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Click Fraud

Abstract

"Click fraud" is the practice of deceptively clicking on search ads with the intention

of either increasing third-party website revenues or exhausting an advertiser�s budget.

Search advertisers are forced to trust that search engines do everything possible to

detect and prevent click fraud even though the engines get paid for every undetected

fraudulent click. We seek to answer whether it is in a search engine�s interest to prevent

click fraud.

We �nd that, under full information in a second price auction, if x% of clicks are

fraudulent, advertisers will lower their bids by x%, leaving the auction outcome and

search engine revenues unchanged. However, if we allow for uncertainty in the amount

of click fraud or change the auction type to include a click-through component, search

engine revenues may rise or fall with click fraud. A decrease occurs when the keyword

auction is relatively competitive, as advertisers lower their budgets to hedge against

downside risk. If the keyword auction is less competitive, click fraud may transfer

surplus from the winning advertiser to the search engine. This last result suggests that

the search advertising industry may bene�t from using a neutral third party to audit

search engines�click fraud detection algorithms.

Keywords: Advertising, Auctions, Click Fraud, Game Theory, Internet Marketing,
Search Advertising



Search advertising revenues grew from virtually nothing in 1996 to more than $7 billion in

2006, constituting 43% of online advertising revenues (Advertising Age 2006). The primary

bene�ts of search advertising for advertisers are its relevance and accountability. It tends

to reach consumers as they enter the market for the advertised product, and advertisers�

ability to track consumers�actions online allows for accurate measurements of advertising

pro�tability.

The downside of this accountability is a practice known as "click fraud." Website publish-

ers or rival advertisers may impersonate consumers and click search ads, driving up adver-

tising costs without increasing sales, e¤ectively stealing a �rm�s paid advertising inventory.

The Click Fraud Network, which de�nes itself as "a community of online advertisers, agen-

cies and search providers," estimated that 16.2% of all search engine paid clicks, and 28.1%

of all content network paid clicks, in the third quarter of 2007 may have been fraudulent.

Discussions with executives in the search advertising industry indicate that the amount of

click fraud varies widely across industries and keywords. The perceived threats of click fraud

may outweigh the bene�ts of using search advertising for some �rms in high-risk categories.

73% of search advertisers say that click fraud is a concern (Advertising Age 2006). The

question of click fraud is vexing because search engines cannot give advertisers full infor-

mation about how they detect and prevent click fraud. Doing so would be tantamount to

providing unscrupulous advertisers with directions on how to commit click fraud. Advertisers

are therefore forced to trust that search engines do their utmost to prevent click fraud, even

though the search engines get paid every time they fail to detect a fraudulent click. This

trust was called into question in 2006 when Google CEO Eric Schmidt was quoted saying

"Eventually the price that the advertiser is willing to pay for the conversion will decline

because the advertiser will realize that these are bad clicks. In other words, the value of

the ad declines. So, over some amount of time, the system is, in fact, self-correcting. In

fact, there is a perfect economic solution, which is to let it happen." (Ghosemajumder 2006)

His remarks were interpreted as suggesting that market forces would eliminate any negative

e¤ects of click fraud in the long run, possibly undermining the need for click fraud detection.1

The primary objective of this paper is to understand how click fraud a¤ects search engines�

advertising revenues. We also hope to gain insights into what actions search engines may be

able to take to mitigate click fraud. We present an analytical model of the auction market

for search advertising keywords and then introduce the possibility that third-party websites

or rival bidders may engage in click fraud. The strengths of our model are its parsimony and

generality as �rms�search advertising objectives and the degree of competition in keyword

1In 2005, Google CFO George Reyes said �I think something has to be done about [click fraud] really,
really quickly, because I think, potentially, it threatens our business model.�(Stone 2005)
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auctions vary widely across keywords.

We �nd that, in a second-price auction, when �rms know that x% of all clicks will be

fraudulent, they lower their bids by x%. In equilibrium, this adjustment leaves advertising

expenditures and the auction result unchanged. However, when the amount of click fraud

is uncertain or when the auction contains a click-through rate component, search engine

revenues may increase or decrease with click fraud. A decrease may occur in relatively com-

petitive keyword auctions as high bidders hedge their advertising budgets to protect against

the threat of a high realization of click fraud. On the other hand, advertising revenues may

increase in relatively uncompetitive auctions if the foregone pro�ts of exiting the ad auction

outweigh the e¤ects of click fraud, resulting in a transfer from very pro�table advertisers to

the search engine.

The surge in internet usage and advertising revenues has attracted substantial academic

interest (see, e.g., He and Chen 2006, Iyer and Pazgal 2003, Manchanda et al. 2006, Prasad

2007). Research on search advertising has focused mainly on competition in advertising

auctions and consumer search. Baye and Morgan (2001) analyzed a homogeneous products

market organized by a search engine ("gatekeeper") and showed that the gatekeeper�s incen-

tive is to maximize consumer adoption but limit the number of advertisers using the platform

since it can extract more revenues when competition among advertisers is lessened. Chen

and He (2006) analyzed optimal consumer search and advertiser bid strategies and showed

that advertisers�bid order mirrors their products�relevance order. Consumers then opti-

mally engage in sequential search. Borgers et al. (2007), Edelman, Ostrovsky, and Schwarz

(2007) and Varian (2007) analyze equilibria in sophisticated auction mechanisms similar to

those used by search engines.

Empirical work on search advertising has focused mainly on the link between keyword

prices and advertiser pro�tability. Goldfarb and Tucker (2007) showed that keyword prices

increase in advertisers�pro�tability of advertising, and decrease with the availability of sub-

stitute advertising media. Rutz and Bucklin (2007a) developed a model to enable advertisers

to decide which keywords to keep in a campaign, and showed that keyword characteristics

and ad position in�uence conversion rates. Rutz and Bucklin (2007b) showed that there are

spillovers between search advertising on branded and generic keywords, as some customers

may start with a generic search to gather information, but later use a branded search to

complete their transaction. Ghose and Yang (2007) empirically analyzed a model of con-

sumer search and advertiser behavior, linking keyword characteristics to purchase rates and

evaluating the optimality of advertiser bids.

We are not aware of any previous analyses of the economic e¤ects of click fraud. We

begin by discussing the institutional details of the industry that guide our analysis.

2



1 Industry Background

In this section, we describe the market for search advertising, types of click fraud, advertiser

perceptions of click fraud, and issues in click fraud detection and measurement.

1.1 The Search Advertising Marketplace

Search advertising, also known as "cost-per-click" (CPC) or "pay-per-click" advertising, is

sold on a per-click basis. Advertisers bid on a word or phrase related to their business and

enter a maximum advertising budget per time period. When consumers enter that "keyword"

into a search engine or read a third-party webpage relevant to the keyword, the advertiser�s

ad then may be displayed along with the consumer�s search results or webpage content. If

the consumer clicks on the advertiser�s ad, she is redirected to a web address chosen by the

advertiser, and the advertiser is charged a fee. Advertising costs and quantity of searches

available vary widely across keywords.

Search advertising was pioneered by a �rm named GoTo.com, which was later renamed

Overture and acquired by Yahoo. Overture sold keywords in a public-information, �rst-price

auction. It later changed its auction mechanism to a private-value variation on Vickrey�s

(1961) second-price auction, the Generalized Second Price auction described by Edelman,

Ostrovsky, and Schwarz (2007). The market leaders are Google, Yahoo, and Microsoft with

64%, 22%, and 6% of clicks, respectively.2

Keyword prices vary according to advertiser pro�tability, media competition, and key-

word characteristics. Though not representative, the keyword "mesothelioma attorney" cost

an average of $35 per click, but region-speci�c keyword costs reached as high as $80 per click

(Goldfarb and Tucker 2007). Rutz and Bucklin (2007b) illustrate the dramatic di¤erences

between keywords containing branded and generic terms. In a search advertising campaign

for a hotel chain, branded keywords on Google created 3.5 million impressions, with a click-

through rate of 13.3% and a cost per reservation of $2.76. Generic keywords generated 19.9

million impressions, with a click-through rate of 0.3% and a cost per reservation of $61.71.

