
Using STAMP to Understand Recent Increases in Malicious Software Activity

by

David S. Zipkin

B.A. Computer Science
Dartmouth College, 1997

Submitted to the Engineering Systems Division
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Technology and Policy

at the

Massachusetts Institute of Technology

June 2005

©2005 Massachusetts Institute of Technology.
All rights reserved.

MASSACHUSETTS INSTfUE'
OFTECHNOLOGY

JUN 0 1 2005

LIBRARIES

Signature of Author e
T ology and Policy Program, Engineering Systems Division

May 13, 2005

/'

Certified by
/ Nancy G. Leveson

Professor of Aeronautics and Astronautics
Professor of Engineering Systems

Thesis Supervisor

~~_ J

Accepted by...................................l.;
l l Dava J. Newman

Professor ofAeronautics and Astronautics and Engineering Systems
Director, Technology and Policy Program

ARCHIviis

1_1111�---�---·- -·

Using STAMP to Understand Recent Increases in Malicious Software Activity
by

David S. Zipkin

Submitted to the Engineering Systems Division on May 13, 2005
in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Technology and Policy

Abstract

My advisor, Professor Leveson has developed an accident modeling framework called
STAMP (Systems Theoretic Accident Modeling and Processes.) Traditional accident
models typically focus on component failure; in contrast, STAMP includes interactions
between components as well as social, economic, and legal factors.

My research extends Leveson's STAMP accident model and applies it to a security
problem. I have chosen to investigate the threat posed by malicious computer software
such as computer viruses. The problem is especially interesting because surrounding the
technical aspects of malicious software is a rich socio-technical system.

The first part of the thesis investigates two recent computer worm outbreaks and
identifies the numerous ways in which the security system failed. For both outbreaks,
there were multiple points of failure including the existence of un-patched workstations,
software organizations that distributed insecure software, the lack of sufficient legal
disincentives to dissuade hackers, as well as many others.

The thesis goes on to examine why the system was operating in such an insecure manner.
As is generally the case when modeling an accident, the explanation goes beyond any
single factor. I argue that that lack of Internet security can be largely attributed to the fact
that those providing critical parts of Internet security do not have sufficient incentives to
make good security decisions; instead they often make decisions at odds with Internet
security.

The thesis concludes with a discussion of policy and technical recommendations for
addressing computer security.

Thesis Supervisor: Dr. Nancy G. Leveson
Professor of Aeronautics and Astronautics
Professor of Engineering Systems

3

To Abby

for making my final week of thesis writing forever memorable

4

Table of contents

Chapter 1--Introduction and Background ... 6
Chapter 2-STAMP Background and Applying STAMP to Security 14
Chapter 3-STAMP Static Control Structure ... 22
Chapter 4--STAMP Structural Dynamics ... 38
Chapter 5-STAMP Behavioral Dynamics ... 50
Chapter 6-Addressing Internet Security ... 68
Chapter 7-Summary ... 79

5

Chapter 1-Introduction and Background

This thesis has a dual purpose. Its principal purpose is to test the hypothesis that

Leveson's STAMP (Systems Theoretic Accident Modeling and Processes) framework

can be successfully applied to a problem in the security realm. To test this hypothesis, I

used STAMP to analyze the increasingly critical problem of malicious software

(malware) that is threatening the utility of the Internet.

The secondary purpose of the thesis is a complete analysis of the systemic causes

of malicious software using STAMP. I believe this thesis contains an analysis that yields

significant understanding about the causes of the malicious software problem, which is a

strong indication that STAMP can be used to analyze security problems as well as safety

accidents.

The thesis contains seven chapters. The remainder of the first chapter is devoted

to giving the reader an understanding of computer security and an appreciation of the

magnitude of the problem at hand. Chapter 2 provides background about STAMP and

discusses why I believe STAMP can be used in a security context.

Chapters 3, 4, and 5 constitute the STAMP analysis. Chapter three defines the

Internet Security System (ISS) in detail, which is the collection of components whose

interactions determine the ability of the Internet to withstand attacks. Chapter four

investigates how the ISS has repeatedly failed. It dissects two examples of security

failures and details which parts of the ISS failed to protect against the malicious software.

Chapter 5 discusses the changes to the ISS that occurred over the past decade and

explains how these changes weakened the ISS. It also provides a discussion of the forces

that drove those changes.

Chapter 6 is devoted to a discussion of technical and policy-oriented approaches

intended to improve the Internet's resilience to malicious software and chapter 7 is a brief

summary of the report.

I believe that STAMP served as a very useful tool for conducting the security

analysis. Using STAMP, I was able to take a diverse and complex security system and

develop a strong understanding of how the system responds to the challenges it faces. By

conducting the STAMP analysis, I arrived at the central conclusion presented in chapter

6

- - |~~~~~~~~~~~~~__ _ · _·. �

5: those providing critical parts of Internet security do not have sufficient incentives to

make good security decisions; instead they often make decisions at odds with Internet

security.

Defining the problem

Attacks on the Internet can be divided roughly into two groups: targeted attacks

and broad attacks. This thesis focuses on broad attacks in which an attacker uses an

attack method, such as a type of computer virus known as a worm, to reach as wide an

audience as possible. 1

Broad attacks have evolved beyond their early incarnations, when the author's

main purpose was frequently to draw attention to his programming prowess by creating

as wide an impact as possible. In recent years, attackers have found creative ways to earn

money from broad attacks and the popularity of broad attacks are increasing. Attackers

use these attacks to compromise large numbers of computers, installing a piece of

malicious software on those computers without the computer owner's knowledge or

acquiescence that gives the attacker use of the victim's computer.

The author of this malicious software can make money by charging others for use

of the computers he has compromised. Others are willing to pay for the use of these

compromised computers and put them to a variety of unsavory uses, including:

· Sending spam

· Extortion and Blackmail via Denial of Service Attacks

· Stealing personal or financial information

· Running "Phishing" Servers

· Advertising click fraud

· Terrorism

The mechanics of malicious software

In order to understand the scope and threat posed by malicious software, it is

useful to know more about its inner workings. As varied as the purposes of broad attacks

' An example of a targeted attack is when a hacker attempts to gain access to or disable a computer
resource belonging to a specific person or organization.

7

can be, all rely on infecting as many computers as possible with malicious software.

Malicious software spreads in two primary ways:

* a user unintentionally, but voluntarily runs a piece of malicious software. The

malicious software can be delivered in various ways; it may be an email

attachment or perhaps a link included in an instant messenger (IM) message

* the malicious software can install itself without any human intervention by

exploiting a vulnerability in software already running on the computer

Once a computer has been infected with the malicious software, two things

happen: propagation and payload installation. First, the newly infected computer assists

the spread of the malicious software by attempting to infect other computers. See Figure

1 and Figure 2 below.

, - k,

Figure I-A single computer is infected

$ ~-

other vulnerable computers

The software installed during the propagation phase contains instructions to

spread the malicious software. It also contains a payload. Depending on the malicious

software's intentions, the purpose of the payload can vary. The three common payload

types are:

* Remote control-this type of payload allows the compromised computer to be

used for one of the financial ventures described above. Such payloads might

8

____I�

make a computer into an email relay or instruct it to participate in a denial of

service attack

* Backdoor-this type of payload allows additional software (usually remote

control) to be installed at a later time by the malicious software author

* Destructive-destructive payloads cause damage to data and computers. For

instance, a destructive payload may erase data from a hard drive.

Regardless of the type of payload installed, the result is a compromised computer.

Perhaps surprisingly, destructive payloads are uncommon. Rather, computers

compromised with remote control payloads are frequently instructed to join networks of

compromised computers called botnets.

A botnet (short for robot network) is a collection of compromised computers that

take instructions from a single leader. Some botnets consist of upwards of 50,000

computers2 and researchers estimate that more than a million computers are members of

at least one botnet.

The owners of these botnets rent out the processor time of the computers they

control. The going rate for a compromised computer ranges from approximately $0.04 to

$0.083 per week of use. (Appendix 1 contains online advertisements offering the use of a

botnet.) A small botnet of 1000 computers can supplement the owner's income by a few

thousand dollars a year. Larger botnets can provide significant income to malicious

software programmers. (A 50,000-computer botnet, fully utilized, can yield close to

$200,000 a year.)

Uses of Botnets

As outlined above, there are a number of creative uses for such a distributed

network of computing power. It enables bad actors to more effectively engage in

multiple kinds of nefarious behavior:

2 Know your Enemy: Tracking Bots. 13 Mar. 2005. The Honeynet Project & Research Alliance. 2 Apr.
2005 <http://http://www.honeynet.org/papers/bots/>.
<http://http://www.honeynet.org/papers/bots/>.
3 LaMacchia, Brian A. Security Attacks and Defenses. Working Group on Dependable Computing and
Fault Tolerance. Information Systems and Organizations. Puerto Rico, US. 29 Jan. 2005. 1 Apr. 2005
<http://www.laas.fr/IFIPWG/Workshops&Meetings/47/WS/08-LaMacchia.pdf>.

9

Sending spam

Botnets are well suited for sending spam. By using hijacked home and office

computers, spammers can circumvent common anti-spam techniques used by ISPs and

firms, such as blacklisting, to stop spam. Additionally, they save on bandwidth costs

because they use bandwidth stolen from the hijacked computer. Researchers estimate

that hijacked computers send 66% of the spam on the Internet today.4

Extortion and Blackmail via Denial of Service Attack

The owner of a botnet can attempt to disable a service (such as a website) that is

running on another server. By concentrating the resources of the botnet on this service,

the attacker can overwhelm it and render it inaccessible to others.5 This is known as a

distributed denial of service attack (DDoS). In June 2004, a botnet DDoS attack on

Akamai Technologies brought down the websites of Google, Microsoft, and Yahoo.6

Consider a botnet of 5000 home computers on average broadband connections. If

each computer devoted 200 kbps (kilobits per second) to the DDoS attack, the resulting

1000 mbps (megabits per second) would be sufficient to occupy nearly all of the DDoS

victim's bandwidth.

With their ability to disable websites proven, botnet owners have been able to

extract tens of thousands of dollars in "protection fees" from high-revenue websites in

return for not launching denial of service attacks7.

Stealing personal or financial information

The owner of a botnet can also instruct the compromised computers under his

command to search their hard drives for sensitive information such as social security

numbers or financial information. Some types of malicious software can be instructed to

4 LaMacchia.

5 A useful analogy for understanding denial of service attacks is a fast food restaurant. These restaurants
can comfortably serve 20 or so customers. A denial of service attack on a fast food restaurant would be
like thousands of people waiting in line to buy food, but not actually purchasing anything. Any legitimate
customers would be forced to wait in extraordinarily long lines and effectively denied service.
6 Biever, Celeste . "How zombie networks fuel cybercrime." New Scientist 3 Nov. 2004. 5 Mar. 2005
<http://www.newscientist.com/channel/info-tech/electronic-threats/dn66 16>.
7 Biever.

10

_ _

search computers for the license information of well-known software. 89 Later, this

information can be sold.

Running "Phishing" Servers

In a "phishing" attack, a user receives a forged email designed to appear as if it

came from a legitimate organization. The email requests that the user updates his

personal information, such as a credit card number or bank account password. If the user

follows the link given in the email, he is taken to a website that looks like the legitimate

organization's site but, of course, is not. Compromised computers are often employed to

host the counterfeit websites and capture the sensitive information.

Advertising clickfraudl°

Botnets have also been used to tamper with online advertising. Google and

Yahoo developed a popular advertising business model where advertisers pay each time

their ad is clicked. Advertisers bid for popular keywords; the cost of each click is

typically around $1 but very popular keywords can exceed $30. (Appendix 4 contains

pricing information for select keywords.)

An extension of this business model allows web publishers to devote a portion of

their web pages to hosting advertisements. Here, the web publishers receive a portion of

the revenue generated.

Commanding the computers in a botnet to execute searches and click on specific

advertisements will fraudulently inflate the number of times an advertisement is clicked

and will result in increased costs for the advertiser as well as increased revenues for the

web publisher who hosts the advertisements. Botnets have been used to both drive up a

competitor's advertising costs and to inflate the revenues of the web publisher."

How big a problem is this?

8

9 Phatbot Trojan Analysis. 15 Mar. 2004. Lurhq Corporation. 2 May 2005
<http://www.lurhq.com/phatbot.html>.
'0 Vise, David A. "Clicking To Steal." Washington Post 17 Apr. 2005. 2 May 2005
<http://www.washingtonpost.com/wp-dyn/articles/A58268-2005Aprl 6.html>.
t l Ives, Nat. "Web Marketers Fearful of Fraud In Pay-Per-Click." New York Times 3 Mar. 2005, sec. C: 1.
Lexis Nexis. 2 May 2005

11

While we do not know the total amount of economic damage caused by malicious

software, we can gauge the intensity with some statistics:

· Over 1,000,000 computers on the Internet are compromised and controlled by

malicious attackers'2

· Botnets have been known to constitute upwards of 50,000 computers'3

· 2/3 of spam on the Internet is sent by bots' 4

· There were approximately 200 denial of service attacks per day at the end of

200415

If the Internet becomes increasingly hazardous and lawless, I expect that people

will begin to go offline, retreating to intensely maintained private corporate networks or

simply choosing not to use the Internet at all.

However, the potential for future damage is significantly worse. While there have

been surprisingly few outbreaks of malicious software with destructive payloads, there

have been a large number of successful worms with remote access payloads. A

successfully propagating worm could just as easily have a destructive payload.

Researchers at Berkeley's International Computer Science Institute found that a

well-designed worm could, theoretically, tear through the Internet and infect 95% of 1

million vulnerable computers in slightly more than /2 of a second.'6 Termed aflash

worm, it could potentially deliver a truly malicious virus to a large amount of computers

at a virtually unstoppable rate.

Such a worm would be appealing to terrorists or enemy states. Rather than

simply leaving behind back doors that might result in more zombie computers, such a

worm could have truly malicious intent, perhaps deleting data or rendering computers

12 Know your Enemy: Tracking Bots.
13 Know your Enemy: Tracking Bots.
14 LaMacchia.
'5 Symantec Internet Threat Report: Trends for July 04 - December 04. Vol. VII.: Symantec Corporation,
2005. 1-96.
16 Moore, David, et al. "The top speed of flash worms." Proceedings of the 2004 ACM workshop on Rapid

malcode (2004): 33-42. 2 May 2005
<http://portal.acm.org/ft_gateway.cfm?id= 1029624&type=pdf&coll=GUIDE&dl=GUIDE&CFID=428898
84&CFTOKEN=47157339>.

12

-- S ~~~~~~~~~~~_~�II__

unusable. It could also be used to launch an immense denial of service attack on critical

infrastructure.

In order to achieve phenomenal spread promised by a flash worm, the writer of

the worm would need to detailed information about many computers. Botnets are

uniquely suited to gather this type of information.

The remainder of this thesis

The remainder of this thesis uses STAMP to address the question of how the

Internet arrived in this dangerous, vulnerable state and discusses potential remedies and

mediations.

13

Chapter 2-STAMP Background and Applying STAMP to Security

This chapter introduces STAMP (Systems Theoretic Accident Modeling and

Processes), a technique developed by Prof. Nancy Leveson, to model accidents. As

discussed in the previous chapter, the principle goal of this thesis is to understand if

STAMP can be effectively applied to security. This chapter offers a brief overview of

STAMP and discusses how I apply STAMP to a security problem.

Limitations of Previous Safety Models

Historically, accident investigators have used a number of different techniques to

investigate and analyze accidents. These techniques have significant flaws that may

result in incomplete understanding of the accident being modeled 17 . According to

Leveson, most accident models view accidents in a linear fashion, assuming that a chain

of events causes the accident, usually beginning with a component failure. If we trace the

chain-of-events, these models say, we will come to find the cause of the accident.

However, systems have been growing more complex and accidents do not always

fit easily into chain-of-event model. Leveson writes that a number of changes have

occurred to the systems we are trying to safeguard, which make the old accident models

less effective: since World War II, the pace of technological change has increased,

resulting in systems that rely on lesser-understood technologies; software of dizzying

complexity is now routinely a part of such systems and, unlike physical components,

whose failure properties can be well understood, software can contain failure modes

unknown even to its developers. The relationship between humans and automations is

changing too, with humans being asked to oversee the operation of ever more

complicated automation.

In this new world, the chain-of-event model is not sufficient, Leveson writes. The

chain-of-event model places a focus on failure events. This focus fails to sufficiently

account for four types of factors that should be considered by an accident model.18

17 Nancy, Leveson G. Safeware: System Safety and Computers. Addison-Wesley, 1995. Chapter 2.
18 Leveson, Nancy G. "A New Accident Model for Engineering Safer Systems." Safety Science 42.2
(2004): 1-30.

14

System accidents

Chain-of-event models primarily focus on component failure as a cause for

accidents. System accidents are accidents caused by the way two components interact. In

such cases, both components work as designed, but their interaction causes a failure. 19

Human Error

Human error is a "catch-all" frequently used in chain-of-event models to assign

blame. In reality, what is error is much murkier. Workers rarely work exactly as they are

told, instead procedures evolve over time. Therefore, at the time of the accident it is

usually easy to find someone who did not follow instructions exactly and assign blame to

him or her. To be complete, an accident model must include the idea that workers are

going to attempt to change their work patterns to optimize their work to some local goal.

The model must consider why workers were able to modify their patterns and why they

made the decision to modify their work patterns as they did.20

Social and organizationalfactors

In traditional event-based models, it is difficult to accurately represent social and

organizational factors. Management structure, culture, and the reasoning for making

decisions can contribute to an accident, and it is therefore important to include them in

the model in order to be complete.21

Adaptation

Older chain-of-event models of physical systems did not need to change much, as

the physical systems they modeled did not change frequently. However, as the accident's

context is broadened to include very dynamic factors, such as socio-technical factors, the

model must contain the ability to adapt. There are a multitude of changes that can occur,

including personnel changes and process changes. Furthermore, when a change occurs in

one component, other affected components must be made aware and adapt in kind.22

This information updating is complex and needs to be considered when seeking to

understand an accident.

19 Leveson, Safety Science.
20 Leveson, Safety Science.
21 Leveson, Safety Science.
22 Leveson, Safety Science.

15

Using STAMP to model accidents

To address these environmental changes and the deficiencies of old accident

models, Leveson developed STAMP (Systems-Theoretic Accident Model and Processes).

STAMP views accidents in a much broader context than the previous chain-of-event

models and includes the factors discussed above that are not handled well in event-chain

models.

