,
resulting in systems that rely on lesser-understood technologies; software of dizzying
complexity is now routinely a part of such systems and, unlike physical components,
whose failure properties can be well understood, software can contain failure modes
unknown even to its developers. The relationship between humans and automations is
changing too, with humans being asked to oversee the operation of ever more
complicated automation.

In this new world, the chain-of-event model is not sufficient, Leveson writes. The
chain-of-event model places a focus on failure events. This focus fails to sufficiently

account for four types of factors that should be considered by an accident model.'®

'” Nancy, Leveson G. Safeware: System Safety and Computers. Addison-Wesley, 1995. Chapter 2.
'8 Leveson, Nancy G. "A New Accident Model for Engineering Safer Systems." Safety Science 42.2
(2004): 1-30.

14

System accidents

Chain-of-event models primarily focus on component failure as a cause for
accidents. System accidents are accidents caused by the way two components interact. In
such cases, both components work as designed, but their interaction causes a failure. 19

Human Error

Human error is a “catch-all” frequently used in chain-of-event models to assign
blame. In reality, what is error is much murkier. Workers rarely work exactly as they are
told, instead procedures evolve over time. Therefore, at the time of the accident it is
usually easy to find someone who did not follow instructions exactly and assign blame to
him or her. To be complete, an accident model must include the idea that workers are
going to attempt to change their work patterns to optimize their work to some local goal.
The model must consider why workers were able to modify their patterns and why they
made the decision to modify their work patterns as they did.*

Social and organizational factors

In traditional event-based models, it is difficult to accurately represent social and
organizational factors. Management structure, culture, and the reasoning for making
decisions can contribute to an accident, and it is therefore important to include them in
the model in order to be complete.!

Adaptation

Older chain-of-event models of physical systems did not need to change much, as
the physical systems they modeled did not change frequently. However, as the accident’s
context is broadened to include very dynamic factors, such as socio-technical factors, the
model must contain the ability to adapt. There are a multitude of changes that can occur,
including personnel changes and process changes. Furthermore, when a change occurs in
one component, other affected components must be made aware and adapt in kind.*
This information updating is complex and needs to be considered when seeking to

understand an accident.

1° Leveson, Safety Science.
2 [eveson, Safety Science.
21 eveson, Safety Science.
221 eveson, Safety Science.

15

Using STAMP to model accidents

To address these environmental changes and the deficiencies of old accident
models, Leveson developed STAMP (Systems-Theoretic Accident Model and Processes).
STAMP views accidents in a much broader context than the previous chain-of-event
models and includes the factors discussed above that are not handled well in event-chain
models.

STAMP views safety as a control problem.23 A system 1is a set of interrelated
components that must be kept in equilibrium by a feedback and controllers. When the
feedback loops and controllers are designed correctly and work as planned the system
will be resilient to “sparks” such as external disturbances and component failures. But if
the control loops are incorrectly designed or have degraded, the system will not be
successful at regaining equilibrium after such a “spark” and an accident may occur.

Leveson writes:

In this conception of safety, accidents occur

when external disturbances, component failures,

and/or dysfunctional interactions among system
components are not adequately controlled..?

The “sparks” a system faces such as external disturbances and component failure
are inevitabilities of operation. If the system is truly safe and a “spark” occurs, it will be
resilient enough to continue safe operation. An accident occurs when the system cannot
regain a safe equilibrium after such a “spark”. The accident should be attributed to a
safety system that was unable handle the anomalous event, not to the anomalous event.

Understanding an accident is not a matter of understanding the disturbance or
component failure, rather it is a question of understanding why the system was not able to
regain equilibrium after the event.

Designing a safe system is a matter of designing appropriate control structures.
The designer must fully expect external disturbances and component failures and create a
system that is able to effectively respond to such events. Furthermore, such a system

must evolve and adapt over time.

2 Leveson, Nancy G. A New Approach to System Safety Engineering. 2 May 2005
<http://sunnyday.mit.edu/book2.pdf>, Chapter 4.
2 Leveson, Nancy G. A New Approach to System Safety Engineering, Introduction to part IT

16

The STAMP Process

Conducting a STAMP analysis consists of three sub-analyses25 :

1) Static Safety Control Structure

2) Structural Dynamics

3) Behavioral Dynamics

Together, these three analyses can give a complete picture of an accident. Briefly,
the first analysis, the Static Safety Control Structure contains a definition of the safety
system. It defines the components included in the system, the hazards threatening the
system, and the required behavior of the system (e.g., the constraints it must adhere to).
The second analysis, the Structural Dynamics, shows how the control system changed
over time, focusing on what state it was in at the time of the accident. Finally, the third
analysis, Behavioral Dynamics, addresses what forces caused the system to migrate from
the original state as shown in the Static Safety Control Structure to the unstable state

identified in the Structural Dynamics model.

Static Safety Control Structure

The Static Safety Control Structure shows the system as designed to address
hazards. As discussed above, the safety system is divided into components, representing
the key parts of the socio-technical system. The components may be physical (e.g.,
factories, computers) or they may be organizational (e.g., government organizations,
firms). Each component in the system has a set of constraints for safe operation. In
STAMP, a component’s constraints are the set of rules that, if enforced, increases the
resilience of the safety system. Each component has one or more controllers associated
with it that, relying on feedback from the component, works to ensure the constraints are
maintained.

The following diagram (Figure 3) is a sample Safety Control Structure. The lines

detail the feedback channels and control mechanisms that connect components.

2 1 eveson, Nancy G. A New Approach to System Safety Engineering, Chapter 8

17

hospital repaets, input from medical oommunky

Repotts Repons

ACES B |
1 Minisry of }JOEM BGOS Medical
Budgets, laws Hm"l%t L Dept. of Health

reguations
me b m“; i——_ J
Waler samples
rederal] provincial =] Govt. Water
uidsingd - overment ,&Wﬂ@_ Repars

{ M&m

Budgets, laws
Whistry of)
the Envionment | fiidpines spdstandards
Reponts
I Walkerton Public Utiiies |--22%.
— Commissionars
Budgats, lows é?fd.m' L—l
Rual Aflsirs Ovorsight
Viatketon
Rosidents

Figure 3—A sample Safety Control Structure from Leveson®®

Structural Dynamics

The second part of a STAMP analysis is the Structural Dynamics analysis. This
part of the analysis focuses on how the safety structure changed between its instantiation
and the time of the accident. In this part of the analysis, we identify which constraints
were not enforced at the time of the accident and, more importantly, identify why they
were not enforced.

In order for a constraint to be effectively enforced, four conditions must be met.”’
There must be a:

¢ Valid Goal Condition—the controller must be attempting to achieve a goal

¢ Adequate Control Actions—the controller must be able to exert sufficient

control onto the system component it is controlling

e Correct Mental Model—the controller must have a accurate understanding

of the system it is controlling

% Leveson, Nancy G. A New Approach to System Safety Engineering, Chapter 8
2 1 eveson, Nancy G. A New Approach to System Safety Engineering, Chapter 4

18

e Sufficient Feedback—the controller must receive accurate and sufficient

feedback about the state of the system

Behavioral Dynamics

The purpose of the final part of STAMP analysis is to understand the “Behavioral
Dynamics” of the system. This section seeks to understand what forces drove the system
from its resilient state to the state where it could not longer enforce constraints and the

accident occurred.

Applying STAMP to Security

Similarities between Safety and Security

I believe that the STAMP framework can also be applied to security problems
because security problems have many of the characteristics that Leveson developed the
STAMP safety model to address. Both security and safety exist within socio-technical
systems: systems with a complex technical problem at their core, but heavily affected by
economics, regulations, and social factors. In security systems, as we saw in safety
systems, the relationship between cause and effect can be non-linear, delayed, and hard to
distinguish.

Security, like safety, is an emergent property. Security arises from the
interactions among all the components in the system. It is not possible to determine if a
system is secure (or safe) by looking at a single system component. Finally, both types of
problems are highly dynamic and rely heavily on feedback.

Just as the safety system is viewed as a control system designed to keep a system
in equilibrium in the face of “sparks” such as external disturbances, I argue we can
similarly view the security control system as a control system designed to keep the
system in equilibrium in the face of sparks. However, in the security case these sparks
are motivated attacks on the security of the system rather than external disturbances or
component failures.

As is the case for safety, the cause of an accident was not the external disturbance

or component failure; instead it was the inability of the system to respond to that

19

disturbance. The same is true in this conception of security. The cause of the security
incident is not the attempted attack; rather it is the inability of the system to effectively
respond to the attack attempt.

We can take Leveson’s statement about using STAMP for safety from above:

In this conception of safety, accidents occur
when external disturbances, component failures,
and/or dysfunctional interactions among system
components are not adequately controlled..

and modify it to pertain to security problems:

In this conception of security, incidents occur
when attacks are not adequately handled by the
control system..

Differences between Safety and Security

There are important differences between safety and security; this section discusses
these differences and argues that it is still reasonable to use STAMP as a means for
understanding a security incident. The differences are related to the location and
frequency of the disturbances the system faces.

In the case of security, the disturbances the system must respond to originate with
a motivated attacker, rather than a random anomaly such as a component failure.
Assuming an intelligent attacker, the “disturbance” they create will be designed to exploit
the part of the system they perceive to be most likely to yield to an attack, thus the
perceived weakest point of the system will be under greater pressure than a part that is
perceived to be more resilient.

In addition to having targeted disturbances, the frequency of the disturbances will
likely be different in the case of security. If a system is viewed as weak it will attract a
greater frequency of attacks because those attacks will have a higher yield.

Although these differences are present, they still generalize to the same problem
as safety: can a system respond to disturbances, regardless of their source or frequency.
The STAMP model does not make any assumptions about the source of the
“disturbances”; all disturbances are treated the same; the control system simply attempts

to regain equilibrium after a disturbance.

20

In summary, I believe STAMP can be used for security as well as safety because
it is concerned with a system’s ability to respond to a disturbance, not the source of the

disturbance.

Multiple Hierarchies in the STAMP framework

STAMP relies on the idea that components are arranged in a hierarchy; superior
components are responsible for controlling the actions of subordinate components.
Components rely on their superiors to provide the control actions that maintain their
constraints. For example, if the superior component is a regulatory authority, it can
control its subordinate with regulations or laws. If the superior component is a work
supervisor, it may use the manager-employee relationship to achieve compliance with the
constraint by the subordinate component.

When modeling the security of the Internet, a loosely coupled system, I observed
two things. First, there are multiple control hierarchies and second, each of the multiple
hierarchies has a top-level component whose behavior is not controlled by another. For
instance, home computer users are not required by any other entity to use their computers
in a specific way. At this point, there is not a law mandating that they use their computer
in a secure manner nor do that have any relationship with their Internet Service Providers
requiring them to take certain security precautions. They make decisions about their
security actions and live with the consequences.

Top-level components are their own controllers, determining what constraints
they should enforce on their own. Although they do not have a strict controller, they
incorporate information from many other sources to determine what constraints they
should enforce and how they should enforce them. I assume these top-level components

act to maximize their welfare, unless otherwise regulated.

21

Chapter 3—STAMP Static Control Structure

Chapters 3, 4, and 5 are devoted to conducting a STAMP analysis (as defined in
the last chapter) of the Internet Security System. This chapter contains the first of those
three parts: the Static Security Control Structure (SSCS). In it, I describe the many
components of the Internet’s security structure, identify their relationships to one another.
I identify the system hazard that the Internet Security System faces and enumerate the
constraints that the components must adhere to for the system to operate securely and
avoid the hazard.

The next chapter investigates the Structural Dynamics of the system and discusses
how the security system has failed in multiple instances. For context, I use two recent
significant virus outbreaks as case studies. By investigating the two Internet worm
outbreaks, we can begin to understand which constraints were not able to be maintained,
leading to a weakened system and ultimately to the outbreaks.

Chapter 5 contains the final step of the security STAMP analysis, the Behavioral
Dynamics. In this chapter I discuss how and why the security system evolved in a

manner that made it very difficult to maintain the necessary constraints on behavior.

The Internet Security System

The system that has developed to protect users from threats posed by malicious
software is complex and broad. The distributed nature of the Internet necessitates that
security is not achieved by central control; the scope, geography and underlying design of
the Internet do not allow for it. Instead, the system includes many components exerting
force upon one another to keep the system in dynamic equilibrium. Control may be
exerted directly or by regulation and market forces.

I have identified 15 entities that interact to produce today’s Internet Security
System. They are organized into multiple control hierarchies, reflecting the distributed
nature of the Internet. In addition to the 15 entities working to secure the system, there
are two entities that attempt to disrupt Internet Security by funding or writing malicious

software.

22

Figure 4 identifies these 17 components and organizes them according to their
STAMP control hierarchies.

Each component in the diagram has a set of constraints that are to be enforced by
the control actions of the components located above them. For instance, component /.
Computers has a set of constraints which are enforced by both 3. Users and 6. Software /
Operating Systems. In turn, there is a set of constraints imposed on 6. Software /
Operating Systems that are enforced by 7. Software / Operating System Vendors. The
constraints are derived by considering what must be done in order to avoid the
overarching system hazard, loss of utility of the Internet due to the spread of malicious
software. Top-level components, such as ISPs or Computer Users enforce constraints

upon themselves.

23

w2 £314M035 12ULIU] Y [—4 24N81.]

JEE]
sisendwon °|
y A H m 3 A A A 2 4 ssowiweibosg a/emMyos SNOIRW "9t p
888 HuNWwoy
2358 3 oz mw 85 A A yoreasay
2 s 22 3 33 ‘St
=3 3 32 @z gs g
L © 5 o 2 g 3
(2% ‘sl g e 2s g 2
‘(femas|4) s8o1Aa(] o 2 = 3 n
T 3
SOMION "2 5 E o 2
c [’=] o
A A 8 . a .
g e siosuodg = -
3 ES BiBM}JOS w.
g il g Snoien “L} s A
= 3 2 ° =T
3 S S 1eM}§0S SO/ 4 1 WI_ m
SMJIA 2JeMoS 3
beue, T pabeuep o o9
POSEUSN y PoTRUBMES -y '8 sdsl 0t ‘9 a
i A
siasn soIndwo) ‘e = =
a 28§ 13g
i 559 s5¢
EX] EN JUSWAI0JUD MET ‘2|
83 g2
B 5@
> 5 Q Q ?
YEIS [eouyd8] b i B El oz S
; S N £ R ot
- - — [ogl -] b
.m w S10pUS, 2 2 : m W /SHuBL
Sz PUSA 83 UYL L
3 m SI0pUBA SO/ 5 |
23 SnuIA 2lemljos .m
v -nuy '6 L 5 o
. g 2
a - ° .w
s9
juswabeuep asudisiug g m m
uMq.
]
! anpelsiba aANNoeXg
! -- JUBLILIBAOY) b} -JUSWIUIBAOY) g}

The remainder of this chapter discusses the entities in the figure and explains the
roles they play in securing the Internet. In keeping with the STAMP framework, each
section concludes with a set of constraints that the parent components must enforce to
ensure secure operations and enumerates the components responsible for ensuring those
constraints are enforced. The next chapter looks at two virus outbreaks that occurred and

discusses which constraints were violated when the outbreak occurred.

1. Computers

There are hundreds of millions of computers connected to the Internet,?® over
90% of which run versions of Microsoft Windows.” (See Figure 5) Individuals, firms,
schools, and other organizations own these computers but regardless of their purpose,

they are targets for malicious software.

Operating System Market Share

3%

1%
1%
5%

B Windows

B Mac

O Windows 95
0O Linux

90% B Unix and other

Figure 5--Operating System Marketshare (June 2004)
Computers are the last line of protection against the malicious software that
threatens the Internet because the goal of malware is to compromise these computers. In
order to maintain the security of the Internet, computers must not run software that is

malicious nor may they help to spread malicious software once infected.

2 CIA World Factbook. 21 Apr. 2005. Central Intelligence Agency.
<http://www.cia.gov/cia/publications/factbook/rankorder/2153rank.html>.
¥ Google Zeitgeist. <http://www.google.com/press/zeitgeist/jun04 _pie.gif >.

25

This is a difficult task, as most users do not fully understand what the software
they are running does. Even a knowledgeable user cannot know with certainty what the
software he executes is going to do. There are many other ISS components that must try
to ensure computers do not run malicious software and do not help spread malicious
software. These enforcing components include the users, operating systems and other
software they run, technical support staff, anti-virus software and the ISPs that connect

the computers to the Internet that determines if the following constraints remain enforced.

Constraint Enforced by

1-1: Computers must not execute malicious e Users

software programs e Technical Staff
Software and Operating
Systems

Anti-virus software

1-2: If compromised, computers must not spread
virus

Network Devices

Users

Technical Staff
Software and Operating
Systems

® Anti-virus software

2. Network Devices

Some of the hundreds of millions of computers connected to the Internet connect
are accessible directly from the Internet. But many computers, both on corporate
networks and in homes, are partially protected from Internet-based attacks by network
devices such as firewalls. A firewall is only part of a defensive strategy, but it provides
two critical services that can protect a computer from malicious software. First, a
firewall can stop certain types of network traffic that may carry malicious software, if
properly configured. Second, many firewalls change a computer’s network address (IP
address) so it cannot be seen by other computers unless it initiates contact first. This is
known as network address translation (NAT) and can help insulate a computer from self-

propagating malware.

Constraint Enforced by
2-1: Devices must be properly configured and e Users
maintained to prevent malicious network traffic e Technical Staff

26

from accessing computers

3. Computer Users

It is useful to break computer users into two types: those that manage their own
computer and those that rely on someone else such as office technical support to manage
their computer for them.

As described in chapter 1, there are two ways that a computer can become
infected with malicious software. The first is when the user executes a malicious piece of
software such as an email attachment. The second type of infection occurs when a
computer is running software with a vulnerability that can be exploited by the malicious
software. In this second case, the malicious software takes advantage of a security flaw
and installs itself on the computer.

Generally, the vendor that produced that insecure software releases a security
update known as a patch shortly after they become aware of the vulnerability. Installing
the patch can protect the computer from strains of malware that exploit that vulnerability.
It is the responsibility of the computer user or the organization managing the computer to
install the security patch in a timely manner.

The diagram shows that self managed users are not bound by any laws or
regulations to install security patches on their computers. The user needs to enforce
constraints 1-1 and 1-2 (e.g., by applying security patches, by not opening unknown
attachments), but no other component works to ensure that self managed users fulfill this
responsibility. In cases such as this, it is up to the individual user to decide how much

energy and expense to expend in order to maintain these security constraints.

