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Abstract 
 
We detail the basic theory for models of discrete choice. This encompasses methods of 
estimation and analysis of models with discrete dependent variables.  Entry level theory is 
presented for the practitioner.  We then describe a few of the recent, frontier developments in 
theory and practice. 
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0.1  Introduction 
 
 This review will survey models for outcomes that arise through measurement of discrete 
consumer choices, such as whether to vote for a particular candidate, whether to purchase a car, 
how to get to work, whether to purchase insurance, where to shop or whether to rent or buy a 
home or a car.  Traditional economic theory for consumer choice – focused on utility 
maximization over bundles of continuous commodities – is relatively quiet on the subject of 
discrete choice among a set of specific alternatives.  Econometric theory and applications, in 
contrast, contain a vast array of analyses of discrete outcomes; discrete choice modeling has been 
one of the most fruitful areas of study in econometrics for several decades.  There is a useful 
commonality in much of this.  One can build an overview of models for discrete outcomes on a 
platform of individual maximizing behavior.  Given that the literature is as vast as it is, and we 
have but a small number of pages within which to package it, this seems like a useful approach.  
In what follows, we will survey some of the techniques used to analyze individual random utility 
maximizing behavior.   
 We emphasize that we have chosen to focus on models for discrete choice, rather than 
models for discrete dependent variables.  This provides us with several opportunities to focus and 
narrow this review.  First, it allows us to limit the scope of the survey to a reasonably manageable 
few types of models.  As noted, the literature on this topic is vast.  We will use this framework to 
select a few classes of models that are employed by analysts of individual choice. It also gives us 
license to make a few major omissions that might otherwise fall under the umbrella of discrete 
outcomes.  One conspicuous case will be models for counts.  Event counts are obviously discrete 
– models for them are used to study, e.g., traffic incidents, incidence of disease, health care  
system utilization, credit and financial markets, and an array of other settings.  Models for counts 
can occupy an entire library of its own in this area – two excellent references are Cameron and 
Trivedi (1998) and Winkelmann (2003).  But, this area will extend far beyond our reach. On the 
other hand, applications in health economics (system utilization) and industrial organization 
(patents and innovations), do lead to some settings in which individual or firm choice produces a 
count response.  We will briefly consider models for counts from this standpoint.  The reader will 
no doubt note other areas of discrete response analysis that are certainly important.  Space 
limitations force us to consider a fairly small number of cases. 
 The study proceeds as follows:  Section 2 will detail the estimation and inference tools 
used throughout the remainder of the survey, including the basic results in maximum likelihood 
estimation.  Section 3 will analyze in detail the fundamental pillar of analysis of discrete choice, 
the model for binary choice – that is the choice between two alternatives.  Most of the 
applications that follow are obtained by extending or building on the basic binary choice model.  
Thus, we will examine the binary choice model in greater detail than the others, as it also 
provides a convenient setting in which to develop the estimation and inference concepts that carry 
over to the other models as well.  Section 4 considers the immediate extension of the binary 
choice, bivariate and multivariate binary choice models.  Section 5 returns to the single choice 
setting, and examines ordered choice models.  Models for count data are examined in Section 6.   
Each of the model classes mentioned has been analyzed using cross sections and panel data.  The 
application of familiar panel data methods to discrete choices model is described in each section.  
Rather than consider the panel data version of each model separately, we have gathered several 
common results and features in a single section.  Finally, Section 7 turns to an area of literature in 
its own right, multinomial choice modeling.  As before, but even more so here, we face the 
problem of surveying a huge literature in a few pages.  Section 8 will describe the most 
fundamental elements of multinomial choice analysis, and point the reader toward some more 
detailed sources in the literature.  Some conclusions are drawn in Section 8. 
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0.2  Specification, estimation and inference for discrete choice models 
 
