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Abstract

This paper studies revenue-maximizing allocation mechanisms for multiple goods where the
buyer�s utility can depend non-linearly in his type. We point out that despite strictly increasing
virtual utilities, the allocation rule obtained via pointwise optimization may fail to be increasing
and thus it may violate incentive compatibility. More importantly, the revenue maximizing
allocation may involve randomizations between di¤erent allocations. Keywords: mechanism
design, optimal auctions, bunching. JEL Classi�cation Codes: C72, D44, D82.

The literature on revenue-maximizing mechanisms is not only central to auction theory, but
to economic theory in general. In the seminal contributions of Myerson (1981) and Riley and
Samuelson (1981) two key features appear: �rst, that revenue-maximizing mechanisms are deter-
ministic, in the sense that either a good is obtained with probability one by a buyer, or it is kept by
the seller, and, second, that the problem can be solved through pointwise maximization if virtual
utilities (utility minus information rents) are strictly monotonic in a buyer�s type.

Our �ndings contrast both fundamental features of those papers. We present an example
with two goods and where the buyer�s utility depends non-linearly on his type. We establish
that the allocation rule obtained via pointwise optimization may not be increasing and thus it
may violate incentive compatibility, even if virtual utilities are strictly monotonic in type. When
the monotonicity constraint binds despite monotone virtual utilities, previous methods of solving
for a revenue-maximizing mechanism fail because they rely on making virtual utilities monotonic
(�ironing�). We propose a solution method and with its help show that an optimal mechanism
involves randomizations over di¤erent goods. In some sense, a certain range of consumer types
are o¤ered a random �bundle�of goods. Our method has the advantage that it does not require
mechanisms to be di¤erentiable, because it does not rely on standard variational methods.1 It can
be also used when the designer is interested in e¢ ciency maximizing, instead of revenue maximizing
mechanisms. All the analysis goes through by replacing virtual utilities with actual utilities.

�We are grateful to Roger Myerson for a thought-provoking discussion on the phenomenon presented in this paper.
y Centro de Economía Aplicada, Universidad de Chile, República 701, Santiago, Chile, nicolasf@dii.uchile.cl.
zLeonard Stern School of Business, Kaufman Management Center, 44 West 4th Street, KMC 7-64, New York, NY

10012, USA, vskreta@stern.nyu.edu.
1See for instance Lollivier and Rochet (1983).
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The fact that randomizations are a feature of revenue-maximizing mechanisms can be viewed
as quite surprising given that the buyer is risk neutral and his type is single dimensional. In the
continuum varieties model of Maskin and Riley (1989) these authors devote Section 5 to illustrate
why randomizations are not a feature of revenue-maximizing auctions. Also Thanassoulis (2004)
stresses that the randomizations in his environment are due to the fact that types are multi-
dimensional. Why then do they appear in our environment? The reason is that we are considering
a �nite number of di¤erent products, and we allow for utilities to be non-linear in types. The
feature of randomization is absent in the extreme cases of one, and a continuum of identical goods,
but it can appear in intermediate cases where there is some discreteness in the number of goods
and goods are heterogeneous.

1. Example

Suppose that there is a single buyer whose type, v; is distributed uniformly on the interval [0; 1] and
that there are two possible allocations, z1 and z2: The buyer�s payo¤s from these two allocations
are given by

uz1(v) = 0:5ev + 0:524 and uz2(v) = e0:5v;

which are both convex and increasing in v. We let Z = fz1; z2g:
Our objective is to �nd the allocation mechanism that maximizes the seller�s revenue. As

usual, we can appeal to the revelation principle and search among the direct revelation mechanisms
(DRM) that satisfy truth-telling and voluntary participation. A DRM here consists of an assign-
ment rule and a payment rule (p; x). For all v p(v) = (pz1(v); pz2(v)) speci�es the probability with
which each allocation prevails and x(v) is the expected payment incurred by the buyer.

Given a DRM (p; x) the buyer�s maximized payo¤ is given by

U(v) � max
v0

X
z2Z

pz(v0)uz(v)� x(v0);

and it is convex, since it is a maximum of convex functions.
A DRM (p; x) is feasible if it satis�es (i) resource constraints, (ii) incentive compatibility

constraints and (iii) voluntary participation.2

Resource constraints require that, for all v; we have that 0 � pz(v) � 1 and �z2Zpz(v) = 1.
Necessary and su¢ cient conditions for incentive compatibility are that (a) the derivative of U (more
precisely a selection from its subgradient, which is single valued almost surely) evaluated at the

true type, that is P (v) �
P
z2Z

pz(v)du
z(v)
dv ; is weakly increasing, and (b) U(v) = U(0) +

vR
0

P (s)ds for

all v 2 V: Participation constraints require that U(v) � 0:
2More details about the general results and the solution approach used in this example can be found in Figueroa

and Skreta (2007).
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Below we use the following notation P zi(v) � duzi (v)
dv for i = 1; 2. Then,