STAMP views safety as a control problem.23 A system is a set of interrelated

components that must be kept in equilibrium by a feedback and controllers. When the

feedback loops and controllers are designed correctly and work as planned the system

will be resilient to "sparks" such as external disturbances and component failures. But if

the control loops are incorrectly designed or have degraded, the system will not be

successful at regaining equilibrium after such a "spark" and an accident may occur.

Leveson writes:

In this conception of safety, accidents occur
when external disturbances, component failures,
and/or dysfunctional interactions among system
components are not adequately controlled...2 4

The "sparks" a system faces such as external disturbances and component failure

are inevitabilities of operation. If the system is truly safe and a "spark" occurs, it will be

resilient enough to continue safe operation. An accident occurs when the system cannot

regain a safe equilibrium after such a "spark". The accident should be attributed to a

safety system that was unable handle the anomalous event, not to the anomalous event.

Understanding an accident is not a matter of understanding the disturbance or

component failure, rather it is a question of understanding why the system was not able to

regain equilibrium after the event.

Designing a safe system is a matter of designing appropriate control structures.

The designer must fully expect external disturbances and component failures and create a

system that is able to effectively respond to such events. Furthermore, such a system

must evolve and adapt over time.

23 Leveson, Nancy G. A New Approach to System Safety Engineering. 2 May 2005
<http://sunnyday.mit.edu/book2.pdf>, Chapter 4.
24 Leveson, Nancy G. A New Approach to System Safety Engineering, Introduction to part II

16

__ ___

The STAMP Process

Conducting a STAMP analysis consists of three sub-analyses2 5:

1) Static Safety Control Structure

2) Structural Dynamics

3) Behavioral Dynamics

Together, these three analyses can give a complete picture of an accident. Briefly,

the first analysis, the Static Safety Control Structure contains a definition of the safety

system. It defines the components included in the system, the hazards threatening the

system, and the required behavior of the system (e.g., the constraints it must adhere to).

The second analysis, the Structural Dynamics, shows how the control system changed

over time, focusing on what state it was in at the time of the accident. Finally, the third

analysis, Behavioral Dynamics, addresses what forces caused the system to migrate from

the original state as shown in the Static Safety Control Structure to the unstable state

identified in the Structural Dynamics model.

Static Safety Control Structure

The Static Safety Control Structure shows the system as designed to address

hazards. As discussed above, the safety system is divided into components, representing

the key parts of the socio-technical system. The components may be physical (e.g.,

factories, computers) or they may be organizational (e.g., government organizations,

firms). Each component in the system has a set of constraints for safe operation. In

STAMP, a component's constraints are the set of rules that, if enforced, increases the

resilience of the safety system. Each component has one or more controllers associated

with it that, relying on feedback from the component, works to ensure the constraints are

maintained.

The following diagram (Figure 3) is a sample Safety Control Structure. The lines

detail the feedback channels and control mechanisms that connect components.

25 Leveson, Nancy G. A New Approach to System Safety Engineering, Chapter 8

17

Figure 3-A sample Safety Control Structure from Leveson26

Structural Dynamics

The second part of a STAMP analysis is the Structural Dynamics analysis. This

part of the analysis focuses on how the safety structure changed between its instantiation

and the time of the accident. In this part of the analysis, we identify which constraints

were not enforced at the time of the accident and, more importantly, identify why they

were not enforced.

In order for a constraint to be effectively enforced, four conditions must be met.2 7

There must be a:

· Valid Goal Condition-the controller must be attempting to achieve a goal

· Adequate Control Actions-the controller must be able to exert sufficient

control onto the system component it is controlling

· Correct Mental Model-the controller must have a accurate understanding

of the system it is controlling

26 Leveson, Nancy G. A New Approach to System Safety Engineering, Chapter 8
27 Leveson, Nancy G. A New Approach to System Safety Engineering, Chapter 4

18

L_ ____I__·_I�_

Sufficient Feedback-the controller must receive accurate and sufficient

feedback about the state of the system

Behavioral Dynamics

The purpose of the final part of STAMP analysis is to understand the "Behavioral

Dynamics" of the system. This section seeks to understand what forces drove the system

from its resilient state to the state where it could not longer enforce constraints and the

accident occurred.

Applying STAMP to Security

Similarities between Safety and Security

I believe that the STAMP framework can also be applied to security problems

because security problems have many of the characteristics that Leveson developed the

STAMP safety model to address. Both security and safety exist within socio-technical

systems: systems with a complex technical problem at their core, but heavily affected by

economics, regulations, and social factors. In security systems, as we saw in safety

systems, the relationship between cause and effect can be non-linear, delayed, and hard to

distinguish.

Security, like safety, is an emergent property. Security arises from the

interactions among all the components in the system. It is not possible to determine if a

system is secure (or safe) by looking at a single system component. Finally, both types of

problems are highly dynamic and rely heavily on feedback.

Just as the safety system is viewed as a control system designed to keep a system

in equilibrium in the face of "sparks" such as external disturbances, I argue we can

similarly view the security control system as a control system designed to keep the

system in equilibrium in the face of sparks. However, in the security case these sparks

are motivated attacks on the security of the system rather than external disturbances or

component failures.

As is the case for safety, the cause of an accident was not the external disturbance

or component failure; instead it was the inability of the system to respond to that

19

disturbance. The same is true in this conception of security. The cause of the security

incident is not the attempted attack; rather it is the inability of the system to effectively

respond to the attack attempt.

We can take Leveson's statement about using STAMP for safety from above:

In this conception of safety, accidents occur
when external disturbances, component failures,
and/or dysfunctional interactions among system
components are not adequately controlled...

and modify it to pertain to security problems:

In this conception of security, incidents occur
when attacks are not adequately handled by the
control system...

Differences between Safety and Security

There are important differences between safety and security; this section discusses

these differences and argues that it is still reasonable to use STAMP as a means for

understanding a security incident. The differences are related to the location and

frequency of the disturbances the system faces.

In the case of security, the disturbances the system must respond to originate with

a motivated attacker, rather than a random anomaly such as a component failure.

Assuming an intelligent attacker, the "disturbance" they create will be designed to exploit

the part of the system they perceive to be most likely to yield to an attack, thus the

perceived weakest point of the system will be under greater pressure than a part that is

perceived to be more resilient.

In addition to having targeted disturbances, the frequency of the disturbances will

likely be different in the case of security. If a system is viewed as weak it will attract a

greater frequency of attacks because those attacks will have a higher yield.

Although these differences are present, they still generalize to the same problem

as safety: can a system respond to disturbances, regardless of their source or frequency.

The STAMP model does not make any assumptions about the source of the

"disturbances"; all disturbances are treated the same; the control system simply attempts

to regain equilibrium after a disturbance.

20

_I

In summary, I believe STAMP can be used for security as well as safety because

it is concerned with a system's ability to respond to a disturbance, not the source of the

disturbance.

Multiple Hierarchies in the STAMP framework

STAMP relies on the idea that components are arranged in a hierarchy; superior

components are responsible for controlling the actions of subordinate components.

Components rely on their superiors to provide the control actions that maintain their

constraints. For example, if the superior component is a regulatory authority, it can

control its subordinate with regulations or laws. If the superior component is a work

supervisor, it may use the manager-employee relationship to achieve compliance with the

constraint by the subordinate component.

When modeling the security of the Internet, a loosely coupled system, I observed

two things. First, there are multiple control hierarchies and second, each of the multiple

hierarchies has a top-level component whose behavior is not controlled by another. For

instance, home computer users are not required by any other entity to use their computers

in a specific way. At this point, there is not a law mandating that they use their computer

in a secure manner nor do that have any relationship with their Internet Service Providers

requiring them to take certain security precautions. They make decisions about their

security actions and live with the consequences.

Top-level components are their own controllers, determining what constraints

they should enforce on their own. Although they do not have a strict controller, they

incorporate information from many other sources to determine what constraints they

should enforce and how they should enforce them. I assume these top-level components

act to maximize their welfare, unless otherwise regulated.

21

Chapter 3--STAMP Static Control Structure

Chapters 3, 4, and 5 are devoted to conducting a STAMP analysis (as defined in

the last chapter) of the Internet Security System. This chapter contains the first of those

three parts: the Static Security Control Structure (SSCS). In it, I describe the many

components of the Internet's security structure, identify their relationships to one another.

I identify the system hazard that the Internet Security System faces and enumerate the

constraints that the components must adhere to for the system to operate securely and

avoid the hazard.

The next chapter investigates the Structural Dynamics of the system and discusses

how the security system has failed in multiple instances. For context, I use two recent

significant virus outbreaks as case studies. By investigating the two Internet worm

outbreaks, we can begin to understand which constraints were not able to be maintained,

leading to a weakened system and ultimately to the outbreaks.

Chapter 5 contains the final step of the security STAMP analysis, the Behavioral

Dynamics. In this chapter I discuss how and why the security system evolved in a

manner that made it very difficult to maintain the necessary constraints on behavior.

The Internet Security System

The system that has developed to protect users from threats posed by malicious

software is complex and broad. The distributed nature of the Internet necessitates that

security is not achieved by central control; the scope, geography and underlying design of

the Internet do not allow for it. Instead, the system includes many components exerting

force upon one another to keep the system in dynamic equilibrium. Control may be

exerted directly or by regulation and market forces.

I have identified 15 entities that interact to produce today's Internet Security

System. They are organized into multiple control hierarchies, reflecting the distributed

nature of the Internet. In addition to the 15 entities working to secure the system, there

are two entities that attempt to disrupt Internet Security by funding or writing malicious

software.

22

__I

Figure 4 identifies these 17 components and organizes them according to their

STAMP control hierarchies.

Each component in the diagram has a set of constraints that are to be enforced by

the control actions of the components located above them. For instance, component 1.

Computers has a set of constraints which are enforced by both 3. Users and 6. Software /

Operating Systems. In turn, there is a set of constraints imposed on 6. Software /

Operating Systems that are enforced by 7. Software / Operating System Vendors. The

constraints are derived by considering what must be done in order to avoid the

overarching system hazard, loss of utility of the Internet due to the spread of malicious

software. Top-level components, such as ISPs or Computer Users enforce constraints

upon themselves.

23

24

z,
E2.s

* s

CCtce

I

L

_1_1___1 __1 _ I �___I·____ _LI I

The remainder of this chapter discusses the entities in the figure and explains the

roles they play in securing the Internet. In keeping with the STAMP framework, each

section concludes with a set of constraints that the parent components must enforce to

ensure secure operations and enumerates the components responsible for ensuring those

constraints are enforced. The next chapter looks at two virus outbreaks that occurred and

discusses which constraints were violated when the outbreak occurred.

1. Computers

There are hundreds of millions of computers connected to the Internet,2 8 over

90% of which run versions of Microsoft Windows.29 (See Figure 5) Individuals, firms,

schools, and other organizations own these computers but regardless of their purpose,

they are targets for malicious software.

Figure 5--Operating System Marketshare (June 2004)

Computers are the last line of protection against the malicious software that

threatens the Internet because the goal of malware is to compromise these computers. In

order to maintain the security of the Internet, computers must not run software that is

malicious nor may they help to spread malicious software once infected.

28 CIA World Factbook. 21 Apr. 2005. Central Intelligence Agency.
<http://www.cia.gov/cia/publications/factbook/rankorder/21 53rank.html>.
29 Google Zeitgeist. <http://www.google.com/press/zeitgeist/jun04_pie.gif >.

25

Operating System Market Share

3/1%

'A.

5%

9(

* Windows
Mac

O Windows 95

o Linux

* Unix and other

i

This is a difficult task, as most users do not fully understand what the software

they are running does. Even a knowledgeable user cannot know with certainty what the

software he executes is going to do. There are many other ISS components that must try

to ensure computers do not run malicious software and do not help spread malicious

software. These enforcing components include the users, operating systems and other

software they run, technical support staff, anti-virus software and the ISPs that connect

the computers to the Internet that determines if the following constraints remain enforced.

Constraint Enforced by

1-1: Computers must not execute malicious * Users
software programs * Technical Staff

* Software and Operating
Systems

* Anti-virus software
1-2: If compromised, computers must not spread * Network Devices
virus * Users

* Technical Staff
* Software and Operating

Systems
* Anti-virus software

2. Network Devices

Some of the hundreds of millions of computers connected to the Internet connect

are accessible directly from the Internet. But many computers, both on corporate

networks and in homes, are partially protected from Internet-based attacks by network

devices such as firewalls. A firewall is only part of a defensive strategy, but it provides

two critical services that can protect a computer from malicious software. First, a

firewall can stop certain types of network traffic that may carry malicious software, if

properly configured. Second, many firewalls change a computer's network address (IP

address) so it cannot be seen by other computers unless it initiates contact first. This is

known as network address translation (NAT) and can help insulate a computer from self-

propagating malware.

26

Constraint Enforced by

2-1: Devices must be properly configured and * Users
maintained to prevent malicious network traffic · Technical Staff

from accessing computers

3. Computer Users

It is useful to break computer users into two types: those that manage their own

computer and those that rely on someone else such as office technical support to manage

their computer for them.

As described in chapter 1, there are two ways that a computer can become

infected with malicious software. The first is when the user executes a malicious piece of

software such as an email attachment. The second type of infection occurs when a

computer is running software with a vulnerability that can be exploited by the malicious

software. In this second case, the malicious software takes advantage of a security flaw

and installs itself on the computer.

Generally, the vendor that produced that insecure software releases a security

update known as a patch shortly after they become aware of the vulnerability. Installing

the patch can protect the computer from strains of malware that exploit that vulnerability.

It is the responsibility of the computer user or the organization managing the computer to

install the security patch in a timely manner.

The diagram shows that self managed users are not bound by any laws or

regulations to install security patches on their computers. The user needs to enforce

constraints 1-1 and 1-2 (e.g., by applying security patches, by not opening unknown

attachments), but no other component works to ensure that self managed users fulfill this

responsibility. In cases such as this, it is up to the individual user to decide how much

energy and expense to expend in order to maintain these security constraints.

4. Technical Staff

As discussed above, there is a significant portion of computer users who rely on a

technical staff to administer their computers, generally in a corporate environment. This

27

Constraint Enforced by

3-1: Users must invest time and effort in * Users (Self enforced for
securing their computers unmanaged users)

frequently means the burden of applying software patches is shifted from the users to a

technical staff overseeing many computers.

The technical staff has a difficult job enforcing constraints 1-1 and 1-2 on the

computers and needs to balance proactive work (such as developing response plans and

upgrading users to new versions of software) with a significant amount of reactive work.

5. Technical Management

The layers of management overseeing the Technical Staff are responsible for

ensuring that the Technical Staff component maintains their constraints in addition to

making strategic security decisions. They need to find a level of security that is sufficient

but will minimize costs and allow them to complete their business mission. Because

security is a non-event, finding this balance is difficult.

Constraint Enforced by

5-1: Must correctly balance security risk with · Technical Management (Self
performance pressure Enforced)

6. Software / Operating Systems

As discussed above, malicious software can spread in multiple ways, including

email and self-propagation. For malware to propagate without any user intervention, it

must exploit vulnerabilities in either a computer's operating system or in an application

running on the operating system.

If an author is writing malicious software for financial gain (by creating botnets of

compromised computers), the money he or she can make is proportional to how many

computers he infects. A rational virus writer will target operating systems and software

with a high market share.

Constraint Enforced by

6-1: Software must not contain security · Software and Operating

28

Constraint Enforced by

4-1: Have sufficient time and training to · Technical Management
effectively complete work tasks

vulnerabilities System Vendors

7. Software Vendors

As I discuss in chapter 5, creating software is a hard problem, and vulnerabilities

exist in most, if not all, software packages. For example, SecurityFocus's Bugtraq

database, known in the industry as the de facto clearinghouse for security vulnerabilities,

recorded an average of 55 new vulnerabilities per week in 2004.30

Most major software companies seem to be working hard to reduce

vulnerabilities, but this focus was not always present. In 2002, Microsoft recognized that

the connected nature of the Internet was making security even more important and

launched their Trustworthy Computing Initiative, revisiting their development tools and

processes.

Even with increased attention given to writing secure software, software will have

vulnerabilities and software companies must have a process for notifying customers

about the vulnerabilities and delivering updated software to them. Companies face a

challenge: customers demand notification of vulnerabilities in a timely manner, but

notifying also alerts malicious software authors about potential exploits.

Constraint Enforced by

7-1: Vendors must successfully balance pressure * Software and Operating
to run a profitable business and create secure System Vendors (Self
software Enforced)

8. Anti-virus and other Prophylactic Software

The market for antivirus software is large and growing. According to IDC, the

size of the market was about $4.2 in 2004,3 1 up from $2.2 billion in 2002.32 (Other

prophylactic software such as anti-spyware and software firewalls are not included in

these numbers.)

30 Symantec Internet Threat Report: Trends for July 04 - December 04, p3 4.
31 IDC Study referenced in Symantec Press Announcement
<http://www.symantec.com/press/2004/n04092 1 a.html>.
32 IDC Research announcement
<http://www.idc.com/austria/downloads/about/featured_research_031 .pdf>.

29

This kind of software fights with malicious software, attempting to prevent its

spread as well as remove infections that have already occurred. At the same time, many

forms of malicious software attempt to disable prophylactic software.

Most anti-virus software works by searching for identifying characteristics of

known malicious software. Once it identifies a piece of malware by these characteristics

(also known as a virus signature) it attempts to remove it. As new malware is discovered,

it is added to the set of known signatures and distributed to customers, generally via some

automatic updating process.

9. Anti-virus and other Prophylactic Software (PS) Vendors

It is the role of the anti-virus and other Prophylactic Vendors to create software

that can find and remove malicious software. It must be robust enough to withstand the

malicious software's creative attempts to disable it.

In addition creating this software, the PS vendors must also identify new

malicious software threats as soon as possible. Once identified, they must capture and

dissect the threat, create a new signature for it, test it, and release it to the public. Any

delay could result in more widespread infections.