Constraint Enforced by
3-1: Users must invest time and effort in e Users (Self enforced for
securing their computers unmanaged users)

4. Technical Staff
As discussed above, there is a significant portion of computer users who rely on a

technical staff to administer their computers, generally in a corporate environment. This

27

frequently means the burden of applying software patches is shifted from the users to a
technical staff overseeing many computers.

The technical staff has a difficult job enforcing constraints 1-1 and 1-2 on the
computers and needs to balance proactive work (such as developing response plans and

upgrading users to new versions of software) with a significant amount of reactive work.

Constraint Enforced by

4-1: Have sufficient time and training to ¢ Technical Management
effectively complete work tasks

5. Technical Management

The layers of management overseeing the Technical Staff are responsible for
ensuring that the Technical Staff component maintains their constraints in addition to
making strategic security decisions. They need to find a level of security that is sufficient
but will minimize costs and allow them to complete their business mission. Because

security is a non-event, finding this balance is difficult.

Constraint Enforced by
5-1: Must correctly balance security risk with ¢ Technical Management (Self
performance pressure Enforced)

6. Software / Operating Systems

As discussed above, malicious software can spread in multiple ways, including
email and self-propagation. For malware to propagate without any user intervention, it
must exploit vulnerabilities in either a computer’s operating system or in an application
running on the operating system.

If an author is writing malicious software for financial gain (by creating botnets of
compromised computers), the money he or she can make is proportional to how many
computers he infects. A rational virus writer will target operating systems and software

with a high market share.

Constraint Enforced by

6-1: Software must not contain security ® Software and Operating

28

vulnerabilities System Vendors

7. Software Vendors

As I discuss in chapter 5, creating software is a hard problem, and vulnerabilities
exist in most, if not all, software packages. For example, SecurityFocus’s Bugtraq
database, known in the industry as the de facto clearinghouse for security vulnerabilities,
recorded an average of 55 new vulnerabilities per week in 2004.%

Most major software companies seem to be working hard to reduce
vulnerabilities, but this focus was not always present. In 2002, Microsoft recognized that
the connected nature of the Internet was making security even more important and
launched their Trustworthy Computing Initiative, revisiting their development tools and
processes.

Even with increased attention given to writing secure software, software will have
vulnerabilities and software companies must have a process for notifying customers
about the vulnerabilities and delivering updated software to them. Companies face a
challenge: customers demand notification of vulnerabilities in a timely manner, but

notifying also alerts malicious software authors about potential exploits.

Constraint Enforced by

7-1: Vendors must successfully balance pressure ® Software and Operating
to run a profitable business and create secure System Vendors (Self
software Enforced)

8. Anti-virus and other Prophylactic Software

The market for antivirus software is large and growing. According to IDC, the
size of the market was about $4.2 in 2004,>' up from $2.2 billion in 2002.3?> (Other
prophylactic software such as anti-spyware and software firewalls are not included in

these numbers.)

* Symantec Internet Threat Report: Trends for July 04 - December 04, p34.
3' IDC Study referenced in Symantec Press Announcement
<http://www.symantec.com/press/2004/n040921a.html>.

*2 IDC Research announcement
<http://www.idc.com/austria/downloads/about/featured_research_03_1.pdf>.

29

This kind of software fights with malicious software, attempting to prevent its
spread as well as remove infections that have already occurred. At the same time, many
forms of malicious software attempt to disable prophylactic software.

Most anti-virus software works by searching for identifying characteristics of
known malicious software. Once it identifies a piece of malware by these characteristics
(also known as a virus signature) it attempts to remove it. As new malware is discovered,
it is added to the set of known signatures and distributed to customers, generally via some

automatic updating process.

Constraint Enforced by

8-1: Antivirus Software must not be disabled by ® Anti-virus and other

malicious software Prophylactic Software
Vendors

8-2: Antivirus Software must detect and remove e Anti-virus and other

malicious software as well as prevent malware Prophylactic Software

from installing itself on an otherwise vulnerable Vendors

computer

9. Anti-virus and other Prophylactic Software (PS) Vendors

It is the role of the anti-virus and other Prophylactic Vendors to create software
that can find and remove malicious software. It must be robust enough to withstand the
malicious software’s creative attempts to disable it.

In addition creating this software, the PS vendors must also identify new
malicious software threats as soon as possible. Once identified, they must capture and
dissect the threat, create a new signature for it, test it, and release it to the public. Any

delay could result in more widespread infections.

Constraint Enforced by
9-1: Antivirus Software Vendor must provide up e Anti-virus vendors (self-
to date virus definitions as quickly as possible enfoced)

and automatically deliver them to customers or
notify customers about their availability

30

10. I1SPs™

The ISPs play an interesting role in the security system—they offer connectivity
to the computers connected to the Internet. ISPs have customers of all sizes. Large
enterprises and institutions rely on them to connect their networks to the Internet just as
home users and small businesses use ISPs to connect to the Internet. This puts the ISPs
in an important position as gatekeeper to the Internet. They have the ability to monitor
and control the traffic originating from and destined for their clients.

Monitoring the network can be costly to the ISP on a number of dimensions. If an
ISP chooses to block certain types of Internet traffic, they risk interrupting some
legitimate services of their customers. Some smaller, consumer focused ISPs chose to
filter their customer’s traffic and attempt to filter out malicious network traffic, but larger

ISPs like AT&T>* and Verizon do not, believing it is the customer’s responsibility to

protect against malicious network traffic.>>

Constraint Enforced by

10-1: ISPs must exert some degree of control ® Internet Service Providers
over the computers that they connect to the (Self enforced)

Internet while keeping customers satisfied

11. Think Tanks/Information Aggregators

These organizations, which include the National Cyber Security Partnership, the
Internet Storm Center, and Carnegie Mellon’s CERT/CC, provide a number of services to
the Internet community. Some act as clearinghouses for member organizations to share
threat and attack data in the hopes of viewing the “bigger picture”. Others offer
prevention and response best practices and others, like the National Cyber Security

Partnership focus on user community awareness.>’

33 Schneier, Bruce. Schneier on Security. 2 Dec. 2004. 2 May 2005
<http://www.schneier.com/blog/archives/2004/12/striking_back_a.html>.

* However, AT&T does do some spam filtering

35 Telephone interview with Verizon Sales. 18 Apr. 2005.

36 Telephone interview with AT&T Sales, 19 Apr. 2005.

7 CERT was created in 1988 with funding from DARPA as a response to the Morris worm

31

Constraint Enforced by

11-1: Information aggregators must have access e Government-Executive

to information about Internet threat activity ® Think Tanks / Information
Aggregators (Self Enforced)

11-2: Must recognize and communicate e Government-Executive

dangerous trends e Think Tanks / Information
Aggregators (Self Enforced)

12. Law Enforcement

Law enforcement agencies, including the FBI and local police departments, must
be skillful enough to apprehend the authors of malicious software that leads to outbreaks.
Their task is compounded by the international nature of the Internet. Law enforcement is
bound by jurisdiction, and, without international agreement, their ability to catch those
involved with malicious software is limited.

In addition to apprehending hackers, law enforcement can play a preventative role
as well. If law enforcement agencies are widely known to be effective at apprehending

malware creators, some would-be malicious software authors will be deterred.

Constraint Enforced by

12-1: Must have a impressive and well known e Law Enforcement

record for arresting those responsible for virus e Government—Legislative
outbreaks

13. Government—Executive

In 2002, the president released the National Strategy to Secure Cyberspace. In it,
the executive lays out the US government’s cyber security objectives: the government
must work to prevent attacks and if attacks can’t be prevented, then it must work to
minimize the damage of the attacks.

The strategy states that the most of the responsibility for securing cyberspace rests
on the private sector, but the government will play a role in ways the private sector
cannot or will not.*®

The National Cyber Security Division (NCSD) of the Department of Homeland

Security was created in June of 2003 to address some of these challenges. The purpose

38 United States. The White House. The National Strategy to Secure Cyberspace. Feb. 2003.
<http://www.whitehouse.gov/pcipb/cyberspace_strategy.pdf>.

32

of the NCSD is to conduct cybersecurity analyses, issue alerts and warnings about
threats, improve information sharing, respond to major incidents, and aid in national-level
recovery efforts.”* The NCSD works closely with the information aggregation

community, providing the funding to US-CERT. NCSD also works with law

enforcement.

Constraint Enforced by

13-1: Must prevent cyber attacks ® Government—Executive (Self
enforcing)

13-2: Must minimize the damage of cyber * Government—Executive (Self

attacks enforcing)

14. Government—Legislative

Statutes created by the Federal and State legislative branches of US governments
play an important part in the Internet Security System. There are a set of criminal laws
that are meant to govern those who would create the malicious software or use botnets for
financial gain. Additionally, there are contract and tort laws that proscribe rules designed
to guide the behavior of computer software vendors. The US does not have laws that
bind computer users or firms to maintain their computers in certain ways.

Criminal laws aimed at malicious software authors

The dual purpose of the US and foreign criminal laws are to both punish those
responsible for violating someone’s computer and to deter others from doing the same.
There are federal and state laws that criminalize hacking as well as distributing malicious
software such as viruses on computers within state or federal jurisdiction.40 In 2001, the
Patriot Act amended to the statutes to clarify that the US could also prosecute criminal
conduct that initiated outside of the US.

The punishment varies by the law that was violated, but can be significant,
including fines, prison, or both. The statute allows for prison terms for up to 20 years in

some cases. In extreme cases involving government computers, the prison term can be

for life.

3% United States. Department of Homeland Security. Ridge Creates New Division to Combat Cyber Threats
. 6 June 2003. <http://www.dhs.gov/dhspublic/display?content=916>.
0 ys Cybercrime Law: Defining Offenses Susan Brenner (Information Systems Frontiers) 6:2

33

Laws affecting software producers—Tort Law and Contract Law

In the US, there are two legal pathways that are designed to hold software
producers accountable for harm related to insecure software they have unintentionally
created.*’ These are tort law and contracts law. Tort law has a dual purpose. It is
designed to compensate a damaged party for harm incurred and also to deter companies
from creating products that can cause harm.

Using torts in the software security context has an added layer of complexity to it.
In the case of malicious software, the party most responsible for the damage is the hacker
that wrote and released the software. While these crimes are covered under the criminal
code, law enforcement has not been successful at apprehending those responsible for
viruses and worms.** In the case where the optimal target is difficult to obtain judgment
against, it is efficient to go after the second best solution, write Landes and Posner in The
Economic Structure of Tort Law. In this case, the next best target to apply tort liability to
is the software vendor.*?

Within tort law there are two areas that most frequently apply to computer
software: strict product liability and negligence. Strict product liability states that a
company is responsible for personal injury or property damage caused by its product,
regardless of contractual disclaimers or warranties. In order for strict product liability to
apply, the injured party must show that they suffered personal injury or property damage
and that the product was defective.**

Strict product liability does not include liability for economic damage, which is a

limitation that is especially relevant to computer software. At this time, computer data is

*! Other criminal and tort pathways exist for prosecuting cases where software producers intentionally
release insecure products.

*2 In 2002, the Justice Department convicted just 75 people for all computer crimes, not only virus related
crimes. (Fryer, Alex. "Microsoft offers bounty for arrest, conviction of cybercriminals.” Seattle Times 6
Nov 2003.)

2 Pinkney, Kevin. "Putting Blame Where Blame is Due: Software Manufacturer and Customer Liability for
Security Related Software Failure." Albany Law Journal of Science and Technology 13 Alb. L.J. Sci. &
Tech. 43 (2002).

“ Armour, Jody, and Watts Humphrey. "Software Product Liability." Software Engineering Institute,
Carnegie Mellon Institute (1993).

34

not considered property so any malware that destroys a company’s data by exploiting a
software flaw would not qualify the software vendor for strict product liability.*’

Negligence is another legal avenue that provides an incentive for software
companies to improve the security quality of their product. A consumer can charge
negligence if he feels that the damage he incurred came as the result of a lack of
“reasonable” quality control processes during the design of the software.*® In a software
context, this could mean releasing software that is known to have defects or employing
quality assurance processes insufficient for finding defects. In my research, I did not find
any examples of lawsuits where a vendor was successfully sued for negligence because
of security flaws in their software.

While tort law holds software producers responsible for only injury or property
damage, producers may be responsible for economic damage caused by their software
under contract law. This contract between the vendor and consumer is codified in the
end-user licensing agreement (“EULA”) that the user must agree to before installing the
software.

A EULA makes very limited warrantees and generally forces the consumer to
agree that the vendor is not liable for any types of economic damage the results from the
software’s use. Practically, only the largest software purchasers are able to negotiate
terms in the EULA. Most consumers are bound to the standard EULA, which is typically

very favorable to the software vendor.*’

Constraint Enforced by
14-1: Must craft enforceable laws that have a ¢ Government—Legislatve (Self
positive effect on the security of the Internet enforcing)

“ Barnes, Douglas A. "Deworming the Internet.” Texas Law Review 83 (279-329).
<http://ssrn.com/abstract=622364>.

* Miyaki, Patrick. "Computer Software Defects: Should Computer Software Manufacturers Be Held
Strictly Liable for Computer Software Defects?" Santa Clara Computer and High Technology Law Journal
May 1992: 121-144.

7 Wildstom, Stephen. "Want to sue over buggy code? Forget it, Microsoft and other software makers shield
themselves with the End User Agreement.” BusinessWeek 22 Sept 2003.

35

15. Computer Science Security Research Community
The research community is closely tied to the Internet security community.
Worthwhile ideas and discoveries made by the research communities should be

transferred to the private sector.

Constraint Enforced by

15-1: Must develop new technologies that can be e Computer Science Security

used to control malicious software Research Community (Self
enforcing)

The Internet Security ecosystem also includes the actors that attempt to take
advantage of weaknesses in the system to profit or to cause damage. In this analysis,
these actors include those that write and release the malicious software as well as those
that use computers compromised by the malicious software to earn money. In Figure 3,
they are represented as two separate components: the Malicious Software Writers and

Malicious Software Sponsors.

16. Malicious Software Writers*®
The motivations of malicious software programmers were discussed in chapter 1.

Their motivations have varied, but they are increasingly financially motivated.

Constraint Enforced by
16-1: Malicious Software Writers must not e Law Enforcement
create and release malicious software * Government—Legislative

“8 Malicious software authors are often referred to as hackers. The term hacker has a rich history and a
very broad meaning. Most generally, the term hacker is used to describe one with a curiosity for learning
how something works. ("The Hacker Ethic", Ethics in the Computer Age Proceedings, ACM Press, New
York, New York, November 1994.) For many, the term hacker is a compliment. However, in recent years
the media and others have co-opted the term and used it to refer to one who uses computers to break the
law. While not historically correct, this is the definition of hacker most widely understood and so, for the
sake of simplicity, I use the term hacker to refer to refer to the authors of malicious software.

36

17. Malicious software sponsors

The Internet Security ecosystem also includes the actors that take advantage of

weaknesses in the system to make a profit or to cause damage. As discussed earlier,

these bad actors can use compromised computers to accomplish their goals. They are

typically distinct from the writers of the malicious software; instead they either contract

with the programmers to write the virus or later “lease” computing power for a hacker’s

stable of hijacked computers.

Chapter 1 describes the some of the ways sponsors could use malicious software

to make money. They include:

Sending SPAM through compromised computers

Blackmailing others with the threat of a Distributed Denial of Service attack using
compromised computers

Stealing sensitive financial and personal information from compromised
computers

Using compromised computers to send emails and host websites tricking
recipients into sharing financial

Fraudulently clicking on online advertisements to raise revenue or deplete
competitor’s advertising budgets

Launching DDoS or other types of attacks to commit terrorism

Constraint Enforced by
17-1: Sponsors must not pay hackers to write e Law Enforcement
malware or to gain the use of their compromised * Government—Legislative

computers (i.e., botnets)

37

Chapter 4—STAMP Structural Dynamics

The purpose of the previous chapter was to explain the components of the Internet
Security System (ISS) and describe how they interact. When functioning properly, the
ISS can make the Internet more resilient to an outbreak of malicious software.

This chapter is devoted to understanding in what ways the ISS fails, allowing an
outbreak of malicious software. First, I discuss two well-known outbreaks of malicious
software, the Blaster and Sobig worms. Then, I parse the details of the outbreaks and
discuss which constraints were not maintained and which components were not able to
maintain them. A complete description of constraint failures can be found in the table in

Appendix 2.

Blaster Background

On August 11, 2003 the first variant of the Blaster worm (Blaster.A) appeared.
This piece of malicious software spread vigorously and effectively, ultimately infecting at
least 8 million computers and as many as 9.5 million.* Blaster spread without requiring
any interaction on the part of users and thus infected computers at a much faster rate than
malware that requires a user to open an attachment in their email. There were six
variants of Blaster; each compromised computers that would later be used for the purpose
of launching distributed denial of service (DDoS) attacks, however some variants
installed additional software that would further cede control of the computer to the
attacker.”®

The apparent purpose of Blaster.A was to launch a large-scale DDoS attack on
Microsoft’s WindowsUpdate website’' on August 6, 2003. Microsoft was able to defuse
the DDoS attack with some clever website renaming, however much more damage was
caused by the worm’s side effects.

A computer infected with Blaster or its variants will frequently restart. It also

sends out a large number of messages onto the Internet, looking for other computers to

* Lemos, Robert. "Alarm growing over bot software.” CNET News.com 30 Apr. 2004.
<http://mews.com.com/Alarm+growing+over+bot+software/2100-7349_3-5202236.html>.
%% Symantec Security Response W32.Blaster.C.Worm. 27 July 2004. Symantec Corporation.
<http://securityresponse.symantec.com/avcenter/venc/data/w32.blaster.c.worm.html>.

3! http://www.windowsupdate.com

38

infect. When the number of Blaster infected computers was at its peak, a computer
would receive a network message containing an infection within one second of
connecting to the Internet.’ 2

It is difficult to estimate the total damage caused by the variants of Blaster, but it
is believed to have resulted in productivity losses and lost revenue surpassing at least
$500 million.” It caused a large enough disturbance to initially be blamed for the East
Coast power outage on August 14, although it was later shown that Blaster was not
responsible for the outage but did hamper efforts to restore power.