P (v) = P zi(v) when pzi(v) = 1: (1)

We denote by Jz(v) the virtual utility of allocation z.3 For this example, virtual utilities are
given by

Jz1(v) = 0:5ve
v + 0:524 and Jz2(v) � e0:5v(0:5 + 0:5v)

and, as can be seen from Figure 1, they are strictly increasing in v.
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Figure 1

The graphs of Jz1 and Jz2 cross at two points v
� = 0:1054 and v̂ = 0:6346:

By using standard arguments, we can write the seller�s problem as:

max
(p;x)

1Z
0

[pz1(v)Jz1(v) + p
z2(v)Jz2(v)] dv � U(0) (2)

subject to : P (v) increasing and

0 � pzi(v) � 1; i = 0; 1; 2 and
2X
i=0

pzi(v) = 1

However, in this example despite the fact that the virtual utilities of both allocations z1 and
z2 are strictly increasing in v; pointwise optimization of (2) does not lead to a feasible mechanism.

3 In general, the virtual utility of allocation z is de�ned as

Jz(v) � uz(v)�
[1� F (v)]
f(v)

duz(v)

dv
:
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As we can see from Figure 1, pointwise optimization dictates pz1(v) = 1 for v 2 [0; 0:1054] and
pz2(v) = 1 for v in the interval [0:1054; 0:6346]: However it is not possible to switch from allocation
z1 to allocation z2; because this would imply that P falls at 0:1054 (recall (1)); since as can be seen
in Figure 2, P z1(v) > P z2(v) for all v 2 (0; 1]:
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How should the seller proceed? At a solution the seller should mix between z1 and z2 in a way
that minimizes the �cost�of having to choose with positive probability an allocation that does not
have the highest virtual utility, subject to respecting the requirement that P is increasing in v.

The region of �compromise�is an interval of the form [x; x]; where x and x satisfy 0 � x � v� �
x � v̂; where v̂ is the �rst point to the right of v� where Jz1 and Jz2 cross again.4 The loss of assigning
positive weight to allocation z2 for v 2 [x; v�) is given by

R v�
x pz2(v) [Jz1(v)� Jz2(v)] dv and the loss

of assigning positive weight to allocation z1 for v 2 [x; v�) is given by
R �x
v� p

z1(v) [Jz2(v)� Jz1(v)] dv:
An optimal mechanism must randomize between z1 and z2 on [x; x]; in a way such that the loss is
minimized. Moreover x and �x must be chosen optimally.

The problem to be solved is called Program A and it is given by:5

min
pz1 ;x;x

Z v�

x
(1� pz1(v)) [Jz1(v)� Jz2(v)] dv +

Z �x

v�
pz1(v) [Jz2(v)� Jz1(v)] dv: (3)

subject to:
(i) P (v) � pz1(v)du

z1 (v)
dv + (1� pz1(v))du

z2 (v)
dv increasing in v for v 2 [x; x]

(ii) if x > 0; then pz1(x) = 1 (and P (x) = P z1(x)) and if �x < v̂ then pz2(�x) = 1 (and
P (�x) = P z2(�x))

(iii) 0 � x � v� � x � v̂
4Such a point exists, since Jzi(1) = uzi(1), and we have that duz1 (v)

dv
> duz2 (v)

dv
, so Jz1(1) > Jz2(1) unless

uz2(0) > uz1(0). This last situation is not possible, since then we would not have had the �rst crossing.
5Since for each v it must be that pz1(v) + pz2(v) = 1; we will express pz2(v) as 1� pz1(v):
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The constraints (i) and (ii) guarantee that P is increasing and thus the solution is incentive
compatible. Constraints in (ii) arise because outside the region of �compromise� [x; x] the best for
the seller is to assign probability one to z1 for v 2 [0; x] and probability one to allocation z2 for
v 2 [�x; v̂]:

Now we establish that Program A is equivalent to a much simpler problem where the only choice
variable is x: This is done with the help of a couple of results.

Our �rst result states that an optimal assignment rule randomizes between allocation z1 and
allocation z2 in such a way, that P remains constant over [x; x]: Its proof is straightforward and we
omit it. The interested reader is referred to the working paper version of this work.