30

Constraint Enforced by

8-1: Antivirus Software must not be disabled by * Anti-virus and other
malicious software Prophylactic Software

Vendors
8-2: Antivirus Software must detect and remove * Anti-virus and other
malicious software as well as prevent malware Prophylactic Software
from installing itself on an otherwise vulnerable Vendors
computer

Constraint Enforced by

9-1: Antivirus Software Vendor must provide up · Anti-virus vendors (self-
to date virus definitions as quickly as possible enfoced)
and automatically deliver them to customers or
notify customers about their availability

. ~~~~~~~~~~~~ .~~~~~-~

10. ISPs3 3

The ISPs play an interesting role in the security system-they offer connectivity

to the computers connected to the Internet. ISPs have customers of all sizes. Large

enterprises and institutions rely on them to connect their networks to the Internet just as

home users and small businesses use ISPs to connect to the Internet. This puts the ISPs

in an important position as gatekeeper to the Internet. They have the ability to monitor

and control the traffic originating from and destined for their clients.

Monitoring the network can be costly to the ISP on a number of dimensions. If an

ISP chooses to block certain types of Internet traffic, they risk interrupting some

legitimate services of their customers. Some smaller, consumer focused ISPs chose to

filter their customer's traffic and attempt to filter out malicious network traffic, but larger

ISPs like AT&T3 4 and Verizon do not, believing it is the customer's responsibility to

protect against malicious network traffic.35' 36

Constraint Enforced by

10-1: ISPs must exert some degree of control · Internet Service Providers
over the computers that they connect to the (Self enforced)
Internet while keeping customers satisfied

11. Think Tanks/Information Aggregators

These organizations, which include the National Cyber Security Partnership, the

Internet Storm Center, and Carnegie Mellon's CERT/CC, provide a number of services to

the Internet community. Some act as clearinghouses for member organizations to share

threat and attack data in the hopes of viewing the "bigger picture". Others offer

prevention and response best practices and others, like the National Cyber Security

Partnership focus on user community awareness.37

33 Schneier, Bruce. Schneier on Security. 2 Dec. 2004. 2 May 2005
<http://www.schneier.com/blog/archives/2004/1 2/striking_back_a.html>.
34 However, AT&T does do some spam filtering
35 Telephone interview with Verizon Sales. 18 Apr. 2005.
36 Telephone interview with AT&T Sales, 19 Apr. 2005.
37 CERT was created in 1988 with funding from DARPA as a response to the Morris worm

31

12. Law Enforcement

Law enforcement agencies, including the FBI and local police departments, must

be skillful enough to apprehend the authors of malicious software that leads to outbreaks.

Their task is compounded by the international nature of the Internet. Law enforcement is

bound by jurisdiction, and, without international agreement, their ability to catch those

involved with malicious software is limited.

In addition to apprehending hackers, law enforcement can play a preventative role

as well. If law enforcement agencies are widely known to be effective at apprehending

malware creators, some would-be malicious software authors will be deterred.

Constraint Enforced by

12-1: Must have a impressive and well known * Law Enforcement
record for arresting those responsible for virus · Government-Legislative
outbreaks

13. Government-Executive

In 2002, the president released the National Strategy to Secure Cyberspace. In it,

the executive lays out the US government's cyber security objectives: the government

must work to prevent attacks and if attacks can't be prevented, then it must work to

minimize the damage of the attacks.

The strategy states that the most of the responsibility for securing cyberspace rests

on the private sector, but the government will play a role in ways the private sector

cannot or will not.3 8

The National Cyber Security Division (NCSD) of the Department of Homeland

Security was created in June of 2003 to address some of these challenges. The purpose

38 United States. The White House. The National Strategy to Secure Cyberspace. Feb. 2003.
<http ://www.whitehouse.gov/pcipb/cyberspace_strategy.pdf>.

32

Constraint Enforced by

11-1: Information aggregators must have access * Government-Executive
to information about Internet threat activity * Think Tanks / Information

Aggregators (Self Enforced)
11-2: Must recognize and communicate * Government-Executive
dangerous trends * Think Tanks / Information

Aggregators (Self Enforced)

-- --

of the NCSD is to conduct cybersecurity analyses, issue alerts and warnings about

threats, improve information sharing, respond to major incidents, and aid in national-level

recovery efforts.3 9 The NCSD works closely with the information aggregation

community, providing the funding to US-CERT. NCSD also works with law

enforcement.

14. Government-Legislative

Statutes created by the Federal and State legislative branches of US governments

play an important part in the Internet Security System. There are a set of criminal laws

that are meant to govern those who would create the malicious software or use botnets for

financial gain. Additionally, there are contract and tort laws that proscribe rules designed

to guide the behavior of computer software vendors. The US does not have laws that

bind computer users or firms to maintain their computers in certain ways.

Criminal laws aimed at malicious software authors

The dual purpose of the US and foreign criminal laws are to both punish those

responsible for violating someone's computer and to deter others from doing the same.

There are federal and state laws that criminalize hacking as well as distributing malicious

software such as viruses on computers within state or federal jurisdiction.n In 2001, the

Patriot Act amended to the statutes to clarify that the US could also prosecute criminal

conduct that initiated outside of the US.

The punishment varies by the law that was violated, but can be significant,

including fines, prison, or both. The statute allows for prison terms for up to 20 years in

some cases. In extreme cases involving government computers, the prison term can be

for life.

39 United States. Department of Homeland Security. Ridge Creates New Division to Combat Cyber Threats
. 6 June 2003. <http://www.dhs.gov/dhspublic/display?content=916>.
40 US Cybercrime Law: Defining Offenses Susan Brenner (Information Systems Frontiers) 6:2

33

Constraint Enforced by

13-1: Must prevent cyber attacks * Government-Executive (Self
enforcing)

13-2: Must minimize the damage of cyber * Government-Executive (Self
attacks enforcing)

Laws affecting software producers-Tort Law and Contract Law

In the US, there are two legal pathways that are designed to hold software

producers accountable for harm related to insecure software they have unintentionally

created. 4' These are tort law and contracts law. Tort law has a dual purpose. It is

designed to compensate a damaged party for harm incurred and also to deter companies

from creating products that can cause harm.

Using torts in the software security context has an added layer of complexity to it.

In the case of malicious software, the party most responsible for the damage is the hacker

that wrote and released the software. While these crimes are covered under the criminal

code, law enforcement has not been successful at apprehending those responsible for

viruses and worms.4 2 In the case where the optimal target is difficult to obtain judgment

against, it is efficient to go after the second best solution, write Landes and Posner in The

Economic Structure of Tort Law. In this case, the next best target to apply tort liability to

is the software vendor.4 3

Within tort law there are two areas that most frequently apply to computer

software: strict product liability and negligence. Strict product liability states that a

company is responsible for personal injury or property damage caused by its product,

regardless of contractual disclaimers or warranties. In order for strict product liability to

apply, the injured party must show that they suffered personal injury or property damage

and that the product was defective.4 4

Strict product liability does not include liability for economic damage, which is a

limitation that is especially relevant to computer software. At this time, computer data is

41 Other criminal and tort pathways exist for prosecuting cases where software producers intentionally
release insecure products.
42 In 2002, the Justice Department convicted just 75 people for all computer crimes, not only virus related
crimes. (Fryer, Alex. "Microsoft offers bounty for arrest, conviction of cybercriminals." Seattle Times 6
Nov 2003.)
43 Pinkney, Kevin. "Putting Blame Where Blame is Due: Software Manufacturer and Customer Liability for
Security Related Software Failure." Albany Law Journal of Science and Technology 13 Alb. L.J. Sci. &
Tech. 43 (2002).
44 Armour, Jody, and Watts Humphrey. "Software Product Liability." Software Engineering Institute,
Carnegie Mellon Institute (1993).

34

111111 .I _

not considered property so any malware that destroys a company's data by exploiting a

software flaw would not qualify the software vendor for strict product liability.45

Negligence is another legal avenue that provides an incentive for software

companies to improve the security quality of their product. A consumer can charge

negligence if he feels that the damage he incurred came as the result of a lack of

"reasonable" quality control processes during the design of the software.4 6 In a software

context, this could mean releasing software that is known to have defects or employing

quality assurance processes insufficient for finding defects. In my research, I did not find

any examples of lawsuits where a vendor was successfully sued for negligence because

of security flaws in their software.

While tort law holds software producers responsible for only injury or property

damage, producers may be responsible for economic damage caused by their software

under contract law. This contract between the vendor and consumer is codified in the

end-user licensing agreement ("EULA") that the user must agree to before installing the

software.

A EULA makes very limited warrantees and generally forces the consumer to

agree that the vendor is not liable for any types of economic damage the results from the

software's use. Practically, only the largest software purchasers are able to negotiate

terms in the EULA. Most consumers are bound to the standard EULA, which is typically

very favorable to the software vendor.47

45 Barnes, Douglas A. "Deworming the Internet." Texas Law Review 83 (279-329).
<http://ssrn.com/abstract=622364>.
46 Miyaki, Patrick. "Computer Software Defects: Should Computer Software Manufacturers Be Held
Strictly Liable for Computer Software Defects?" Santa Clara Computer and High Technology Law Journal
May 1992: 121-144.
47 Wildstom, Stephen. "Want to sue over buggy code? Forget it, Microsoft and other software makers shield
themselves with the End User Agreement." BusinessWeek 22 Sept 2003.

35

Constraint Enforced by

14-1: Must craft enforceable laws that have a * Government-Legislatve (Self
positive effect on the security of the Internet enforcing)

15. Computer Science Security Research Community

The research community is closely tied to the Internet security community.

Worthwhile ideas and discoveries made by the research communities should be

transferred to the private sector.

Constraint Enforced by

15-1: Must develop new technologies that can be * Computer Science Security
used to control malicious software Research Community (Self

enforcing)

The Internet Security ecosystem also includes the actors that attempt to take

advantage of weaknesses in the system to profit or to cause damage. In this analysis,

these actors include those that write and release the malicious software as well as those

that use computers compromised by the malicious software to earn money. In Figure 3,

they are represented as two separate components: the Malicious Software Writers and

Malicious Software Sponsors.

16. Malicious Software Writers4 8

The motivations of malicious software programmers were discussed in chapter 1.

Their motivations have varied, but they are increasingly financially motivated.

48 Malicious software authors are often referred to as hackers. The term hacker has a rich history and a
very broad meaning. Most generally, the term hacker is used to describe one with a curiosity for learning
how something works. ("The Hacker Ethic", Ethics in the Computer Age Proceedings, ACM Press, New
York, New York, November 1994.) For many, the term hacker is a compliment. However, in recent years
the media and others have co-opted the term and used it to refer to one who uses computers to break the
law. While not historically correct, this is the definition of hacker most widely understood and so, for the
sake of simplicity, I use the term hacker to refer to refer to the authors of malicious software.

36

Constraint Enforced by

16-1: Malicious Software Writers must not · Law Enforcement
create and release malicious software * Government-Legislative

--

17. Malicious software sponsors

The Internet Security ecosystem also includes the actors that take advantage of

weaknesses in the system to make a profit or to cause damage. As discussed earlier,

these bad actors can use compromised computers to accomplish their goals. They are

typically distinct from the writers of the malicious software; instead they either contract

with the programmers to write the virus or later "lease" computing power for a hacker's

stable of hijacked computers.

Chapter 1 describes the some of the ways sponsors could use malicious software

to make money. They include:

· Sending SPAM through compromised computers

* Blackmailing others with the threat of a Distributed Denial of Service attack using

compromised computers

* Stealing sensitive financial and personal information from compromised

computers

* Using compromised computers to send emails and host websites tricking

recipients into sharing financial

* Fraudulently clicking on online advertisements to raise revenue or deplete

competitor's advertising budgets

* Launching DDoS or other types of attacks to commit terrorism

37

Constraint Enforced by

17-1: Sponsors must not pay hackers to write * Law Enforcement
malware or to gain the use of their compromised · Government-Legislative
computers (i.e., botnets)

Chapter 4-STAMP Structural Dynamics

The purpose of the previous chapter was to explain the components of the Internet

Security System (ISS) and describe how they interact. When functioning properly, the

ISS can make the Internet more resilient to an outbreak of malicious software.

This chapter is devoted to understanding in what ways the ISS fails, allowing an

outbreak of malicious software. First, I discuss two well-known outbreaks of malicious

software, the Blaster and Sobig worms. Then, I parse the details of the outbreaks and

discuss which constraints were not maintained and which components were not able to

maintain them. A complete description of constraint failures can be found in the table in

Appendix 2.

Blaster Background

On August 11, 2003 the first variant of the Blaster worm (Blaster.A) appeared.

This piece of malicious software spread vigorously and effectively, ultimately infecting at

least 8 million computers and as many as 9.5 million.4 9 Blaster spread without requiring

any interaction on the part of users and thus infected computers at a much faster rate than

malware that requires a user to open an attachment in their email. There were six

variants of Blaster; each compromised computers that would later be used for the purpose

of launching distributed denial of service (DDoS) attacks, however some variants

installed additional software that would further cede control of the computer to the

attacker.5 0

The apparent purpose of Blaster.A was to launch a large-scale DDoS attack on

Microsoft's WindowsUpdate website 51 on August 6, 2003. Microsoft was able to defuse

the DDoS attack with some clever website renaming, however much more damage was

caused by the worm's side effects.

A computer infected with Blaster or its variants will frequently restart. It also

sends out a large number of messages onto the Internet, looking for other computers to

49 Lemos, Robert. "Alarm growing over bot software." CNET News.com 30 Apr. 2004.
<http://news.com.com/Alarm+growing+over+bot+software/2100-7349_3-5202236.html>.
50 Symantec Security Response W32.Blaster.C.Worm. 27 July 2004. Symantec Corporation.
<http://securityresponse. symantec.com/avcenter/venc/data/w32.blaster.c.worm.html>.
51 http://www.windowsupdate.com

38

~~- -- __

infect. When the number of Blaster infected computers was at its peak, a computer

would receive a network message containing an infection within one second of

connecting to the Internet.52

It is difficult to estimate the total damage caused by the variants of Blaster, but it

is believed to have resulted in productivity losses and lost revenue surpassing at least

$500 million.5 3 It caused a large enough disturbance to initially be blamed for the East

Coast power outage on August 14, although it was later shown that Blaster was not

responsible for the outage but did hamper efforts to restore power.

Within days of Blaster's discovery, a number of variants of the initial worm were

also released and discovered.5 4 There were 8 variants of Blaster released,55 the first and

second only two days after the initial Blaster worm was discovered. All variants of

Blaster.A use the same exploit, a vulnerability in Microsoft Windows for which a patch

had been offered nearly a month before worm was released. The most notable difference

among the variants of Blaster was the date and target of the DDoS attack.

The original author of Blaster has not been found, but authorities did arrest Jeffrey

Lee Parson, a 18-year old from Hopkins Minnesota, for modifying and releasing a variant

of Blaster.A called Blaster.B, which infected approximately 7,000 computers, just a small

fraction of the 9.5 million total infections.

The mechanism by which Blaster spread was a software error in the code for

Microsoft Windows's RPC implementation. Computers use a protocol called RPC

(Remote Procedure Call) to allow one computer to run a subroutine on another. For

example, a computer running an email client might send an RPC message to an email

server requesting any new email messages. The use of RPC is very common and occurs

not only in computers running the Windows operating systems, but others such as Unix

and Linux computers.

Microsoft announced this vulnerability and its corresponding patch on July 16,

2003 in Security Bulletin MS03-026. According to the bulletin an attacker could send a

52 Lemos, Robert. "MSBlast epidemic far larger than believed." CNET news.com 2 Apr. 2004.
<http ://news.com.com/2100-7349_3-5184439.html>.
53 Morrison, Jim. "Blaster Revisited." ACM Oueue 2 (2004): 34-44.
54 A variant of a worm is a new strain of the malware, built by modifying the original worm's code.
55 Symantec Security Response. Symantec Corporation.
<http ://securityresponse .symantec .com/avcenter/venc/auto/index/indexW.html>.

39

specially crafted RPC message and gain control of a user's computer. Users were urged

to install the patch as soon as possible.

As is often the case, developers of malicious software used the information

provided by Microsoft to create an exploit for the vulnerability outlined in the Security

Bulletin. The exploit allowed a hacker to send a message to a computer and-if the

receiving computer is still unpatched and therefore vulnerable-the hacker is rewarded

with control of the attacked computer.

As the infection spread, so did the problems Blaster.A caused. Aside from the

DDoS attack the virus was programmed to execute on August 16, 2003, it was not an

otherwise malicious worm. That is, it did not contain instructions to delete or steal

personal data nor did it allow a computer to be remotely controlled for purposes other

than the planned DDoS.56 It was, however, a poorly coded program and frequently

caused computers to slow or frequently restart.57

Microsoft was able to avoid the DDoS attack that was encoded in the original

version of Blaster. The variants did not target major websites for their DDoS attacks and

there was not much coverage in the media detailing the outcome of these DDoS, making

it likely that a sponsor paid the variant writers to attack websites. However, the

unintended consequences of Blaster still extracted a very high cost. In the months after

its release, various think tanks estimated that Blaster infected between 300,000 and

1,000,000 computers. However, more recently Microsoft revise their estimate to 9.5

million infections, based on the number of Blaster removal kits that were downloaded

from their website.5859

56 Other variants of Blaster, however, included a "backdoor", allowing compromised computers to be fully
hijacked and made part of botnets.
57 It is not known for sure, but these do not seem like intentional elements of the worm because they serve
to alert users of the infection. Users who have been alerted are more likely to remove the worm from their
computer thus reducing the number of computers that will take part in the DDoS attack.
58 Lemos, Robert. "MSBlast epidemic far larger than believed." CNET news.com 2 Apr. 2004.
<http://news.com.com/2100-7349_3-5184439.html>.
59 Lemos, Robert. "Worm worries grow with release of Windows hacks." CNET News.com 28 Apr. 2004.
<http://news.com.com/Worm+worries+grow+with+release+of+Windows+hacks/2100-1002_3-
5201807.html>.

40

__

Sobig Background

Another interesting case to examine is the spread of the Sobig family of worms.

Similar to Blaster in its magnitude, Sobig was quite different across a number of

operational dimensions. Sobig spread via a different mechanism and was motivated by a

different purpose. At a systems level, however, Sobig and Blaster have many

similarities, sharing some of the failures that allowed them to spread so widely.

The first of the six Sobig viruses, Sobig.A, was discovered January 9, 2003.60

Like its five successors, it was a mass-mailing worm that is widely assumed to have been

created by spammers to facilitate sending spam.6 1 Versions of Sobig progressed in

sophistication until the final version, Sobig.F, was released on August 18, 2003, just two

weeks after Blaster.62

The succeeding 5 versions of Sobig, Sobig.B though Sobig.F were similar to the

first version but included revisions that fixed earlier bugs, making the Sobig virus more

effective.