Within days of Blaster’s discovery, a number of variants of the initial worm were
also released and discovered.>* There were 8 variants of Blaster relcasc:d,5 > the first and
second only two days after the initial Blaster worm was discovered. All variants of
Blaster.A use the same exploit, a vulnerability in Microsoft Windows for which a patch
had been offered nearly a month before worm was released. The most notable difference
among the variants of Blaster was the date and target of the DDoS attack.

The original author of Blaster has not been found, but authorities did arrest Jeffrey
Lee Parson, a 18-year old from Hopkins Minnesota, for modifying and releasing a variant
of Blaster.A called Blaster.B, which infected approximately 7,000 computers, just a small
fraction of the 9.5 million total infections.

The mechanism by which Blaster spread was a software error in the code for
Microsoft Windows’s RPC implementation. Computers use a protocol called RPC
(Remote Procedure Call) to allow one computer to run a subroutine on another. For
example, a computer running an email client might send an RPC message to an email
server requesting any new email messages. The use of RPC is very common and occurs
not only in computers running the Windows operating systems, but others such as Unix
and Linux computers.

Microsoft announced this vulnerability and its corresponding patch on July 16,

2003 in Security Bulletin MS03-026. According to the bulletin an attacker could send a

*2 Lemos, Robert. "MSBIast epidemic far larger than believed.” CNET news.com 2 Apr. 2004.
<http://news.com.com/2100-7349_3-5184439.html>.

53 Morrison, Jim. "Blaster Revisited." ACM Queue 2 (2004): 34-44.

3% A variant of a worm is a new strain of the malware, built by modifying the original worm’s code.
% Symantec Security Response. Symantec Corporation.
<http://securityresponse.symantec.com/avcenter/venc/auto/index/index W.html>.

39

specially crafted RPC message and gain control of a user’s computer. Users were urged
to install the patch as soon as possible.

As is often the case, developers of malicious software used the information
provided by Microsoft to create an exploit for the vulnerability outlined in the Security
Bulletin. The exploit allowed a hacker to send a message to a computer and—if the
receiving computer is still unpatched and therefore vulnerable—the hacker is rewarded
with control of the attacked computer.

As the infection spread, so did the problems Blaster.A caused. Aside from the
DDoS attack the virus was programmed to execute on August 16, 2003, it was not an
otherwise malicious worm. That is, it did not contain instructions to delete or steal
personal data nor did it allow a computer to be remotely controlled for purposes other
than the planned DDoS.* It was, however, a poorly coded program and frequently
caused computers to slow or frequently restart.’’

Microsoft was able to avoid the DDoS attack that was encoded in the original
version of Blaster. The variants did not target major websites for their DDoS attacks and
there was not much coverage in the media detailing the outcome of these DDoS, making
it likely that a sponsor paid the variant writers to attack websites. However, the
unintended consequences of Blaster still extracted a very high cost. In the months after
its release, various think tanks estimated that Blaster infected between 300,000 and
1,000,000 computers. However, more recently Microsoft revise their estimate to 9.5
million infections, based on the number of Blaster removal kits that were downloaded

from their website.®°

% Other variants of Blaster, however, included a “backdoor”, allowing compromised computers to be fully
hijacked and made part of botnets.

371t is not known for sure, but these do not seem like intentional elements of the worm because they serve
to alert users of the infection. Users who have been alerted are more likely to remove the worm from their
computer thus reducing the number of computers that will take part in the DDoS attack.

38 Lemos, Robert. "MSBlast epidemic far larger than believed.” CNET news.com 2 Apr. 2004.
<http://news.com.comv2100-7349_3-5184439.html>.

% Lemos, Robert. "Worm worries grow with release of Windows hacks." CNET News.com 28 Apr. 2004.
<http://news.com.com/Worm+worries+grow+with+release+of+Windows-+hacks/2100-1002_3-
5201807.htmi>.

40

Sobig Background

Another interesting case to examine is the spread of the Sobig family of worms.
Similar to Blaster in its magnitude, Sobig was quite different across a number of
operational dimensions. Sobig spread via a different mechanism and was motivated by a
different purpose. At a systems level, however, Sobig and Blaster have many
similarities, sharing some of the failures that allowed them to spread so widely.

The first of the six Sobig viruses, Sobig.A, was discovered January 9, 2003.%
Like its five successors, it was a mass-mailing worm that is widely assumed to have been
created by spammers to facilitate sending spam.®! Versions of Sobig progressed in
sophistication until the final version, Sobig.F, was released on August 18, 2003, just two
weeks after Blaster.%>

The succeeding 5 versions of Sobig, Sobig.B though Sobig.F were similar to the
first version but included revisions that fixed earlier bugs, making the Sobig virus more
effective.

As opposed to Blaster, which spread from computer to computer without human
intervention by exploiting a flaw in Microsoft’s RPC implementation, Sobig is a mass-
mailing worm, that spreads by tricking users to open an email attachment. The Sobig
lifecycle can be divided into two phases. The first phase, propagation begins when a
user opens an infected email attachment. Upon opening it, his or her computer becomes
infected and then sets about infecting other computers as well. In order to infect other
computers, the newly infected computer sends out emails, each containing an attachment
that, if executed, will infect the recipient’s computer. Sobig scours the newly infected
computer’s hard drive looking for new addresses to send the emails to. The reader has no
doubt received many Sobig messages, which frequently contain the subject “Re: Details”.

A sample email is below:

% Symantec Security Response W32.Sobig. A@mm. 9 Jan 2003. Symantec Corporation.
<http://securityresponse.symantec.com/avcenter/venc/data/w32.sobig.a@mm.html>.

8! Lemos, Robert. "Sobig spawns a recipe for secret spam.” CNET news.com 25 June 2003.
<http://news.com.com/Sobig+spawns+a+recipe+for+secret+spam/2100-1002_3-1020963.html>.
¢ Symantec Security Response W32.Sobig.f@mm. 18 Aug 2003. Symantec Corporation.
<http://securityresponse.symantec.com/avcenter/venc/data/w32.sobig.f@mm.html>.

41

Re: Application

D vour_detals.op (74.5K8)

Please see the attached zp file for details.

Figure 6—A sample Sobig Email®

After propagating, the Sobig worm enters its second phase. It downloads and
installs a software package from an Internet server.

The first five versions of Sobig instructed the compromised computer to
download a file known as a trojan, which in turn downloaded and installed a proxy
server. This proxy server allows someone, presumably the author of Sobig or his
sponsor, to send email anonymously via the compromised computers rather than directly
from his own computer. This is especially useful for sending spam emails.

The final version of Sobig, Sobig.F, was highly virulent. During the propagation
phase, millions of computers were infected; at its peak 1 in 17 email messages on the
Internet were carrying the Sobig virus.** In the case of Sobig.F, however, authorities
were able to shut down the servers containing the payloads. It is assumed that Sobig.F
would have also downloaded a trojan and then used the trojan to install the proxy server,
but that is not clear. Perhaps the trojan would have been used for other insidious
purposes such as launching DDoS attacks or click fraud.

The extent of the damage caused by Blaster and Sobig is hard to determine;

Symantec estimates that together they caused a loss of upwards of $2 billion in lost

% Trend Micro Website. <http://www.trendmicro.com/vinfo/images/worm_sobig_e_img1.gif>.
% Becker, David. "MyDoom virus declared worst ever." CNET News.com 29 Jan. 2004.
<http:/mews.com.com/2100-7349_3-5149764 .html>.

42

productivity.65 Microsoft has offered $250,000 reward for any information leading to the

Sobig or Blaster authors, but neither has been caught.

Learning from Blaster and Sobig

In the previous section about the damage caused by Sobig and Blaster, I showed
that although they spread in different manners, they have similarities at higher levels. For
instance, both allowed the malware developer to install arbitrary software on a
compromised computer.

The next two sections use STAMP to understand why Sobig and Blaster spread as
successfully as they did. First, a brief discussion of how the failed component
interactions that led to the spread of the malware are classified in STAMP. The
following section discusses which constraints I found were violated in my investigation

of Blaster and Sobig.

Understanding why Constraints Were Not Enforced

In a STAMP security environment such as the one described by Figure 4, the
constraints placed on a component are expected to be enforced by components that are
higher in the hierarchy. In the diagram, a box placed above another component and
connected by a downward arrow represents a controlling component. For example, the
constraints on component 8, anti-virus software, are enforced by component 9, the anti-
virus vendors. In other words, it is the responsibility of component 9 to ensure that the
anti-virus software they create adheres to constraints 8-2: Antivirus Software detect and
remove malicious software and 8-1: Antivirus Software must not be disabled by
malicious software.

In STAMP, there are four reasons why a component might not be effective at
exerting control on its subordinate component, thus allowing its constraints to become
invalid.*®

1. Invalid goal condition—the controlling component is attempting to enforce

the constraint by targeting a goal

% Symantec Internet Threat Report: Trends for July 04 - December 04, p34.
8 Leveson, Nancy G. A New Approach to System Safety Engineering, Chapter 4.

43

2. Invalid action condition—the actions of the controlling component are not

effective at changing the state of the component they are controlling

3. Invalid model condition—the controlling component’s mental model of the

component being controlled is inaccurate and results in ineffective control

4. Invalid feedback condition—the controlling component does not receive the

feedback it needs to effectively control the subordinate component.

My STAMP analysis attributes each violated constraint to one or more of the
above conditions.

Additionally, there are a number of cases where a component has constraints on
its behavior but it does not have a superior component that controls its behavior. For
example, component 3, the user component, has a number of constraints on its behavior
but it does not have any components responsible for controlling its behavior. At this
point, there is not a law requiring that users take certain actions to secure their computers,
nor are there governing bodies who require that computers are well maintained before
they are allowed to connect to the Internet.

Each user, however, has his or her own welfare at heart. In cases such as these,
the security system relies on the users’ calculations of their best interest. If they feel that
it is in their interest to maintain their computers, they will invest the time, effort, and

money required to ensure their computers are secure.

Where the Internet Security System Failed

The Internet security system was operating with many constraints violated.
Appendix 2 details which constraints were violated and contributed to Blaster and
Sobig’s success. Some of these constraints had never been enforced while others had
slowly stopped being enforced. Because the constraints had been violated, the system
was unable to repel multiple types of worm attacks-—a mass mailing worm and a network
propagating worm.

The full analysis in Appendix 2 identifies which constraints were violated and
hindered the Internet security system’s effective response. The analysis also addresses
which components failed in their responsibility to maintain the constraints put upon a

subordinate component.

44

Of the violated constraints in the analysis, I believe the following three played the
most direct roles in the Blaster and Sobig outbreaks.
o 1-1. Computers must not execute malicious software
o 6-1. Software must not contain security vulnerabilities

o 16-1. Virus programmers must not create and release malicious software

Constraint 1-1: Computers must not execute malicious software

This constraint was clearly violated at the time of the Blaster and Sobig outbreaks.
To learn from it, we look at why the constraint was not enforced. The Internet Security
System relies on four other components to enforce this constraint: Users, Technical Staff,
Software / Operating Systems, & Anti-virus software.

First, users did not effectively enforce this constraint on their computers. Sobig
spread rapidly because so many naive users double-clicked on an attachment in their
email. This constitutes a failure in the model condition. The users did not sufficiently
understand the working of the system they were using.

The Blaster worm spread by exploiting a security vulnerability in Microsoft
Windows. Microsoft had published a security patch for this vulnerability almost 2
months earlier®” but the millions of computers infected by Blaster had not installed it.
This was a failure on the part of the users who maintain their own computers and the
Technical Staff who maintain corporate networks. In this case, the unenforced constraint
is due to an invalid goal condition or model condition. Users either did not intend to
keep their computers updated or they did not realize that their computer needed to be
patched in order to remove the vulnerability.

In both cases the users did not invest the time to secure their computers or obtain
the knowledge necessary to operate the computers securely. For computers that were
managed by a company’s technical staff, the staff is responsible for not applying patches
as they are released, but they did not. Different firms have different reasons for the lapse
in patching, but it could be due to invalid feedback conditions or invalid action

conditions.

57 Microsoft Corporation. <http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx>.

45

The operating system running on the infected computer was also at fault for not
enforcing this constraint in the case of Blaster. Although there was a security patch
available, the existence of the vulnerability allowed computers running Microsoft
Windows to execute the malicious Blaster software. This is an invalid action condition.

Anti-virus software was able to help enforce this constraint in many cases, but not
in enough to stem the outbreaks. Major anti-virus vendors responded within 1 day®®
with updated virus definitions. Those computers running anti-virus software with
updated definitions were immune from Sobig and Blaster. However, those without virus
protection or without updated virus definitions were not.

The next chapter delves deeper into the forces that prevent computer users and

firms from sufficiently protecting their computers.

Constraint 6-1: Software must not contain security vulnerabilities

The violation of this constraint contributed to the spread of Blaster, but not to
Sobig. Within the Internet Security System, it is the responsibility of the Software
Vendor component to ensure that the software adheres to this constraint. In the case of
Blaster, Microsoft failed to ensure that its software was vulnerability free.

This is both a failed action condition and failed feedback condition. Although
their goal seems to be to make secure software, especially in light of the 2002
Trustworthy Computing Initiative and the ensuing focus on computer security, Microsoft
failed in two ways. First, the process for creating the software resulted in defects in the
software and secondly, there was insufficient feedback evidenced by the fact that the
vulnerability was only found after the software was released.

The next chapter discusses the inherent difficulties of developing large, complex

software.

Constraint 16-1. Virus programmers must not create and release malicious software

88 McAfee Virus Information. McAfee. <http://us.mcafee.com/virusInfo/>.
¢ Symantec Security Response. Symantec Corporation. <http:/securityresponse.symantec.com>.

46

The number of viruses released each year is increasing dramatically (Figure 7),
meanwhile there have only been a few significant arrests. Notably, the authors of Blaster

and Sobig, as well as a number of other well-known viruses are still yet to be caught.

New virus and worm malicious software

5000
4500
4000 { -
3500 { - .
30004 - - - S o SR
2500 |-

2000 1 - -

1500 |5 N e e e e = e

1000 +- - - . . e e . .
500 — - e e R — ¥
Si- I ll

1H2001 2H2001 1H2002 2H2002 1H2003 2H2003 1H2004

Total

Figure 7—The amount of malicious software is increasing rapidly70

Law enforcement and the legislative branch of governments attempt to enforce
this constraint by creating an environment where the expected cost of being caught for a
virus writer is greater than the expected benefit. While the penalties are high, the
perceived likelihood of being caught is low,”" keeping the expected cost of apprehension
low. At the same time, other Internet Security System components entice virus
programmers with financial rewards as well as status for creating viruses, thus raising the
perceived benefit of writing a virus.

In the cases of Blaster and Sobig, as well as other recent malicious software, the
penalties calculated by the authors of Blaster and Sobig were not high enough to prevent
them from writing the viruses. However, a recent high profile virus writer arrest along
with a $5 million bounty fund from Microsoft may deter some future malware authors.

The next chapter discusses why laws and other deterrents have not been effective

at stemming the flow of new malicious software.

Other violated constraints

70 Symantec Internet Threat Report: Trends for July 04 - December 04, p10.
"' Krebs, Brian. "Hackers to Face Tougher Sentences.” Washington Post 2 Oct. 2003.
<http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&contentld=A35261-20030ct2>.

47

A number of other constraints were violated, but I do not believe these

contributed as directly to the failure of the security system as the constraints that were

discussed above. They still do play an important role in explaining the non-resilience of

the Internet Security System and are included in Appendix 2. Some of these violated

constraints are:

1-2: If compromised, computers must not spread malicious software—once
compromised, the computers continued to spread malicious software. They were
not sufficiently contained by users, network devices, ISPs, or anti-virus software
2-1: Devices must be properly configured and maintained to prevent
malicious network traffic from accessing computers—many network devices
were helpful in the fight against the Blaster worm, but many others were not
correctly configured by home users or by an enterprise’s technical staff and
allowed the Blaster worm to enter the network

11-1: Information aggregators must have access to information about
Internet threat activity—In order to gather a complete picture of the malicious
software threat, information aggregators such as think tanks collect attack
information from various sites on the Internet. Some firms are reluctant to share
their attack statistics because they feel it can reveal real or perceived weaknesses
11-2: Think tanks and information aggregators must recognize and
communicate dangerous trends—computers connected to the Internet have
become increasingly homogeneous. Some think tanks have identified this as a
threat that allows malware to spread broadly and quickly, but it has not been
communicated vocally enough to cause any changes in behavior

15-1: The research community must support security activities with basic
research— The President’s Information Technology Advisory Committee
published a report in February 2005 saying that the current rate of technology
transfer from research to commercial use was not rapid enough.’*

13-1: The government must take action to prevent cyber attacks—In addition

to other measures, the government attempts to prevent cyber attacks by funding

2 Benioff, Marc, and Edward Lazowska. National Coordination Office for Information Technology
Research and Development. Report to the President: Cyber Security: A crisis of prioritization . 28 Feb.
2005. <http://www.itrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf>.

48

security research. However, the President’s Information Technology Advisory
Committee published a report in February 2005 saying that the research
community was under funded and should have their funding increased by $90
million annually.73 Perhaps in response to that report, the NSF recently created a
cyber security center that will receive $3.8 million per year.”* Additionally, a
harsh 2004 report from the Office of Inspector General finds that the Department
of Homeland Security’s Cyber Security Division (NCSD) is under performing.75
The report found that the division failed to provide sufficient leadership to the
private sector. Compounding the problem, the NCSD has seen significant

leadership changes, with 3 chiefs in less than 2 years.”®

7 Benioff, Marc, and Edward Lazowska.

™ Weiss, Todd R. "NSF establishes cybersecurity center.” Computer World 12 Apr. 2005.
<http://www.computerworld.com/securitytopics/security/story/0,10801,101024,00.html>.

7> Lemos, Robert. "Report: Federal cybersecurity effort needs improvement.” CNET News.com 23 July
2004. <http://news.com.com/Report:+Federal+cybersecurity+effort+needs+improvement/2100-1009_3-
5281898 .htmi>.

76 Lemos, Robert. "Yet another cybersecurity chief steps down." CNET News.com 12 Jan. 2005.
<http://news.com.com/Y et+another+cybersecurity+chief+steps+down/2100-7348_3-5534064.html>.