Search ads are typically ranked according to some function of advertisers�willingness to

pay and the ads�value to searching consumers. Google�s early ranking algorithm was to

multiply the advertiser�s bid per click by its "click through rate," the number of consumers

who clicked on the ad divided by all consumers who saw the ad. This tended to increase

the utility of search ads, increasing customer tra¢ c and acceptance of advertising. There

is some evidence that higher ad positions are more desirable since not all consumers read

through all of the ads. For example, Wilk (2007) reported that 62% of all searchers do not

2Source: http://hitwise.com/datacenter/searchengineanalysis.php, accessed November 2007.
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read past the �rst page of ads, and 23% do not read past the �rst few ads. He also noted

that consumers often re�ne their search if they do not �nd a good ad among the �rst few

slots. Chen and He (2006) �nd that a higher ad listing sends a quality signal to uninformed

consumers. Rutz and Bucklin (2007a) and Ghose and Yang (2007) demonstrate empirically

that higher ad positions result in higher conversion rates.

In 2006, Google added a "quality score" to its ranking function. The quality score is a

function of click-through rate, search term relevance, ad text, and ad landing page, but the

speci�c function is not publicly available. Yahoo added a click-through component to its

ranking algorithm in 2007 (Shields 2007).

Other forms of online advertising include cost-per-thousand (CPM), in which websites

are compensated on an impression basis, and cost-per-action (CPA), in which advertisers pay

per sale or lead. Prasad (2007) discussed "impression fraud," a problem in CPM advertising

that is conceptually similar to click fraud but operationally di¤erent. CPA advertising has

the potential to resolve click fraud concerns, but has a principal/agent problem in which

advertisers are incented to conceal customer leads and conversions from the search engine.

Google piloted a CPA beta test in 2007 but participating advertisers were required to use

Google software to track their conversions. It may be that if advertisers reveal enough revenue

information to the search engine to resolve the principal/agent problem, the search engine

would be able to design its auction mechanism to extract maximal advertising revenues.

We speculate that CPA will cannibalize some CPC revenues, but we do not expect it to

completely replace the CPC business model.

1.2 Types of Click Fraud

Search advertisers are charged when their ads are clicked, regardless of who does the clicking.

Clicks may come from potential customers, employees of rival �rms, or computer programs.

We refer to all clicks that do not come from potential customers as "click fraud."

Click fraud is sometimes called "invalid clicks" or "unwanted clicks." This is partly be-

cause the word "fraud" has legal implications that may be di¢ cult to prove or contrary to

the interests of some of the parties involved. Google calls click fraud "invalid clicks" and says

it is "clicks generated through prohibited methods. These prohibited methods include but

are not limited to: repeated manual clicks, or the use of robots, automated clicking tools,

or other deceptive software."3 Google acknowledges and describes the risks posed by click

fraud in its annual reports.

There are two main types of click fraud:

3Source: https://www.google.com/adsense/support/bin/answer.py?answer=16737. Accessed January
2007.
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� In�ationary click fraud: Search advertisements often appear on third-party websites
and compensate those website owners on a per-click basis or with a share of advertising

revenues. These third parties may click the ads to in�ate their revenues.

� Competitive click fraud: Advertisers may click rivals� ads with the purpose of
driving up their costs or exhausting their ad budgets. When an advertiser�s bud-

get is exhausted, it exits the ad auction. A common explanation for competitive click

fraud is that �rms have the goal of driving up rivals�advertising costs, but such an

explanation may not be subgame perfect. If committing competitive click fraud is

costly, then driving up competitors�costs comes at the expense of driving down one�s

own pro�ts. A more convincing explanation may be found in the structure of the ad

auction. When a higher-bidding advertiser exits the ad auction, its rival may claim a

better ad position without paying a higher price per click.

There are myriad other types of click fraud, such as fraud designed to boost click-through

rates, to invite retaliation by search engines against rival websites, or to do malicious harm

based on philosophical or economic grounds. These other types are thought to be relatively

infrequent, so we do not consider them in this paper.

1.3 Advertiser Perceptions of Click Fraud

Search advertisers say click fraud is troubling. Advertising Age (2006) reported the following

results of a survey of search advertising agencies:

"In your experience, how much of a problem is click fraud with regard

to paid placement?"

16% "a signi�cant problem we have tracked"

23% "a moderate problem we have tracked"

35% "we have not tracked, but are worried"

25% "not a signi�cant concern"

2% "never heard of it"

"Have you been a victim of click fraud?"

42% Yes

21% No

38% Don�t know
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"What type of click fraud did you experience?"

78% In�ationary click fraud

53% Competitive click fraud

Google implicitly acknowledged the problem when it paid $90 million to settle a click-

fraud lawsuit, Lane�s Gifts v. Google, in July 2006.

1.4 Click Fraud Detection and Prevention

Search engines implicitly acknowledge they cannot fully detect click fraud. Google states:

"[our] proprietary technology analyzes clicks and impressions to determine whether they �t

a pattern of use intended to arti�cially drive up an advertiser�s clicks or impressions, or

a publisher�s earnings. Our system uses sophisticated �lters to distinguish between clicks

generated through normal use by users and clicks generated by unethical users and automated

robots, enabling us to �lter out most invalid clicks and impressions."4 Thus, they imply that

they do not detect fraudulent clicks that do not �t a pattern. We surmise it is especially

di¢ cult to detect invalid clicks if they come from IP addresses that are used by many people

or if the invalid clicks are designed to resemble clicks generated by normal human use.

Most search engines claim to o¤er advertisers some basic protections against click fraud,

though they do not explain speci�cally how they identify fraudulent clicks. Tuzhilin (2006)

de�ned the "fundamental problem of click fraud prevention:" a search engine can not explain

speci�cally how it detects click fraud to its advertisers without providing explicit instructions

to unscrupulous advertisers on how to avoid detection. Advertisers are forced to either blindly

trust that search engines seek to prevent click fraud or they may hire third party �rms to

detect click fraud and pursue refunds for any such fraud detected.

Empirical research on click fraud�s e¤ects will have two challenges. The �rst challenge

is that probabilistic judgments are required to detect click fraud, as a smart click fraudster

would design its fraudulent clicks to complicate detection. For example, fraudulent clicks

may be generated by a widely-distributed "botnet" (Daswani and Stoppelman 2007) and

designed to mimic human use. The second challenge is that if click fraud can be detected by

the researcher, it also could have been detected by the advertiser. Search engines�standard

business practice is to refund advertising expenditures when advertisers present evidence

of undetected click fraud, so empirical evidence of click fraud�s e¤ects could potentially

be impacted by advertiser detection of click fraud. We speculate these concerns could be

resolved by analyzing data from a company that previously did not try to detect click fraud,

4Source: https://www.google.com/adsense/support/bin/answer.py?answer=9718&ctx=sibling. Accessed
January 2007.
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or perhaps using an experimental approach.

2 A Baseline Model of Search Advertising

We begin with a simple setting to establish how the market operates in the absence of click

fraud. This aids interpretation of equilibrium results when we introduce in�ationary and

competitive click fraud in later sections.

Clicks We assume there is a �xed period of length one. n customers click and clicks arrive

at a constant rate 1
n
. Firm j 2 f1; 2g receives �jW per customer click when its ad is in the

top spot, and �jL otherwise. We de�ne �j = n(�jW � �jL) as the total value to advertiser j
of remaining in the top spot for the entire period of time. It must be that min(�1;�2) > 0

else �rms will never enter positive bids.

Search Advertising Technology Each �rm enters a bid per click, bj, for a single adver-

tising slot sold by a monopoly gatekeeper. The high bidder claims the slot and pays the low

bidder�s bid per click.5 The high bidder then enters a capacity, Kj � 1, the maximum num-
ber of clicks for which it is willing to pay. If the total number of clicks exceeds Kj, the high

bidder exits the advertising market when its capacity has been exceeded. The low bidder

then claims the top spot at the next-highest advertiser�s per-click bid, which we normalize

to 0.

Given that the advertiser�s maximum expenditure is the product of K and b, the adver-

tiser�s capacity choice is equivalent to choosing an advertising budget, as is required by all

major search engines (Google, Yahoo, MSN). In the absence of an ad budget, we presume

an advertiser could choose to stop remitting payments to the search engine at some point,

which would give the same e¤ect. The capacity-setting assumption simpli�es the analysis,

but the results would be unchanged under a budget-setting assumption.

Edelman, Ostrovsky, and Schwarz (2007) showed that, with two bidders and one slot, the

Generalized Second Price auction used by Google and Yahoo reduces to a Vickrey auction.

We will appeal several times to the standard result that, in a second price auction, it is

optimal for �rms to bid their reservation price.

We assume the two �rms�ads have identical click-through rates, so the high bidder wins

the top ad position. We relax this assumption in section 5.