As opposed to Blaster, which spread from computer to computer without human

intervention by exploiting a flaw in Microsoft's RPC implementation, Sobig is a mass-

mailing worm, that spreads by tricking users to open an email attachment. The Sobig

lifecycle can be divided into two phases. The first phase, propagation begins when a

user opens an infected email attachment. Upon opening it, his or her computer becomes

infected and then sets about infecting other computers as well. In order to infect other

computers, the newly infected computer sends out emails, each containing an attachment

that, if executed, will infect the recipient's computer. Sobig scours the newly infected

computer's hard drive looking for new addresses to send the emails to. The reader has no

doubt received many Sobig messages, which frequently contain the subject "Re: Details".

A sample email is below:

60 Symantec Security Response W32.Sobig.A@mm. 9 Jan 2003. Symantec Corporation.
<http://securityresponse.symantec.com/avcenter/venc/data/w32.sobig. a @ mm.html>.
61 Lemos, Robert. "Sobig spawns a recipe for secret spam." CNET news.com 25 June 2003.
<http://news.com.com/Sobig+spawns+a+recipe+for+secret+spam/2100-1002_3-1020963.html>.
62 Symantec Security Response W32.Sobi.f@mm. 18 Aug 2003. Symantec Corporation.
<http://securityresponse.symantec.com/avcenter/venc/data/w32.sobig.f@mm.html>.

41

Fi-f~dj * g i|........i

Ti ,,f " ,? -----

1 3yourjetals.zp (74.5 KB)

Please see the attached zip file for details.

:,:;".--- , !. ' :. : -}' : ;:'.'.' -" -'{ :i..;'..:..:. '
Figure 6-A sample Sobig Email63

After propagating, the Sobig worm enters its second phase. It downloads and

installs a software package from an Internet server.

The first five versions of Sobig instructed the compromised computer to

download a file known as a trojan, which in turn downloaded and installed a proxy

server. This proxy server allows someone, presumably the author of Sobig or his

sponsor, to send email anonymously via the compromised computers rather than directly

from his own computer. This is especially useful for sending spam emails.

The final version of Sobig, Sobig.F, was highly virulent. During the propagation

phase, millions of computers were infected; at its peak 1 in 17 email messages on the

Internet were carrying the Sobig virus.64 In the case of Sobig.F, however, authorities

were able to shut down the servers containing the payloads. It is assumed that Sobig.F

would have also downloaded a trojan and then used the trojan to install the proxy server,

but that is not clear. Perhaps the trojan would have been used for other insidious

purposes such as launching DDoS attacks or click fraud.

The extent of the damage caused by Blaster and Sobig is hard to determine;

Symantec estimates that together they caused a loss of upwards of $2 billion in lost

63 Trend Micro Website. <http://www.trendmicro.com/vinfo/images/worm_sobig_e_img .gif>.
64 Becker, David. "MyDoom virus declared worst ever." CNET News.com 29 Jan. 2004.
<http://news.com.com/2 100-7349_3-5 149764.html>.

42

~m~ar~mi·ll~~'~ NM'I~Ni

"�'-"

productivity.6 5 Microsoft has offered $250,000 reward for any information leading to the

Sobig or Blaster authors, but neither has been caught.

Learning from Blaster and Sobig

In the previous section about the damage caused by Sobig and Blaster, I showed

that although they spread in different manners, they have similarities at higher levels. For

instance, both allowed the malware developer to install arbitrary software on a

compromised computer.

The next two sections use STAMP to understand why Sobig and Blaster spread as

successfully as they did. First, a brief discussion of how the failed component

interactions that led to the spread of the malware are classified in STAMP. The

following section discusses which constraints I found were violated in my investigation

of Blaster and Sobig.

Understanding why Constraints Were Not Enforced

In a STAMP security environment such as the one described by Figure 4, the

constraints placed on a component are expected to be enforced by components that are

higher in the hierarchy. In the diagram, a box placed above another component and

connected by a downward arrow represents a controlling component. For example, the

constraints on component 8, anti-virus software, are enforced by component 9, the anti-

virus vendors. In other words, it is the responsibility of component 9 to ensure that the

anti-virus software they create adheres to constraints 8-2: Antivirus Software detect and

remove malicious software and 8-1: Antivirus Software must not be disabled by

malicious software.

In STAMP, there are four reasons why a component might not be effective at

exerting control on its subordinate component, thus allowing its constraints to become

invalid.6 6

1. Invalid goal condition-the controlling component is attempting to enforce

the constraint by targeting a goal

65 Symantec Internet Threat Report: Trends for July 04 - December 04, p3 4.
66 Leveson, Nancy G. A New Approach to System Safety Engineering, Chapter 4.

43

2. Invalid action condition-the actions of the controlling component are not

effective at changing the state of the component they are controlling

3. Invalid model condition-the controlling component's mental model of the

component being controlled is inaccurate and results in ineffective control

4. Invalid feedback condition-the controlling component does not receive the

feedback it needs to effectively control the subordinate component.

My STAMP analysis attributes each violated constraint to one or more of the

above conditions.

Additionally, there are a number of cases where a component has constraints on

its behavior but it does not have a superior component that controls its behavior. For

example, component 3, the user component, has a number of constraints on its behavior

but it does not have any components responsible for controlling its behavior. At this

point, there is not a law requiring that users take certain actions to secure their computers,

nor are there governing bodies who require that computers are well maintained before

they are allowed to connect to the Internet.

Each user, however, has his or her own welfare at heart. In cases such as these,

the security system relies on the users' calculations of their best interest. If they feel that

it is in their interest to maintain their computers, they will invest the time, effort, and

money required to ensure their computers are secure.

Where the Internet Security System Failed

The Internet security system was operating with many constraints violated.

Appendix 2 details which constraints were violated and contributed to Blaster and

Sobig's success. Some of these constraints had never been enforced while others had

slowly stopped being enforced. Because the constraints had been violated, the system

was unable to repel multiple types of worm attacks-a mass mailing worm and a network

propagating worm.

The full analysis in Appendix 2 identifies which constraints were violated and

hindered the Internet security system's effective response. The analysis also addresses

which components failed in their responsibility to maintain the constraints put upon a

subordinate component.

44

�

Of the violated constraints in the analysis, I believe the following three played the

most direct roles in the Blaster and Sobig outbreaks.

o 1-1. Computers must not execute malicious software

o 6-1. Software must not contain security vulnerabilities

o 16-1. Virus programmers must not create and release malicious software

Constraint 1-1: Computers must not execute malicious software

This constraint was clearly violated at the time of the Blaster and Sobig outbreaks.

To learn from it, we look at why the constraint was not enforced. The Internet Security

System relies on four other components to enforce this constraint: Users, Technical Staff,

Software / Operating Systems, & Anti-virus software.

First, users did not effectively enforce this constraint on their computers. Sobig

spread rapidly because so many naive users double-clicked on an attachment in their

email. This constitutes a failure in the model condition. The users did not sufficiently

understand the working of the system they were using.

The Blaster worm spread by exploiting a security vulnerability in Microsoft

Windows. Microsoft had published a security patch for this vulnerability almost 2

months earlier6 7 but the millions of computers infected by Blaster had not installed it.

This was a failure on the part of the users who maintain their own computers and the

Technical Staff who maintain corporate networks. In this case, the unenforced constraint

is due to an invalid goal condition or model condition. Users either did not intend to

keep their computers updated or they did not realize that their computer needed to be

patched in order to remove the vulnerability.

In both cases the users did not invest the time to secure their computers or obtain

the knowledge necessary to operate the computers securely. For computers that were

managed by a company's technical staff, the staff is responsible for not applying patches

as they are released, but they did not. Different firms have different reasons for the lapse

in patching, but it could be due to invalid feedback conditions or invalid action

conditions.

67 Microsoft Corporation. <http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx>.

45

The operating system running on the infected computer was also at fault for not

enforcing this constraint in the case of Blaster. Although there was a security patch

available, the existence of the vulnerability allowed computers running Microsoft

Windows to execute the malicious Blaster software. This is an invalid action condition.

Anti-virus software was able to help enforce this constraint in many cases, but not

in enough to stem the outbreaks. Major anti-virus vendors responded within 1 day6 8 69

with updated virus definitions. Those computers running anti-virus software with

updated definitions were immune from Sobig and Blaster. However, those without virus

protection or without updated virus definitions were not.

The next chapter delves deeper into the forces that prevent computer users and

firms from sufficiently protecting their computers.

Constraint 6-1: Software must not contain security vulnerabilities

The violation of this constraint contributed to the spread of Blaster, but not to

Sobig. Within the Internet Security System, it is the responsibility of the Software

Vendor component to ensure that the software adheres to this constraint. In the case of

Blaster, Microsoft failed to ensure that its software was vulnerability free.

This is both a failed action condition and failed feedback condition. Although

their goal seems to be to make secure software, especially in light of the 2002

Trustworthy Computing Initiative and the ensuing focus on computer security, Microsoft

failed in two ways. First, the process for creating the software resulted in defects in the

software and secondly, there was insufficient feedback evidenced by the fact that the

vulnerability was only found after the software was released.

The next chapter discusses the inherent difficulties of developing large, complex

software.

Constraint 16-1. Virus programmers must not create and release malicious software

68 McAfee Virus Information. McAfee. <http://us.mcafee.com/virusInfo/>.
69 Symantec Security Response. Symantec Corporation. <http://securityresponse.symantec.com>.

46

_ __..__._._

The number of viruses released each year is increasing dramatically (Figure 7),

meanwhile there have only been a few significant arrests. Notably, the authors of Blaster

and Sobig, as well as a number of other well-known viruses are still yet to be caught.

Figure 7-The amount of malicious software is increasing rapidly70

Law enforcement and the legislative branch of governments attempt to enforce

this constraint by creating an environment where the expected cost of being caught for a

virus writer is greater than the expected benefit. While the penalties are high, the

perceived likelihood of being caught is low,7 1 keeping the expected cost of apprehension

low. At the same time, other Internet Security System components entice virus

programmers with financial rewards as well as status for creating viruses, thus raising the

perceived benefit of writing a virus.

In the cases of Blaster and Sobig, as well as other recent malicious software, the

penalties calculated by the authors of Blaster and Sobig were not high enough to prevent

them from writing the viruses. However, a recent high profile virus writer arrest along

with a $5 million bounty fund from Microsoft may deter some future malware authors.

The next chapter discusses why laws and other deterrents have not been effective

at stemming the flow of new malicious software.

Other violated constraints

70 Symantec Internet Threat Report: Trends for July 04 - December 04, p10.
71 Krebs, Brian. "Hackers to Face Tougher Sentences." Washington Post 2 Oct. 2003.
<http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&contentId=A35261 -20030ct2>.

47

New virus and worm malicious software

,UUU

4500

4000

3500

3000

c 2500

2000

1500

1000

500

0

1H2001 2H2001 1H2002 2H2002 1H2003 2H2003 1H2004

L

A number of other constraints were violated, but I do not believe these

contributed as directly to the failure of the security system as the constraints that were

discussed above. They still do play an important role in explaining the non-resilience of

the Internet Security System and are included in Appendix 2. Some of these violated

constraints are:

· 1-2: If compromised, computers must not spread malicious software -once

compromised, the computers continued to spread malicious software. They were

not sufficiently contained by users, network devices, ISPs, or anti-virus software

* 2-1: Devices must be properly configured and maintained to prevent

malicious network traffic from accessing computers-many network devices

were helpful in the fight against the Blaster worm, but many others were not

correctly configured by home users or by an enterprise's technical staff and

allowed the Blaster worm to enter the network

* 11-1: Information aggregators must have access to information about

Internet threat activity-In order to gather a complete picture of the malicious

software threat, information aggregators such as think tanks collect attack

information from various sites on the Internet. Some firms are reluctant to share

their attack statistics because they feel it can reveal real or perceived weaknesses

* 11-2: Think tanks and information aggregators must recognize and

communicate dangerous trends-computers connected to the Internet have

become increasingly homogeneous. Some think tanks have identified this as a

threat that allows malware to spread broadly and quickly, but it has not been

communicated vocally enough to cause any changes in behavior

* 15-1: The research community must support security activities with basic

research- The President's Information Technology Advisory Committee

published a report in February 2005 saying that the current rate of technology

transfer from research to commercial use was not rapid enough.7 2

· 13-1: The government must take action to prevent cyber attacks-In addition

to other measures, the government attempts to prevent cyber attacks by funding

72 Benioff, Marc, and Edward Lazowska. National Coordination Office for Information Technology
Research and Development. Report to the President: Cyber Security: A crisis of prioritization . 28 Feb.
2005. <http://www.itrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf>.

48

__ __

security research. However, the President's Information Technology Advisory

Committee published a report in February 2005 saying that the research

community was under funded and should have their funding increased by $90

million annually.7 3 Perhaps in response to that report, the NSF recently created a

cyber security center that will receive $3.8 million per year.74 Additionally, a

harsh 2004 report from the Office of Inspector General finds that the Department

of Homeland Security's Cyber Security Division (NCSD) is under performing.75

The report found that the division failed to provide sufficient leadership to the

private sector. Compounding the problem, the NCSD has seen significant

leadership changes, with 3 chiefs in less than 2 years.76

73 Benioff, Marc, and Edward Lazowska.
74 Weiss, Todd R. "NSF establishes cybersecurity center." Computer World 12 Apr. 2005.
<http://www.computerworld.com/securitytopics/security/story/0,10801,101024,00.html>.
75 Lemos, Robert. "Report: Federal cybersecurity effort needs improvement." CNET News.com 23 July
2004. <http://news.com.com/Report:+Federal+cybersecurity+effort+needs+improvement/2100-1009_3-
5281898.html>.
76 Lemos, Robert. "Yet another cybersecurity chief steps down." CNET News.com 12 Jan. 2005.
<http://news.com.com/Yet+another+cybersecurity+chief+steps+down/2100-7348_3-5534064.html>.

49

Chapter 5-STAMP Behavioral Dynamics

In the last chapter I attributed the limited resilience of the Internet Security

System to the fact that numerous constraints were inadequately enforced. This chapter

offers explanations for why these key constraints were not enforced.

The components that make up the Internet Security System (ISS) experienced

significant change over the past decade. This chapter contains the third part of the

STAMP analysis and attempts to understand what forces drove those changes as well as

how the components of the system responded to the changes. Explaining these responses

helps us understand why the constraints could not be enforced. This understanding can

be used to develop and to value new approaches to Internet Security.

In order to understand the forces driving those changes, I use a combination of

System Dynamics and economic concepts. System Dynamics is a method developed by

MIT professor Jay Forrester in 1956 for understanding complex systems that exhibit

nonlinear behavior.

In this chapter, I discuss four interesting examples of constraints that were not

sufficiently enforced. I argue that these constraints were not enforced because of how the

system responded to changes that had occurred over the past decade. Interestingly, the

evolutions that occurred in the system were generally advancements, welcomed by users

of the Internet. Unfortunately, many of these advances, while rational and beneficial for

the parties that entered into them, had harmful effects on the Internet Security System as

a whole.

The examples of inadequate control I revisit in this chapter are:

· Users did not invest sufficient resources to secure their machines or help to

stem the rapid infection of other machines (led to the violation of constraint 1-

1)

* Enterprises did not invest sufficient resources to secure computers under their

control (led to the violation of constraint 1-1)

* Companies created and released software with vulnerabilities (led to the

violation of constraint 6-1)

50

- ~ ~ ~ _ _ _ ·_·_I..·__

Laws and law enforcement were ineffective at preventing developers from

writing malicious software (led to the violation of constraints 16-1 and 17-1)

The last decade

By most accounts, the previous decade was full of exciting advances on the

Internet. The Internet changed from a network used by a small number of academics and

early adopters to a network rich with information and communication possibilities, which

attracted the technically savvy as well as technically unsophisticated. In this 1 0-year time

period, the number of Internet users climbed from 15% of American adults to over

60%.77 Ever faster, powerful, and cheaper computers coupled with the widespread

availability of faster and cheaper, always-on high-speed Internet connections spurred

these increases. As technical improvements brought more information and more users

online, the Internet became an even more useful and entertaining destination and others

were persuaded to come online as well.

According to Berdnt, the price of computers (adjusted for performance) decreased

by approximately 40% per year in the period 1995-2000. Even when not adjusted for

performance, the cost of a computer sufficient for using the Internet continued to fall.78

Home broadband was not available a decade ago; today almost 60 million

American households have broadband.7 9 Numbers describing European connectivity rose

in a similar manner.

Nothing comes without a price and the capabilities and options brought by the

Internet invited exploitation. Participants in the Internet Security System had

responsibilities that would have reduced the risk, but as I showed in the previous chapter

many were remiss in their duties. Key failures are discussed in the upcoming sections

where I explain why participants' responses to the changes in technical landscape were

predictable and rational.

77 Internet Evolution. Comp. Susannah Fox, and Lee Rainie. 25 Jan. 2005. Pew Internet & American Life
Project. <http://www.pewinternet.org/PPF/r/148/report_display.asp>.
78 Bendt, E R. "Price and Quality of Desktop and Mobile Personal Computers: A Quarter-Century
Historical Overview." American Economic Review (2001).
79 US Broadband Penetration Grows to 57% in March-April. 18 Apr. 2005. With data from
Nielsen//NetRatings. <http://www.websiteoptimization.com/bw/0504/>.

51

Users did not invest sufficient resources to secure their machines or help to stem the

rapid infection of other machines

The analysis in the previous chapter showed that personal computers are

frequently left unpatched by their owners. We can use System Dynamics and economic

concepts to understand why these computers remain perpetually unpatched.

When confronted with improvement in usability, speed, and price in the home

computer and ISP market, more consumers purchased computers and moved online,

initiating a decline in the security abilities and knowledge of the average user.

These new, inexperienced users are less likely to maintain their computers for a

variety of related reasons. Less savvy users were likely to not appreciate the fact that

their computers are vulnerable or even to know if they have been compromised.

Even among the more savvy users that implicitly consider the cost compared to

benefit of addressing their vulnerable computers, many choose inaction due to the lack of

measurable return from preventive security actions.

Compounding the problem, lock-in effects and network externalities give

incentives to individual users to select and remain with the market leader of specific

software applications. As discussed earlier, this creates a homogenous computing

environment, which creators of malicious software also benefit from.

I now visit the individual aspects of this argument in greater depth.