49

Chapter 5—STAMP Behavioral Dynamics

In the last chapter I attributed the limited resilience of the Internet Security
System to the fact that numerous constraints were inadequately enforced. This chapter
offers explanations for why these key constraints were not enforced.
The components that make up the Internet Security System (ISS) experienced
significant change over the past decade. This chapter contains the third part of the
STAMP analysis and attempts to understand what forces drove those changes as well as
how the components of the system responded to the changes. Explaining these responses
helps us understand why the constraints could not be enforced. This understanding can
be used to develop and to value new approaches to Internet Security.
In order to understand the forces driving those changes, I use a combination of
System Dynamics and economic concepts. System Dynamics is a method developed by
MIT professor Jay Forrester in 1956 for understanding complex systems that exhibit
nonlinear behavior.
In this chapter, I discuss four interesting examples of constraints that were not
sufficiently enforced. I argue that these constraints were not enforced because of how the
system responded to changes that had occurred over the past decade. Interestingly, the
evolutions that occurred in the system were generally advancements, welcomed by users
of the Internet. Unfortunately, many of these advances, while rational and beneficial for
the parties that entered into them, had harmful effects on the Internet Security System as
a whole.
The examples of inadequate control I revisit in this chapter are:
e Users did not invest sufficient resources to secure their machines or help to
stem the rapid infection of other machines (led to the violation of constraint 1-
D

e Enterprises did not invest sufficient resources to secure computers under their
control (led to the violation of constraint 1-1)

e Companies created and released software with vulnerabilities (led to the

violation of constraint 6-1)

50

® Laws and law enforcement were ineffective at preventing developers from

writing malicious software (led to the violation of constraints 16-1 and 17-1)

The last decade

By most accounts, the previous decade was full of exciting advances on the
Internet. The Internet changed from a network used by a small number of academics and
early adopters to a network rich with information and communication possibilities, which
attracted the technically savvy as well as technically unsophisticated. In this 10-year time
period, the number of Internet users climbed from 15% of American adults to over
60%."" Ever faster, powerful, and cheaper computers coupled with the widespread
availability of faster and cheaper, always-on high-speed Internet connections spurred
these increases. As technical improvements brought more information and more users
online, the Internet became an even more useful and entertaining destination and others
were persuaded to come online as well.

According to Berdnt, the price of computers (adjusted for performance) decreased
by approximately 40% per year in the period 1995-2000. Even when not adjusted for
performance, the cost of a computer sufficient for using the Internet continued to fall.”®

Home broadband was not available a decade ago; today almost 60 million
American households have broadband.”” Numbers describing European connectivity rose
in a similar manner.

Nothing comes without a price and the capabilities and options brought by the
Internet invited exploitation. Participants in the Internet Security System had
responsibilities that would have reduced the risk, but as I showed in the previous chapter
many were remiss in their duties. Key failures are discussed in the upcoming sections
where I explain why participants’ responses to the changes in technical landscape were

predictable and rational.

" Internet Evolution. Comp. Susannah Fox, and Lee Rainie. 25 Jan. 2005. Pew Internet & American Life
Project. <http://www.pewinternet.org/PPF/r/148/report_display.asp>.

7 Bendt, E R. "Price and Quality of Desktop and Mobile Personal Computers: A Quarter-Century
Historical Overview." American Economic Review (2001).

7 US Broadband Penetration Grows to 57% in March-April. 18 Apr. 2005. With data from
Nielsen//NetRatings. <http://www.websiteoptimization.com/bw/0504/>.

51

Users did not invest sufficient resources to secure their machines or help to stem the
rapid infection of other machines

The analysis in the previous chapter showed that personal computers are
frequenﬂy left unpatched by their owners. We can use System Dynamics and economic
concepts to understand why these computers remain perpetually unpatched.

When confronted with improvement in usability, speed, and price in the home
computer and ISP market, more consumers purchased computers and moved online,
initiating a decline in the security abilities and knowledge of the average user.

These new, inexperienced users are less likely to maintain their computers for a
variety of related reasons. Less savvy users were likely to not appreciate the fact that
their computers are vulnerable or even to know if they have been compromised.

Even among the more savvy users that implicitly consider the cost compared to
benefit of addressing their vulnerable computers, many choose inaction due to the lack of
measurable return from preventive security actions.

Compounding the problem, lock-in effects and network externalities give
incentives to individual users to select and remain with the market leader of specific
software applications. As discussed earlier, this creates a homogenous computing
environment, which creators of malicious software also benefit from.

I now visit the individual aspects of this argument in greater depth.

As the prices of computers dropped and broadband became more accessible, a
different type of user came to the Internet. The usability of computers is improving and
they require less knowledgeable users. Users include young children, senior citizens, and
those generally disinterested in the inner workings of their computers. As usability
improves, users need less skill to operate their computers. However, users still do need
operational knowledge and computer skills to make intelligent decisions about personal
investments in computer security.®

Figure 8 is a System Dynamics model that shows the forces that attracted new
users to the Internet. The model shows how the average security ability of users declined

as new users came online. In System Dynamics, this behavior can be explained via

8 CyberInsecurity: The cost of monopoly. Rebecca Bace, et al.
<http://www.ccianet.org/papers/cyberinsecurity.pdf>.

52

reinforcing loops (denoted with Rs in Figure 8). The model contains three reinforcing
loops: affordable computers and broadband as well as the possibility of communicating
online with a growing number of friends and associates lured new users to the Internet.
The increase in users fueled the decline in computing cost and broadband cost. The
increase in Internet users also resulted in increased communication potential for potential
new users, which continued to drive down cost and increase communication possibilities.
The model also contains a balancing loop (denoted by a B), which slows the
behavior of the system. The balancing loop in the model shows that when the level of
Internet crime increases, the attractiveness of the Internet decreases. In turn, the rate at
which new users come online slows. As the rate of new users coming online slows, so
does the decline in the average Internet security ability and the level of Internet crime.
However, this balancing loop is not yet as strong as the other reinforcing loops, which

drive the system’s behavior.

53

9 24nd1g

JEIOE|
3y} JJO siasn aAlp
swajqoud f1anoeg

o)

JoUIONL AP
JO ssauaAnoRIIe

+
s1odwoo Jo 1500

saniqssod 292 YIomau
uondeiaiul g Jauidiu) S1092 % - puRqpeoIq JO 150D
0} pajoeje s1asn MaN + -
D si1ayndwods
A a|qepioye Aq yawiaju|
0] pajoepe siasn maN AULID YOI
UOTRAOUUL +
auguo @ eAou

Sumuoo jo Aer

s198n JowIoN]
R X" A UO SIasN

[enud)

puegpeoiq
jaepioge Aq youlaiu|
0} pajoeje s1asn MaN

+

SIISN MU
Jo samqe AjLmoos

Amqy Armoog
we3 AJQqe Jo el Amqy + jowou] 23eIAY

DU%‘ Apinoog R,
1oWIAN] [10],

54

This limited security knowledge creates problems because these users are ill-
equipped to determine the amount of money, effort and time they wish to invest in
securing their personal computers.

Anecdotally, many computers go unpatched because their owners simply do not
understand that they are insecure. Recent studies from AOL, AOL UK, and the National
Cyber Security Alliance (a public-private partnership “focused on promoting cyber
security””) found that 80% of survey respondents’ computers had been infected with
malware, in most cases unbeknownst to them. The survey also found that over 70% of
respondents believed their computers were outfitted with anti-virus software configured
to update daily, when in fact, only 33% actually have anti-virus software installed and
configured to update at least once a week.?** 20% of computer users reported not
knowing what to do to protect themselves online.*?

Even users who have operational knowledge sufficient to make informed
decisions about personal computer security will still tend to make suboptimal decisions,
albeit for different reasons. This is because computer security can be viewed as a
negative externality, meaning it has consequences that are not reflected in the cost of the
good.® In the Internet security context this means “lack of security on one machine can
cause adverse effects on another”.®

To understand this, we need to consider the two types of security breaches to
which computer users are vulnerable. The first type—a targeted attack—consists of a
hacker compromising a computer with the intention of harvesting some piece of personal
or financial information or destroying personal data (Figure 9). The second type—a

broad attack—occurs when a computer is compromised with the intention of making it

#! Lemos, Robert. "Plague carriers: Most users unaware of PC infections." CNET News.com 25 Oct. 2004.
<http://news.com.com/Plague+carriers+Most+users+unaware+of+PC+infections/2100-1029_3-
5423306.html>.

%2 " AOL/NCSA Online Safety Study.”: AOL and National Cyber Security Alliance, 2004.
<http://www.staysafeonline.info/news/safety_study_v04.pdf>

% " 'Geek speak’ confuses net users.” BBC News World Edition 6 Apr. 2005.
<http://mews.bbc.co.uk/2/hiftechnology/4413155.stm>.

* Pindyck, Robert, and Daniel Rubinfeld. Microeconomics. 5th ed.: Prentice Hall, 2001. p 47.

S. J. Liebowitz and Stephen E. Margolis Journal of Economic Perspectives, Volume 8, Number 2, Spring
1994.

8 Camp, Jean. "Pricing Security.” Economics of Information Security. Comp. Jean Camp, and Stephen
Lewis: Springer, 2004.

55

participate in some sort of distributed scheme as part of a botnet, such as a distributed

denial-of-service attack (DDoS) or a spam server. (See Figure 10)

P

ek
Attacker

Pt
Attacker

Figure 9 Figure 10

An investment in security by a computer user will help prevent damages resulting
from the first type of attack. (Figure 9) For instance, protecting your computer reduces
the chance that a targeted attacker will be able to gain access to your financial
information. But interestingly, if a computer is compromised by a broad attack with the
intention of using it to send SPAM or launch a DDoS attack, its owner is not severely
affected. (Figure 10) They may experience some degree of performance degradation,
but the real target of the attack is another computer. Similarly, investing in security by
installing the latest patches or running appropriate anti-virus software will not protect a
user from DDoS attacks or help them to receive less spam. Their lack of investment
results in a cost to someone else, not to themselves.

The following two System Dynamics diagrams (Figure 11 and
Figure 12) illustrate that when users are individually targeted, they are more likely

to take actions that improve the overall security of the Internet.

56

Yooy proiq y—g[24nsi

SI9SNn g
renputpar o1 Amfur

+ swashs iy}
9IN23S 0} Yo} ajow puadxa
1M Aoy ‘awiaaaghs Aq pajoaye
Ajjeuossad aie sjenpiaipul sy

o :

SuNsAs Teuosiad amoos

AULDIGAD
0 papuadxa popgo

[[BISAO JO [oAY

SUIASAS
QMOISU JO IO

Yovup paradivy Y—[[24ndig

syosn +
[enpiatpur 03 Amfut
+ swashs 119y}

stra)sAs revosiad amoas aindas 0} Joya asow puadxa
o uw«w dxa 10Wo 1M Kay) ‘ow013gAd Aq pajpoaye aun1ag£o
} popu B Ajjeuosiad are sjenpjaipu) sy [[EI9A0 JO [oA

+
d
_ SWsAS
QIMOISUI JO JAGUNU

57

Nobel Prize winner, Mancur Olson termed this a class of problem a collective
action problem.* Those in a position to act to secure the Internet by patching their
computers have little incentive because the benefits of their actions are spread among all
the users of the Internet. They receive the benefits of other party’s security investments
whether or not they invest in their own computer security. Without a way to limit the
benefits of proactive computer security to users that exhibit such behavior, there is
limited incentive to invest in personal computer security.

Another economic reality, network effects, also contributes to the difficulties
users have maintaining the security constraints imposed on their computers. A network
effect increases the benefit of a good as more people use it. There are two types of
network effects: direct and indirect. Direct network effects®’ are the benefits users of a
good receive from interacting with other users of the good. The telephone is a commonly
cited example of a direct network effect.

The other type of network effect, an indirect network effect, is the benefit one
receives from the ancillary services that are available because there is a strong user
community. For instance, there is an indirect network effect in having a popular make of
car. Because the car is popular, there are many auto mechanics able to perform
maintenance on it.

Network effects also inform computer user’s choices. As new users come online,
they must choose what type of computer and software to purchase. There are strong
indirect network effects that drive a computer user’s choices. Selecting an operating
system or software package with a large user base means there will be a greater selection
of software, more easily accessible knowledge and training, and potentially even lower
prices. (Direct network effects are less significant because most Internet services
interoperate across operating systems.)

The indirect network effects will result in less diversity in decision making by
consumers, resulting in large installed bases of software or operating systems, such as

Microsoft Windows. Homogenous platforms enable malicious software to spread faster

% Olson, Mancur. The Rise and Decline of Nations: Economic Growth, Stagflation, and Social Rigidities.
Chapter 2, New Haven: Yale UP, 1984,

% pindyck.

58

and also attract more persistent attention from malicious software developers searching

for exploitable vulnerabilities.

Enterprises did not invest sufficient resources to secure computers under their
control

Similar economic forces also drive those in charge of managing networks at large
corporations and educational institutions. As was true for individual users, enterprises
are frequently reluctant to act because of security externalities and the collective action
dilemma. Direct as well as indirect network effects affect their decisions. Finally, lock-
in plays a factor in their decision-making as well. The remainder of this section discusses
how these factors play a role in security decision-making for enterprises.

Enterprises encounter security externalities in two ways. The first is similar to
what individual users experience. Like individual users, enterprises can also be the
targets of two types of attacks. The first, as above, targets the enterprise, hoping to
acquire sensitive information or to damage data. The second type attempts to
compromise workstations that will later be used to launch a DDoS attack or send spam.
Patching an insecure workstation will help prevent both types of attacks, but much
greater economic harm could come to the firm from the first type of attack. For
enterprises, the likelihood of the first type of attack is greater, so the incentives for
proactive security would be stronger.

The second type of externality involves sharing information about attempted and
successful attacks. As discussed in chapter 3, information integration organizations like
US-CERT and the Internet Storm Center collect attack information to try to form
comprehensive pictures of emerging threats. Gal-Or and Ghose show that there are
benefits to sharing security information.®® However, companies may be reluctant to share
such information, fearing that it may be used to launch better attacks or may hurt the
perception of their company and lead to decreased market share or stock price, if made

public. These fears are partially confirmed in research by Campbell and Gordon®. They

%8 Gal-Or, Esther. "The Economic Incentives for Sharing Security Information." Economics of Information
Security. Ed. Jean Camp, and Stephen Lewis. City: Publisher, 2004.

% “The economic cost of publicly announced information security breaches: empirical evidence from the
stock market” Campbell, Gordon, Loeb, Zhou; Journal of computer security 11(2003) 431-448.

59

found that breaches resulting in lost confidential information result in “significant
negative market reaction”. However, no such correlation was found when the breaches
did not result in the loss of such information.

As was true for personal users, network effects also affect enterprises’ decision
making, but in additional ways. Companies find benefits in having homogenous
infrastructure; they save money on training and support and can additionally enable
certain types of collaboration requiring similar platforms. Once an enterprise has
invested heavily in a technology, they are less likely to change due to lock-in. These
forces also lead to homogenous environments, which, as I discussed earlier, allow

malicious code to spread farther and faster.

Companies release software with vulnerabilities

Technically speaking, creating large-scale commercial software is an extremely
difficult process. The complexity of the problem makes software defects a near certainty.
Compounding this already difficult problem, the realities of software economics create a
perverse incentive structure that results in insecure code. More specifically, software
vendors have incentives to race to market, releasing software before fully vetting it.
Once a user base has been captured, a software company can invest in a lower level of
feature and security improvements because their customers are “locked-in” to their
current product. Finally, the market for software did not place a high value on security
features until recently.

In 1988 Frederick Brooks wrote, “Software entities are more complex for their
size than perhaps any other human construct.. "% That was 17 years ago and software
has only gotten more complicated, with many major software applications encompassing
millions lines of code. Brooks argues that the “hard part” of building software is not the
construction of the code, rather it is the specification, design, and testing. The software
engineering community has developed techniques for working through this complexity,

but it remains impossible to create perfect software. Complex software has far too many

* Brooks, Frederick P., "No Silver Bullet: Essence and Accidents of Software Engineering," Computer,
Vol. 20, No. 4 (April 1987) p. 10-19.

60

different states to exhaustively check them all.”! Leveson writes that exhaustive testing is
impossible for most software; testing can find defects, but it cannot prove the absence of
defects.”

The complexity of software engineering creates a hurdle that is only exacerbated
by the economics of the software business. Creating software has a very high upfront
cost, but creating additional copies of software costs almost nothing. In other words,
software has a high fixed cost and very low marginal cost. Following the substantial
initial investment, software companies try to recoup their investment by selling as much
of their software as they can.

This fact, when coupled with the network effects and lock-in discussed earlier,
creates an environment with a strong incentive to be the first to market. By taking market
share early, software vendors capture users and become an early market standard. If the
software vendors can capture a critical core of users, they can resist attacks from
competitors because their clients are benefiting from the network effects and constrained
by the cost of switching to new software. This creates an incentive for firms to shorten
their development cycle to get to market first.*?

In order to further explore these software economic facts, I created an executable
System Dynamics model. (The full model structure is available in Appendix 3.) The
model embeds some of the economic forces that affect the software marketplace.

It models a simplified competitive landscape of just two companies (Company A
and Company B), each with a product (Product A and Product B). The two products
have identical feature sets. The companies compete only on their quality. The model is
based on the following assumptions:

* Users are either customers of only one product at a time, but can switch if they

choose
o Users will begin to switch products if the quality of their product is
lower than the quality of the other product. The greater the quality

differential, the more users will switch.

°! An analysis by Leveson of a TCAS I, an aircraft collision avoidance system shows that it has 10
different states. (Leveson. A New Approach to System Safety Engineering, Chapter 3)
92

Leveson, Safeware, Chapter 18
% Raman, Jari. "Network Effects and Software Development — Implications for Security." Proceedings of
the 37th Hawaii International Conference on System Sciences (2004).

61

o Users will also switch if the network effects of the competing
technology are great enough to incite them to switch.
e The software companies will try to maximize their profit by retaining
customers while minimizing investment in their product.
Executing the model shows interesting behavior in the sample market that is
useful for understanding actual software markets:
1) A strong network effect makes the marketplace “tippy” and likely to be
dominated by one competitor
2) Network effects allow the market leader to maintain their position even if their
product contains more defects than their competitor
3) The stronger the network effect, the less a company needs to invest in product
quality to maintain market leadership
4) Increasing investment in product quality leads to a greater degree of market
ownership
Before delving into these observations from the model, it is helpful to understand
a baseline run. The graph below shows a case where Product A began with slightly more
of the market than Product B. A and B used the same investment strategy; how much
effort to put into improving their products is a function of their market share. They invest

heavily if they are far behind and lightly if they are in the lead.