Lemma 1 An optimal assignment rule randomizes between allocations z1 and z2 over an interval
[x; x]; with 0 � x � x � v̂; in a way such that

P (v) � pz1(x)du
z1(x)

dv
+ (1� pz1(x))du

z2(x)

dv
� P (x): (4)

The intuition for this result is simple. Optimality dictates that P is as small as possible to the
right of v�; where z2 is preferred by the seller, and P is as large as possible to the left of v�; where
the seller prefers z1: Since P must be increasing these two forces imply that for the interval where
the seller is mixing P must be �at. Put in another way, since the monotonicity constraint is binding,
optimality dictates that it is satis�ed with �equality�, so P is �at and not strictly increasing.

Next, observe that �x can be pinned down by x and pz1 : It is either the smallest v where
pz1(v) = 0; or if such a v does not exist, it is equal to 1: That is

x = minfv̂;minfv 2 [x; v̂]jpz1(v) = 0gg:6 (5)

Our next result shows that at an optimum if x > 0, then the seller assigns probability one to z1 at
x; whereas if x = 0; then she assigns probability one to z2.

Lemma 2 If at an optimum x > 0; then pz1(x) = 1, whereas, if at an optimum x = 0, then
pz1(x) = 0.

Proof. See Appendix.
If x > 0, Lemma 2 implies that pz1(x) = 1 and with the help of (4) we get

pz1(v)
duz1(v)

dv
+ (1� pz1(v))du

z2(v)

dv
=
duz1(x)

dv

which implies that at a solution, when x > 0 then

pz1(v) =
duz1 (x)
dv � duz2 (v)

dv
duz1 (v)
dv � duz2 (v)

dv

: (6)

6Recall that if �x < v̂ then pz2(�x) = 1.
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Now, if x = 0, Lemma 2 tells us that pz1(0) = 0; which is equivalent to pz2(0) = 1; which
immediately implies that 0 = x = �x; and therefore

pz2(v) = 1 for all v 2 [0; v̂]: (7)

From (6) and (7) one can see that Program A can be stated as a problem where the control variable
is simply x. We call this problem Program B:

min
x2[0;v�]

Z v�

x
(1� pz1(v)) [Jz1(v)� Jz2(v)] dv +

Z �x(x)

v�
pz1(v) [Jz2(v)� Jz1(v)] dv; (8)

where �x(x) satis�es (5) and pz1(x) satis�es either (6) or (7).
If a solution of Program B is interior, that is, if x > 0; then, an optimal allocation rule is given

by

p�(v) = (pz1(v); pz2(v)) = (1; 0) for v 2 [0; x) (9)

p�(v) =

 
duz1 (x)
dv � duz2 (v)

dv
duz1 (v)
dv � duz2 (v)

dv

; 1�
duz1 (x)
dv � duz2 (v)

dv
duz1 (v)
dv � duz2 (v)

dv

!
for [x; x]

p�(v) = (pz1(v); pz2(v)) = (0; 1) for v 2 (x; v̂];

otherwise, that is, if x = 0; then p� is p�(v) = (0; 1) for v 2 [0; v̂]: The payment rule can be obtained
from the allocation rule exactly as in Myerson (1981).

For our example, (8) becomes:Z 0:1054

x

e
x � ev

e0:5v � ev
�
0:5vev � e0:5v (0:5v + 0:5) + 0:524

�
dv

+

Z 2x

0:1054

e0:5v � ex

e0:5v � ev
�
e0:5v (0:5v + 0:5)� 0:5vev � 0:524

�
dv;
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which is depicted in Figure 3.
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It has a unique minimizer7 at
x = 0:074; (10)

which with the help of (5) and (6) implies

pz1(v) =
e0:5v � e0:074
e0:5v � ev and �x = 0:148: (11)

Substituting (10) and (11) in (9) we get that an optimal assignment rule is

p�(v) = (1; 0) for v 2 [0; 0:074) (12)

p�(v) = (
e0:5v � e0:074
e0:5v � ev ; 1� e

0:5v � e0:074
e0:5v � ev ) for v 2 [0:074; 0:148)

p�(v) = (0; 1) for v 2 [0:148; 0:6346]
p�(v) = (1; 0) for v 2 (0:6346; 1];

which is incentive compatible by construction. Figure 4 depicts the probability of z1 that p� assigns
around the region of randomization.

7Calculations and graphs for this example have been done with Matlab. Code available upon request.
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In this example the optimal assignment rule involves randomizations. This is in contrast to the
classical case, where (excluding cases where the seller is indi¤erent) an optimal allocation rule is
deterministic.

In general, when there are more allocations, and/or when virtual utilities cross many times,
and/or when P z0s are not always ranked in the same way, the details of the solution depend on the
particular speci�cs of the problem at hand. However, the main idea of how to proceed is the one
we illustrated. Whenever there is a point where IC is violated by the assignment rule obtained
via pointwise optimization, a solution involves an interval of randomization between more than one
allocations. Of course, it is possible that in some cases this interval is degenerate.