5Results in sections 2-4 continue to hold if the auction winner is determined by the advertising budget,
or by the product of bid and total clicks, rather than by a comparison of per-click bids alone.
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Structure of the Game The game is played in two stages. First, each �rm enters a bid

per click and observes its position, with the high bidder in the top spot. In the second stage,

the high bidder chooses its capacity. The reason for this structure is that, in reality, each �rm

may discover its rival�s bid immediately by varying its own bid and observing whether its

ad position changes, but a rival�s capacity may only be discovered if it has been exhausted.

We seek a subgame perfect equilibrium in pure strategies under full information.

Equilibrium We analyze second-stage pro�ts, then �rst stage actions. When �rm j wins

the auction (W ), its pro�t is

�jW =

(
n (�jW � bk) when Kj � n
n�jW

Kj

n
+
�
1� Kj

n

�
n�jL � bkKj when Kj < n

(1)

where Kj

n
is the fraction of customer clicks �rm j receives while on top, in the event it does

not remain on top for the entire time period. If �rm k wins the auction and sets a capacity

Kk � n, �rm j receives �jL = n�jL
In the �rst stage, each �rm will anticipate the second-stage outcome and choose the bid

b that makes it indi¤erent between winning and losing the auction. Thus bj is chosen to

equate �jW = �jL.

We summarize equilibrium behavior in proposition 1.

Proposition 1 In the absence of click fraud, �rm j bids �j
n
per click and wins the advertising

auction if �j > �k. The auction winner remains on top for the entire time period and earns

a pro�t of n�jW ��k. The gatekeeper earns min f�1;�2g :

Proof. �jW does not change with Kj when Kj � n. When Kj < n, �jW changes linearly

with Kj at rate (�jW � �jL � bk). If �rm j wins, it cannot be that bk > �jW ��jL, since �rm
j would be better o¤ losing in this scenario. Thus, when �rm j wins the auction, @�jW

@Kj
> 0

for Kj � n, so �rm j sets Kj � n and earns �jW = n(�jW � bk). �jW = �jL then gives

bj =
�j
n
.

Proposition 1 serves as a useful benchmark to which we compare equilibria under in�a-

tionary and competitive click fraud.

3 Search Advertising with In�ationary Click Fraud

We now introduce in�ationary click fraud into the baseline model. Major search engines pay

third-party websites to display search ads relevant to their site content. In�ationary click

fraud results when those website owners click the ads to in�ate their advertising revenues.
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We �rst analyze the individual website�s problem of choosing a click fraud level. Next, we

solve for equilibrium bids and capacities, given a known amount of in�ationary click fraud.

Finally, we consider the case of stochastic in�ationary click fraud.

3.1 Websites�Choice of In�ationary Click Fraud

Ads associated with a particular keyword are placed on I third-party websites, indexed by w.

We consider two di¤erent compensation schemes. If website w is paid w per click generated,

its revenues are w(nw+rw), where nw is the number of customer clicks generated through the

website, and rw is its in�ationary click fraud level. If website w is paid a fraction �w 2 (0; 1)
of the ad revenues it generates, its revenues are �wb(nw + rw), where b is the advertiser�s

payment per click. b does not vary across websites and is a function of in�ationary click

fraud, with @b
@rw

< 0 (as shown in section 3.2).

We assume the cost of rw fraudulent clicks is an increasing and convex function cw(rw)

since a greater number of fraudulent clicks increases the risk that the search engine will

detect the fraudulent activity. The search engine could then retaliate by excluding the

website from its content network or initiating a costly legal action against the website if click

fraud constitutes a breach of contract.

Under a per-click compensation scheme, website w�s pro�ts are

�w = max
rw

w(nw + rw)� cw(rw) (2)

yielding a �rst-order condition w = c
0
w(r

�
w) and a choice of r

�
w = c

0�1
w (w) in equilibrium.

Under a revenue-sharing compensation scheme, website w�s pro�ts are

�w = max
rw

�wb(nw + rw)� cw(rw) (3)

and site w�s �rst-order condition, �wb+ �w(nw + rw) @b@rw = c
0
w(rw), yields a unique r

�
w.

Proposition 2 Holding click fraud constant, for w = �wb, per-click and revenue-sharing

compensation schemes yield identical payouts to websites. Allowing for endogenous click

fraud, the revenue-sharing compensation scheme will reduce in�ationary click fraud, as it

incents content network partners to partially internalize the e¤ect of in�ationary click fraud

on advertisers�bids.

Proof. The right-hand sides of site w�s �rst-order conditions are identical under the two
compensation schemes, but the left-hand side is strictly lower under the revenue-sharing

compensation scheme, since @b
@rw

< 0.
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The larger the derivative @b
@rw

is in absolute value, the less in�ationary click fraud the

third-party websites will produce. It is typically thought that search ads are displayed on a

large number of websites in search engines�content networks, suggesting that @b
@rw

is small.

The implications of this result for search engines are clear: click fraud is reduced when search

ads are not rotated across a large number of websites, and each website is compensated with

a percentage of the advertising revenues it generates.

If @2b
@r2w

> 0 (which we later show to be the case under certain assumptions), then @b
@rw

is

greatest in absolute value when I = 1. Thus, websites�incentives to internalize the e¤ects

of their in�ationary click fraud on search engine revenues are maximized when other sites�

click fraud levels do not a¤ect their share of advertising revenues. This suggests that search

engines should allow advertisers to enter site-speci�c keyword bids bw to maximally reduce

sites�incentives to engage in click fraud. While it may be di¢ cult for a human to manage

site-speci�c bids when I is large, software could be designed to accomplish this task.

While a revenue-sharing compensation scheme suggests an equilibrium relationship be-

tween bids and in�ationary click fraud levels, we are not going to model this relationship

explicitly. Current search engine policies make information transmission between websites

and advertisers prohibitively di¢ cult. Search engines do not reveal the distribution of w or

�w to either side. In addition, websites do not know b, and advertisers do not know cw(rw),

nor how they vary across websites or advertisers. (But note that websites need not know
@b
@rw

exactly for Proposition 2 to hold; they need only know @b
@rw

< 0.) Finally, advertisers

have only limited information about where their ads will appear, and website owners do not

know in advance what ads will appear on their sites.

We proceed under each of two assumptions: either both advertisers can anticipate the

in�ationary click fraud level r =
P
w

rw, or they share a common belief f(r) about its distri-

bution. Advertisers may share a common belief about f(r) because they both observe the

low bidder�s bid, which is the only bid that is paid, so it is the only bid that in�uences r.

Next, we analyze the equilibrium e¤ects of in�ationary click fraud on advertisers�bidding

strategies.

3.2 Deterministic In�ationary Click Fraud

We assume that customers generate n = n0+
P
w

nw clicks, where n0 is the number of customer

clicks that come directly from the search engine. Website owners generate r fraudulent clicks.

Both advertisers can anticipate r. We relax this assumption in section 3.3.

Equilibrium Equation (4) gives �rm j�s pro�t when it wins the auction.
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�jW =

(
n�jW � bk (n+ r) when Kj � n+ r
n�jW

Kj

n+r
+
�
1� Kj

n+r

�
n�jL � bkKj when Kj < n+ r

(4)

The �rst segment of the pro�t function represents the outcome in which �rm j stays on top

for the entire time period. The second segment occurs if �rm j�s capacity will be exhausted

at some point, in which case it is on top for n Kj

n+r
customer clicks, and has exited the auction

for the remaining
�
1� Kj

n+r

�
n customer clicks.

Proposition 3 summarizes equilibrium behavior.

Proposition 3 When in�ationary click fraud is deterministic and known to both bidders,
and there is no competitive click fraud, �rm j bids �j

n+r
and wins the advertising auction if

�j > �k. Advertisers reduce their bids by a proportion of r
n+r
, pricing out the e¤ect of click

fraud. Firm j remains on top for the entire time period and earns a pro�t of n�jW � �k.

The gatekeeper�s revenues are min f�1;�2g, as in the baseline model.

Proof. �jW does not change with Kj when Kj � n + r. When Kj < n + r, �jW changes

linearly with Kj at rate
�
�jW��jL
n+r

� bk
�
. If �rm j wins, it cannot be that bk >

�jW��jL
n+r

,

since �rm j would be better o¤ losing in this scenario. Thus, when �rm j wins the auction,
@�jW
@Kj

> 0 for Kj � n + r, so �rm j sets Kj � n + r and earns �jW = n�jW � bk(n + r).
�jW = �jL then gives bj =

�j
n+r
.