Product Market Share

1 fi St F§)
R if
3 :-._‘ kY

0.75

.'GF
e

o
el

PP

0.5

------ -..,_..-"?' $.j
025 - . Al /
j;’f : :l' H
5 i
0 . i 5
0 20 40 60 80 100 120 140

Time (Month)
Market Share for A
Market Share for B

Figure 13

62

The above graph (Figure 13) shows that the two companies continually trade
market leadership. Clearly, their investment strategy is only partially working. When
holding market leadership, each company under invests and is overtaken by its
competitor. The graph below (Figure 14) shows how decreases in Company A’s product
quality is met with increased development efforts. Because Company B follows the same

strategy; a similar graph can be drawn for Company B.

Development Efforts and Product Quality for Product A

& Y]
0 12 24 36 48 60 72 84 9 108 120
Time (Month)

quality of product A
development efforts for product A

Figure 14

With a basic understanding of the model, we now turn to the insights I draw from
the model.

A strong network effect makes the marketplace “tippy” and likely to be dominated

by one competitor

The baseline graphs above were drawn with only a very small network effect
present, but the following graphs show the change in behavior when the strength of the
network effects is increased. The figure on the left is the same as Figure 15 above, but
the graph on the right is the output when I strength the network effects. Using the same
strategy, the market “tips” and allows Company A to maintain market leadership because

of the “stickiness” brought upon by network effects.

63

Product Market Share

0.75

0.5

0.25

ol y v/ /
0 20 40 60 8 100 120 140 160
Time (Month)

portion using product A
portion using product B U

Figure 16—Slight network effects

Product Market Share
1
075 k
0.5
0.25 o T
a
0
0 20 40 60 80 100 120 140 160 180 200
Time (Month)

portion using product A
portion using product B

Figure 17—Strong network effects

Network effects allow the market leader to maintain their position even if their product

contains more defects

The two graphs below show the results of one simulation run with strong network

effects. The system equalizes with Company A owning approximately 70% of the

market (Figure 18). The second graph (

Figure 19) shows that at equilibrium, the market leader has more defects than its

competitor. This is because the benefits from network effects and costs of switching

more than compensate for problems associated with quality and customers choose not to

switch.

64

Product Marketshare Defects in each product

.75 {\‘

0.5

0.25 P
rs
o4
0
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time (Month) Time (Month)
Product A Market Share defects in product A
Product B Market Share defects in product B
Figure 18 Figure 19

Companies need to invest fewer resources in product quality to maintain market
leadership when network effects are high
Incumbent companies in industries with strong network effects can invest less

than their competitors in software quality and still maintain market leadership. The

stronger the network effects, the less the incumbent needs to invest, the model shows. To

find this, I expanded the model to incorporate variation in Company A’s strategy. The

extension allows Company A to vary their investment in software. By trying different

levels of investment, I was able to find the level of investment where the market behavior

shifts from oscillation to Company A’s market dominance.

Experimentation with the model shows that the greater the strength of the network

effects, the less investment in software quality is needed to end the oscillation and secure

market leadership. Figure 20 shows that inverse relationship.

65

Minimum Software Investment Needed

1.6
1.4 4
1.2 4
14-

Investment in Software Quality
o
@
i

0.6 ~
024 - -
0 T T T T r
1 1.2 14 1.6 1.8 2 2.2
Strength of Network Effect
Figure 20

Increasing investment in product quality leads to a greater degree of market ownership
Not all incentives in the software marketplace are at odds with security, however.

The model also shows that increasing investment in software quality initially change the

market behavior from oscillation to market dominance. Additional investment will then

lead to a larger portion of the market being acquired, as seen in Figure 21.

portion using product A

0.6

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

portion using product A : Low Investment
portion using product A : Medium Investment
portion using product A : High Investment

Figure 21

66

The above insights from the analysis of the model are interesting, but are by no
means without caveats. This is a very simple model; an abstraction designed to show
some key relationships. Most of the core assumptions are not replicated in the real world.
For instance, marketplaces generally have more than two competitors who sell products
that differ in feature set as well as quality. The competitors also employ more advanced

strategies pricing and investment than this model contains.

Laws and law enforcement were ineffective at preventing developers from writing
malicious software

Most of the older literature on “hacker” motivations paints a picture of a hacker as
a person primarily bent on earning intangible rewards. Beveren describes hackers as
people seeking to satisfy their curiosity, exert power or control over something that is not

%% This omits the fact that

theirs, or simply be recognized and embraced by their peers.
some hackers have always been motivated by financial rewards, but in recent years,
especially the past 1 %2 to 2 years, typical hacker behavior has progressed from malicious
behavior to monetizing attacks.”>*®

Why did this progression occur? The broad changes of the last decade created
more avenues for programmers to reap illicit financial rewards by writing malicious code.
Conditions were right to create a supply of compromised computers. The increase in
personal computers and the simultaneous availability of broadband created a deep supply
of vulnerable computers that were ripe for compromising. Relatively easily, and without
their owners knowing, these computers could be compromised and added to botnets. On
the demand side, a market emerged of people willing to lease the computing power of
these botnets to launch moneymaking schemes such as sending spam or launch denial of
service attacks. The presence of an easy supply of computers to compromise and the

promise of payment for these computers fuels the ongoing trade in computing power for

nefarious purposes.

% Beveren, John V. "A Conceptual Model of Hacker Development and Motivations."” Journal of E-
Business 1 (2001).

% LaMacchia.pdf

% "Hackers to Face Tougher Sentences.” Washington Post 2 Oct. 2003.
<http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&contentld=A35261-20030ct2>.

67

Chapter 6—Addressing Internet Security

The previous chapter showed that Internet security is often at odds with the other
interests of the involved parties. Actors are often forced to choose between improving
their own welfare and improving the overall security of the Internet. Not surprisingly,
they frequently make choices that impair the security of the Internet. This is a case of
misaligned incentives that can be traced back to the nature of software and the Internet, as
I showed in chapter 5.

In this chapter, I discuss multiple approaches to improving Internet security.
These approaches fall into two principle categories. The first category contains solutions
that attempt to realign peoples’ incentives so that they engage in behavior that improves
their welfare as well as improves the security of the Internet. This can be done using law,
regulations or market forces to provide incentives for improved behavior (or penalties for
unhelpful behavior).

Alternatively, solutions in the second category signal an acceptance that we
cannot satisfactorily realign incentives without an unacceptable level of institutional
policy. Instead, solutions in this category rely on technology as a “safety net”, working
to secure the Internet even as human behavior is pushing it in the opposite direction.

This chapter contains three subsections. The first two are devoted to realigning
incentives to improve peoples’ security behavior. They focus on changing laws and
using insurance or market principles to improve security behavior. The third subsection

discusses different technical approaches.

Changes to laws

As discussed in chapter 4, there are two legal pathways that are designed to hold
software producers accountable for harm related to insecure software they have
unintentionally created.”’ They were designed before Internet security became a
significant problem and were not intended to address problems created by recent threats

like malicious software and botnets. As such, they were not especially effective. In my

*7 Other criminal and tort pathways exist for prosecuting cases where software producers intentionally
release insecure products.

68

research I did not find any cases where product liability has been used to hold a company
liable for damage relating to a security flaw.

In this section, I consider if variations to the current product liability regime
would result in more secure software. A 2002 National Academy of Science report
already commented on this issue, suggesting "policy makers should consider legislative
responses to the failure of existing incentives to cause the market to respond adequately
to the security challenge."®®

This is a contentious question; public policy says that the burden should be put on
the least avoider, the party that can most efficiently remedy the situation. Some believe
that software vendors are the least cost avoiders,99 others feel that consumers or network
operators could most efficiently remedy the situation. The following subsections discuss
three alternative liability schemes:

® Expand the extent of liability on the software producer

® Assign liability to parties other than the software producer

¢ Strengthen criminal penalties

Expand the extent of liability on the software producer

Some people propose engendering securer software by increasing the liability of
software vendors. Practically, there are two ways to do this. One way of doing this is to
change the law so that economic damage caused by software defects is considered to be
sufficient to invoke strict product liability rather than limiting strict product liability to
just physical damage or personal harm as the law says now. A second approach would be
to limit the level of indemnity that companies can attain within their End-User Licensing
Agreement (EULA).

There is a large debate regarding whether this would be effective in improving
software security. Proponents believe that making it easier to hold a producer responsible

would result in an increase in how they determine the amount of time and resources to

*® Lohr, Steve. "Product Liability Lawsuits Are New Threat to Microsoft." New York Times 6 Oct 2003.

* Pinkney, Kevin. "Putting Blame Where Blame is Due: Software Manufacturer and Customer Liability for
Security Related Software Failure." Albany Law Journal of Science and Technology 13 Alb. L.J. Sci. &
Tech. 43 (2002).

69

spend on development and testing. If the penalties for releasing insecure software
increase, they will spend more time ensuring the software is secure, they say.

Not surprisingly, there are many critics of this idea. There are two frequently
heard arguments against increasing liability. The first criticism is that innovation could
be stifled. Increasing liability would result in companies paralyzed by the risk of
releasing insecure software. In this scenario, companies would spend dramatically more
time testing each release and the innovation cycle would be slowed. They also might
simply choose to not release worthwhile products because the cost of liability is too
great, 190 101

Supporters of increased liability retort that stopping some innovation is a
necessary cost of security. The FDA, for example, frequently stops innovation to ensure
that we have safe drugs on the market.'”

The second criticism is that it holds software to an unrealistic standard'®. It is
impossible (or at least entirely unfeasible) to make perfectly secure software. Advocates
of the idea believe otherwise and say that the techniques do exist to efficiently make

near-zero defect software.'*

Assign liability to parties other than the software producers

The second option is to assign liability to parties other than the software
producers such as the consumers responsible for administering software products, who
can also be at fault for outbreaks of malicious software. When software companies learn
of security flaws, they release a “patch” that consumers can install to fix the vulnerability.
Virus outbreaks frequently happen shortly after a patch has been released because the
patch alerts hackers to the presence of a new vulnerability. The malicious software

authors rely on the fact that many consumers do not install patches in a timely manner.

100 McLaughlin, Laurrianne. "Buggy Software: Can New Liability Rules Help Quality?" IEEE Software
(2003): 104-108.

19" Heckman, Carey. "Two Views on Security Software Liability." IEEE Security and Privacy (2003): 73-
75.

192 »Eiohting the Worms of Mass Deception.” The Economist Nov 27 2003.

1% Ryan, Daniel. "Two Views on Security Software Liability." IEEE Security and Privacy (2003): 70-73.
1% Junnarkar, Sandeep. "UCITA: Why software users will lose." CNET News.com 17 Oct 2002. 22 Nov
2004 <http://news.com.com/2008-1082-962353.html>.

70

Rather than placing the entirety of the liability for damage done by a virus on the
software vendor, this variation places some of the liability on the consumer who left their
personal computers or their firm’s systems unprotected.

If we were to begin considering consumers partially liable for their inaction, then
we may see them approach their patching duties even more diligently. This increased
concern might result in additional pressure from consumers for the software companies to
invest more heavily in secure software at the risk of losing their customers.

This type of liability is difficult to apply because it is so diffuse. Additionally, it
would be difficult to determine what is a reasonable amount of time to require that a
security patch to be installed. Time is critical because a hacker can often create a new
virus within days of when a patch is released. While the company may understand this
urgency, they generally cannot act immediately. They face the risk of installing a new
piece of software on nearly all their computers. Additionally, patches often come at
unscheduled times; installing the patch means diverting IT workers from their scheduled

activities.

Strengthen criminal statues

An alternate approach to broadening or shifting liability is to more aggressively
target the source of the malicious software: the writers of that software and their
sponsors. By strengthening the penalties for computer crimes, lawmakers could
potentially deter more malicious software writers. However, I believe this is unlikely to
work as penalties were significantly decreased in November 2003. Based on the number
of compromised computers and the rate new malicious software is released, this has not
had an appreciable effect. According to Kevin Mitnick, a hacker who spent six years in
prison for a computer crime, most “hackers” do not weigh the consequences of their

actions in this manner; they do not expect to get caught.'®

Using regulation to realign incentives

19 "Hackers to Face Tougher Sentences." Washington Post 2 Oct. 2003.

<http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&contentld=A35261-20030ct2>.

71

Using regulations to realign interests is also an avenue worth exploring. Clever
regulation that creates a structure where system participants augment system security
while pursuing their own goals would likely have a beneficial effect on the security of the
Internet.

This section discusses three ways regulation can accomplish this alignment of
interests:

e Require selling risk to insurance companies
e Trading vulnerability credits
e Allow an emerging cyber-crime pattern to continue developing and

ensure the public is aware

Require selling risk to insurance companies

Requiring companies to buy “network insurance” might have beneficial effects
for the Internet’s resilience. Insurance companies are in the business of buying different
types of risk from companies and individuals and have the capability to determine the
appropriate amount to charge for premiums. For businesses, they provide the benefit of
taking an unlikely, but potentially large or catastrophic expense and translating it into a
predictable annual cost.

As they do for fire and theft insurance, Internet insurance companies would drive
better behavior with the promise of lower premiums. Just as a bank can lower their
premiums with a metal detector,'% a company could lower their premiums by taking
prudent security steps or having long periods without security problems.lo7 This in turn
would drive innovation, as the insured demand security features and innovations in the
software they buy and software and technology producers strive to create products that
are endorsed by the insurance companies.

Software producers could also turn to insurance companies. They could reduce

their premiums by investing in new development and testing methods and technologies.

19 Schneier, Bruce. Lecture: Security, Liberties, and Trade-Offs in the War on Terrorism. The Fifth Hope
Conference. Hotel Pennsylvania, New York City. 9 July 2004.

197 Schneier, Bruce, "Hacking the Business Climate for Network Security," IEEE Computer, p86-88 (April
2004)

72

Trading vulnerability credits

The general approach to addressing externalities such as Internet security is to
“internalize” the externality. To internalize an externality means the costs that are
normally projected on parties other than the decision-maker are somehow included in the
decision-maker’s calculations. Prior to 1960 it was thought that only governments—
through regulations, taxes, and subsidies—could enact this internalization. In 1960,
Nobel prize winner R.H. Coase showed that a more economically efficient internalization
could happen through private negotiation.'® For instance, a commonly given example
assumes a factory located next to a farm. The factory pollutes the air, damaging the
quality of the farm’s crops. Whether the factory has the legal right to pollute or the farm
has the legal right to fresh air, letting the party without the legal standing (whichever one
that may be) pay off the party with the rights will result in an economically efficient
outcome, says Coase.

A modern day example of this theory is seen in emissions trading. Involved
companies buy and sell credits that give them the right to put a certain amount of
pollution into the environment. Companies that have invested in decreasing their
emissions rate need fewer credits and can sell them on an open market. Correspondingly,
companies using unclean technology will need to buy more credits. This controls the
amount of pollution while providing incentives to companies to make their operations
more efficient.

In her paper, Pricing Security, Jean Camp proposes a similar system where
computer owners are “charged” for vulnerabilities in software running on their system.
Participants would receive a certain number of “vulnerability permits” per device.'” In
addition to their standard prices, software packages would have vulnerability price as
well. Running a piece of software would require that the machine’s owner has procured

the appropriate vulnerability permits. Software vendors with high vulnerability prices

1% Biography of Ronald Coase. New School University.
<http://cepa.newschool.edwhet/profiles/coase.htm>.

1% Another option briefly explored by Camp considers putting the onus on software producers, requiring
them to buy permits to pay for the vulnerabilities they create. Camp argues that this structure would place
a disproportionate burden on free software producers and significantly chill open source development.
Interestingly, Coase wrote that it does not matter to which party the responsibility is given—an
economically efficient outcome will result either way.

73

would presumably find that their effective prices are higher than their competitors and
work to improve their code quality.''®

To better understand how the system would work, consider this scenario. Imagine
the system is at equilibrium; all computer users have purchased sufficient vulnerability
permits for their current configurations. A new vulnerability is discovered in a popular
web browser. Users of that browser would have some small period of time (perhaps two
days) to fix the vulnerability (either by patching the software or removing it). After the
allowable time period elapses, the number of vulnerability permits required to run the
software would increase. People who wish to continue running the browser will need to
procure more permits on the open market.

This is an interesting system and has worked well in pollution-creating industries.
I believe the ideas behind Camp’s system are sound, but initiating and administering the
system would not be feasible.

Working as designed, the permit system does a fine job of internalizing the cost of
network security. When new vulnerabilities are discovered, users of that software must
invest their time in fixing the vulnerability or invest their money in purchasing new
credits. In the longer term, these users will either move to software with a reputation for
being more secure or will pressure the software vendor to create more secure code.

The elegance of the system is appealing, but the details of administering such a
system are unwieldy. There is not an entity with the authority to create such a system at
this point. If it were to be created by the US government, it would only bind US
computers. International organizations like the UN or ICANN (Internet Corporation for
Assigned Names and Numbers) would understandably become mired in creating and
administering a program affecting hundreds of millions of computers.

Another contentious issue is determining the number of permits users would need
to purchase in order to run a particular piece of software. Presumably some governing
board would create a methodology for determining the cost of vulnerabilities. This
would inevitably become highly political, with companies lobbying the board for lower

price assignments.

"% Camp, Jean. "Pricing Security." Economics of Information Security. Comp. Jean Camp, and Stephen
Lewis: Springer, 2004.

74

Finally, monitoring and enforcement would be extremely difficult. Camp
proposes a “citizen’s militia” responsible for checking for compliance. Another option is
a trustworthy mechanism for computers to report to the authorities when computers are
running software without sufficient vulnerability credits. Both options present significant
privacy concerns.

Additionally, if a piece of malicious software was able to exploit a sanctioned
vulnerability and install itself, this vulnerability trading structure would not provide
incentive for users to remove it from their machines. Furthermore, it also would not
prevent users from unwittingly executing malicious software, as is the case with email
attachments.

Allow an emerging cyber-crime pattern to continue developing and ensure the

public is aware

As discussed in chapter 5, most botnet attacks use compromised computers to
launch DDoS attacks or send spam to other targets (Figure 9 and Figure 10). However, a
recent study by Symantec shows malicious software writers and sponsors are more
frequently scouring infected computers hard drives, looking for personal or financial
information that can be exploited.''! As this practice increases, so does the potential cost
to individual computer users.