As the prices of computers dropped and broadband became more accessible, a

different type of user came to the Internet. The usability of computers is improving and

they require less knowledgeable users. Users include young children, senior citizens, and

those generally disinterested in the inner workings of their computers. As usability

improves, users need less skill to operate their computers. However, users still do need

operational knowledge and computer skills to make intelligent decisions about personal

investments in computer security.80

Figure 8 is a System Dynamics model that shows the forces that attracted new

users to the Internet. The model shows how the average security ability of users declined

as new users came online. In System Dynamics, this behavior can be explained via

80 CyberInsecurity: The cost of monopoly. Rebecca Bace, et al.
<http://www.ccianet.org/papers/cyberinsecurity.pdf>.

52

reinforcing loops (denoted with Rs in Figure 8). The model contains three reinforcing

loops: affordable computers and broadband as well as the possibility of communicating

online with a growing number of friends and associates lured new users to the Internet.

The increase in users fueled the decline in computing cost and broadband cost. The

increase in Internet users also resulted in increased communication potential for potential

new users, which continued to drive down cost and increase communication possibilities.

The model also contains a balancing loop (denoted by a B), which slows the

behavior of the system. The balancing loop in the model shows that when the level of

Internet crime increases, the attractiveness of the Internet decreases. In turn, the rate at

which new users come online slows. As the rate of new users coming online slows, so

does the decline in the average Internet security ability and the level of Internet crime.

However, this balancing loop is not yet as strong as the other reinforcing loops, which

drive the system's behavior.

53

0

oo

54

__ ___�11_·__�1 1_

This limited security knowledge creates problems because these users are ill-

equipped to determine the amount of money, effort and time they wish to invest in

securing their personal computers.

Anecdotally, many computers go unpatched because their owners simply do not

understand that they are insecure. Recent studies from AOL, AOL UK, and the National

Cyber Security Alliance (a public-private partnership "focused on promoting cyber

security") found that 80% of survey respondents' computers had been infected with

malware, in most cases unbeknownst to them. The survey also found that over 70% of

respondents believed their computers were outfitted with anti-virus software configured

to update daily, when in fact, only 33% actually have anti-virus software installed and

configured to update at least once a week.81 '82 20% of computer users reported not

knowing what to do to protect themselves online.8 3

Even users who have operational knowledge sufficient to make informed

decisions about personal computer security will still tend to make suboptimal decisions,

albeit for different reasons. This is because computer security can be viewed as a

negative externality, meaning it has consequences that are not reflected in the cost of the

good.84 In the Internet security context this means "lack of security on one machine can

cause adverse effects on another".85

To understand this, we need to consider the two types of security breaches to

which computer users are vulnerable. The first type-a targeted attack-consists of a

hacker compromising a computer with the intention of harvesting some piece of personal

or financial information or destroying personal data (Figure 9). The second type-a

broad attack-occurs when a computer is compromised with the intention of making it

81 Lemos, Robert. "Plague carriers: Most users unaware of PC infections." CNET News.com 25 Oct. 2004.
<http ://news .com.com/Plague+carriers+Most+users+unaware+of+PC+infections/2100-1029_3-
5423306.html>.
82 "AOL/NCSA Online Safety Study.": AOL and National Cyber Security Alliance, 2004.
<http://www.staysafeonline.info/news/safety_study_v04.pdf>
83 " 'Geek speak' confuses net users." BBC News World Edition 6 Apr. 2005.
<http://news.bbc.co.uk/2/hi/technology/4413155.stm>.
84 Pindyck, Robert, and Daniel Rubinfeld. Microeconomics. 5th ed.: Prentice Hall, 2001. p 47.
S. J. Liebowitz and Stephen E. Margolis Journal of Economic Perspectives, Volume 8, Number 2, Spring
1994.
85 Camp, Jean. "Pricing Security." Economics of Information Security. Comp. Jean Camp, and Stephen
Lewis: Springer, 2004.

55

participate in some sort of distributed scheme as part of a botnet, such as a distributed

denial-of-service attack (DDoS) or a spam server. (See Figure 10)

1f"'m.M .