The auction mechanism completely internalizes the e¤ect of in�ationary click fraud when

the number of fraudulent clicks is known to both bidders. Advertiser pro�ts are una¤ected;

bids adjust endogenously to counter the detrimental e¤ects of the fraudulent clicks. The

gatekeeper�s revenues are unchanged, though its pro�ts may fall if it makes larger transfers

to third-party websites.

3.3 Stochastic In�ationary Click Fraud

It is perhaps more intuitive to assume that advertisers do not know how many fraudulent

clicks will occur since they may not know the distribution of �w, w, nw, or cw(rw) across

websites or where their ads will appear. We assume here that advertisers maximize expected

pro�ts under a common belief about the probability density f(r) of the in�ationary click

fraud level r.

Capacity Choice We now add uncertainty about r into �rm 1�s pro�t function. IfK1 < n,

�rm 1�s capacity will be exhausted for any realization of r. When K1 � n, �rm 1�s capacity
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is only exhausted for some realizations of r. Equation 5 displays �rm 1�s pro�t function

when it wins the auction.

�1W =

8>>>><>>>>:

R1
0

�
n�1W

K1

n+r
� b2K1 +

�
1� K1

n+r

�
n�1L

�
f (r) dr when K1 < n

R K1�n
0

[n�1W � b2 (n+ r)] f (r) dr +
+
R1
K1�n

�
n�1W

K1

n+r
+
�
1� K1

n+r

�
n�1L � b2K1

�
f (r) dr when K1 � n

(5)

The uncertainty in the �rst segment of the pro�t function concerns the number of clicks for

which the �rm will remain on top. On the second segment of the pro�t function, the �rst

term is the �rm�s expected pro�ts when it remains on top, weighted by the probability that

r is small enough that �rm 1 is never knocked o¤. The second term is the �rm�s expected

pro�ts in the event its capacity is exhausted, weighted by the probability that r is large

enough to exhaust the �rm�s capacity.

Figure 1 depicts �1W . For K1 < n, �1W changes linearly with K1 at a constant rateR1
0

�1f(r)dr
n+r

� b2.

n

Π1W

1K

Note: It also might be

that W1Π is increasing

everywhere above nLn 1π

Figure 1: Firm 1�s Pro�t Function

For K1 � n,

@�1W
@K1

� MR(K1)�MC(K1)

=

Z 1

K1�n

�1

n+ r
f (r) dr � b2[1� F (K1 � n)]: (6)

Both MR(K1) and MC(K1) are decreasing in K1. @�1W@K1
is continuous at K1 = n though its

slope changes at this point.
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Firm 1 will choose a K1 larger than n if
R1
0

�1f(r)dr
n+r

> b2. This holds in equilibrium when

b1 > b2. K1 is therefore determined by the �rst-order condition on the second segment of

the pro�t function. Z 1

K1�n

�1

n+ r
f (r) dr � b2[1� F (K1 � n)] � 0 (7)

K1 will be �nite if MR(K1) crosses MC(K1). At K1 = n, MR(K1) is above MC(K1)

and steeper than MC(K1). As K1 increases,
dMR(K1)
dK1

= � �
K1
f(K1 � n) and dMC(K1)

dK1
=

�b2f(K1 � n), so MR(K1) later becomes �atter than MC(K1). If MR(K1) does not cross

MC(K1), K1 =1. Figure 2 shows the case when K1 is �nite. Appendix 1 proves that the

choice of K1 is unique when equation (7) holds with equality. If K1 < 1, K1 is increasing

in �1.

n
1K

b2

∫
∞

− +
∆

=
nK

drrf
rn

KMR
1

)()( 1
1 )

K*

)](1[)( 121 nKFbKMC −−= )

∫
∞

+
∆

0

1 )(rdF
rn

Figure 2: Firm 1�s Choice of K1

Bids As before, we calculate b1 as the per-click payment that makes �rm 1 indi¤erent

between acquiring the advertising right and not acquiring it. Thus b1 is found by setting

�1W = �1L. We consider two cases: n < K1 <1 and K1 =1.
In the �rst case, K1 will be �nite when the �rms are su¢ ciently similar thatMC(K) does

not lie everywhere belowMR(K). To aid interpretation of the results, we assume symmetry

between the two �rms, �1 = �2 = �, implying K1 = K2 = K and b1 = b2 = b. We �nd b by

equating �rm 1�s expected winning pro�ts to its expected losing pro�ts, but we now must

consider that when �rm 1 loses, it will claim the top spot when n+ r > K2. Thus

�1W =

Z K�n

0

[n�1W � b (n+ r)] f (r) dr +
Z 1

K�n
(�

K

n+ r
+ n�1L � bK)f (r) dr ; (8)

�1L =

Z K�n

0

(n�1L)f (r) dr +

Z 1

K�n
(n�1W ��

K

n+ r
)f (r) dr (9)

and b is determined by the equality of �1W and �1L.
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Proposition 4 When in�ationary click fraud is stochastic, there is no competitive click
fraud, and �rms are identical and set a �nite K, expected gatekeeper revenues are strictly

lower than the baseline model.

Proof. Gatekeeper revenues are equal to �rm 1�s expenditure
R K�n
0

[b (n+ r)]f (r) dr +R1
K�n bKf (r) dr

=

Z K�n

0

(n�1W )f (r) dr +

Z 1

K�n

�
�

K

n+ r
+ n�1L

�
f (r) dr �

�
Z K�n

0

n�1Lf (r) dr �
Z 1

K�n
(n�1W ��

K

n+ r
)f (r) dr

= �

�
2

�Z K�n

0

f (r) dr +

Z 1

K�n
(
K

n+ r
)f (r) dr]

�
� 1
�

(10)

Note that
R1
K�n(

K
n+r
)f (r) dr <

R1
K�n f (r) dr, since

K
n+r

< 1 for every r 2 (K � n;1), so

�

�
2

�Z K�n

0

f (r) dr +

Z 1

K�n
(
K

n+ r
)f (r) dr]

�
� 1
�
< �: (11)

The right-hand side is gatekeeper revenues when in�ationary click fraud is deterministic.

In the second case, �rm 1 wins and sets a capacity K1 =1. This occurs when �1 ��2

is su¢ ciently large that MR(K1) lies everywhere above MC(K1).

Proposition 5 When in�ationary click fraud is stochastic, there is no competitive click
fraud, and �rms are su¢ ciently dissimilar that the high bidder sets Kj =1, expected gate-
keeper revenues are strictly higher than the case when in�ationary click fraud is deterministic.

Proof: See Appendix 2.

Uncertainty about the amount of in�ationary click fraud may either increase or decrease

gatekeeper revenues. It is likely to lower gatekeeper revenues when �rms�incremental pro�ts

of winning the auction are similar. In such situations, for example in auctions for generic

keywords, bidding is more intense and the auction winner realizes a smaller pro�t from the

auction. Low pro�ts induce the auction winner to strategically limit its capacity to avoid

paying for a large number of fraudulent clicks.

Gatekeeper revenues may rise with in�ationary click fraud when one �rm�s pro�ts of

winning are much larger than its rival�s (for example in auctions for branded keywords). In

this case, the high bidder gains very large rents in the baseline model, and its rents are so

large that it never chooses to strategically limit its capacity. Click fraud may then have the

e¤ect of transferring some of the winner�s pro�ts to the gatekeeper.
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What we learn in this section is that in�ationary click fraud does not harm advertisers

when they know exactly how much to expect; this seemingly veri�es the executive�s comment

that perhaps no solution to click fraud is necessary. However, under the more realistic

assumption that �rms face uncertainty in the level of in�ationary click fraud, we see two

things. First, search engines certainly have a strong incentive to detect and limit click fraud

in very competitive keyword auctions. Second, when keyword auctions are less competitive,

it may be in the gatekeeper�s interest to allow some click fraud.

4 Search Advertising with In�ationary and Competi-

tive Click Fraud

We have previously considered the e¤ects of third-party invalid clicks on market equilibria.

Now we extend the analysis to consider what happens when the low bidder may click the

high bidder�s ad to hasten the high bidder�s exit from the advertising auction.

We start by proving our earlier assertion that competitive click fraud may not be subgame

perfect. In a model where the number of in�ationary fraudulent clicks is known and the

number of competitive fraudulent clicks is rationally anticipated, �rm 1 will shade its capacity

upward in equilibrium. Assuming click fraud is costly, �rm 2 then will not commit any

competitive click fraud.

In section 4.2, we show that uncertainty in the total number of clicks may lead to competi-

tive click fraud in equilibrium. Competitive click fraud unambiguously decreases advertisers�

bids, but it also may increase the high bidder�s capacity. As we show for two special cases

of the model, the net e¤ect on gatekeeper revenues may be positive or negative.