If this practice increases and is well publicized, it may result in users taking more

action to protect their computers.

Technological Solutions

Another approach to Internet security is to conclude humans are a weak link in the
security chain. The previous chapter shows that users are either incapable or unwilling to
expend the time and effort to accumulate the knowledge needed to successfully protect
their systems. Simultaneously, the time elapsing between the discovery of a vulnerability
and the release of a piece of malicious software has been steadily decreasing. Over time,

it is questionable if human intervention will be able to intervene in time.

! Symantec Internet Threat Report: Trends for July 04 - December 04. Vol. VIL.: Symantec Corporation,
2005. p 1-96.

75

If human action is a weakness then one approach to take is to use technology to
remove reliance on human action as much as possible. For instance, rather than relying
on users to patch their computers perhaps it should be done for them automatically as the
newest version of Microsoft Windows XP can do.

There are a number of new technologies and proposed design changes intended to
plug some of the holes created by the lack of human intervention. Below, I discuss a few
of the ones that I think have potential to help. They fall into the following three
categories:

e Technologies that prevent vulnerable computers from doing harm to others

e Technologies that help decrease vulnerabilities in new software

¢ Internet design changes that build security concepts into the Internet

Technologies that prevent vulnerable computers from doing harm to others

An unpatched computer is a danger to the computer’s owner and to the Internet at
large. Researchers and companies are addressing this threat with different approaches.
Rather than rely on human generated virus signatures that detail exactly how a piece of
malicious software looks and behaves, numerous companies including Mazu Networks,
offer software that spots abnormal behavior without a signature.

Microsoft’s new Active Protection Technology (APT) takes a similar approach,
but observes the behavior of individual computers rather than the entire network. If the
APT program notices something out of the ordinary, such as a high volume of email
being sent, it can take action.

Another approach is to prevent unsecured (and potentially compromised)
computers from joining a network. An aspect of Cisco’s “Self Defending Network”
offering interrogates computers when they plug in to an enterprise’s network. If the
computer is not running the most recent security patches or other security critical
software it is placed in a quarantine zone until it can be fixed. When coupled with
Trusted Computing,''? a way to ensure that computers honestly report their status, the

idea is even more powerful.

"2 Home Page. Trusted Computing Group. <https://www.trustedcomputinggroup.org/home>.

76

These technical approaches can have significant effects. Microsoft released
Windows XP Service Pack 2 in August 2004. It improved the security configuration and
added new security technology. In the period shortly after the release of Service Pack 2,
the number of compromised computers joining botnets observed by anti-virus company

Symantec decreased by 83%.'"?

Technologies that help decrease vulnerabilities in new software

New tools are being developed to help programmers write more secure software.
A set of tools called static analyzers help developers by inspecting code after they write
it. Some security conscious companies require that every piece of code a developer
writes is checked before it is added to the product.

Another approach is to insert some degree of variability into programs as they are
running. Doing so will not eliminate exploits, but will make it so that an exploit that
works on one person’s computer will not work on any other computer.!'* This would
make it much more difficult for malicious software writers to spread their programs.

This has not been widely deployed because it results in a small drop in performance.'"

Internet design changes that build security concepts into Internet

Much like our behavior in the physical world is governed by certain physical laws
(e.g., I can’t walk through a wall), the behavior of Internet users is limited by a different
set of rules. These rules are codified in the “code” of the Internet.!'S For instance, the
early designers of the Internet made the design decision to instill the Internet with a
strong sense of anonymity and transparency and encoded this design decision in the code
of the routers and computers that comprise the Internet. These design decisions led to
great freedom on the Internet; freedom that was frequently used for innovation and open
communication. Of course, this is the same freedom that has allowed malicious software

developers to able to take advantage of others.

s Symantec Internet Threat Report: Trends for July 04 - December 04. Vol. VII.: Symantec Corporation,
2005. p 22.

"% Bray, Brandon . Compiler Security Checks in Depth. Feb. 2002. Microsoft Corporation.
<http://msdn.microsoft.com/library/default.asp ?url=/library/en-us/d
v_vstechart/html/vctchCompilerSecurityChecksInDepth.asp>.

''> Talk by Microsoft C++ Compiler Program Manager. MIT, Cambridge, MA. Nov. 2004.

e Lessig, Lawrence. Code and Other Laws of Cyberspace: Basic Books, 2000.

77

The “physical laws” that govern our behavior on the Internet are different than
those that control our behavior in real space because they are only the product of a group
of engineer’s design decisions. These Internet laws can be changed.

One possible change comes from David Clark, a MIT professor and an architect
of some of the Internet’s core protocols. In a recent paper, he argues that the design of
the Internet should be modified to include the concept of trustworthiness''’. In an
Internet that has the concept of trustworthiness, one node on the Internet would relate to
another according to how trustworthy it is known to be. For instance, Clark proposes that
routers will provide access to other routers that are known to be trustworthy while

blocking access to unknown routers.

17 Clark, David , et al. Addressing Reality: An Architectural Response to Real-World Demands on the
Evolving Internet, Proceedings of the ACM SIGCOMM 2003 Workshops.
<http://delivery.acm.org/10.1145/950000/944761/p247-clark.pdf?keyl=

944761 &key2=0268135111&coli=GUIDE&dI=ACM&CFID=42319975&CFTOKEN=1400837

5>.

78

Chapter 7—Summary

As stated in chapter 1, this thesis has a dual purpose. Iintended to test if STAMP
could be effectively applied to a security problem. The applicability of STAMP for
security could be judged in the efficacy of the security analysis.

I believe that STAMP served as a very useful tool for conducting the security
analysis. Using STAMP, I was able to take a diverse and complex security system and
develop a strong understanding of how the system responds to the challenges it faces.

The STAMP analysis began in chapter 3 by defining the Internet Security System
(ISS) as a collection of 17 components whose interactions determine the security of the
Internet. This part of the STAMP analysis discussed the 17 components and enumerated
security constraints that, if maintained, would reduce the chance of an outbreak of
malicious software.

The Internet Security System is constantly under attack, which provided
interesting cases to study. In second part of the STAMP analysis I looked at two
successful attacks, Blaster and Sobig, through the lens of constraints. The analysis
stepped through the constraints that were violated and allowed the outbreaks to occur.
Among the many constraints that were violated, I selected three as playing especially
large roles in the outbreak. They were:

® Constraint 1-1: Computers must not execute malicious software

e Constraint 6-1: Software must not contain security vulnerabilities

® Constraint 16-1: Virus programmers must not create and release malicious
software

Chapter 4 identifies the constraints that were violated; chapter 5 explains which
components allowed the constraint to become violated and, more importantly, why those
components were not able to keep the constraints valid. In chapter 5, I show that both
individual users and enterprises were responsible for the insufficient enforcement of
constraint 1-1. Software vendors did not enforce constraint 6-1 and lawmakers and law
enforcement inadequately enforced constraint 16-1.

The remainder of chapter 5 discusses why these components either were not able

to or chose not to enforce these critical constraints. Using System Dynamics models and

79

economics concepts, I arrived at the central conclusion presented in chapter 5: those
responsible for providing critical parts of Internet security do not have sufficient
incentives to make good security decisions; instead they often make decisions at odds
with Internet security. These misaligned incentives contribute to the lack of enforcement

of key security constraints, leaving the Internet less resilient to attack.

80

Appendix 1—Sample online advertisements offering compromised computers

81

a lirefox

MacDegen ;.3 Seattle ;

robinangelit: is Offlina: éoint?.a;e: Sep 2004
Junior Member osts: 3 @

L Proxy Sarvices

$350.00/weekly - $1,000/monthly (USD)

Type of service: Exclusive (One slot only)
Always Online: 5,000 - 6,000

Proxy Type: SOCKS4

De-Duped: Yes

RBL Checked: Yes

Updated every: 10 minutes

$220.00/weekly - $800.00/monthly (USD)

Type of service: Shared (4 slots)
Always Online: 9,000 - 10,000
Proxy Type: SOCKS4
De-Duped: Yes

RBL Checked: Yes

Updated every: 5 minutes

References and samples are available.

Contact me via AIM: robinangelic

o ST i s o

82

Information Abeut the Bulk [mail Marketing Spam fndustry - HTTPS & SOCKS PROXIES - Moezilla Firefox

File Edit view Go Bookmarks Tools Help] B
B el sponfaram bafanmsbonivesd shomt—zs0

..t News ;. ToRead i j Weather i_"} MIT Classes ;

i Calendar ; .; Research Tools :_; Money Mgmt

&l
08-LaMacchia.pdf (applicationfpdf) { Information About the Bulk Email Mark. ; Information About the Bulk Emai... ;
If this is your first visit, be sure to check out the FAQ by dlicking the link above. You may have to reagister before you can post: click the
register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below,

Fﬁreaﬂ Tools ‘”Seani l';is \’head V Display Modes V—‘

Bulk MKQ is offline: Join Date: Jun 2004
Posts: 2 @

Junior Member

L HTYPS & SOCKS PROXIES

2 auto-update url's

1 SOCKS - 1 HTTPS

updated 3-S times daily
1000-1500 up on each 24/7

$75 USD/week $250 USD/month

You can email bulkmko@yahoo.com if you are interested.

QUOTE %

i ine: Join Date: Sep 2004
mC_sMiTh is offline: Posts: 36 @

3unior Mernber

L

interesting offer for small mailers!

anybody bought peas there bsfore?

83

Appendix 2—Full STAMP Analysis

84

uonipuoy [PpoN
UONIPUO)) UONOY

JUU2240fd Jo yov] 40f HOSVAL KDL

AU3PIOUL Y] 0] 2INq1IU0I

ON SOA | 11 pip pup padiofua-un juiviisuod iy SupM
BI85 [eoryda, (q
uop 31q0S ULIo AN 191Se[g
(uorpuo) y0qpaay) -
Yovqpaa, Suissiy
snomIew sem 31q0S Ul d[qerou[na a1om s1andwod 119y (uoipuo)) j1apop) -
JUAWYORIIE Jey) 9ZIuF00a1 J0U PIP SIAS[) | puEIsIopun jJou pIp s1osn Juieuewr J[9S SMDL] [OPOIN

(uonpuo)) uondy) -
SuoNOY j041u07) 2pnbapouy

stoindwos arayy yozed
0] 9ALIIS 10U PIP sI9sn Jurdeuew J[oS

(uonpuo) po9) -
paaiofua aq o1 parduia1p spm J1 22432

uonIpuo) 19PON e

UOTIPUOD) [SPOIN
uonIpuOD) [20D e

JuW3240fu2 J0 Yov] L0f UOSDIL upUILL

SOX

SL

Juap1ou1 21 01 AANGLITUOD
11 p1p puv pasiofua-un JuID.suod ay] svp

uiop\ 31908

ULIOAN JOISE[Y

SI9s(] (e

aremijos snaa-nuy (p
wAIsAg SuneradQ / aremyjos (o
Jyeis [eouyaay, (q

s13s] (e

:q paddofus] 2q o1 JUIDLISUO))

JIBA}JOS SNODI[BW JJNIIXI Jou jsnui sxnduwo)) :J-1

swrexgoad

JUAISU0,) £1141228

sndwo)) |

85

(uompuo) [pon) -
paaaofua 2q o1 pa1daiiv svm 11 23433

uonIpuo)) [FPON uonipuo)) [IPo 12U2240fua fo you] 40f U0SDIL KdvUiLL g
(IUaPI2UL Y] 01 2INGLIIUOD
Sa K SOA | 1 PIp pup paodofus-un juinaisuod aiyj Sbp
QIBMIJOS STUTA-IIUY (P
uniopp 3190 ULIOAA JoISBlg
(uontpuo) ¥o0qpaa,j) -
Yovqpaa. Sulssiy
(uonpuo) 12pop) -
SMDLL 19PO
9jeSedoid 0] 19)se[g pamO[[e WISKS (uonipuoy) uonydy) -
Sunesad ur Hyiqersuna A11INd9g SUONDY jo41uo)) 2ipnbapouy
(uonipuo) [poH) -
pasiofua 2q 01 pajdutaniv Spm 11 22.483(7
UOTIPUO)) UONIY UW22.10fud Jo o] 10f UOSP2L Lupuirid
JIUapI2U1 Y1 01 AINGIAIUOD
ON SO | 11 pIp puv pasuofus-un puipaisuod 2y S
wasA§ JuneradQ) 7 aremijos (0
utopy S1qos WLIO A I9)Selg
J]qBISU[NA 2IoM
s191ndwod I19Y) Jey) paziudooar aAey (uonIpuo)) JIBqPI]) -
10U AW SULIT] OWIOS J& JJBIS [EDIUYDa], oeqpad] SUISSTA
(uontpuo) [9poN) -

SMEL [9POIN

J[qeiounA
19ndwod Suraeaf ‘yojed smopuip
1S91e[PI[[eISUI JOU pey JJels [edTUyoa],

(uonipuo) uondy) -
sUoNIY jo41u0)) 23pnbapouy

(uonipuo?) 1pon) -
pasiofua aq 03 pa1duta1iv Som 31 2a.482(F

86

(uonipuo) 19pow) -
SMD]] 19PON

(uonipuo) uondy) -
SUoNIY jojuoy) 2jpnbapouy

onjen
[rewo 310adsur 10U Op S[[EMIII] ISON

"JOU AI9M SIdYI() "UO pI[aAeT)
1918e[g 1B [ouueyo Ayl ‘¢ 1od doy
)20[q 0} PAIN3IJUOD 2IIM S[[BMIII] JWOS

(uonipuo) von) -
P22.40fud 2q 0j paiduiazin SPM 11 32.483(]

UonIpuOd [BOD) o

uonIpuod [BON) o

1UWII40fu2 fO YOv] 40f UOSDL L4DULIL]

SOX

A[renteq

JIUPIOUL Y] 01 2INQLIIUOD
11 pIp pup paouofua-un JuIvLISUod Yl SUA

uop 81908

WIO A\ Ioise[g

SOOTAQ(T JIOMION (B

2JEMIJOS SRIIA-TIUY (9
woysAS SuneradQ / aremijos (p
Jye1s [eoruyor], (o

SA01AR(] JIomIaN (®

sdSI @

s1es) (q

:Kq paouofuzy 2q 01 1UIDISUOY)

(Kyurrojiun ‘jremaary)

jou jsnu sndurod ‘pastwoadurod Jy pasrwoadwod Jy :7-1

snaiA pedads

UID4IsU0)) KJ1UNIag

(uompuo)) Yonqpaa,g) -

YoDqpaa.g Suissipy

pajepdn jou sem uonuiop pajepdn jou sem uoniujop
STLIA 9IoUym $9sBD Ul 31q0S WO} SIIIA 219UM SISO Ul 19)Se[g WOolj (uonipuoy) 1apojy) -
109101d J0U P[NOD 2IBMIJOS SIIA TIUY 109101d 10U P[NOJ 2IEMIJOS SIIIA BUY SMD] 19PO

(uoipuo) uonay) -
sUoNnIY 041107y a1onbapouy

87

JUSWUOIIAUD

Sunndwod snosuaoraiay B 333S

J0U Op Isow Aj1ouagowoy Jo s}jouaq
) 01 9N “JUSWUOIIAUR Joinduwod
snouafowioy Aq pajelr[ioe] sem peaids

JUQUWIUOIIAUD
Sunndwoo snoaua301919y B)99s

j0U Op 1sowW A119U230WOY JO SIJAUIq
Ay} 0} an(“JUSWUOIIAUD JNdwod
snouagouwioy Aq pajelrjioe] sem peaidg

(uompuo) 1vo9) -
pa2.40fua 2q 01 parduiav SPM 1 22433(]

uonIpuo)) YOeqpad e
uonIpuo)) [BOH @

uonipuo)) [e0H) e

JUW2240fu2 [0 3OD] LOf UOSDIL K4DUIL]

JIUaP1oUI 2Y] 0] 2INGLUOD

TSOA SO | 11 pip pup pa240fua-un Juinsuod 3yl SopM
JJels [eauyd9], (0
uLop §1qos ULIOA Idlse[q
Pa109JuI 219M A9} (uonipuo) 3ooqpaa.g) -
AMOUY JOU PIP sI9sn pajoojur S1qoS 1SOJA Y¥ovqpaa. Surssiy
(uotpuo) 1pop) -
SMD]] 12PON

patededoad

3w yorym Suump 1ondwod 119y)
woIJ I9)se[g SUIAOWT W) J[NOLJIP
© pey slosn Auewl ‘pajoajul aduQ

(uonipuo) uondy) -
Su019Y jo4ju0)) iwnbapouy

JUSWUOIIAUD

Sunndwod snoaua30I1d1ay 23S jou
Op SI9SN ISOJA "JUSWIUOIIAUD Jondwod
snoua3owoy Aq pajelr[ioe] sem peardg

JUQWUOIIAUD

Sunnduwod snoauafo1019y B Y295 jou
Op SI9SN JSOJ\ “JUUWIUOITAUS JoIndwoo
snoud3owoy Aq pajeln[ioe] sem peaidg

(uonipuo) po9) -
paduofus aq o] parduap oM 11 224337

SNOLIEA e

SNOLIBA e

JUW30.40f12 [0 Yov] 10f UOSDIL L4vUiLL]

JIUIPIdUL Y] 01 2INQLIIUOD

SOX SOX | 11 pIp puv padiofua-un JUIDAISUOD 31yl SV
4 s19s() (q
uIop 31908 WIOA JaIserg
(uomipuod yovqpas.) -

Yovqpas . Suissiy

88

(uonipuo) 1v09) -
pa240fuad 2q o1 paidiusip spm 1 224337

uonIpuO) [9PON e

uonIpue) PPON e

Wau22.40fu2 fo yov| 10f UoSDPIL Lavuiid

JIUIPIOUL Y] O] 2]1NqIIJUOD

Alrented Afrenaed | 11 pip puv pasiofua-un juip.suod iyl SUM
QIBMIJOS STLIA-NIUY (9
uopy S1qos ULIO A\ JISelq
(uoripuo) 4o0qpas,g) -
NIDGP3Ia,] SUISSIIN
aI1BM1JOS JIBM)JOS
SNOTOI[RW WOIJ ouwed JurndIxXd sem SNOIdI[RW WOIJ awed JUndIxXd sem
1t Sunnoi uonededoxd oy , puejsiopun,, | 1 Sunnox uonededoid Yy pueisiopun,, (uonipuo) 12pop) -
jou pip walsAs Junerado ayJ, 10U pIp walsAs Junerado oy, SMD] 19PON