Atta��er X_ Attacker
~~~~~TAttacker -Attacker

Attacke ~;

- - - > .A D

I I rip V .. _

larA )k _ma94 Target

Figure 9 Figure IO

An investment in security by a computer user will help prevent damages resulting

from the first type of attack. (Figure 9) For instance, protecting your computer reduces

the chance that a targeted attacker will be able to gain access to your financial

information. But interestingly, if a computer is compromised by a broad attack with the

intention of using it to send SPAM or launch a DDoS attack, its owner is not severely

affected. (Figure 10) They may experience some degree of performance degradation,

but the real target of the attack is another computer. Similarly, investing in security by

installing the latest patches or running appropriate anti-virus software will not protect a

user from DDoS attacks or help them to receive less spam. Their lack of investment

results in a cost to someone else, not to themselves.

The following two System Dynamics diagrams (Figure 11 and

Figure 12) illustrate that when users are individually targeted, they are more likely

to take actions that improve the overall security of the Internet.

56

__ __



Q

M D0

(U 

2.2

0

-oA

c
au

i;>

S. 3
L ..

0 c, Q

0,

m
>n.

+ 
._~~~~~~~c ~
0 t )

_ Q

57

:w
+A

.1

Q

f�)

z
",::3
2�

.1
I

zt
to

_ _ -
I
F



Nobel Prize winner, Mancur Olson termed this a class of problem a collective

action problem.86 Those in a position to act to secure the Internet by patching their

computers have little incentive because the benefits of their actions are spread among all

the users of the Internet. They receive the benefits of other party's security investments

whether or not they invest in their own computer security. Without a way to limit the

benefits of proactive computer security to users that exhibit such behavior, there is

limited incentive to invest in personal computer security.

Another economic reality, network effects, also contributes to the difficulties

users have maintaining the security constraints imposed on their computers. A network

effect increases the benefit of a good as more people use it. There are two types of

network effects: direct and indirect. Direct network effects87 are the benefits users of a

good receive from interacting with other users of the good. The telephone is a commonly

cited example of a direct network effect.

The other type of network effect, an indirect network effect, is the benefit one

receives from the ancillary services that are available because there is a strong user

community. For instance, there is an indirect network effect in having a popular make of

car. Because the car is popular, there are many auto mechanics able to perform

maintenance on it.

Network effects also inform computer user's choices. As new users come online,

they must choose what type of computer and software to purchase. There are strong

indirect network effects that drive a computer user's choices. Selecting an operating

system or software package with a large user base means there will be a greater selection

of software, more easily accessible knowledge and training, and potentially even lower

prices. (Direct network effects are less significant because most Internet services

interoperate across operating systems.)

The indirect network effects will result in less diversity in decision making by

consumers, resulting in large installed bases of software or operating systems, such as

Microsoft Windows. Homogenous platforms enable malicious software to spread faster

86 Olson, Mancur. The Rise and Decline of Nations: Economic Growth, Stagflation and Social Rigidities.
Chapter 2, New Haven: Yale UP, 1984.
87 Pindyck.

58



and also attract more persistent attention from malicious software developers searching

for exploitable vulnerabilities.

Enterprises did not invest sufficient resources to secure computers under their

control

Similar economic forces also drive those in charge of managing networks at large

corporations and educational institutions. As was true for individual users, enterprises

are frequently reluctant to act because of security externalities and the collective action

dilemma. Direct as well as indirect network effects affect their decisions. Finally, lock-

in plays a factor in their decision-making as well. The remainder of this section discusses

how these factors play a role in security decision-making for enterprises.

Enterprises encounter security externalities in two ways. The first is similar to

what individual users experience. Like individual users, enterprises can also be the

targets of two types of attacks. The first, as above, targets the enterprise, hoping to

acquire sensitive information or to damage data. The second type attempts to

compromise workstations that will later be used to launch a DDoS attack or send spam.

Patching an insecure workstation will help prevent both types of attacks, but much

greater economic harm could come to the firm from the first type of attack. For

enterprises, the likelihood of the first type of attack is greater, so the incentives for

proactive security would be stronger.

The second type of externality involves sharing information about attempted and

successful attacks. As discussed in chapter 3, information integration organizations like

US-CERT and the Internet Storm Center collect attack information to try to form

comprehensive pictures of emerging threats. Gal-Or and Ghose show that there are

benefits to sharing security information.88 However, companies may be reluctant to share

such information, fearing that it may be used to launch better attacks or may hurt the

perception of their company and lead to decreased market share or stock price, if made

public. These fears are partially confirmed in research by Campbell and Gordon89. They

88 Gal-Or, Esther. "The Economic Incentives for Sharing Security Information." Economics of Information
Security. Ed. Jean Camp, and Stephen Lewis. City: Publisher, 2004.
89 "The economic cost of publicly announced information security breaches: empirical evidence from the
stock market" Campbell, Gordon, Loeb, Zhou; Journal of computer security 1(2003) 431-448.

59



found that breaches resulting in lost confidential information result in "significant

negative market reaction". However, no such correlation was found when the breaches

did not result in the loss of such information.

As was true for personal users, network effects also affect enterprises' decision

making, but in additional ways. Companies find benefits in having homogenous

infrastructure; they save money on training and support and can additionally enable

certain types of collaboration requiring similar platforms. Once an enterprise has

invested heavily in a technology, they are less likely to change due to lock-in. These

forces also lead to homogenous environments, which, as I discussed earlier, allow

malicious code to spread farther and faster.

Companies release software with vulnerabilities

Technically speaking, creating large-scale commercial software is an extremely

difficult process. The complexity of the problem makes software defects a near certainty.

Compounding this already difficult problem, the realities of software economics create a

perverse incentive structure that results in insecure code. More specifically, software

vendors have incentives to race to market, releasing software before fully vetting it.

Once a user base has been captured, a software company can invest in a lower level of

feature and security improvements because their customers are "locked-in" to their

current product. Finally, the market for software did not place a high value on security

features until recently.

In 1988 Frederick Brooks wrote, "Software entities are more complex for their

size than perhaps any other human construct..."90 That was 17 years ago and software

has only gotten more complicated, with many major software applications encompassing

millions lines of code. Brooks argues that the "hard part" of building software is not the

construction of the code, rather it is the specification, design, and testing. The software

engineering community has developed techniques for working through this complexity,

but it remains impossible to create perfect software. Complex software has far too many

90 Brooks, Frederick P., "No Silver Bullet: Essence and Accidents of Software Engineering," Computer,
Vol. 20, No. 4 (April 1987) p. 10-19.

60



different states to exhaustively check them all.9' Leveson writes that exhaustive testing is

impossible for most software; testing can find defects, but it cannot prove the absence of

defects.9 2

The complexity of software engineering creates a hurdle that is only exacerbated

by the economics of the software business. Creating software has a very high upfront

cost, but creating additional copies of software costs almost nothing. In other words,

software has a high fixed cost and very low marginal cost. Following the substantial

initial investment, software companies try to recoup their investment by selling as much

of their software as they can.

This fact, when coupled with the network effects and lock-in discussed earlier,

creates an environment with a strong incentive to be the first to market. By taking market

share early, software vendors capture users and become an early market standard. If the

software vendors can capture a critical core of users, they can resist attacks from

competitors because their clients are benefiting from the network effects and constrained

by the cost of switching to new software. This creates an incentive for firms to shorten

their development cycle to get to market first.93

In order to further explore these software economic facts, I created an executable

System Dynamics model. (The full model structure is available in Appendix 3.) The

model embeds some of the economic forces that affect the software marketplace.

It models a simplified competitive landscape of just two companies (Company A

and Company B), each with a product (Product A and Product B). The two products

have identical feature sets. The companies compete only on their quality. The model is

based on the following assumptions:

* Users are either customers of only one product at a time, but can switch if they

choose

o Users will begin to switch products if the quality of their product is

lower than the quality of the other product. The greater the quality

differential, the more users will switch.

91 An analysis by Leveson of a TCAS II, an aircraft collision avoidance system shows that it has 1040
different states. (Leveson. A New Approach to System Safety Engineering, Chapter 3)
92 Leveson, Safeware, Chapter 18
93 Raman, Jari. "Network Effects and Software Development - Implications for Security." Proceedings of
the 37th Hawaii International Conference on System Sciences (2004).

61



o Users will also switch if the network effects of the competing

technology are great enough to incite them to switch.

* The software companies will try to maximize their profit by retaining

customers while minimizing investment in their product.

Executing the model shows interesting behavior in the sample market that is

useful for understanding actual software markets:

1) A strong network effect makes the marketplace "tippy" and likely to be

dominated by one competitor

2) Network effects allow the market leader to maintain their position even if their

product contains more defects than their competitor

3) The stronger the network effect, the less a company needs to invest in product

quality to maintain market leadership

4) Increasing investment in product quality leads to a greater degree of market

ownership

Before delving into these observations from the model, it is helpful to understand

a baseline run. The graph below shows a case where Product A began with slightly more

of the market than Product B. A and B used the same investment strategy; how much

effort to put into improving their products is a function of their market share. They invest

heavily if they are far behind and lightly if they are in the lead.

Product Market Share
0

0.75

0.5

0.25

0

0 20 40 60 80 100 120 140 160 180 200
Time (Month)

Market Share for A
Market Share for B .........- .

Figure 13

62

__ _ __II___ ·



The above graph (Figure 13) shows that the two companies continually trade

market leadership. Clearly, their investment strategy is only partially working. When

holding market leadership, each company under invests and is overtaken by its

competitor. The graph below (Figure 14) shows how decreases in Company A's product

quality is met with increased development efforts. Because Company B follows the same

strategy; a similar graph can be drawn for Company B.

Development Efforts and Product Quality for Product A
10
1

5
0.5

0
0

0 12 24 36 48 60 72 84 96 108 120
Time (Month)

quality of product A
development efforts for product A

Figure 14

With a basic understanding of the model, we now turn to the insights I draw from

the model.

A strong network effect makes the marketplace "tippy" and likely to be dominated

by one competitor

The baseline graphs above were drawn with only a very small network effect

present, but the following graphs show the change in behavior when the strength of the

network effects is increased. The figure on the left is the same as Figure 15 above, but

the graph on the right is the output when I strength the network effects. Using the same

strategy, the market "tips" and allows Company A to maintain market leadership because

of the "stickiness" brought upon by network effects.

63



Product Market Share

0 20 40 60 80 100 120 140 160 180 200
0 20 40 60 80 100 120 140 160 180 200

Time (Month)

Product Market Share
I

0.75

0.5

0.25

0
60 80 100 120 140 160 180 200

Time (Month)............. ................. .......... ... - - . .....
portion using product A
portion using product B

portion using product A
portion using product B

Figure 16-Slight network effects Figure 17-Strong network effects

Network effects allow the market leader to maintain their position even if their product

contains more defects

The two graphs below show the results of one simulation run with strong network

effects. The system equalizes with Company A owning approximately 70% of the

market (Figure 18). The second graph (

Figure 19) shows that at equilibrium, the market leader has more defects than its

competitor. This is because the benefits from network effects and costs of switching

more than compensate for problems associated with quality and customers choose not to

switch.

64

0

0.75

0.5

0.25

0

---------- �-�-~-

0 20 40



Defects in each product

0.75

0.5

0.25

0
0 20 40 60 8( 100 120) 14) 160 180 200

20

15

10

5

0

Time (Month) Time (Month)

Product A Market Share defects in product A
Product B Market Share ............................................................ defects in product B

Figure 18 Figure 19

Companies need to invest fewer resources in product quality to maintain market

leadership when network effects are high

Incumbent companies in industries with strong network effects can invest less

than their competitors in software quality and still maintain market leadership. The

stronger the network effects, the less the incumbent needs to invest, the model shows. To

find this, I expanded the model to incorporate variation in Company A's strategy. The

extension allows Company A to vary their investment in software. By trying different

levels of investment, I was able to find the level of investment where the market behavior

shifts from oscillation to Company A's market dominance.

Experimentation with the model shows that the greater the strength of the network

effects, the less investment in software quality is needed to end the oscillation and secure

market leadership. Figure 20 shows that inverse relationship.

65

I-

- --- -- --- -- ^ ----

Product Marketshare



Minimum Software Investment Needed

Figure 20

Increasing investment in product quality leads to a greater degree of market ownership

Not all incentives in the software marketplace are at odds with security, however.

The model also shows that increasing investment in software quality initially change the

market behavior from oscillation to market dominance. Additional investment will then

lead to a larger portion of the market being acquired, as seen in Figure 21.

0.9

0.8

0.7

0.6

portion using product A

................ ....... ................ ____, .. . . ... . .............................................................

U ZU 4U 0u IU 1tr l U 14U IOU lsU ZU

Time (Month)

portion using product A: Low Investment
portion using product A: Medium Investment .. ......................................
portion using product A: High Investment ------ ---------------------------------

Figure 21

66

X 1.4-

O 1.2-

3 1

c 0.8 -
c
Z 0.6 -
C
E 0.4-

* 0.2 

-0
1 1.2 1.4 1.6 1.8 2 2.2

Strength of Network Effect

--

---~~~~~~~~~~~~~~~~~~~~~~~~~~~~



The above insights from the analysis of the model are interesting, but are by no

means without caveats. This is a very simple model; an abstraction designed to show

some key relationships. Most of the core assumptions are not replicated in the real world.

For instance, marketplaces generally have more than two competitors who sell products

that differ in feature set as well as quality. The competitors also employ more advanced

strategies pricing and investment than this model contains.

Laws and law enforcement were ineffective at preventing developers from writing

malicious software

Most of the older literature on "hacker" motivations paints a picture of a hacker as

a person primarily bent on earning intangible rewards. Beveren describes hackers as

people seeking to satisfy their curiosity, exert power or control over something that is not

theirs, or simply be recognized and embraced by their peers.9 4 This omits the fact that

some hackers have always been motivated by financial rewards, but in recent years,

especially the past 1 1/2 to 2 years, typical hacker behavior has progressed from malicious

behavior to monetizing attacks.9 5 96

Why did this progression occur? The broad changes of the last decade created

more avenues for programmers to reap illicit financial rewards by writing malicious code.

Conditions were right to create a supply of compromised computers. The increase in

personal computers and the simultaneous availability of broadband created a deep supply

of vulnerable computers that were ripe for compromising. Relatively easily, and without

their owners knowing, these computers could be compromised and added to botnets. On

the demand side, a market emerged of people willing to lease the computing power of

these botnets to launch moneymaking schemes such as sending spam or launch denial of

service attacks. The presence of an easy supply of computers to compromise and the

promise of payment for these computers fuels the ongoing trade in computing power for

nefarious purposes.

94 Beveren, John V. "A Conceptual Model of Hacker Development and Motivations." Journal of E-
Business 1 (2001).
95 LaMacchia.pdf

96 "Hackers to Face Tougher Sentences." Washington Post 2 Oct. 2003.
<http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&contentId=A3526 1-20030ct2>.

67



Chapter 6-Addressing Internet Security

The previous chapter showed that Internet security is often at odds with the other

interests of the involved parties. Actors are often forced to choose between improving

their own welfare and improving the overall security of the Internet. Not surprisingly,

they frequently make choices that impair the security of the Internet. This is a case of

misaligned incentives that can be traced back to the nature of software and the Internet, as

I showed in chapter 5.

In this chapter, I discuss multiple approaches to improving Internet security.

These approaches fall into two principle categories. The first category contains solutions

that attempt to realign peoples' incentives so that they engage in behavior that improves

their welfare as well as improves the security of the Internet. This can be done using law,

regulations or market forces to provide incentives for improved behavior (or penalties for

unhelpful behavior).

Alternatively, solutions in the second category signal an acceptance that we

cannot satisfactorily realign incentives without an unacceptable level of institutional

policy. Instead, solutions in this category rely on technology as a "safety net", working

to secure the Internet even as human behavior is pushing it in the opposite direction.

This chapter contains three subsections. The first two are devoted to realigning

incentives to improve peoples' security behavior. They focus on changing laws and

using insurance or market principles to improve security behavior. The third subsection

discusses different technical approaches.

Changes to laws

As discussed in chapter 4, there are two legal pathways that are designed to hold

software producers accountable for harm related to insecure software they have

unintentionally created.9 7 They were designed before Internet security became a

significant problem and were not intended to address problems created by recent threats

like malicious software and botnets. As such, they were not especially effective. In my

97 Other criminal and tort pathways exist for prosecuting cases where software producers intentionally
release insecure products.

68

___ ___



research I did not find any cases where product liability has been used to hold a company

liable for damage relating to a security flaw.

In this section, I consider if variations to the current product liability regime

would result in more secure software. A 2002 National Academy of Science report

already commented on this issue, suggesting "policy makers should consider legislative

responses to the failure of existing incentives to cause the market to respond adequately

to the security challenge."98

This is a contentious question; public policy says that the burden should be put on

the least avoider, the party that can most efficiently remedy the situation. Some believe

that software vendors are the least cost avoiders,9 9 others feel that consumers or network

operators could most efficiently remedy the situation. The following subsections discuss

three alternative liability schemes:

· Expand the extent of liability on the software producer

· Assign liability to parties other than the software producer

· Strengthen criminal penalties

Expand the extent of liability on the software producer

Some people propose engendering securer software by increasing the liability of

software vendors. Practically, there are two ways to do this. One way of doing this is to

change the law so that economic damage caused by software defects is considered to be

sufficient to invoke strict product liability rather than limiting strict product liability to

just physical damage or personal harm as the law says now. A second approach would be

to limit the level of indemnity that companies can attain within their End-User Licensing

Agreement (EULA).

There is a large debate regarding whether this would be effective in improving

software security. Proponents believe that making it easier to hold a producer responsible

would result in an increase in how they determine the amount of time and resources to

98 Lohr, Steve. "Product Liability Lawsuits Are New Threat to Microsoft." New York Times 6 Oct 2003.
99 Pinkney, Kevin. "Putting Blame Where Blame is Due: Software Manufacturer and Customer Liability for
Security Related Software Failure." Albany Law Journal of Science and Technology 13 Alb. L.J. Sci. &
Tech. 43 (2002).

69



spend on development and testing. If the penalties for releasing insecure software

increase, they will spend more time ensuring the software is secure, they say.

Not surprisingly, there are many critics of this idea. There are two frequently

heard arguments against increasing liability. The first criticism is that innovation could

be stifled. Increasing liability would result in companies paralyzed by the risk of

releasing insecure software. In this scenario, companies would spend dramatically more

time testing each release and the innovation cycle would be slowed. They also might

simply choose to not release worthwhile products because the cost of liability is too

great. 10 0° 101

Supporters of increased liability retort that stopping some innovation is a

necessary cost of security. The FDA, for example, frequently stops innovation to ensure

that we have safe drugs on the market.l0 2

The second criticism is that it holds software to an unrealistic standard10 3. It is

impossible (or at least entirely unfeasible) to make perfectly secure software. Advocates

of the idea believe otherwise and say that the techniques do exist to efficiently make

near-zero defect software.l 0 4

Assign liability to parties other than the software producers

The second option is to assign liability to parties other than the software

producers such as the consumers responsible for administering software products, who

can also be at fault for outbreaks of malicious software. When software companies learn

of security flaws, they release a "patch" that consumers can install to fix the vulnerability.

Virus outbreaks frequently happen shortly after a patch has been released because the

patch alerts hackers to the presence of a new vulnerability. The malicious software

authors rely on the fact that many consumers do not install patches in a timely manner.

100 McLaughlin, Laurrianne. "Buggy Software: Can New Liability Rules Help Quality?" IEEE Software
(2003): 104-108.
101 Heckman, Carey. "Two Views on Security Software Liability." IEEE Security and Privacy (2003): 73-
75.
102 "Fighting the Worms of Mass Deception." The Economist Nov 27 2003.
103 Ryan, Daniel. "Two Views on Security Software Liability." IEEE Security and Privacy (2003): 70-73.
104 Junnarkar, Sandeep. "UCITA: Why software users will lose." CNET News.com 17 Oct 2002. 22 Nov
2004 <http://news.com.com/2008-1082-962353.html>.

70



Rather than placing the entirety of the liability for damage done by a virus on the

software vendor, this variation places some of the liability on the consumer who left their

personal computers or their firm's systems unprotected.

If we were to begin considering consumers partially liable for their inaction, then

we may see them approach their patching duties even more diligently. This increased

concern might result in additional pressure from consumers for the software companies to

invest more heavily in secure software at the risk of losing their customers.

This type of liability is difficult to apply because it is so diffuse. Additionally, it

would be difficult to determine what is a reasonable amount of time to require that a

security patch to be installed. Time is critical because a hacker can often create a new

virus within days of when a patch is released. While the company may understand this

urgency, they generally cannot act immediately. They face the risk of installing a new

piece of software on nearly all their computers. Additionally, patches often come at

unscheduled times; installing the patch means diverting IT workers from their scheduled

activities.

Strengthen criminal statues

An alternate approach to broadening or shifting liability is to more aggressively

target the source of the malicious software: the writers of that software and their

sponsors. By strengthening the penalties for computer crimes, lawmakers could

potentially deter more malicious software writers. However, I believe this is unlikely to

work as penalties were significantly decreased in November 2003. Based on the number

of compromised computers and the rate new malicious software is released, this has not

had an appreciable effect. According to Kevin Mitnick, a hacker who spent six years in

prison for a computer crime, most "hackers" do not weigh the consequences of their

actions in this manner; they do not expect to get caught.'0 5

Using regulation to realign incentives

105 "Hackers to Face Tougher Sentences." Washington Post 2 Oct. 2003.
<http://www.washingtonpost.com/ac2/wp-dyn?pagename=article&contentd=A3526 1-20030ct2>.

71



Using regulations to realign interests is also an avenue worth exploring. Clever

regulation that creates a structure where system participants augment system security

while pursuing their own goals would likely have a beneficial effect on the security of the

Internet.

This section discusses three ways regulation can accomplish this alignment of

interests:

· Require selling risk to insurance companies

· Trading vulnerability credits

· Allow an emerging cyber-crime pattern to continue developing and

ensure the public is aware

Require selling risk to insurance companies

Requiring companies to buy "network insurance" might have beneficial effects

for the Internet's resilience. Insurance companies are in the business of buying different

types of risk from companies and individuals and have the capability to determine the

appropriate amount to charge for premiums. For businesses, they provide the benefit of

taking an unlikely, but potentially large or catastrophic expense and translating it into a

predictable annual cost.

As they do for fire and theft insurance, Internet insurance companies would drive