Assumptions About Competitive click fraud We assume the low bidder chooses a

level of competitive click fraud, z, at cost c(z). We assume c(z) is increasing and convex since

a larger number of clicks will increase the probability that the high bidder or the gatekeeper

can verify the identity of the �rm committing click fraud and retaliate (e.g., through civil

lawsuits or business channels).6

We assume the low bidder chooses z simultaneously with the high bidder�s choice of K.

The total number of clicks is now z + n+ r. We seek a rational expectations equilibrium in

pure strategies under full information: each �rm anticipates its rival�s action.

6One might also posit a competitive click fraud cost function c(z; r), where dc
dr < 0; to allow for the

probability of competitive click fraud detection to fall with in�ationary click fraud. We expect the two
types of click fraud can be independently detected, given that website owners�fraudulent clicks will come
exclusively from their own sites, while competitive click fraud is more likely to occur on search engines�main
pages. The results presented below are virtually unchanged under the assumption that c(z) = c(z; r).
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4.1 Deterministic In�ationary and Competitive Click Fraud

In the case that r is deterministic and known to both �rms, �rm j�s pro�t when it wins the

initial auction is

�jW =

(
n�jW � bk(n+ zk + r) when Kj � n+ zk + r
n�jW

Kj

n+zk+r
+
�
1� Kj

n+zk+r

�
n�jL � bkKj when Kj < n+ zk + r

(12)

Firm k�s pro�t when it loses the initial auction is

�kL =

(
n�kL � c(zk) when Kj � n+ zk + r
n�kL

Kj

n+zk+r
+
�
1� Kj

n+zk+r

�
n�kW � c(zk) when Kj < n+ zk + r

(13)

These pro�t functions are similar to those analyzed in section 3.2. Proposition 6 describes

equilibrium behavior.

Proposition 6 When both �rms know the in�ationary click fraud level r, if �rm j wins the
auction, then in equilibrium Kj � n + zk + r and zk = 0. Firm j never loses the top spot,

and �rm k therefore does not engage in competitive click fraud.

Proof. Suppose not. If zk > 0 and Kj < n + zk + r, �rm j�s pro�t is n�jW
Kj

n+zj+r
+�

1� K1

n+zk+r

�
n�jL � bkKj. This is strictly less than the case in which Kj � n + zk + r.

Therefore, �rm j will always increase Kj until Kj � n + zk + r. Firm k�s best response to

this strategy is zk = 0.

4.2 Stochastic In�ationary and Competitive Click Fraud

Here we set up the problem under the general distribution f(r) and discuss results and

intuition from the general model. We describe the set of equilibria in pure strategies in

Appendix 3.

Pro�ts As before, there are two parts to �rm 1�s pro�t function. When K1 < n+ z2, �rm

1 is always knocked o¤ the top spot. When K1 � n+ z2, �rm 1 is only knocked o¤ for some
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realizations of r.

�1W =

8>>>><>>>>:

R1
0
(�1

K1

n+z2+r
+ n�1L � b2K1)f (r) dr when K1 < n+ z2

R K1�n�z2
0

[n�1W � b2 (n+ z2 + r)] f (r) dr
+
R1
K1�n�z2

h
�1K1

n+z2+r
+ n�1L � b2K1

i
f (r) dr when K1 � n+ z2

(14)

�1W is continuous at K1 = n+ z2 though its slope falls at this point.

The problem facing Firm 2 in the case that it loses is choosing z2 to maximize

�2L =

8>>>>>>><>>>>>>>:

R1
0

h
n�2L

K1

n+z2+r
� c (z2) +

�
1� K1

n+z2+r

�
n�2W

i
f (r) dr

when K1 < n+ z2

R K1�n�z2
0

[n�2L � c (z2)] f (r) dr +
+
R1
K1�n�z2

�
n�2W � �2K1

n+z+r
� c (z2)

�
f (r) dr when K1 � n+ z2

(15)

�2L is continuous at K1 = n+ z2 though its slope falls at this point.

Proposition 7 Under stochastic in�ationary click fraud, gatekeeper revenues may be in-
creasing or decreasing in the level of competitive click fraud z.

Proof. We prove this proposition with two special cases of the model. In the extreme case
that c(z) = 0, the low bidder�s best strategy is to set z =1, erasing the high bidder�s pro�t
and driving bids to zero. In section 4.3, we solve for equilibrium for a special case of f(r)

and c(z) and show that gatekeeper revenues may increase in the level of competitive click

fraud.

The presence of both uncertain in�ationary and competitive click fraud limit the high

bidder�s ability to react to either one. The high bidder mitigates in�ationary click fraud by

limiting its capacity to protect against paying for a large realization of r. The high bidder

mitigates competitive click fraud by increasing its capacity, to prevent the low bidder from

knocking it o¤ with a large z. Thus when we add both types of click fraud into the model,

the auction winner cannot respond optimally to either one without being hurt by the other.

We show how this mechanism may operate for a special case of f(r) and c(z) in section 4.3.

4.3 Special case: f(r) discrete and c(z) linear

In this section, we solve a special case of the model for equilibrium K1 and z2. We assume

that r =r with probability 1 � � and r = r with probability �, where r< r. This discrete
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distribution f(r) is the only distribution that yields analytical solutions in this model. We

also assume �1 = �2 = �, to show that auction competition is not driving the results, and

c(z) = cz for simplicity.

Pro�t and reaction functions If �rm 1 wins the auction, its pro�t is

�1W =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

n�1W � b2 (1� �) (n+ r + z2)� b2� (n+ z2 + �r) ;
when K1 � n+ r + z2

(1� �) [n�1W � b2(n+ r + z2)] + �
�

K1�
n+r+z2

+ n�1L � b2K1

�
;

when n+ r + z2 � K1 < n+ r + z2

(1� �)
h

K1�
n+r+z2

i
+ �

�
K1�

n+r+z2

�
+ n�1L � b2K1;

when K1 < n+ r + z2

(16)

�1W is continuous and piecewise linear. It is �at for K1 � n+ r + z2.

@�1
@K1

=

8<: �
�

�
n+r+z2

� b2
�
, For n+ r + z2 � K1 < n+ r + z2

�
�

1��
n+r+z2

+ �
n+r+z2

�
� b2, For K1 < n+ r + z2

(17)

We �rst show it can�t decrease on the �rst segment and then increase on the second. From

the slope expressions, if it did, then

�

�
1� �

n+ r + z2
+

�

n+ r + z2

�
< b2 <

�

n+ r + z2
(18)

which cannot happen since r < r.

Figure 3 shows the three possible shapes �1 can take in K1.
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Figure 3: Possible shapes of �1W

Equilibrium capacity may be given by K�
1 = 0, K�

1 = n + z2+r, or K�
1 � n + z2 + r,

depending on the shape of �1. The middle case occurs when (rewriting the slope conditions

and evaluating at K1 = n+ r + z2)

�

�
1� �
K1

+
�

K1 + r � r

�
> b2 >

�

K1 + r � r
. (19)

If the �rst inequality is violated, K�
1 = 0. If the second inequality is violated, K�

1 �
n+ z2 + r.

Now we consider the auction loser. Firm 2�s pro�t function is

�2L =

0BBBBBBBBBBBBBBB@

n�2L � cz2;
when K1 � n+ r + z2

(1� �)n�2L + �
�
�K1�
n+r+z2

+ n�2W

�
� cz2;

when n+ r + z2 � K1 < n+ r + z2

(1� �)
�
�K1�
n+r+z2

�
+ �

�
�K1�
n+r+z2

�
+ n�2W � cz2
when K1 < n+ r + z2

(20)
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ForK1 � n+r+z2, @�2@z2
= �c and z2 = 0. For n+r+z2 � K1 < n+r+z2, @�2@z2

= �K1�
(n+r+z2)2

�

c = 0 and z2 =
q

�K1�
c
�n�r. ForK1 < n+r+z2 , @�2@z2

= K1�
h

(1��)
(n+r+z2)2

+ �
(n+r+z2)2

i
�c = 0

de�nes z2. Second-order conditions are satis�ed for K1 < n+ r + z2.