(uourpuo) uondy) -
SUONDY jo41Uu0)) Iivnbapouy

3190g jo peaids o yru|
01 £11 10U pIp SO 2Y) uonojur uodn)

1ase[g Jo peaxds oy g
01 A1 10U pIp SO Y1 uonoajut uodn

(uompuo) [pon) -
pao4ofua 2q o1 pardutanp Spm J1 22482(]

uonIpuos [OpojN. e
uonIpuo)) [B0H e

uonipuoy) [opojN. e
uonIpuo)) [poH e

U402 [0 §oD] 10f UOSDIL Ki1d

¢ IUaP1OUL Y3 01 2INQLITUOD

SIA SOA | 21 pip puv padiofua-un juipajsuod iy SUM
wilsAS SuneradQ /7 aremyjos (p
uop 31908 WIOAM JAseqg
EIRETT
1M A3y3 mowy Jou pip s1ndwod (uonipuoy) 3ovqpaay) -
p2109jut §1qOS JO SIOJBIISIUIWIPE ISON Yovqpaag SuIssiy
. (uonpuo)y 12pojy) -
SMDLL [9POI

(uonipuoy) uonody) -
SUONDY jo4Ju0)) 2ibnbapouy

&9

(uonrpuo) yovqpaa) -
Yooqpaa,y SuISSIN

SIUSUWIYOEIIE [IBUID JO SIUIUOD
Q) 9pNJoul jou pIp [opot [0NU0D S JS]

(uonipuo) [2pop) -
SMD]] 19PON

(uonipuo) uondy) -
Suonoy jo4iuo?) wnbapovuy

PaJe[al 19ISB[{ 2q 03 PAWIS Jey)
O1jJen) JO0[q 03 aSoYd SJS] AWos A[uQ

(uonipuo) pon) -
Pao240fua 2q 03 pa3dia1ip svM 11 22439(]

UoNIpuO) [PPON e

uonIpuo) [B0H

UUIDL0fUd JO YOV] 40f UOSDAA K4DWILJ

JIUIPIOUI 211 01 INGLAIUOD

SOX Ajenaed | 71 p1p pup pao.4ofua-un Juipasuod 2yl SUp
sdSI (
uriop 81908 WO M JolSe[gd
(uonipuo) yovqpaa.) -
Yonqpaay Suissiy
19158 2A0uIaI 0) Jdurone pue Jasn Ay I9)SB[¢] 2A0WI 0) 1dWwoNe pue 13sn JY)
1I0]® 10U PIp 91BM1JOS AV 24l ‘pajepdn 1I9[B 10U PIp 2IEMIJOS A Y 9Y} ‘patepdn (uopuo)) japop) -
10U 9IoMm SOINJBUSIS SNITA I9YM SISEO U] | JOU 2J9M SAUNJBUSIS SIITA 2IYM SISO U] SMD]] J12PON

(uwonipuo) uondy) -
Suondy joguo)) 1wnbapouy

90

(uo11puo)) uo1Iy) -
SuonoVy j043u00) 21onbapvuy

(uonpuo) |pon) -
pao40fua aq o1 pajdutajip som j1 2a432(1

uonIpuO)) YOrqpad] e

1udUI22.40fu3 Jo Yov] 10f UOSDIL KivULLL]

JIUAPIOUL Y] 01 ANQLUIUOD

ON Kl[enaed | J1 pip pup padLofua-un Juipajsuod i} Sum
JJe1g [eoruyaay, (q
uuop 31908 ULIO A OISRl
(uonpuo)) ¥o0qpaa,) -
Yooqpaa.; Suissiy
JeaIyy JaIse[q ayl d[puey
01 parngdijuod Aredoidurr dxom SO1AIP (uopuo)) 19poj) -
1194 18] QIBME JOU 1M SIasn AuBA SMD]L] [2PON
(Honpuo) UoNIV) -
sSuondy jo4100) 2ipnbapouy
(uonipuo) jpon) -
Pa240fua aq 01 parduagip Svm 1 22.482(]
uonIpuo)) [FPON e U040 J0 Yov] L0f UOSDIL LADUILL]
£ IUAP10Ul Y] 0] ING1IJUOD
ON A[[e1HR] | 11 pIp pUp Pa240fua-un Juiv4isuod ayl Sum
s1asn) (e
uLop 31qos WLIOM I9lselq

Jyers [eoruyd’], (q

s13s() (e

:Aq pao4ofua 2q 01 1UIDAISHO))

s1nduwrod Jurssador wWoj dyyjer) FI0M3IU snopifeul JudAdxd
0] paurejurewr pue paansyuod Apdoad aq ysnur $IdAI(-7

IS0 uniag

SINAI(] HIOMPN T

91

1eaIY) 19)se[g Y} 9[puey 0] paIn3juod

Aprodoxduir 91om $991A3P I19Y] Jey]) (vourpuo)) yovqpaa.g) -
SIEME JOU 2I0M SIOJJe)S [BITUY0d) AUBJA ¥ovqpaaJ SuiSSty
(uouipuo) 12poj) -

SMDL [2POI

92

pa1da101d Apuaroryns aIe s103ndwod 1Y) USYM MOUY JOU Op SIAS[)

(uonipuo)) o0qpas) -
Yovqpaa,] Suissipy

wapqoid oy yoeordde 01 moy mouy
01 Surpueisiopun ay) yoe[Apuanbayy s1oindwiod 119Y) 9IN93s 01 ISO0YD Op 1Y) ISOY,

(uompuo) 13pop) -
SMD] 19POIN

(uonIpuo) UoNIVY) -
SUONOY j0431U00) 21vnbapvuy

s1o)ndwod 1oy}
2IN03$ 0] HOJJO pUE AW} 9y} JSIAUT 0] JOU ISO0YD SIASN JO IIqUINU TURIIUTIS

(uoyipuo) poy) -
padtofua aq 01 paidwanp svm 11 22.432(7

uonIpuo)) Yorqpad| e
UOmpuoy) [9pojN e
UONIpUo)) [BO) e

Juaa240fud JO Yov] 40f UOSDIL Kavuildg

(IUIPIOUL 2Y] O] 2I1NqLIJUOD
Sax SOA | 11 pip pup paoiofua-un Jurpaisuod ayp Svp
(pao1ojuy J[oS) s19s(] (e
wop 81908 WO J9ISe|g

JUTRIISUOD PadIOJud J[AS

Aq paatofua 2q 01 UID4ISUO))

s1yndwod
1197} SULINDIS UT 110JJ3 PUB W} JSIAUL JSNUI SAIS() f-¢

napasuo)) 1aniag

SI3S(} °¢

93

(uon1puo) 3ovqpasq) -
¥ooqpaa.J SuISSIN

(uonpuo) 12poj) -
SMD]] 12PON

“SYSB) 9ATIOBAI SE [[oM sk dAnIoe0ld
uo pajJelIs pue suonoaxp Auew ur pafnd A[[eiousd a1e syyeIs [eoruyo9) Aeiodio)

(uonipuo) uondy) -
SUONDY J041U0) 21nbapvuy

(uonipuo) pon) -
pa2.4ofua 2q o1 paydiua11p svM 11 22433(]

uonIpuo)) UOIOY

UNUI410[U2 Jo YOD] 40f UOSDIL K4DWILL]

JIUapIoul 2yj 01 2INq1IUO0D
Aqrenred A[renaed | 71 p1p pup padiofua-un Juip4suod ayl SUpM
_ ‘ ‘ juowafeue g Auedwo)) 29 [eoruys9], (B
wIo M\ 31908 WLIOAA JoIse[q

juowadeuey Auedwo)) 29 (oY, (e

:Aq pad1ofus 2q 01 JUIDAISUO))

SYSE) YI0M
9191dw0d £[3A1199JJ9 0} JuIUIET) PUE JWIT) JUIIIIJNS IARH :[-p

UIDAISUOD) K114NI38

J3e1S [BoIuya L, °p

94

-9oerd
ur Apeaife saInseawl AJLINd3s JO SSAUIAIIORJJ2 YY) PUL)SIIPUN 0] I[NOLJIP ALOA ST 1]

(uoripuo) 4o0qpasyj) -
¥ovqpaag SuIssipy

RERI
Auedwod e ¥su £111099s Jo unowre 9y) 93ned AJnyssaoons 03 JNIJIP AI19A ST 1]

(uoupuo)y |apoj) -
SUD]L [9POI

(uonpuo) uondy) -
suodYy jo41u0)) aipnbapouy

22.40fu2 o) jdwiayip Kjp1ouad saiupduiod 1wyl (Pos v s1 51y

(uonipuo)) 1von) -
pa2.ofua 2q 03 parduiaiiv Spm 11 224327

UONIpUO)) YOBqpPaa,] e
UONIPUOD) [9POIN

JUW2240U2 Jo 3ov] 40f uosvaL iDL

JIUap1OUL Y] 01 2INQLIIUOD

Alrened | 21 pip puv paodofua-un juipsuod ayj svmy
wawaSeue g Auedwio)) 29 fedruyd9], (e
uLop\ 51qos WLIOAA J9ISe[g
paoIojuy J[oS :£q p2o40fua aq o) juIsU0)
aanssaad

oueuLIo)Rd [IIM YSII A)LINIIS duUR[R(A[JIILI0D ISNA (-

JUIDAISUO)) K114ND2G

JUIWRSRURJA] [BIIUYII, 'S

95

“1a1se1g Aq

panofdxo sem 1ey) A)jiqerauna AJLnods (uoypuo) yorqpaay) -
9} JO 2IEME JOU SEAM JIOPUIA Y], Yovqgpaa,] Suissipy
(uorjipuo) 12pop) -

Smol] |12poy

9ATIDIJO
10U 9I0M 2TeM1JOS 231] AN[IqrIaunA
Junearo 10y 9oe[d ul sjonuod AYJ,

(uonipuo) uonyoy) -
SUONOY j043u07) 1pnbapvuy

(uotpuo) po9) -
paa1ofua 2q 01 pa1cduia1iv SVM 11 22439(]

uonIpuoy) jyoeqpasg
uonIpuo)) UoNOY

Uwd.10[ud fo Yov] 40f U0SDIL iDLl

ON

SOA

JIUap1dUl 2Y) 0] 2INGLIUOD
11 PIp pUD padiofua-un JuIpLIsuod ayj SupM

wIop 81908

ULIOA\ TOIsely

SIOpUI A WAISAS 3unerad(pue aremijos (e

SI0pU2 A WAISAS unerodQ pue arem1jos

:Kq padaofua 2q 01 IUIDAISUO))

SINI[IqeIdUNA AJLINDIS UIBJUOD JOU JSNW AILMIJOS 1[-9

JUIDAISUOD) KJ1ANIIG

suidsAg Sunerdd() pue dxemyjos ‘9

96

oM 31qog |

uro M 1aseq |

PR210Juy] Jies

:Aq paduofua 3q o1 UIDLISUO))

pue Lpwr e ul saydjed £JLINDAS ISLI[I JSNUI SIOPUI A :T-L

Jauuew uRpnad

JUIDISUOD) K114HI2G

UTeWAT SANT[IqeIauinA Andds Kue (Uon1puo) Yorqpaa,y) -

J1 mouy 0} J0puA e 10§ aqissoduwr sI if Yovqpaaq Suissipy
(uonpuo) 1apoy) -

SMD[] [9PON

sjonpoad Jray) £11n09s
Ul 1S9AUL 0] YONW MOY QUIULIdIIP
0] UOTJRULIOJUT 9[qe[IBAR JSn saruedwio))

(uonipuol uondy) -
suondy jo4uo) 21pnbapouy

(uonpuo) woy)) -
pa2.10fus 2q 03 pa)duaiin Spm 11 22.483(]

uonIpuo)) Joeqpas,] e
uonIpuo)) UOTPY e

WaW22.10[u2 JO YoD] L0f UOSDAL K4DUILLJ

JIUIPIOUL Y] 01 IINGLUIUOD

ON SAX | 1 pip pup padiofus-un juvisuod i Sum
(podiojuyg
J19S) 1awadeuey Auedwo)) 29 [eoruyd9], (v
uo g\ 51qoS ULIO M J9)Se|q

SI0pud A WAISAS Junerad() pue aremijos

:KqQ padaofua aq o1 JUIDLISUO))

3.1B411J0S 3.1INJ3IS IJBIID pue ssauisng dfqeyyoxd
€ una 0) 3.1nssaxd dduepeq A[nyssadnins Jsnui SIOPUIA :J-7

wsU07) £114m235

SI0pUI A WISAS Sunesdd(pue aaemyjog °/

97

(uoytpuo)) yooqpaa) -
Y¥ovqpaa, SuisSIy

(uowpuo) 13pop) -
siv]] [9popy

(uomipuo) uonay) -
SuoNoYy jo4juo)) aipnbapouy

(uompuo) voy) -
pao.0fua 2q 01 parduanp som 1 224837

1U2210fu2 Jo 30| 10f UOSDIL LivwiLL]

ON

ON

Juap1oul 2y o1 2NqLIU0D
n ﬁ% puv Em&@?w un Juip4jsuod mﬁ SUM

" (padiojug
.ﬁomv Eoﬁommzﬂz ?mmEoU u% _moano.H (e

98

¢IUIPIDUL Y] 01 2INQLIIUOD
ON ON | 71 pIp pup pao.ofud-un jumaisuod ayi sop
SI0pUAA WAISAS Sunersd(y pue aremijog (e
uop 31qo8 ULIOA\ I9ISe[q

SIOPUD A 2remijo§ dnoejdydold 1010 pue snua-nuy

:&q pao1ofua aq o1 juaysuoy)

193ndwod J[qeIdUINA ISIMIIYJO ue
U0 Jj9S) SUI[[E)SUI WOIJ IRM[BU JUIALd SE [[9M SE ATLM)JOS
SNOI[EW AOWII PUE J09)IP JSNUI IIBM]JOS SNIIABUY :7-§

MIDLISUO)) K114n22g

(uotpuo) ¥ooqpaa.y) -
Yovqpaa,y uissipy

(uompuo) japopy] -
SMv]q 19popy

(uoupuo) uondyy) -
SUONDY j041U0)) 21wnbapvuy

(uonipuo) pon)) -
P22.40fua 2q o) paydwan som 31 22482¢]

1uawad0fua fo 3ov] 4of uosvas Kivwui J

ON

ON

JAUIPIdUL 2Y1 01 2)NqLIIOD
11 PIp puv pao1ofus-un juin.suod ay s

wiop 31qos

SI0pUIA wAIsAg Sunerad(y pue o1emijog (e

UWLIOA\ J9)SBlg

SIOPUSA 2Iem)jo§ d1oe[Aydolq 19410 pue sniA-nuy

:Aq padiofua 2q o1 nuvagsuo)y

JIeM)JOS
snopiew £q pI[qesIp A J0U ISNUT ATBM}JOS SNIIAUY -8

uI4Isuoy) £114n2ag

AIEM]JOS SNIIA-JUY *g

99

(uonrpuo) yo0qpaa,) -

AODGP23 . SUISSTN

(uou1puo) [poj) -
S ..SGN] NNEQE

(uoiripuo) uondy) -
SUoNIYy 1043u07) 21vnbapouy

(uontpuo) pon) -
p22.40fua 2q 01 pardwiativ Som 11 224827

1uawa.10fua Jo yov] 10f uosvas Livuitig

100

(uonpuo) yovqpaa) -
YoDqpaa.] SuISSIy

(uorpuo) 1apoy) -
SMD]] [apopy

pastwordwod

9q 0) s191ndwoos 210Ul PaMo[[e drnjeudis
mau ay) Sunnqinsip pue Sunesio

ur Ae[op Aue 1nq ‘(aseo s, 09)URWIAS

Ul PIISAODSIP SBM ULIOM 9Y) I91je Aep
ouo) Appoinb A1oa poapraoid axom Ziqog
passaIppe jey) suoniuyyap parepdn

pastwoldwos

9q 03 s1a1ndwoo a10wWw pamofe 2mjeusis
MU 3y Sunnqinsip pue Junealo

ur Ke[ap Aue Inq ‘(9582 S, 09)URWAS

Ul POISAODSIP SeM ULIOM JU) Aep owes
o) Apyomnb K194 papiaoid arom 19iserg
passaippe 1ey) suontuydp patepdn

(uonrpuo) uonsy) -
SUoNIY j041u00) 230Nbapvuy

(uonipuo) pon) -
P2210fud 3q 0} parduiainp spm 11 224837

UoNIpuoO)) UOY o

uonIpuo)) uoTPy e

1U22210fu2 [0 YD) 40f UOSVIUL iDUILLJ

A[enreq

Arenteq

JIUIPIdOUL 2Y] 01 2INQLIU0D
11 DIp pup paotofua-un juivsuod ay) sugy

uop\ 31qos

WIOA\ I9ISe[g

(P90IOJUH J[9S) SIOPUA QI8M]JOS SNIA-NUY (&

(Pa2IOJUF] J[9S) SIOPUA IRMIJOS SIIA-TJUY

:4q pasuofua aq o1 11Uy

ANIqe[IeA. 110y} INOQE SIAWI0)SND AJIJOU 10 SIAWCISND 0} WAY)
JIAIPP A[ednewolne pue fqissod se Apyomnb se suonIuIp
SNIIA 9)ep 0) dn 9p1A0ad JSnUI J0PUIA ATEMIJOS SNIANUY -6

MIDAISUOD) K11UNIAS

SIOPUIA IABM}JOS SIIIA-TJUY 6

101

(uonipuo) yovqpaa/) -
Yovqpaa.] SuIssiy

(uonpuo) [3pop) -
SMD] 19po

(uontpuo)) uonydy) -
suUonIy jo4uoy) 21wnbapouy

“3uLIR)[IJ 10U 316 18} SdSI 2ANNdWOod 0] s1awo0Isnd Jo uoneidiu sdeyrod pue s1500
[eUOT)IPPE UT 1[NS3I p[nom 11 se s3axoed 19){1] A[9ATIOR 0} JUBIISAY AI9A 1€ SIS SO