better behavior with the promise of lower premiums. Just as a bank can lower their

premiums with a metal detector,106 a company could lower their premiums by taking

prudent security steps or having long periods without security problems. 107 This in turn

would drive innovation, as the insured demand security features and innovations in the

software they buy and software and technology producers strive to create products that

are endorsed by the insurance companies.

Software producers could also turn to insurance companies. They could reduce

their premiums by investing in new development and testing methods and technologies.

106 Schneier, Bruce. Lecture: Security, Liberties, and Trade-Offs in the War on Terrorism. The Fifth Hope

Conference. Hotel Pennsylvania, New York City. 9 July 2004.
107 Schneier, Bruce, "Hacking the Business Climate for Network Security," IEEE Computer, p86-88 (April
2004)

72

I



Trading vulnerability credits

The general approach to addressing externalities such as Internet security is to

"internalize" the externality. To internalize an externality means the costs that are

normally projected on parties other than the decision-maker are somehow included in the

decision-maker's calculations. Prior to 1960 it was thought that only governments-

through regulations, taxes, and subsidies-could enact this internalization. In 1960,

Nobel prize winner R.H. Coase showed that a more economically efficient internalization

could happen through private negotiation.10 8 For instance, a commonly given example

assumes a factory located next to a farm. The factory pollutes the air, damaging the

quality of the farm's crops. Whether the factory has the legal right to pollute or the farm

has the legal right to fresh air, letting the party without the legal standing (whichever one

that may be) pay off the party with the rights will result in an economically efficient

outcome, says Coase.

A modern day example of this theory is seen in emissions trading. Involved

companies buy and sell credits that give them the right to put a certain amount of

pollution into the environment. Companies that have invested in decreasing their

emissions rate need fewer credits and can sell them on an open market. Correspondingly,

companies using unclean technology will need to buy more credits. This controls the

amount of pollution while providing incentives to companies to make their operations

more efficient.

In her paper, Pricing Security, Jean Camp proposes a similar system where

computer owners are "charged" for vulnerabilities in software running on their system.

Participants would receive a certain number of "vulnerability permits" per device.'09 In

addition to their standard prices, software packages would have vulnerability price as

well. Running a piece of software would require that the machine's owner has procured

the appropriate vulnerability permits. Software vendors with high vulnerability prices

108 Biography of Ronald Coase. New School University.
<http://cepa.newschool.edu/het/profiles/coase.htm>.
109 Another option briefly explored by Camp considers putting the onus on software producers, requiring
them to buy permits to pay for the vulnerabilities they create. Camp argues that this structure would place
a disproportionate burden on free software producers and significantly chill open source development.
Interestingly, Coase wrote that it does not matter to which party the responsibility is given-an
economically efficient outcome will result either way.

73



would presumably find that their effective prices are higher than their competitors and

work to improve their code quality. 10

To better understand how the system would work, consider this scenario. Imagine

the system is at equilibrium; all computer users have purchased sufficient vulnerability

permits for their current configurations. A new vulnerability is discovered in a popular

web browser. Users of that browser would have some small period of time (perhaps two

days) to fix the vulnerability (either by patching the software or removing it). After the

allowable time period elapses, the number of vulnerability permits required to run the

software would increase. People who wish to continue running the browser will need to

procure more permits on the open market.

This is an interesting system and has worked well in pollution-creating industries.

I believe the ideas behind Camp's system are sound, but initiating and administering the

system would not be feasible.

Working as designed, the permit system does a fine job of internalizing the cost of

network security. When new vulnerabilities are discovered, users of that software must

invest their time in fixing the vulnerability or invest their money in purchasing new

credits. In the longer term, these users will either move to software with a reputation for

being more secure or will pressure the software vendor to create more secure code.

The elegance of the system is appealing, but the details of administering such a

system are unwieldy. There is not an entity with the authority to create such a system at

this point. If it were to be created by the US government, it would only bind US

computers. International organizations like the UN or ICANN (Internet Corporation for

Assigned Names and Numbers) would understandably become mired in creating and

administering a program affecting hundreds of millions of computers.

Another contentious issue is determining the number of permits users would need

to purchase in order to run a particular piece of software. Presumably some governing

board would create a methodology for determining the cost of vulnerabilities. This

would inevitably become highly political, with companies lobbying the board for lower

price assignments.

110 Camp, Jean. "Pricing Security." Economics of Information Security. Comp. Jean Camp, and Stephen
Lewis: Springer, 2004.

74

�1�1___·1_



Finally, monitoring and enforcement would be extremely difficult. Camp

proposes a "citizen's militia" responsible for checking for compliance. Another option is

a trustworthy mechanism for computers to report to the authorities when computers are

running software without sufficient vulnerability credits. Both options present significant

privacy concerns.

Additionally, if a piece of malicious software was able to exploit a sanctioned

vulnerability and install itself, this vulnerability trading structure would not provide

incentive for users to remove it from their machines. Furthermore, it also would not

prevent users from unwittingly executing malicious software, as is the case with email

attachments.

Allow an emerging cyber-crime pattern to continue developing and ensure the

public is aware

As discussed in chapter 5, most botnet attacks use compromised computers to

launch DDoS attacks or send spam to other targets (Figure 9 and Figure 10). However, a

recent study by Symantec shows malicious software writers and sponsors are more

frequently scouring infected computers hard drives, looking for personal or financial

information that can be exploited." l As this practice increases, so does the potential cost

to individual computer users.

If this practice increases and is well publicized, it may result in users taking more

action to protect their computers.

Technological Solutions

Another approach to Internet security is to conclude humans are a weak link in the

security chain. The previous chapter shows that users are either incapable or unwilling to

expend the time and effort to accumulate the knowledge needed to successfully protect

their systems. Simultaneously, the time elapsing between the discovery of a vulnerability

and the release of a piece of malicious software has been steadily decreasing. Over time,

it is questionable if human intervention will be able to intervene in time.

1" Symantec Internet Threat Report: Trends for July 04 - December 04. Vol. VII.: Symantec Corporation,
2005. p 1-96.

75



If human action is a weakness then one approach to take is to use technology to

remove reliance on human action as much as possible. For instance, rather than relying

on users to patch their computers perhaps it should be done for them automatically as the

newest version of Microsoft Windows XP can do.

There are a number of new technologies and proposed design changes intended to

plug some of the holes created by the lack of human intervention. Below, I discuss a few

of the ones that I think have potential to help. They fall into the following three

categories:

· Technologies that prevent vulnerable computers from doing harm to others

* Technologies that help decrease vulnerabilities in new software

* Internet design changes that build security concepts into the Internet

Technologies that prevent vulnerable computers from doing harm to others

An unpatched computer is a danger to the computer's owner and to the Internet at

large. Researchers and companies are addressing this threat with different approaches.

Rather than rely on human generated virus signatures that detail exactly how a piece of

malicious software looks and behaves, numerous companies including Mazu Networks,

offer software that spots abnormal behavior without a signature.

Microsoft's new Active Protection Technology (APT) takes a similar approach,

but observes the behavior of individual computers rather than the entire network. If the

APT program notices something out of the ordinary, such as a high volume of email

being sent, it can take action.

Another approach is to prevent unsecured (and potentially compromised)

computers from joining a network. An aspect of Cisco's "Self Defending Network"

offering interrogates computers when they plug in to an enterprise's network. If the

computer is not running the most recent security patches or other security critical

software it is placed in a quarantine zone until it can be fixed. When coupled with

Trusted Computing,' 2 a way to ensure that computers honestly report their status, the

idea is even more powerful.

112 Home Page. Trusted Computing Group. <https://www.trustedcomputinggroup.org/home>.

76

__il�l�



These technical approaches can have significant effects. Microsoft released

Windows XP Service Pack 2 in August 2004. It improved the security configuration and

added new security technology. In the period shortly after the release of Service Pack 2,

the number of compromised computers joining botnets observed by anti-virus company

Symantec decreased by 83%. 1"3

Technologies that help decrease vulnerabilities in new software

New tools are being developed to help programmers write more secure software.

A set of tools called static analyzers help developers by inspecting code after they write

it. Some security conscious companies require that every piece of code a developer

writes is checked before it is added to the product.

Another approach is to insert some degree of variability into programs as they are

running. Doing so will not eliminate exploits, but will make it so that an exploit that

works on one person's computer will not work on any other computer.' 14 This would

make it much more difficult for malicious software writers to spread their programs.

This has not been widely deployed because it results in a small drop in performance.' 5

Internet design changes that build security concepts into Internet

Much like our behavior in the physical world is governed by certain physical laws

(e.g., I can't walk through a wall), the behavior of Internet users is limited by a different

set of rules. These rules are codified in the "code" of the Internet. 116 For instance, the

early designers of the Internet made the design decision to instill the Internet with a

strong sense of anonymity and transparency and encoded this design decision in the code

of the routers and computers that comprise the Internet. These design decisions led to

great freedom on the Internet; freedom that was frequently used for innovation and open

communication. Of course, this is the same freedom that has allowed malicious software

developers to able to take advantage of others.

113 Symantec Internet Threat Report: Trends for July 04 - December 04. Vol. VII.: Symantec Corporation,
2005. p 22.
114 Bray, Brandon. Compiler Security Checks in Depth. Feb. 2002. Microsoft Corporation.
<http://msdn.microsoft.com/library/default.asp?url=/library/en-us/d
v_vstechart/html/vctchCompilerSecurityChecksInDepth.asp>.
115 Talk by Microsoft C++ Compiler Program Manager. MIT, Cambridge, MA. Nov. 2004.
116 Lessig, Lawrence. Code and Other Laws of Cyberspace: Basic Books, 2000.

77



The "physical laws" that govern our behavior on the Internet are different than

those that control our behavior in real space because they are only the product of a group

of engineer's design decisions. These Internet laws can be changed.

One possible change comes from David Clark, a MIT professor and an architect

of some of the Internet's core protocols. In a recent paper, he argues that the design of

the Internet should be modified to include the concept of trustworthiness 1 7. In an

Internet that has the concept of trustworthiness, one node on the Internet would relate to

another according to how trustworthy it is known to be. For instance, Clark proposes that

routers will provide access to other routers that are known to be trustworthy while

blocking access to unknown routers.

117 Clark, David, et al. Addressing Reality: An Architectural Response to Real-World Demands on the
Evolving Internet, Proceedings of the ACM SIGCOMM 2003 Workshops.
<http://delivery.acm.org/10.1 145/950000/944761/p247-clark.pdf?key 1 =
944761 &key2=0268135111 &coll=GUIDE&dl=ACM&CFID=42319975&CFTOKEN= 1400837
5>.

78



Chapter 7-Summary

As stated in chapter 1, this thesis has a dual purpose. I intended to test if STAMP

could be effectively applied to a security problem. The applicability of STAMP for

security could be judged in the efficacy of the security analysis.

I believe that STAMP served as a very useful tool for conducting the security

analysis. Using STAMP, I was able to take a diverse and complex security system and

develop a strong understanding of how the system responds to the challenges it faces.

The STAMP analysis began in chapter 3 by defining the Internet Security System

(ISS) as a collection of 17 components whose interactions determine the security of the

Internet. This part of the STAMP analysis discussed the 17 components and enumerated

security constraints that, if maintained, would reduce the chance of an outbreak of

malicious software.

The Internet Security System is constantly under attack, which provided

interesting cases to study. In second part of the STAMP analysis I looked at two

successful attacks, Blaster and Sobig, through the lens of constraints. The analysis

stepped through the constraints that were violated and allowed the outbreaks to occur.

Among the many constraints that were violated, I selected three as playing especially

large roles in the outbreak. They were:

· Constraint 1-1: Computers must not execute malicious software

· Constraint 6-1: Software must not contain security vulnerabilities

· Constraint 16-1: Virus programmers must not create and release malicious

software

Chapter 4 identifies the constraints that were violated; chapter 5 explains which

components allowed the constraint to become violated and, more importantly, why those

components were not able to keep the constraints valid. In chapter 5, I show that both

individual users and enterprises were responsible for the insufficient enforcement of

constraint 1-1. Software vendors did not enforce constraint 6-1 and lawmakers and law

enforcement inadequately enforced constraint 16-1.

The remainder of chapter 5 discusses why these components either were not able

to or chose not to enforce these critical constraints. Using System Dynamics models and

79



economics concepts, I arrived at the central conclusion presented in chapter 5: those

responsible for providing critical parts of Internet security do not have sufficient

incentives to make good security decisions; instead they often make decisions at odds

with Internet security. These misaligned incentives contribute to the lack of enforcement

of key security constraints, leaving the Internet less resilient to attack.

80



Appendix 1-Sample online advertisements offering compromised computers

81



File Edit View Go Bookmarks Tools _He lp .... ... ... .... ..... .... .. .. .. .. ... .1 ... ..... .. ... ...... . . .. ... ..I . .. I. ..... .. .. . ... I ... .. . ... .. .. ... .... .. ... .. ... ... ... . ... .. ... .. . ... .. .. .... ... . .. ..... .... .. .. ..... ... . . .... .. .. .... ..... .. .. ... .. ... .. ..

.2 News 2a To Read I 3 Weather MIT Classes iJ Calendar '.: Research Tools i Money Mgmt : MacDegen ::~ Seattle ) Linkedin

Y:..::.:..::::..:....................,..,,,..,,,..,,..,,....,,..,,,,,,,..,....................................................................

. 0 -LaMacchia.pf (apicatio... .. (Untited) i Information About the Bulk E... I formaton About the B E... i Infomation About the -

...... :::::.: ; .: ::!':::. . '.:. ' ' '' ' .... . ' ': :.. ' :::.: '.:,,::::: .: ...'' :: :.::.:.:.: :: :.:: ::, ,:::::::::::,:,: ....... .. : :_.: :.::,, ... . ::::::::.

"''^ 111~^"II"'~" :--Jr- ~
- . .. ... l .... Thrad Tals SearcSthlvis r.read V D ispry Modes V

ax P.Y@CS a

Done R :::::M , iAc

82

_N

T

....

I ·

robinanpelic is Offline: Join Date: Sep 2004
Junior Member P-sts: 3 3

\- Proxy Srelces

$350.00/weekly - $1,000/monthly (USD)

Type of service: Exclusive (One slot only)
Always Online: 5,000 - 6,000
Proxy Type: SOCKS4
De-Duped: Yes
RBL Checked: Yes
Updated every: 10 minutes

$220.00/weekly - $800.00/monthly (USD)

Type of service: Shared (4 slots)
Always Online: 9,000 - 10,000
Proxy Type: SOCKS4
De-Duped: Yes
RBL Checked: Yes
Updated every: 5 minutes

References and samples are available.

Contact me via AIM: robinangelic

............ LZTZL__Z_.XZ____'..7"L._Z._LL. 7. Z__J.Z-.*' 7'/L.Z- ~7/- ~i~i-~'" " i'~71 .... X ............... '....................

Llhnn~l~.~ m~mA·~((~IM1(,111111 ~ -
II

--

_ .. ..... . .......... . .. ....... . ... ...... .......... .............. .. .. .......... ..... .... .. . ........... ... .... .. ......... .. . ... ......... .... ......... . ... ........ .... .. ........ ....... ...... ..... .... .........
-.-'·'' · ' i" "1 ':: "' .... 7 ~ l~~- ~a·:·,····C*":·.:.'r · i-.V II: · il~ l -`-I;·:: ·~X~:·j~:iMLl.i~~X*~4

, , ... ... - - - - I-n-- s s s V .- 



I li. I1 S .ii. M- U

--. s / s a·· -- - - --.. - - - ---- - _ r- .. - - - .. - -

5riw ' '; s !http:ljwww.spamforum.biz/frumsishowthread.php?t=250 
..... -. .. .. ... .... . ...... . .... .. ... . . . ......... . .. ....................

News .. To Read I. , Weather :, MIT Classes Calendar * Research Tools :2 Money Mgmt . MacDegen _ Seattle ' LinkedIn

08 OlaMacca.pdf (apphatkilopd Obl... * .t (Uted) :. Iiormaton Pbout the ukemea Mar... i ; Inormnation About the Bue Ema_ i

If this is your first visit, be sure to check out the FAO by clicking the link above. You may have to reeister before you can post: click the
register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Th read Tels Search tis Tead Dilay Medes 

.................................... ........... ....... .............. . ..................... .,' . .. ...... ' ......................... . ....... .......... " " . .' ..............'........ ................ ........... ....... ....... ...
_ i_1 N~~~~~~~~~TTPS SOCKS PROXIES

"Hulk~~~~~~ MI(O~~~~~~~~~ is;3ffline: ~ ~ ~oin Date: Jun 2004
Posts: 3 ·

Junior Memrber

! HTTPS SOCKS PROXIES

2 auto-update url's
1 SOCKS - 1 H1TPS
updated 3-5 times daily
1000-1500 up on each 24/7
$75 USD/week $250 USD/month

You can email bulkmkocgahoo.com if you are interested.

-. .... a........ ......................... ........................................................................... ,,,.......................................... ....... 

, '::":'. :-------: ,'" ----- --- "::'"' -',-" ': ''::: '"'-'"'';:"'.":'":"::':' -- ............. .----. ..::---..::......:........:--...............----'- - -;"-''--,'-
"'

..."-.': ' .;.'""'- -:

mC sMiTh is offline: Pon Date: 26Sen 2004
Junior Mernber

interesting offer for small mailers!

anybody bought peas there before?

Done , .' Adbck·: n I' ·

83

.1- -' -... - - -.- -1- -T^^r Lb

-11

-...

II

..... ..- ..... .. . ... ......... .. . ...................-.... ....... . ........ . . . ........ ll ~n·*I**I~..I~l~·~~l ~ ~ h �i�XXi� .k~r . .......... --. __.v. v.-.v -- vv--- - - I . · . v �:



Appendix 2-Full STAMP Analysis

84



3

o
a)0cc

C:3
OICCZ
E

w

CQ
C

E
V.a

L. 

5 E

E

>1
CT
tb0

= v,

es_;: 't
.l-~ U

a c I1 C)0

-

_a_
c4 9 C) 

'InUvl
cu

0

a000-I

0

-o"14)C:.

: 

z oZ

0

0C=z

0ci7d

0UQo
0;

o *1°

U'-
._ ._=0
O U

U 
00U o aC;) * -

0
U
cn

0'

00=to E
ci ir 

._U Q

U · l

C- u_, e_

VX C

L000

0

4i_- 0
0 t.
z 

C
z O

, 

:

£

15

4;i

U E

UC/)

'A 3
a

. o

0
c

"I

00U-S= 

-e U-C

I= =

a 3ac >

t o1= 2= .Et 0E jt+. !:

4f
ctC/

C.)
U:

1-1

0z

CA
Uc/6,

.~~~~~~~~~~~~~~c
>~~~~~~~~~~
*-Z

,

00 XSli^Z -S*-

S :

03, Sz sX~~~~~~~~~~~~~ .<

Iz z

F= -'C

o oI-0 0 0U

0 -
E:

0Z,
02:

I
liCl
0

4-:
0

00`
0-

0z

85

0

to
vc,>cn

o

twt~

o
C)

m,

a,

Q)ru

o
cn
Cd

� � � � -

� � � � - - � -

__ I -

- ---� � � - - -- � - -

- -
__ m-_� | -



IIj

"I '-

, 
Q '

-

t =t

C_ I.) ~C-1 E'b 

. - t0 .-
Z >4

-C· mu 

ctc:u C-' _ 

r-,,
Et

Z

,-, 

Z .-
S *

o X3z 
t~ Z
- Ijo2az tz .C-

E CL

cn 5
E WO"

o u =E -
0 m; 

o5
C4 3t)oo M5yc.) -) =U- ~

C)

ci:1o.;zu C
5 U

C) 4

vl ;
.r L

t
ZCif

S:
Y u

-

Z E<
Z# -
z ,
t* Z

-e3

'9,

-(Z

= M
._t CC:

0 cO o
= 2~

- (L
ed

t) u
3

Z cTn 
v: V3

.0 :

Z O(~
ZX :_To~~
14-ci ·

,- "
I _11 Z

C

r) -c

lzD.,Zqj Z,X k
Zu O

t, - X

" 4,

C

U

C
©i

t:

U
!

o

E

,Z,

"Z

Q,

ti ,a
Z ZO

a X60 to

X Z
(Z)

tc z~
Ca -

86

C,
E�0

-�p
100
cn

2
0

Cq

a

C.1o

U
C
o( 
0

Z

0

02z,Z)

o

8·S

ELI
(Z

cn

-t,

li:
Z

Z

I P

Y Z

,j "

Z t ~j
-h :

ZC .

Z

C

U
or10
C
T1f0
I

E

ct

C)

-4r0

0cn
u

10C

14X
0 usC

a
--Cl v2

� - � L - - -

� - - - � � � � � � -
l

I -

I I � _1 X
v>:

II I

-... I- _)_I·_C· _ I_ _ LI_ _ _ ~~~ I __I_-- ---- --

I

I



E

0
CN

U vlQC X
. C

X : °, °C

cU -o U 0 e -C5 c,. Q e3r W 5 3 >

Qct sC)n X C

Z5vt

. E:

o

87

c e04 

0 *>

1
= X I

0 .- e

.-c 3 c
3

0 d

3 °

'-; +-e rw

O J0

C"o
-Cd

sle f
... ..E

C

rj

C
0

C

C

-

o

,,

0

o0.0

0
cn,Z:

5

0o

U
0
0

0

0.

U._

C)

o
0

0

0
07=
o

uo

oC3

z

it

x

E14.

z

llX

-UI

C.

Il_~

FS

11.

E

0

CA

0._
0o3
o

n0

o E

3.- ,

0 U:0 d

0,:: __t O0 d^

4-0

O -Eg

hO 

P ,

o

cn
(1)

ct0

.tz

0;i,

C,.

4L-zi s

4- 4-

0n

z

-*

C a Z
oi(

zz~c,
kj >

tZ~ 

· o -Lt

oz 8-t
? oc Z

- It

l

Inz

4-

st

Co c
o

Y st4-

11.)I 0-z 

V3

0

u

zr1-1
m

l
_ - - �

I -

C2
·Z

lli Z

2 ,.

:t z

z E

i



cr1

0
ua)

0
E
0

>-0
q.)

Qu

CT

Ct.

cn

0

0 .~
a)

00

· .D c t

d~4r~ a)

a)) a
a) a4- ©- 

'~~ ~ 

C O

0 0 

Ca)C
a - ) 

4- 0 0 0a -a 

CC E5 

1 0 C

_a3C,)

L-

"~·U
112_

0
a
Ua)

a;a)
Oa'0

, (.

8 ~

C
0
o
0C)

a0u
C4bo

,e,

0
C/.

C
0
:3

0
U
00
V

c5 0z -:
t)o c 5
0 3 
E t; 000

~zo

U< a)

C o 0"c= o
E

= o 5

cn u =

C -a

a) a) .LZ

000
* C

a C

a)

-d C a)
0.o

r1Ct

s0

0

cn

'C
0

r.
a)
S

C0
C.
a)

C)
ua)
E
0

Ca)

0

0

0
C/)

a)
Cr1

M

0 0

5

0
U
0

-k a) -

cr
._CCv n ba s

~a)

a C. Cg05.
C O O004=: L

C.)

z z
CZ. . -z -.0Sl I0j 

o0

0f s

U t
Z~

t-S
. ZZ tz00000Z, a)

C4)
ll~l

---

kCLO14.
94)

1 a3
z Sz

't

:t 'Z

·_rz

"Z:

zT~
Z:,

cI rl·
E:11`

IZCY

Z St

Q -,
C)4M
Vt

a)
F
C.
Q

88

� - � . � � � � � �

_ _. _-~·...I.- I



-U
i,

Z
P 

I

I 0-)O zr

-=1I

V. U

Z Ua
O Ca

0 0

U..

a

(1

0
0Lnw

"a0

C,

. 0

0 0

0

o

0 r-

;elC =,= 
0 ct

.- -

lss

-cZ

t z

lo
O) p

In

i, .Z4-I)U

V _i
0I0

Ef S

So
a -~ U

-~ o

aD0b
UdE=

a ; ;c c

0
to

0O

O 0

-e

C 5 
q) ;.

'A

0

U

0

(U

Ca
Ut)U o

U
e0d
0 ,

C'5 4
E: 

cn

U

-tz

ez

,Z~ c,

iz

rZ ~

Z -

-0zCl)

,O

0

'-.0Z rIZ )

IZL

89

0

0
E0

0
O

0r.
U02
4.)1

r.
0

b4I

cn
t4-

0
ll:

E

C)

a
0

U

0

0

0OU

00~

0

©

4
CAp

ct

0

U

0

0

c
0

a
0
U

0

r-0

0

0
0
C-1

0

I..

CA

-4

Z3

n-sz

Z.

17Z C
tf z

4e .

tt

Z% o

$w I"

2CT

0
C4

CI

1S

C=

ci)

I 1 ------ 1----------·

---------- I--- ----- ---

I ---------- �--- ------

� ��



O

'V ZtU

o Zo

. z

t C

>:I .o

- W

3 o 1:c
~QEr o_ E

vl r j 
3 0:
; V) =

0

1 o
-ta E

bD O 
._1 3 o

o a._ >CA¢ 

CZ C'3
CrU 

'C2C).2 "
-- e Izz

-t:

lz

c4\)

E r:
(ZaC,

ll Z

z,

'Z, 

Z Z

o

0

i

0o
0._e

U
C3o
O
0

S

,L)

1:

O_l

u
EUjzt,

CL

U
04-4

crC

o a. -0-
4 U

cC ts

rC)

- q

U C
CA 
a0cn-
U U
5 5
0~C~
'A U

C)
I)

Cl)

-C

C4) -Z

Z Z~

'L I

~cj0)-

0
55

-0= C): r_C)f m
._ 

C =o UC E0 =

o _

E
o U
= C)

O 

u: Ocncn 
U~Q

. _z
(, 

.tC -
:% C)to:

.; '1

-1"IO'

90

0

~o0
C/)

I-
c'
m9

C

I i--- . --- --- -- - --- -- ---

II"' -·-·------ L



u Le
Q)a Y

E a

u
EO

· re O

e�t b13

E E

e�o
u

'Et cP

io

cE: c�
Eo

o cE:
o cw

s, CP

a k
0O

L� 3a ,
s E

30

E 'G
v, ;S
a�cO

.� E

Q�C
C iu

Le
N a

·,

oi,
·6·

s,
r
i3

I tct
4,

I ;e
.
CA

1 0

1~ s_I

*_.

"Zt

,' 
, .

YocEs 
S:'4cl,

: -

-S 4.

c,
0~4

0o

. 0 I

1<)q3- boo

q) C

0 "e

14 0 =cn =f

cll

2:
I-

-'4
·,) 

t-c Z
- Ef 1- O
P, 
,L ,-

0

.C
©n

ct

tItY

IA0
E0

I-
ed

0z

,, ,,

11)
1 C~:
'Y z

-, :
:t

I, E

-zr:
C-

L-O9z

1 ao

t_ _.O

z O,

t 

CZ -

91

o

. - ,.C
0cnOV]

c
,.l

0

0
U

-,0

.

0

0

0

'11Z
E4:
C-)

S-

I ·
z:

f Z

zU ,

u!

W

*5Zz
Cei

2 -- � � i I

_- � - -

�_ - w-



c)

o * 
4EJ

'-4~

o .-

92

__~~~~~~~~~~~~~ _·___.---LI�IIIIIIII·l - -



w

aa

;E

.L.1
UIC

a
EI.

ICCZwE* -

V1

1;l.
-e

c

,w .L

s

oll
Z,

r0

Z: S

z -
,S. z

;:t 

0 0

o
cj

t
0
t).0
0

0r-

c

0E

0
0o

0

. .

0c

oou

bs L(

c,
oo-Z

Iz

-1-
14.

l'

si _

I ,z

Xz -

0

0
U:

.C 

-1~

U
CJ~-

00
0a.

k 

0

U50
0=
O
C

0

=

S
0QE~3

0

0k

62c2=
0
0E

0
Cd'u
0C,3
o
S
o
C)

a7,
U

z_

t t
to -z ll>

i

93

0

.0
0

0
t
0:

u10U

~u
0S000o
c,
E:

CC)
. _=o
C:00U
U

0
0"a,1)

C

0
0C-C1
00

0

0
U

0
t4

o

,Z,

O
Z.lz

C

Y z

z -

,z 7

0
(U0
0
;4(0

0D

CZ(
ct'

C,

;D;

� � � --- I

-- -- - -



a
E0;
c:
wa
a-C)

w

a

C5

IC!

E

WY
a.g-
s -

=
vAcn

M =!

= '4
.
0 4 

·-Z

z

"Z

Z B.X

z tCZ
:$ Z

QX

~ _

to

Ca ,

cor

0
U
S
0

-scn

COuOV:
k

r 

U

0E;,

cr >
V:] -*

u 
cn k

.Q
u 3~

O C

U ;>

94

I
.0
tcn

0
E

a
bO0
0Ct

U
UP.

a
r=
o0I
Q
u

CIZ

0

0u
0
U

-t1,1;

X EI',
i r3z

Iz(:s C,

S:°
zi O

0-1r.
S

.(Zas

0
H.a
ul0

E 

ZI

U0Z

,',

I � � -

�1_1

1_~~~~~~~~~~~~~~~~~~~~ ·- 1



Q

4=E

4)

v
'S

19u.

W

w
cd

mM

.

. I

L3

IW 1CQ
C)

zC-z

0
0sao.ZZ:11;

C-,

0
0E

0
dC05

0
0

Ho
<

o

ctu
8$
03-
Q

U:~~~~~~~~E

r._0

0 "a

O ,2:

z -0 r
O u
- m

* 0

Iaj

1-2

'S

I-

t,
IL

IIL
C11
ll;

- L
z
Iz

-Z

Iz-

L,

S

O

-z4

0

CA

0

0
S-0

c

0

00

-
(1)tz
C3

tb)

>1

rcn

q)
u
O

u

(1)

U
Q

= IZ

C- Z
o

oI Y

2 Il

r-

-a

sw

Ct

camCG
Ct

E;+
U

;5

o
Vru
OU1)

.

0

'f:rc
C)11)

Cu
a),=M

::

.

nu

;> 6
r.V U

. C

95

0

.-0

V/)Ct

E
0

o2

-al

ll c~
III 3

z i

I-E

-Z"t
-t;

(2

·30

k,Oca· ,

*-^

CE

u

m

e.l

E*
tei

a Z

~3 -C:

7:!

- - - �



0o
=1I
Ea)
C4

C/)

4

0
CL0lcn9I-

0(A0

d-7
O
a

t0
Cl

xS-

(:zll 
Z k
z 'u

t 
T: O

t

Ca I

C 

I 3:) I
;. t00

0O O

cjt V

0 0)Q ct C
O ~
O E
O aD W

= 
> 

O X

CA~
0 :

o 3

oi

= . v-Cr3 I=-5 > I

- V ) ;=E

a

o
:q Ot
to

Z~C

C', 4,

96

E
0

bD

3cn

V)

0r.

a)

I
0

I
>E
-C;^GQ

mOs:e_

ctO

in0
C4

r:

w
E4-4

't
e
E

Q
CZ
w

rA3
t

oCZ
r4.0

I..

=11
0

zZ7

-t3

"Z

Z:
lll.

L--

11 

0

-0
o
0

0

O

0

¢.

E

*.

CtCcla
u

nm3

o
q.

� � - C---- --- -�--

--- - -

�



1n
C

1?0 

E
iwa
-. 4

u

E
5

c

3

I

0o

rj
1
rJ3
0

-~ 0

4--
a.)v)U -
vo
E

o
U031

48
m

Z pi
ct 

* 0

C4)4-Cu;ZZ

C*z U

o
C)

c -

5 X

C Q

C4)-

C)=

Ct

s~:

4-.

Cjx; Z, .3N
_ z

tc3
o =

s: 

* - C)0 un

c uh

. r-
F >

o *C=

E Z:c

. cn >

a
a10

w
E
e

a.-0

(1)~.

41

eeA

w
CQ0= Law 

of av Li

=Z
>j Z
, L0
b' =

97

cn

C

z

E
CLu
cn

ai

O
· "=

a)

3.ctj11
(te

1-4

E�
�-4
0

b1c

�c0
cn

0

.lC/)

E

vv(dP3

o

C

- iU
:

U
o.

,,--

-Cj

, -iz

Y t
Ik E

2, -I I,-
C' u

C ,
5j 

7>

U
C1)

3s

"C

C:4.

qo
O11

D - - - . �

l � � - -

uL]



98

- - ~ ~ ~ I

- - - -~~~_



Wl

0O
.C

E

._

MCAoE
_m

104r

0

LQE,r

I 3

. -

xz

(A
0
C

u

3
G
C(:C

._

u

-C

o
;0
r-
Ct

C4

c
2

I # 1 K- i

o

©3

V

0
C

C

E

;1
m

c0

ctO

03

0z
C)

2:1n
z 

L I

:

*32

:J

- (M "I u~I, 
4 C ) N

.5 c 1 i` t 7

99

cn
0;
C)

7d

C)C)3
0

.)

C)

0

C)O

.

¢

r=

,O
1 cw
o �

CP ba

E E

Q)

gav,
E E

E
a o

�ctl

E

EFS
q��Q�

4a�
'5:·1
V1 =1

m

'L95

�C�·E
4-:

;jc10

0

O
V3

o

-4

C,

O

0
7ZZ

. .~.)
z C. x

Ls wO

;: *iS

n z3

, z
3 z

0
rJ
vn

C.,

0

0OltiC5

0
CZ

1)

0

ltl

o 

r - l l

II

0

-7

1

r2r

I zE

z
llu

zz

Sj

Z'

3e

zz
uj

z 
uj

Z5
Z5

Zu
-Z,

(Z)
'Z

sZ -~

EIz
Q 2

C', :

U, :
z O

: Io ;, 'zz
n Z:

.cj

3 -

Zl

;,~ V - :i - Z;, z

- 2~Z ' ~ OI 
w o ,I o~ l- I' - v~ -U I , -- I r_ I

1~7- 1 L7 i42 I

_ L '

ri. F
I

I

O

I oCl

II
I

I
:L

w
zI

Z�

I
ZI

.1I

._ i I
!
o-~.I

-IE

06 



cn
z

t·

.oQ

tS~s.

100

- I � l

-

^·· ___ __···
· X __IIIC I· 1_|_

Iltt

14i

t ,
St

rz .

lk) IZ3

2eZ
0, -



=t
a s -
"3 2)'E

Cb
- ._ 

D D
_ .

= S
t] C
c) Ct :-

V: M

o
0

(c

Eo

8
, C

, E

a 
, C

a . t3 o
0

m > st cl E

c n s = = o-o c - E E
a U~