2. Appendix

Proof of Lemma 2
Recall from (4) that all v 2 [x; x] we have that

pz1(v)
duz1(v)

dv
+ (1� pz1(v))du

z2(v)

dv
=

�
pz1(v)

duz1(v)

dv
+ (1� pz1(v))du

z2(v)

dv

�����
x

: (13)

Now from (13) we can obtain that

pz1(v) =
pz1(x) du

z1 (v)
dv

���
x
+ (1� pz1(x)) du

z2 (v)
dv

���
x
� duz2 (v)

dv

duz1 (v)
dv � duz2 (v)

dv

so the objective function can be written as
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L(x; pz1(x)) =

v�Z
x

0@1�
h
pz1(x)du

z1 (x)
dv + (1� pz1(x))du

z2 (x)
dv � duz2 (v)

dv

i
duz1 (v)
dv � duz2 (v)

dv

1A [Jz1(v)� Jz2(v)] dv
+

x(x;pz1 (x))Z
v�

pz1(x)du
z1 (x)
dv + (1� pz1(x))du

z2 (x)
dv � duz2 (v)

dv
duz1 (v)
dv � duz2 (v)

dv

[Jz2(v)� Jz1(v)] dv:

From constraints (ii) of the problem stated in (3) we have that if x > 0 then pz1(x) = 1: This
observation implies that depending on whether x is interior or not we have that

L(x; pz1(x)) =

(
L(x; 1) if x > 0
L(0; pz1(0)) if x = 0

:

To �nd a minimum of L, we look separately in each region. First, we look at the interior region
where x > 0 which implies that pz1(x) must be 1. Di¤erentiating L with respect to x we get

dL(x)

dx
=

264 duz2 (v)
dv

���
x
� duz2

dv

duz1 (v)
dv � duz2 (v)

dv

375
�������
x(x)

[Jz2(x(x))� Jz1(x(x))]
dx(x)

dx

+

x(x)Z
x

d2uz1 (v)
dv2

���
x

duz1 (v)
dv � duz2 (v)

dv

[Jz2(v)� Jz1(v)] dv:

The �rst term is zero, because by the de�nition of �x it follows that if x(x) < v̂, then

pz1(x(x)) �

264 duz2 (v)
dv

���
x
� duz2

dv

duz1 (v)
dv � duz2 (v)

dv

375
�������
x(x)

= 0;

whereas if x(x) = v̂; then dx(x)
dx = 0. Then, it is easy to see that the sign of dL(x)dx depends only on the

sign of
x(x)R
x

Jz2 (v)�Jz1 (v)
duz1 (v)

dv
� duz2 (v)

dv

dv, since d2uz1 (v)
dv2

���
x
is positive by convexity. Moreover,

x(x)R
x

Jz2 (v)�Jz1 (v)
duz1 (v)

dv
� duz2 (v)

dv

dv

is (weakly) increasing in x: the integrand is negative when v < v� and positive otherwise, and x(x)
is (weakly) increasing in x.

This observation, plus the fact that
h
duz1 (v)
dv � duz2 (v)

dv

i���
x=v�

> 0 and
x(0)R
v�

Jz2 (v)�Jz1 (v)
duz1 (v)

dv
� duz2 (v)

dv

dv > 0;

imply that dL(x)dx is either always positive, or that it crosses 0 at some point. Then,
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x =

8>><>>:
0 if

x(0)R
0

Jz2 (v)�Jz1 (v)
duz1 (v)

dv
� duz2 (v)

dv

dv � 0h
dL(x)
dx

i�1
(0) if not

; (14)

which gives us an optimal x when we are constrained to an optimal starting mixture of pz1(x) = 1;
which must be the case when x is interior.

However, when x = 0 then it is possible to choose pz1(0) 6= 1. Fixing x = 0; the objective
function becomes a function only of pz1(0): Di¤erentiating it and doing similar manipulations as
before, we get

dL(pz1(0))

dpz1(0)
=

�
duz1(v)

dv
� du

z2(v)

dv

�����
x

x(x)Z
x

Jz2(v)� Jz1(v)
duz1 (v)
dv � duz2 (v)

dv

dv;

which is independent of pz1(x); hence we obtain that a minimizer is:

pz1(0) =

8><>: 0 if
x(0)R
0

Jz2 (v)�Jz1 (v)
duz1 (v)

dv
� duz2 (v)

dv

dv � 0

1 if not
: (15)

Therefore, by (14) and (15) we see that everything depends on the sign of
x(0)R
0

Jz2 (v)�Jz1 (v)
duz1 (v)

dv
� duz2 (v)

dv

dv. If

negative, then the optimal x is interior, and pz1(x) = 1; for x > 0: If positive, then x = 0 dominates
any other starting point, and pz1(0) = 0; for x = 0:
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