Equilibrium in K1 and z2 We �nd two equilibria in pure strategies. In the �rst, �1W is

rising in its third segment, K1 � n+ r + z2, and z2 = 0.
The other possibility is that �1W peaks at K1 = n+ r+ z2, in which case �rm 2 responds

according to its �rst-order condition. We then have

z�2 =

s
�2�2

4c2
+ ��(r � r) + ��

2c
� n� r (21)

K�
1 =

s
�2�2

4c2
+ ��(r � r) + ��

2c
� r + r (22)

There are three necessary conditions for this equilibrium. First, it must be that K�
1 is in the

prescribed range, which implies z�2 < r�r. Second, it must be that z�2 > 0. Third, it must
be that �rm 2 prefers �2L(K�

1 ; z
�
2) to �2L(K

�
1 ; 0); this implies ��

�
1� K�

1

K�
1+r�r

�
> cz�2 . The

equilibrium level of competitive click fraud is increasing with r and decreasing with c.

Gatekeeper revenues We now evaluate gatekeeper revenues. Total payments made to

the gatekeeper in equilibrium are b�K� as determined by �rm 1�s indi¤erence to winning and

losing: ��1W (K
�; z�; b�) = ��1L(K

�; z�) implies

n�1W � ��
�
1� K�

K� + r � r

�
� b�K� = n�1L + ��

�
1� K�

K� + r � r

�
� cz� (23)

or

b�K� = �

�
1� 2��

�
1� K�

K� + r � r

��
+ cz� (24)

It can be seen that gatekeeper revenues, b�K�, rise with z�.

5 Asymmetric Click-Through Rates

Search engines commonly use advertisers�click-through rates (CTRs) in conjunction with

per-click bids to determine ad position listings (Rutz and Bucklin 2007a, 2007b). It is

therefore interesting to consider whether our main results would change under a more realistic

keyword auction.
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We are not aware of any previous papers to solve for equilibrium bidding strategies in

an auction with a CTR component, or to investigate the e¤ects of the gatekeeper�s choice

of auction mechanism on advertising revenues.7 We show that moving from a second price

auction to what we term a "click-through auction" (bid-per-click*total-clicks) has three

e¤ects. First, advertisers no longer bid their reservation price, and the less pro�table �rm

may win the auction, even when it has a lower click-through rate. Second, search engine

revenues may be lower in a click-through auction than in a second-price auction. Third,

in�ationary click fraud may increase search engine revenues in a click-through auction, even

when the amount of fraud is deterministic and known to both bidders.

5.1 Baseline Model with a Click-Through Auction

We now assume that �rm j will get nj clicks during the unit time period. What follows

is identical if nj is a fraction �j 2 (0; 1) of total potential clicks N , where nj = �jN (as

click-through rates are commonly de�ned).

It is useful to denote �rm j�s per-click value of winning as vj � �jW � �jL. We assume
�rms are numbered such that v1 � v2.
Firm asymmetry in clicks is di¤erent from �rm asymmetry in advertising pro�ts. It may

be that �rms�clicks are identical (n1 = n2) but their variable pro�ts are di¤erent due to

price or cost factors. It may also be that �rms�reservation prices are identical (v1 = v2) but

their clicks are di¤erent due to factors like brand recognition or ad quality. It seems likely

that nj and vj would be positively related, but we do not require it.

We distinguish between two types of auction:

the Second Price (SP) auction, which we used in previous sections. The highest bid
per click determines the auction winner, and the winner pays the loser�s bid on each click it

receives.

the Click-Through (CT) auction, in which the gatekeeper allocates the advertising
slot to �rm j if and only if njbj > nkbk. The winning bidder then pays the loser�s bid per

click. We assume that n1 and n2 are known to both advertisers and the gatekeeper.

As before, we solve the second stage �rst. When �rm 1 wins the CT auction, its pro�ts

are

�1W =

(
n1 (�1W � b2) for K1 � n1
�1WK1 +

�
1� K1

n1

�
n1�1L � b2K1 for 1 � K1 < n1:

(25)

7Ghose and Yang (2007) include click-through rate in their empirical model, but they do not solve for
equilibrium bidding strategies, they assume that rank is continuous, and that advertisers pay their own bids
rather than the next-lowest bid.
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First-order conditions indicate the �rm will set K1 � n1 if v1 > b2. If �rm 1 loses the

auction and �rm 2 sets a K2 � n2, its pro�ts will be �1L = n1�1L.
In the SP auction �rm j chose its bid b by setting �jW = �jL: However, it is not optimal

for both �rms to bid their reservation price in the CT auction. To see this, assume that

n1 < n2 and b2 = v2. If b1 = v1, �rm 1 will lose the auction. However, for b1 = n2
n1
v1 > v1,

�rm 1 can win the auction and earn a positive pro�t on each click.

Lemma 1 A weakly dominant strategy is to bid b�j =
nk
nj
vj. Firm j will win the CT auction

if and only if nkvj > njvk.

Proof. Consider two mutually exclusive cases. For b2 < v1, winning the auction produces
a positive pro�t for �rm 1. No b1 > b�1 will increase �rm 1�s pro�ts, while a b1 < b�1 can

only decrease pro�ts by reversing the pro�table auction outcome. For b2 > v1, �rm 1 cannot

pro�tably win the auction. b1 = b�1 ensures it loses. No b1 < b
�
1 can improve pro�ts, while a

b1 > b
�
1 can only change pro�ts by unpro�tably reversing the auction outcome. The proof

for �rm 2 is symmetric.

Lemma 1 shows that the low-click �rm bids more aggressively in the CT auction than

in the SP auction, while the high-click �rm bids more passively. This happens because the

auction mechanism handicaps the high-click �rm. It does so by making it susceptible to the

threat of negative variable pro�ts produced by an aggressive bid by the low-click �rm.

Substituting �rm j�s equilibrium bid into the gatekeeper�s auction mechanism njbj > nkbk
implies that vj > bk. In equilibrium neither �rm wins the auction at an unpro�table per-click

payment. Thus when �rm j wins the auction, it optimally sets a capacity Kj � nj:
When both �rms play optimal strategies, �rm 1 will win if and only if v1

v2
> n1

n2
. Thus, even

if �rm 1 has a higher per-click pro�t and a higher click-through rate, it may lose the keyword

auction due to its rival�s ability to bid aggressively. The high-value �rm is only assured of

winning the auction if its relative pro�t advantage is larger than its relative click-through

advantage.

We now compare gatekeeper revenues in the CT and SP auctions.

Proposition 8 A switch from a Second Price auction to a Click Through auction increases

gatekeeper revenues if and only if v1
v2
> n1

n2
> 1. Otherwise, the Click Through auction

produces lower revenues than a Second Price auction.

Proof. From section 2, �rm 1 will always win the SP auction and pay the gatekeeper n1v2.

Consider two mutually exclusive cases. If n1
n2
< v1

v2
, �rm 1 also wins the CT auction and pays

the gatekeeper n1b�2 =
n21
n2
v2. This is more than in the SP auction if and only if n1 > n2. In the
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second case, if n1
n2
> v1

v2
, �rm 2 wins the CT auction and pays the gatekeeper n2b�1 =

(n2)2

n1
v1.

This is less than gatekeeper revenues in the SP auction: n1
n2
> v1

v2
() n22

n1
v1 < n1v2.

The Click Through auction only produces higher revenues than the Second Price auction

if the high-value �rm�s relative click advantage is not too large compared to its relative

pro�t advantage. The possibility that the CT auction can lower search engine revenues is

counterintuitive and contrary to the conventional wisdom. It may suggest that Google�s

early adoption of the CT auction lowered advertisers�costs, encouraging them to buy more

keywords on Google�s platform than on rival platforms. It also may help explain Yahoo�s

late adoption of the CT auction, or Google�s switch to its unspeci�ed use of "quality scores"

in 2006.

5.2 Deterministic In�ationary Click Fraud in a Click Through

Auction

Our motivation to consider the CT auction is to determine whether it reverses our result

that gatekeeper revenues may increase with click fraud. In the SP auction, both bidders can

price out the e¤ects of in�ationary click fraud when its quantity is known, yielding no e¤ect

on search engine revenues. In the CT auction, however, in�ationary click fraud alters the

ratio of �rms�click-through rates. Click fraud may increase search engine revenues when it

reduces the high-value advertiser�s relative advantage in clicks.

We again assume that content network websites generate r fraudulent clicks, and both

bidders know r. The gatekeeper now awards the advertising slot to �rm j if and only if

(nj + r)bj > (nk + r)bk. The previous analysis indicates that �rm 1 will win if and only if
v1
v2
> n1+r

n2+r
. (To see this, relabel each �rm�s click level with n0j = nj + r.) The gatekeeper�s

revenues are (n1+r)2

n2+r
v2 if v1v2 >

n1+r
n2+r

, or (n2+r)
2

n1+r
v1 otherwise.