(uompuo)) [poy) -
pao.10fua 2q 01 parduianp Spm J1 22432(]

uonIpuo) [0 e

JUU2IL0fUd [0 Yov] A0f UOSVA.L KUDUILL]

Areneq

Arenaeq

JIUAP1OUL 2Y) 0] 2INGLIIUOD
11 pIp pup paduofua-un Juipasuod ayl SUAM

unop 81q0S

ULIO AN I91SE[g

(pao1oJuy JI9S) SIAPIAOIJ IDIAIRS JauIajy] (v

(paoIojug J[9S) SIOPIAOI] JTAIOS JOUIdIU]

:£q pa240fuz aq o3 JUIDLISUOD)

PaLsSIIes S.1ouo)snd
Surdaay] SfIyM 19UI)UT Y} 03 JOIUU0D A3Y) Jey) sxyndurod
3y} JIA0 [01JU0D JO IIITIP WS 119X ysnuwk SIST :[-01

UIDLISUOY) K114NI2S

{SAST) SIIPIACIJ NNAIIS JdWINUT "0

102

uo M 31qog

ULIOA 19iselg

JATINOIXF—IUSUWIUIIAOL) (B

SATINIIXH—IUSWILLISAOL)

:Aq padiofua aq 01 JUIAISUO))

SPUAJ) SNOJIFUEP IEINUNUIWIOD PUR IZIUS0II ISNJA :T-11

JUIDAISUOY) £J14MI3S

(uorpuo) 4o0qpaag) -
¥ovqpaa SuISSIN

(uonpuoyy 1apopy) -
h\SE r& NMEQSN

(Uo11p1UO)) UONIV) -
SUOIY 1043u0)) 21vnbapouy

(uonpuoy) po9) -
paatofua aq o1 paidaip sSom 1 22.489(]

JUaWa210J12 JO Yyov] 10f UOSVaL KavWiLL

ON

ON

JIu2ap1oul 3Y) 0] IINGLIUOD
11 pip puv pPaduLofua-un JuIvAisuod ayl SUpM

wiop 31908

WIOA J9Iserg

QANNIAXH—JUSUIUISAOL) (B

SANNIIXH—IUSUWUIIA0D)

:Aq pa2240fus 2q 01 JUIDAISUO))

£JIA)OE JBAIY) PUIIUL JNOYR UONBILIOJUL
0] SS900® dAeY JSnul S10jedaad3e uoneuLiojuy -1

JuI4Isuo)) K114naag

$101e33133 Y uonruLIOju] / SURY, JUIy L 11

103

(uoutpuo) yooqpas) -
Yovqpaa.g SuISSIy

(uouipuo) j1apop) -
u..\SGN A 12POA

*STY) 9SI9A9I O) UIB) Sem UOIOE OU ‘SIOFUEP 9q PJNOD JUSWUOIIAUS
Sunndwod snous3owoy A19A € 18y} pal1Iuopl dARY AW SYUE) JUIY) SWIOS S[IYA\

(uoipuo) uoyoy) -
suonoy jo4uo)) aywnbapouy

(uonipuo) pon) -
P2240fua 2q 01 pardiualiv Sbm 11 224837

UONIPUO)) UOIDY e

UW20.10fua fo Yov] 40f uosvas Livuiiig

SOX

SO X

(IUaP1aUI Y1 01 2INGLITUOD
11 pip pup padiofua-un JuIDAISUOD Y] SOM

104

(uouipuo) yovqpaa,) -

Yovqpaa,y Suissiy
"S)BIGINO SNIIA 10] 9[qisuodsar asoy) (uouipuo) 1apopy) -
Jutpuoyardde sojqnon JuesiIuSIs pey sey JUAWAIIOJUD me ‘suondadxa maj e i SMD]J 12PON

(uonpuoy) uondy) -
Suondy jo4uoy) aipnbapouy

(womipuo) pon) -
paoiofua 2q o1 pardwanip spm 11 224321

uonIpuo)) [9PON

11U22.10u Jo Yov] 40f UOSDIL iDL

JIUap1dUl Y1 01 2INGLIIUOD

SOX SOX | 1 pIp puv pastofud-un juivasuod ay svy
QARSI —)UIWIIAAOL) (q
SATNOIXH—IUUWIUIIAOL) (B
wop J1qog WLIOM J9ISe[q

JALRISIFY T —]UIUWIISAOL)
QALINOIXH—JUSUILLIIAOL)

:&q paouofua 2q o1 uaasu0)

syeaIqIno snaiA 10y jqisuodsat asoy) Sunsorie
J10J PI0DT UMOUY [[9M pue dAIssaxdurt e daey IsnpA] (-7

JuIAISU0)) (114ndag

JUdWDIOJUY MET T

105

Jpd AIn0es12qA0/A1Lmn0as19gA0 1 0£ 0500 /s1odaisovird/aog parmmm//:diyg
(9anmumuro) A10S1ApY AZo[ouyos |, uonewIofu] s Juapisald) uoneznuowud Jo SISLD V¥ :AImoas I1aq4) s
00T AInf £ WO SMIN LAND ., TUSWIA0IWIT SPasul HOJJo AILNJASIIqAD [e1apa,] :Hoday], 'Waqoy ‘sowa] et

106

(uotripuo)) yovqpaa.) -
¥ovqpaag SuisSIy
(uonyipuo)) japoy) -
SMDL] 19PON
o «.%:m:mzm uoI[[Iw)6$ AQ paseaIour Jurpuny Iy} dARY
PINOYs pue papunj Iapun sem AJIUNWWOI YoIeasal ay) jey) Sutkes OO ATeniqoq
ur podar e paystiqnd aan o)) A10SIApY AS0[0UYd9], UOIIRULIONU] S JUIPISaI] Y],
g1p 101098 oreand
oy 10§ diysiopea] Juaroyns Surpiaoid jou 10j [erouan) J0j02adsuf oy Aq pajne] sem (uopuo)) uondy) -
(ASDON) worISIAL] AIN0RS 194D TeuoneN §,A1IN09S pueowol] Jo jusunreda(] ay SuoOY jo41u0)) ajpnbapouy
: (uonpuol po9) -
paa4ofua aq o) pa1duiaiip Svm J1 22.432(]
uonIpuo)) UOIOY e WaU22.40fua Jo yo0] 10 U0SDaL LivuilLg
¢IUIP1oUI Y1 01 2INGLIUO0I
S9 X SO | 11 pIp pup padiofua-un juInsuod ayj SUM
Bu1oIoJuy J[0S) 9ANINJAXE — JUSWIUISAOL) (®
uop S1qos WLIOAA J91SE[g ‘
(Buro10juH J19S) PANNIIXF — JUSWUIIAOL) :&q paoaofua 2q o1 nvAISUO))
sypeye RYAD JudAdd Isnp 1-€] JUIDAISUO)) (J1UNIIS

IANNIIX--JUIWIIIA0L) ‘€]

(uompuo) yovqpaa) -
¥ovqpasy Suissiy

(uouipuo) 1opojy) -
SMD]] [9pOJy

(uonpuo) uony) -
SUoNIY j041u07) aipnbapouy

(uoyipuo) voy) -
Pa2140fud aq o3 parduwann som 11 224327

1UW2240Ju3 [0 Yov] 40f u0SPIL Livuiig

¢IUIPIIUL 2] 01 AINGLUIUOD
11 pIp pup padiofua-un 1uInaisuod a1 sop

uop J1qog

ULIOA\ J9Ise[g

(3urorojud J19S) 9ATINDIXH — JUQUWIUIDAOL) (B

(Rumiojud J19S) 2AIINOAX{] — JUSWULIIAOL)

:&q pasuofua 2q o1 jui.isuo)

SYPENE J9GAD Jo dFeWIRP dY) SZIWIUTU JSNJA] :Z-C]

JUIDLSUO) K1141035

107

(uoyapuoD yovqpasy) -
Yo0qpPaa.y SuISSUN

(uou1puo) 12poj) -
SMD] 19pOI

IBoA

(OB UIJILIM 1B SISTUIA AuBW ‘S() Y} Ul S9INIeIs SUORY JUILIND Y] YIIM UIAF

(uornpuo) uondy) -
SUOIY jo.qu0)) apnbapvuy

SIOSN UO PUE SIOPUSA 2IBAMIJOS U0 AILINJ3S

12942 10§ Anpiqrsuodsar aoepd 1ey) me[pa1orUS 03 JOU USSOYD Sey SSAUTU0d N Y],

(uonpuo) oY) -
p2o.40fua 2q 01 payduiagin Som 11 22432(7

UoOnIPUO)) UOIDY e
UoNIpuoD [e0D)

JuW240fu2 fo yov] 4of uosvas Lipuiid

SO

SIX

JIuap1oul ayi 01 2INqLIUOD
11 pIp pup paoLofua-un Juipaisuod ayj SV

ulop S1GoS

ULIOAN IOISelg

(urorojud J[2S) Juawadlojuyg Mme (8

(Suro10jus] JI9S) 9ANR[SIZOT—IUWUIIAOL)

:£q paotofua aq o1 (UIDAISUO)

JPUIAU] Y} JO AJLINIIS
Y} U0 193JJ9 danIsod e dARY JBY) SMEB[JJRId ISNA ([-b]

JUIDLISUOD) KJLINIZS

IANB[SIGI T—IUIWUIIACY)]

108

1pd 1100810940/ A1LNDas19gA0 1 0£0S00Z/S1odarsoend/aod pnrmmmys.diny
(oonmuruo)) L10s1APY AS0[0Uyda], UoteULIou] § JU3pIsald) uonezniiotd jo sisud v :umodg 12q4)

(uonipuo) yovqpaas) -
Y¥o0qpaa.y Suissipy

(uonipuo) 12poj)) -
h\SGN ']2PON

(uonipuo) uondy) -
suondY j0431u0)) 21nbapouy

oﬁ.:mzocu pides 10U sem Isn [BIIBWIUOD

01 oIeasal woij Joysueln ASo[ouyoa) Jo del Juaumnd 2yl ey Jurkes gO(g Arenlqog
ur 110da1 e paysiiqnd sapwiwio)) A10SIAPY AS0[0UYod], UOIJRULIOJU] S JUIPISAI] Y],

(uorpuo) poy) -
paodofua aq 01 pajdutaip spm j1 22.433(]

uonIpuo)) [E0H e

1U2WI40fu2 [0 3OD) 10f UOSDIL Kipuinig

SOX

SOA

Juap1oul 3y 01 2INGLIIU0D
11 pIp pup pad4ofua-un JuipaIsuod 2y SV

uop 31qos

W10 A IoIse[g

(BurdIoJuy JI2S) SIaYDIeISIY A1ndag (e

(Surorojug J[oS) SIYOIRISIY AIINIAS

:Aq pasiofua aq o1 JUIDAISUOD)

31eM}JOS SNORI[EW [0.1JU0D
0} Pasn 3¢ ued jey) SAZO[OUYII) MU doPAIP ISNIA :-S]

JuwAIsu0)) K11unoaag

SIIYDIIBISIY AILINDAS S|

109

‘sowwersord SnIiA 9yl openssip
A[USIO1JIns J0U PIP SISNIM STUTA) Aq Pa1oadxa sanfeuad oy pue pajorud smey ayJ,

(uonpuo) uondy) -
suoOy j041u0) 21pnbapovuy

(uomipuo) 1pon) -
p22.40fua 2q 03 paidua1p svm 11 22433(]

uocnIpuo)) UONOY

JU2W2240fu3 Jo Yov] 10f UOSDaL LiDwilig

SO X

SOX

¢ IUap1dUl 2Y) 01 INGLUIUOD
J1 pIp pup paddofua-un JuInLsuod ayl SV

uropy 31q0S

TWIIOA I9ISe[g

OANR[SISYT—IUQWIIAAOY) (q

(uonipuo) yorqpaa]) -
Yovqpaaq Suissyp

(uoyrpuo) j2pop) -
SMD]] 19POIN

‘srowrwessoxd

SRITA 9peNSSIp AQJUSIDIIINS JOU PIP JSOLIR JO POOYT[OYI] PUR 1SALIE JO Jeary) 9y],

(uoy1puo) uondy) -
SU01IVY j041u0)) 21vnbapvuj

(uomipuo) |po9) -
paouofua aq o1 paidwanp spm 11 22431

uonIpuo)) UoNIY

JUWD.L0fua [0 YoV] 10f UOSDIL AUDUILLJ

SOX

SOX

¢ IuUdp12Ul 2Yj 01 2INQILIUOI
11 pIp pup padiofua-un Juipsuod ayl St

wop 31908

ULIOA\ J9ISelg

JUSUWISDIOJUg MeT (B

JATIR[STSO [——JUSUIUISAOL)

JUSUIQDIOJUF] ME']

:£q paoaofua 2q 01 (UIDAISUO?)

31BM}JOS SNODI[EU ISEI[A
pue 318310 jJou Jsnur sIdweI3ord 3rem)jos snopIEA (1-91

JUIDAISUO)) £11UNI2S

SIIJLIM IIBM)JOS SNODI[BIA ‘9]

110

(uonpuo)) Yovqpaa.g) -
Yovqpaa,y Juissipy

(uorpuo) japop) -
SMD]] 12PO

111

‘srowrres3o1d snIA oy openssip
AQIUSIOIIJNS 10U PIP SIALIM SNITA oY) Aq paroadxad sonpeuad o) pue pajoeud Smef Y],

(uourpuo) uonay) -
SuUonoy NQt:QU EQ:@S@E\Q

(uonipuo) pon) -
pa2.40fus aq 0} pa1dwa11v SPM J1 22433(]

uonIpuO)) UoTOY

JU2W22.40fu2 J0 YOD] 40f UOSDIL KuDUILLJ

SoX

SAX

¢ IUap1oUl 2Y1 01 21NGLIIUOD
1 pIp pUv Padiofua-un juinLsuod ayl Sup

uropp 81qos

ULIO A\ TOISB[q

OANB[SIZ9T —IUWILIIAOL) (q

(uonipuo) yovqpas) -
yovqpaa. Suissyy

(uoupuo) 13pop) -
SMD]] 12PON

‘syowuresdoad

SIUIA OpENSSIP A[JUSIOIJINS 10U PIP ISOLIE JO POOYI[AYI] PUE I1SOLIE JO JeaIy) 9],

(uonpuo) uondy) -
SuonIY jo43uoy) apnbapovuy

(uonpuod po9) -
pa240fua aq 03 parduayp sMm J1 224321

UOT)IPUO)) UONOY

JUW2040[ud [0 YID] LOf UOSDIL KdDULL]

SOX

SIX

JIUap1oul 2yl o1 2JNGLUUOI
J1 pIp pup padiofua-un juipisuod ayl SOy

uop 31qo§

WHOAN JOIselg

JUUWSDIOJUH MBT (B

QATIB[SI3 [—JUSUILISAOD)

JUSWIODIOJUF] MEB]

:Aq padsiofua 2q o1 JUIDIISUO))

(s39wy0q “3°1) sandwod pasruoaduwod J19Y) Jo Isn Iy} uresd
0] 10 daeM[eU ILIM 0} s1dydey Aed jou jsnua saosuodg :1-£]

JUIDAISUOD) (J14NIIS

s10suodg a1eM)JOS SNODIEBIA “L]

112

(uopuo) yovqpas,j) -
Yovqpaa.y Suissipy

(uoupuo) japop) -
SMD]L] 19PO

113

Appendix 3—System Dynamics Model of a Simple Software Industry

114

1092 Yiomau
Jo yiSuans
vjo
Wouaq aangar

q19
1992 Iomiou v 1o}
1992 romiau
s|aaq +b b !
0} anp Sumyoms
g u uaudojarop \ / /
SIS W JUANSIAU V 01 Yowms Jo ajel /
Uo UIyYd! eo,o 010§ 9 mwﬁwwa <%mw%a
14301 JO 339h9 10§ ﬁ” uomiod uotod v u juaud o>uv
ur
g uw wawdopoasp / uo ﬁowm_&c 1999 o< W Eu:ao_?wﬁ
QI UT JUASIAUL swqord Lnoas ‘/:o AMEIJ U JUSLOSIALE
U0 UDYI0] JO 1033 e 0 onp Sumonms m-g\/ UR{20 JO 109g2 10§ qes
4 » v 10npoxd 10§
g w waudojaasp r \ s oo suogo wawdojaasp
amyed) jeutod ~——pu. g Jnpoad 10§ \\ /
suopo waudo[aad w are
* o punoy s Moiwmwoom aex V uuwdoanap
/A qoxd Amoas [Jonpoid ; Smyes] rewou
g W paxy are w soa50p
swqoId Armoas ayex -
g 1onpoxd
0108} JUAUSIAU]
v 1o0poxd
Jo Aypenb
) suondumsse

AALL)
SuuuSaq uoniog

115

Appendix 4—Google Keyword Prices

116

Google Adwords: Set Maximum cost per click - Mozilla Firefox

@3 b

Prink

.. : Intermet Stats

e Ad Groups.

Create ads. Chouose keywords and maximum cost-per-click.

+ Create New Text Ad | HOW PRICING WORKS
o
Image Ad [7] 1 Maximum cost-per-click = the most yau'd pay for a click [?].
| Ta ’ 2. Higher maximum cost-per-click and clickthrough rates = higher position and more clicks [?].
Test :]
Test 3. AdWords Di al tically your ge cost-per-click to be just 1 cent more than the minimum
Test

necessary to stay ranked above the next lower ad. No more need to monitor and revise your prices [?].
web. roit edu

Ed - Delete i Choose curyency and maximum cost-per-cick
USD $j10080 [Recalculste Estimates |

Traffic

Estimator -
s

’ . g oy

i cup 2.500.0 $0.49 §1.208.12 1.1 find altematives / delete
home laan 1400 $2068 $418272 1.1 find altematives / delste
home motgage ~ 88.0 §2005 §176400 1.1 find alternatives / delete
mortgage 32000 $15.19 $4859392 1.1 find altematives / delete
mug 460.0 $1.37 $6879 10 find altematives / delete

; Overall $983 85637854 1.1

Change Keywords

[(Save & Continue » > |

* Eoti

for these keywords are based on clickthrough rates for current advertisers. Some of the keywords above are
subject to review by Google and may net trigger your ads until they are approved. Please note that your traffic estimates
assume your keywords are approved.

.; sy o efath
Control the amount

Faaedget,

you want to spend on your campaign each day. No minimum budget is required.

Ao B,

117