~~~~

) 3 *Z c

Ct
CA

or2

-
3 Z
s: :
.) zU

0

zr:t .FO

_ It

C0

Q~;=e

a z

C ~E
-o C

C

"C..I

C
(.0

O

OVc
a

Q
0I(

c>C
0O

C
C

C-
C

,
Co,-©;©

.

'-40
w
v
0.)CIW

-o
l)

0
cU

c'Ir4I'3Uo
1

C3

ci

.-

om

·I S

zi E

U

:z,

:z0 0

Zc

Z "z

~-
au rz

~p Cp

I I

101

r- --- -
·I

- -- - - i

- �

'[-- --

-

I a0

_-I

I F

_ . _

OXI
Ea

r �C

kq�

O
,4

Ou
kQ)

YE
Ek
Qa�
Uu

O n

cu �E

b13 O
Q)u

a u
o

E E
OE
mg
uU
k

�c �a
� �E a

+J `Y C�

rn � �S�1
1CPu

8·553
Vl(AZA

PI k L,

w uQ)1

a o"E�ool
ri U U

Sct~.

" Z

t Z I
, ;t

- I

Z Z^
,°

XE ".

CZ .- cfIE <

0

'3 kC)C l

o C3 u
._e d

Yc a

i> o
< o

u E=

;^E

.> Ct

C)
Vo
O cf

X

n)X

L1z

Z o
Z Z_

X Z

oo
,

X

O 1 n

XJ E)E t
Cs(._
Z -zt ~,j

102

Co

to
V)

-eha

oct)U:
W0

C)

vO
VD

C)
O72

C)E9L

0

0

0

U.n
0
0
0

aaC
0
0

I!4

v
C)b

o

0C)0C)

a)U

E
a
4

rA
A)
C)

ww
w
I=
0r,
U:*

LCI

C.

w

Cd
I - - ~...._,......._,_.,~

· · ·- Ll^rXIW�-X--CI -I IC1----- �_li-1.1 -~~~ ~ ~ ~ ~~~~~~~ .- - -�.-1 II--

U0

C

Cu

Cu *r

~Cu oCu -

Le

C

= -)

eo

E =

S
Z w

=E

a =_ -
1. ..

Z

'El'u3-

Zt
cn

(n

Z'.

o
Y o

t KCoI

Z Z

:1 Z

103

0

cn
.51

I-Q

au

ECuI=

E

N

.r&EN

rt
r-

C.)

Z1

E
E
C.)

C)
0

Z

z1

C.)

Zu
C)

WI
a)
E
E

0C

b0

- p-0

I

UC.
cj:

(AL*
O
u
CZ
CutQ

o

2L
o

GnC
EE
CZ

.)
u

Zu

I
Z:

OC)UC0
md

-Z~

C
E

O'lzZlz

EE

14
Oj

S-

Z
111

I,-

Z

C
Oz

di

::300
d)

I
.)SC

0

II r----'---'"'"----~ .
| - �

~~~_~~ ~q-

--- -- -... _-......_ ---- L-.......----......~--

3;t

-,Z

't'

Cj 

zt

(I.

llY O
zf ·
Irj



0
0
o rEo
O

3 vlo 0

o,,oc 
- Q-c: .

E oLe =

ogi~e
·.

o
;> E:

tS~ r

C-,

to 

b .t

4t t0_
0z7

104

0
-00
Qu

0
0.?o

ii

Z,

C4.

,

I

12,0

01
0

01

>

lstfU

Sz"

uSi
zt

g
s
'Z

ley

QIY

t 
4) S:

ot S" o-

.3 (:3
Xt t

Q

to

Q Vts C:% o
q,) -~

o·,
: ,(

tis

u 

zZ

A!

l -

� � �

� � I- �

<* -I_··_··_ __LI_·_



O
cc,
a
o
O

_C o
Q C

·o .,"

> tw

2^ Z
E o
., V

v

r 5

. u

,,

,4 t

,)

(L

= C7

3 v
Q .2
t) 
X 1

Y_

C
a 

E E
E E

0 C

z

CA)

f-o

o

.t1.

3
11

0Ua 6 t~. 'L
O · cr

. cii
E .
E gE 

00 0
V0

Y ·j

CZ

r: t
'Ai

~o ) z

o

o "t
2 Z

c oI S)z 'tj z'
I~u (Z

co
©
a;

3

oc0

aor:
Uc

.o ~o:._

0

c/,~

XQ)C
a),

o 

t-

_ 

105

Gn

o
>

cn

* -

t,

"t

p-ol .T Ihr-Z I-

* -

g

o

O
kcq

o0

cn

X)-

0
0

a

0
00

s

ct
31

4j r
SZ~

X <.) 
_ z

LnL

c

C3
E

4d

2

l f l

I

X - Iz 

I 

t L..
I

> D X _ I 1! 

-
-



lr:C)0L

C~)
C-)

CtZ

C)

0*'-E:

z zo

to 

CC4 

U .-

Cn
1 4

oc2..'

L -- a 

a , 

o 

HI 3

C _

- ca

C)

30

O c -~

.t

z(Z

.t
,0t

FS t>) z
I o

It~S I

C9

o i

.o

C) )
-C)

c) ()o

_ _ _

106

5
0

bo4
0

cn

C

I
a)

U
c)
x

C)

;
S

CEE
>
[3

C

UooU

"c

tu
clt

4-w

-6-C
(U5W

;.w-i-;AK

r-

I-z

C.)

C)
1,

cn
C)

::
W

CTr.

U2
pcU

(Uk

;4
1C)*+_

Eo(U
-C

C.

I

C)01

0
-4.
wPw
C

r-l

- - - �

I - -

i__l _·_II· _____�·_�_ �I_ I

· ·trj
m



107



w

011-1O

C)wU
Q4-
Q

.

._

C:)

C· Q

c 

4z OC% UcaCn C
(AE

·

-oU
0C)
o

cc
,x

.__
o

C0

r

Ct

Q Ct

cl d

Ct
d) O

oo

o
C

O o:
o O

c= 4

"!::
N

CZ~
;O

Z ,

s

t .,o

.,

r: ,
Lj I

ZZ

o

z otZ CD
Z" .G

; Q
Iz

108

bI

Z
U0

0.Co
;4

cnLiL

E

E
CQO

t,._
ua
00

u
03
C

C)
cn

C
I.,2=4>

ct

U

vi5

O7

o
:Ecf2=

U

U

CE
Ud)

C)ilt0
w_

5

boO
Vc
cn

o

eQ

0
Cn
CZ

00

0ur-c

o

o.2¢

0
0

U0

0
Cld

m

C)
1h

b:

U
0

w4--4

V3uS
Ucn
r.eu

r.
-4

w
0-

C
._

;ow?
04

- - � � . - � �

I �

r: � � . � .

----I _ I ------ ~ ~ _~ _1_1

I-

. Xl



o

Q
U:

3

Q)
.C

E
O

CZS

aa
Co

-o

O= rw=

,u -a -
.4 = a;X 3

O" E
S -
..( Li
1 =

E:
* -

o

00r X

EB

OQ-<0
H =

O0 0CC

X ) 0>;c = oC X =d = <= ;^ a

: o 
C bO .Y

HC >s

cn dJ
rl- V,, 

U.

CiI
V.

-0
0

0)L

0,

0

0
0 U

0
03

c

L 0r
0 0O

109

U

:

wu
ci),4

U

C)

UlC)

r:
.C
zuu
cn

E

cn

O

Cm

0
~s0
C

00C)

Z:z
.,

t
Clio

r2t .-

Z, o

" z
z Z:

So C

b
W

c1=

U0.0:Ln

UQ)

C4

zQi
0)

rA

l l- -- - - -- - w w

w - I� l I



a
eP

Iz

u(mw
O
Ew

oCt

Ea

E
E
cuou

e

QCF

$: o
j= o
em 

1

;; Q

:~ s'A,:; .2 Qw-

u

.t
C: 

E

;u
a4 a

3 0
CN; z

cV0

ct

0

O

o,.

0

0
0t

c4

ct

Ed

"ITI

(Z)
C_) z

(Z '

ztE
,z

011'ZI .
ICz

to Z.
. 1

S

sXzo \z C .t

S °
*z E~
z

Q 12

Z o

10

C.)-00

C.)

~-0- Sz ,

, ;j

toC_
Lo'-

rz 

0

'-o7=

0

0

qC)1
u

O

C

>

cjna

c 13 c'r
3

VO

"s

- a
5:

a;

E E

0$-
n 

" .E

o =

E: a

a) n

110

0

-,

0

co*V *-o

vl

I

to
In
U,)

-.02

0
7=

0u
0
CO
o..

V;
(a.

E
E
ct0

0CL

Uoa

0o.

U
r=

C.)

0

-Z
0z

t,
"') 

0, Z
tc(.

I
C

w
._

ea

omCt

o._
CJ-L

I't
Ia

C- C-;

zt E~'-.40E

m
3

0

t
CQ

EC3.)0S
0
0E
Po

� -

I l - - I � � . -

� �

�I� -- h-

_. _ _ . - -



11



C
I o

c
I .

3 N1 '^ Q

ol
I z X

c, 
|r co 

I 6 =

.D0I n0
'Z

14.U0,

'A

·0

c0-z-- 0
.alz c

t .4Z:

,k z

z ZZ -

,Z 

ct

L-

1-0
14~

03 C1 .5

r2

lcj

;>1

0

,

")
00-=
E-

C~~~~~

o-00
.,z ZI- Z

z
, .
to Z.s z
^ - C

'ni,

-- 0
tta,

L-~LC1 z., E>- oj

Q.-

i

0
0
0

-0

0

c000*-U
01 -o
Z4; 2 z

to oQ I

0

0c)O

-

0
v0
0CLa

s
aD

a,

t.c- E; EB e
Y W

a ow

,

o >

3 a)

e e

b CK

E- '

00

0,0
0.o

X"2o-S

;s -

Z St

112

u h

CQ) EcnlI t c

;E3z °(1)E I

0

t0

V-

0

O

-:

0
(1)
cn
cl
CP

Sv
(1)

E

0orL
Cl-

0o

U
0
0©

C0
o

IC)

00©©
C)(i

Ez
k

0

· sE·
I

I+-

cl

cn

0
a,0,

cn
CWI

0
04

C4
C
c3
;n
0oCQ

t-

ro

0
E0
0

3
C
tl

E1a)l

E
E
(a.)

O

0

-
- - � - � �

-- . - - I - � � .- I �

�_ - � � 1
-

WI _ _



113



Appendix 3-System Dynamics Model of a Simple Software Industry

114

__



th

C C

lo

O- .t

m G

Wo 

g Gl

115

0

-- -



Appendix 4-Google Keyword Prices

116

_Il·L I



" f'.Mr, .-
File dit ew io eokomlrs loos Help

'IT - § - ;- -@ L [CI https:lladwords.goo .com/sictWrzardAdd eyords a
Back Reload Hone Print

-- 'G b $ 8 A . i -A - s ..-.... -i- -. ooe A .dword:; Se .; Maxi.m..t- . . .................... .............................................
Adwordes.St "xnum cost- Pr......

I Create ads.

I + Create New Text Ad I
Imaqe Ad [?1

Test
Test
Test
web. ril. edu

Edit - Delete

HOW PRICING WORKS

1 Maximum cost-per-click = the most you'd pay for a click L.
2. Higher maximum cost-per-click and clickthrough rates = higher position and more clicks ,[_.
3. AdWords Discounter automatically reduces your average cost-per-click to be just 1 cent more than the minimum

necessary to stay ranked above the next lower ad. No more need to monitor and revise your prices .

Choose eur eney nd meiwuns cout-per-clck

USD $ Fo.o I Recalculate Estimates 

Sevse & Continue .,

Estimates for these keywords are based on clickthrough rates for current advertisers. Some of the keywords above are
subject to review by Google and may not trigger your ads until they are approved. Please note that your traffic estimates

assume your keywords are approved.

Control the amount you want to spend n your campaign each day. No minimum budget is required.

Control the amount you want to spend on your campaign each day. No minimum budget is required.

Doe 1' cu .. -...sd..m . A ''.

117

cup 2,500.0 50.49 S1.209.12 1.1 find alternatives / delete
home loan 140.0 $29.88 14,182.72 1.1 find alternatives / delete
home mortgage 88.0 $20.05 $1 764.00 1.1 find alternatives / delete
mortgage 3200.0 $15.19 148.593.92 1.1 find alternatives / delete
mug 460.0 51.37 $628.79 1,0 find altematives / delete

Overall I8.83 56,378.54 1.1
Change Keywords

I I : " - : '. , ··: ~- - , :: .· ::lj,*·:· l -.c -'l i "v I

I



___