Proposition 9 When �rm j wins the CT auction, if deterministic in�ationary click fraud

does not reverse the auction result, gatekeeper revenues will increase if r > nj � 2nk.

Proof. When �rm j wins the CT auction it pays the gatekeeper (nj + r)b�k =
(nj+r)

2

nk+r
vk.

Taking the derivative shows that gatekeeper revenues are increasing in r if and only if r >

nj � 2nk.
Note, we have ignored the possibility that the click fraud level r responds to advertisers�

bids. What would happen if we allowed r to depend on the auction winner? Let us assume

that n1 > n2, r1 > r2, and v1
v2
> n1+r1

n2+r2
, so the high-pro�t �rm is also the high-tra¢ c �rm

and the auction winner. Gatekeeper revenues are then (n1+r1)2

n2+r2
v2, greater than gatekeeper

revenues for any common click fraud level r 2 (r2; r1).
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In�ationary click fraud has two e¤ects in the Click Through auction. First, it lowers the

threshold at which a high-value, high-click �rm wins the auction, expanding the parameter

space in which the high-value �rm wins. Second, it alters the low-value �rm�s ability to

threaten the high-value �rm. The smaller is the high-value �rm�s relative click advantage,

the more likely a given level of click fraud will be bene�cial to the search engine.

We have shown that our main result, that search engine revenues may increase with click

fraud, is not an artifact of our assumed auction mechanism. We proceed with the normative

implications of our analysis.

6 Managerial Implications

Our analysis has produced several results that could in�uence search engines�and advertisers�

business practices. We note that our implications are subject to the limitations discussed in

the �nal section.

Content network management We showed that third-party websites�incentives to en-

gage in click fraud are greater when a per-click compensation scheme is used in place of a

revenue-sharing compensation scheme, and when search ads are rotated across a large num-

ber of websites. Content networks should not only adopt these strategies, they should make

them public to increase transparency and build advertiser con�dence.

We found that content network partners�incentives to engage in click fraud are minimized

when advertisers may enter site-speci�c bids. Any site that generates a large amount of

in�ationary click fraud would then be penalized through a lower site-speci�c bid. We are

not aware of any content networks that currently allow advertisers to enter site-speci�c bids

in CPC auctions, but it seems within the realm of technical possibility.

Note, we have not modeled websites�choice to enter or remain in a content network. It

may be that decreasing websites�incentives to commit click fraud could also reduce search

engines�inventory of customer clicks by encouraging websites to enroll in competing content

networks or reducing their incentives to invest in content.

Advertiser Information We showed that click fraud does advertisers no harm when ad-

vertisers have full information in a second-price auction. This suggests that search engines

should take actions to increase the amount of information at advertisers�disposal. Speci�-

cally, they can issue keyword-speci�c reports on how and when they punish advertisers and

websites suspected of engaging in click fraud, issue keyword-speci�c reports on when and
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how much click fraud they detect, and give advertisers information about the identity and

frequency of the content network sites on which their ads will appear.

Tuzhilin�s "Fundamental Problem of Click Fraud Prevention" Tuzhilin (2006) de-

�ned the "fundamental problem of click fraud prevention." Search engines may try vigorously

to detect and prevent click fraud, but they cannot tell advertisers speci�cally how they do

so, as this would constitute explicit instructions on how to avoid click fraud detection. It

also may be that in identifying fraudulent clicks, search engines must make probabilistic

judgments balancing "false positives" against "false negatives." Presumably, search engines

would prefer to minimize false negatives, while advertisers would prefer to maximize false

positives.

To resolve this problem, we suggest that the search advertising industry form a neutral

third party to authenticate search engines�click fraud detection e¤orts. Such a party could

maintain the con�dentiality needed by search engines while allaying advertisers�concerns.

Similar third parties are used in other media industries. For example, Nielsen Media

Research�s audience measurements underpin transactions between television networks and

advertisers, the Audit Bureau of Circulations authenticates newspapers�and magazines�sub-

scription �gures, and comScore and other companies measure website audiences for display

(CPM) advertising transactions. In the absence of such a neutral third party, it may be pos-

sible to design some creative incentive-compatible contracts to provide veri�able evidence

of click quality. For example, if human searchers are each assigned individual-speci�c ac-

counts, advertisers could enter di¤erent bids for clicks made from individuals�accounts, and

"anonymous" clicks.

Our result that search engines are sometimes helped, and sometimes hurt, by click fraud

reinforces the need for such a neutral third party. Advertisers may perceive the risk that

search engines do not apply the same click fraud detection algorithms to all keyword auctions.

Our results suggest that a pro�t-maximizing search engine might exert maximal e¤orts to

prevent click fraud in competitive keyword auctions but do less to prevent click fraud in

relatively uncompetitive auctions such as those for branded keywords. Or it may be that

search engines try vigorously to prevent click fraud but are unable to credibly convey the

depths of their e¤orts to concerned advertisers.

We have only modeled one gatekeeper; would competition between gatekeepers resolve

the click fraud problem? We think not, for two reasons. First, the "fundamental problem

of click fraud detection" would still prevent search engines from sending credible signals to

advertisers about their click fraud detection e¤orts. Second, so long as advertisers realize

pro�ts per click, and consumers are distributed across search engines, the pro�t-maximizing
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advertiser is likely to buy keywords from all search engines (though its bid may vary across

search engines).

Will click fraud destroy the market? Our results suggest it seems unlikely that click

fraud will ever completely destroy the search advertising industry. First, we found that when

advertisers have full information in a SP auction, they can strategically adjust their bids and

advertising budgets to mitigate the e¤ects of click fraud. Second, so long as search engines

are able to maintain a positive probability of detecting some click fraud and punishing those

responsible, we will see limited click fraud in equilibrium. It seems the CPC business model

will likely remain viable in the long run.

7 Discussion

We have presented the �rst analysis of the e¤ects of in�ationary and competitive click fraud

on search advertising markets. We found that, when advertisers know the level of in�ationary

click fraud in a second price auction, they lower their bids to the point that click fraud has no

impact on total advertising expenditures. However, when the level of in�ationary click fraud

is uncertain, total advertising expenditures may rise or fall. They rise when the keyword

auction is relatively less competitive since advertising is so pro�table for the high bidder

that it is willing to pay to remain on top for any realization of click fraud. Advertising

expenditures may fall when the keyword auction is more competitive since the high bidder

faces higher advertising costs and therefore shades its capacity downward to protect against

paying for large levels of in�ationary click fraud. Even when in�ationary click fraud is known

to both bidders in a click-through auction, it can enhance the low-value �rm�s ability to bid

aggressively, thereby increasing gatekeeper revenues.

We also analyzed the e¤ects of competitive click fraud in the second price auction. We

found that when in�ationary click fraud is deterministic, a high-bidding �rm may e¤ectively

deter its rival from committing click fraud by choosing a large capacity. However, when

the number of clicks is stochastic, the high bidder may shade its bid downward and the low

bidder may then pro�tably engage in competitive click fraud. We showed that gatekeeper

revenues may be increasing or decreasing in the level of competitive click fraud.

As in all models, we have made several simplifying assumptions. Two assumptions in

particular suggest directions for future research. The �rst is the assumption that the gate-

keeper o¤ers only one advertising slot. Edelman, Ostrovsky, and Schwarz (2007) show that

when only one search ad is available, the auction mechanism used in practice is identical to

a standard Second Price auction. However, when more than one ad is o¤ered, the auction
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mechanism is what they term a "Generalized Second Price" ("GSP") auction. Unlike the

SP auction, the GSP does not have an equilibrium in dominant strategies, and �rms do not

engage in truth-telling. This technical concern limits our ability to make predictions about

�rms�equilibrium click fraud strategies in a multiple-slot auction. We suspect that adding

more slots and advertisers to the model would increase click fraud, since more advertisers

would stand to gain from knocking o¤ the highest bidder.

The second assumption that could be relaxed in future work is the assumption of a single

gatekeeper. Expanding the analysis to multiple gatekeepers could introduce elements of two-

sided market competition. Search engines may choose their policies based on the possibility

of advertiser, searcher, or content-network website defection to competitors. In this paper

we have not considered that advertiser adoption of a search engine�s platforms could be a

function of its business model.
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Appendix 1

Here we prove that, if K1 <1, it is unique. For K1 > n, Firm 1�s second-order condition is

@2�1W
@K2

=

�
��1

K1

+ b2

�
f(K1 � n) (26)

We can show that if the �rst-order condition is satis�ed, the second-order condition is strictly

negative, implying �1W is strictly concave. @�1W
@K

= 0 implies

�1

b2
=
[1� F (K1 � n)]R1

K1�n
f(r)dr
n+r

(27)
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Substituting this into the second-order condition gives

@2�1W
@K2

=

"
�[1� F (K1 � n)]R1

K1�n
K1f(r)dr
n+r

+ 1

#
b2f(K1 � n) (28)

when the �rst-order condition holds with equality. Under the bounds of the integral, we

have K1

n+r
� 1 for every term r � K1 � n. Thus�Z 1

K1�n

K1

n+ r
f(r)dr � [1� F (K1 � n)]

�
<

�Z 1

K1�n
f(r)dr � [1� F (K1 � n)]

�
= 0 (29)

Therefore the second-order condition is strictly satis�ed whenever the �rst-order condition

holds with equality.

Appendix 2

Here we prove that, under stochastic in�ationary click fraud and no competitive click fraud,

when K1 =1, expected gatekeeper revenues may be larger than in the baseline model. We
have

�1W =

Z 1

0

[n�1W � b2 (n+ r)] f (r) dr (30)

and

�1L =

Z K2�n

0

(n�1L)f (r) dr +

Z 1

K1�n
(n�1W ��1

K1

n+ r
)f (r) dr (31)

when n � K2 < 1. Gatekeeper revenue when �rm 1 wins is
R1
0
b2 (n+ r) f (r) dr, so we

need to �nd b2.

Firm 2 chooses b2 to set �2W = �2L. From above, we have

�2W =

Z K2�n

0

[n�2W � b2 (n+ r)] f (r) dr +
Z 1

K2�n
(�2

K2

n+ r
+ n�2L � b2K2)f (r) dr (32)

and �2L = n�2L. b2 is chosen to satisfy �2W = �2L, orZ K2�n

0

b2 (n+ r) f (r) dr +

Z 1

K2�n
b2K2f (r) dr

= �2(

Z K2�n

0

f (r) dr +

Z 1

K2�n

K2

n+ r
f (r) dr): (33)
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From Firm 2�s FOC in K2, we haveZ 1

K2�n

�
�2

n+ r
� b1

�
f (r) dr = 0, and b1 > b2 (34)

so Z 1

K2�n

�
�2

n+ r
� b2

�
f (r) dr > 0: (35)

Therefore, we know thatZ K2�n

0

[b2 (n+ r)] f (r) dr

= �2

Z K2�n

0

f (r) dr +K2

Z 1

K2�n
(
�2

n+ r
� b2)f (r) dr

> �2

Z K2�n

0

f (r) dr: (36)

We can now look at expected gatekeeper revenues,

Z 1

0

b2 (n+ r) f (r) dr

>

Z 1

0

�2

R K2�n
0

f (r) drR K2�n
0

(n+ r) f (r) dr
(n+ r) f (r) dr

= �2
E(n+ r)

E(n+ rjn+ r < K2)

> �2: (37)

�2 is gatekeeper revenues in the baseline model, so we have shown that gatekeeper revenues

are strictly larger when the two �rms are su¢ ciently di¤erent that the high bidder sets an

in�nite capacity in spite of uncertain in�ationary click fraud.

Appendix 3

Here we solve for the set of post-auction equilibria in pure strategies in the general model

under symmetric click-through rates. Advertisers� beliefs about the distribution of in�a-

tionary click fraud are f(r), and the low bidder may engage in competitive click fraud at

cost c(z). We start by drawing the high bidder�s reaction function in K, the low bidder�s

reaction function in z, and �nally analyze where they may cross. We assume, without loss

of generality, that the �rms are numbered such that �rm 1 wins the advertising auction.
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For K1 < n+ z2, �1W changes linearly with K1 at rate
R1
0

�1f(r)dr
n+z2+r

� b2. For K1 > n+ z2,

the rate of change is strictly greater:

@�1W
@K1

=
1R

K1�n�z2

�1f (r) dr

n+ z2 + r
� b2[1� F (K1 � n� z2)] (38)

Note that Z 1

0

�1f (r) dr

n+ z2 + r

<

=

>

b2 then

8><>:
K1 = 0

K1 2 [0; n+ z2]
K1 > n+ z2

(39)

In the �rst case, �rm 1 has to pay more per click than it earns while it is on top, so it never

sets a positive capacity. In the second case, �rm 1 earns zero net pro�t per click while on

top so it may set any capacity up to n+ z2. In the third case, �rm 1 pro�ts from remaining

on top and sets K1 > n + z2. We focus on this �nal case in what follows, as the �rst two

cases are not subgame perfect. If �rm 2 is the low bidder, it must not be the case that b2
exceeds the high bidder�s equilibrium pro�t per click.

As in section 3.3, �rm 1�s choice of K1 > n + z2 may or may not yield a �nite K1. If

the �rm�s �rst-order condition is satis�ed, its second-order condition implies K1 is a unique

maximum; if not, K1 = 1: The proof is parallel to that presented in Appendix 1, so it is
omitted here.

We have characterized �rm 1�s response to z2 and shown that K1 is unique when K1 >

n+ z2. The next question is whether K1 is increasing or decreasing in z2. We can apply the

implicit function theorem to @�1W
@K1

= 0 to �nd that

@K�

@z
= 1�

K1�1

R1
K1�n�z2(n+ z2 + r)

�2f(r)dr

(�1 �K1b) f(K1 � n� z2)
, when K1 > n+ z2 (40)

The numerator is positive, and the denominator is also positive (this is implied by @2�1W
@K2 < 0).

For z2 such that

K1�1

1R
K1�n�z2

(n+ z2 + r)
�2f(r)dr > (�1 �K1b) f(K1 � n� z2) (41)

then K1 slopes downward in z2; otherwise it is increasing. Figure 4 shows �rm 1�s reaction

function in this case.
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Figure 4: Firm 1�s Reaction Function under Stochastic In�ationary and Competitive Click

Fraud

The most striking thing about �gure 4 is the possibility that for z2 large enough, �rm 1�s

optimal capacity is zero. Next we analyze �rm 2�s choice of z2:

We can show that the shape of �rm 2�s pro�t function implies a unique maximum z�.

For K1 < n+ z2;
@2�2L
@z2

= �2n(�2)
1R
0

f(r)dr

(n+ z2 + r)3
� c00(z2) (42)

which is strictly negative for any z. For K1 � n+ z2,

@2�2L
@z2

= n(�2)

"
f(K1 � n� z2)

K2
� 2

1R
K1�n�z2

f(r)dr

(n+ z2 + r)3

#
� c00(z2) (43)

Which may be positive or negative, depending on f(). For K1 < n + z2; �2L is strictly

concave, and for K1 � n + z2, �2 may be concave or convex (depending on K1 and f).

Figure 5 depicts the three possible shapes of �rm 2�s pro�t function.
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Figure 5: Firm 2�s Pro�t Function under Stochastic In�ationary and Competitive Click

Fraud (three possible shapes)

There are three relevant cases for �rm 2�s choice of z2. First, it might be that the costs

of committing click fraud are su¢ ciently high that z�2 = 0. Second, �2L could be convex

for K1 > z2 + n or globally concave with a maximum in the range K1 < z2 + n; then the

optimal choice is the z2 that satis�es �2

R1
0
(n + z2 + r)

�2f(r)dr = c0(z2). Third, �2L may

be globally concave with a maximum in the range K1 � z2 + n. In this �nal case, we can

apply the implicit function theorem to @�2L
@z

= 0 to �nd that @K
@z� < 0. Figure 6 shows �rm

2�s reaction function z2(K1).
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Figure 6: Firm 2�s Reaction Function under Stochastic In�ationary and Competitive Click

Fraud

There are �ve qualitatively di¤erent equilibria in pure strategies in z and K, given b,

f(r), and c(z). First, the click fraud cost may be su¢ ciently high that z2 = 0. In this case

K1 = K 0 in �gure 4. Second, we might have �2L such that its global max is in the range

K1 � z2+n and a crossing between K1(z2) and z2(K1) above K1 = z2+n. We will then �nd

a unique (z2; K1) combination where z2 2 (0; z00) and K1 > n+ z
00. Third, we could have no

crossing above K1 > n + z2 and z00 > z0. This would result in z2 = z00 and K1 = 0. Fourth,

we could have no crossing above K1 > n + z2 and z00 = z0. Then we would get z2 = z00 and

K1 = K1(z
00). Finally, we could have no crossing above K1 > n+ z2 and z00 < z0. This would

yield K1 = 0.

35