The classical theory of consumer behavior provides the departure point for economic models of 
discrete individual choice.1  A representative consumer with preferences represented by a utility 
function defined over the consumption of a vector of goods, U(d), is assumed to maximize this 
utility subject to a budget constraint, x′d < I, where x is a vector of prices and I is income (or total 
expenditure).  Assuming the necessary continuity and curvature conditions, a complete set of 
demand equations, d* = d(x,I) results.2   To extend the model of individual choice to observed 
market data, the demand system is assumed to hold at the aggregate level, and random elements 
(disturbances) are introduced to account for measurement error or optimization errors. 
 Since the 1960s, the availability of survey data on individual behavior has obviated the 
heroic assumption underlying the aggregate utility function or the (perhaps slightly less heroic) 
assumptions underlying the aggregate demand system.  That progression has evolved to the 
contemporary literature with the appearance of large, detailed, high quality panel surveys such as 
the German Socio-Economic Panel Survey [GSOEP, see Hujer and Schneider (1989)] that we 
will use in this study and the British Household Panel Survey (BHPS, 
www.iser.essex.ac.uk/ulsc/bhps) to name only two of many.  The analysis of individual data to 
which the original theory applies has called for (at least) two more detailed developments of that 
theory.   
 First, the classical theory has relatively little to say about the discrete choices that 
consumers make. Individual data detail career choices, voting preferences, travel mode choices, 
discretized measures of the strength of preferences, participation decisions of all sorts such as 
labor supply behavior, whether to make a large purchase, whether to migrate, and on and on.  The 
classical, calculus based theory of decisions made at the margins of consumption will comment 
on, for example, how a large a refrigerator a consumer will buy, but not whether they will buy a 
refrigerator instead of a car (this year), or what brand of refrigerator or car they will choose.   
 Second, the introduction of random elements in models of choice behavior as 
disturbances, is much less comfortable at the individual level than in market demands.  
Researchers have considered more carefully the appropriate sources and form of random variation 
in individual models of discrete choice. 
 The random utility model of discrete choice provides the most general platform for the 
analysis of discrete choice.  The extension of the classical theory of utility maximization to the 
choice among multiple discrete alternatives provides a straightforward framework for analyzing 
discrete choice in probabilistic, statistical, ultimately econometric terms. 
 
0.2.1  Discrete choice models and discrete dependent variables 
 
Denote by ‘i’ a consumer who is making a choice among a set of Jit choices in choice situation t.  
To put this in a context which will help to secure the notation, envision a stated choice 
experiment in which individual i is offered the choice of several, Ji1, brands of automobiles with 
differing prices and characteristics and asked which they most prefer.  In a second round of the 
experiment, the interviewer changes some of the features of some of the cars, and repeats the 
question.   Denote by Ait,1,...,Ait,Jit, Jit > 2, the set of alternatives available to the individual in 
choice situation t.  It will be convenient to adopt the panel data notation, in which ‘t’ denotes 
‘time.’  The generality of the notation allows the choice set to vary from one individual to 
another, and across choice situations for the same individual.  In most of what follows, we will 
not need this level of generality, but the models to be developed will accommodate it. 

                                                 
1 For a lengthy and detailed development of these ideas, see Daniel McFadden’s Nobel Prize Lecture, 
McFadden (2001). 
2 See, as well, Samuelson (1947) and Goldberger (1987). 
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 We will formulate a model that describes the consumer choice in probabilistic terms.  (A 
bit more of the underlying behavioral theory is presented in Section 0.7.)  The ‘model’ will 
consist of a probability distribution defined over the set of choices,  
 
 Pit,j  =  Prob(consumer i makes choice j at time t | choice set), j = 1,...,Jit.  
 
The manner in which the probabilities arise is an essential feature of the model.  As noted earlier, 
choices are dependent on the environment in which they are made, which we characterized in 
terms of income, I, and prices, x.  Individual heterogeneity may be measured by such indicators 
as family size, gender, location, and so on, which we collect in a set of variables, z, and 
unmeasured and therefore random from the point of view of the analyst, which we denote as u.  
Common elements of the choice mechanism that constitute the interesting quantities that the 
analyst seeks to draw statistical inference about will be parameters, β, γ, and so on.3  For purposes 
of translating the underlying choice process into an estimable econometric model, we define the 
choice indicators, 
 
 dit,j  =  1 if individual i makes choice j at time t, and 0 otherwise.  
 
With all this in place, our discrete probability distribution will be defined by 
 
 Pit,j  =  Prob(dit,j = 1 | Xit, zit, uit, β, γ, ...), j = 1,...,Jit, 
 
where Xit is the set of attributes of all Jit choices in the choice set for individual i at time t.  Note 
that being characteristics of the individual, and not the choices, zit and uit do not vary across the 
choices.  Whether the preference parameters, β, γ, ..., should be allowed to vary (i.e., whether 
they do vary) across individuals – that is, whether the parameters of the utility functions are 
heterogeneous – is a question that we will pursue at several points below.  We will assume (not 
completely innocently) that in every choice situation, the individual actually makes a choice.4  It 
follows that 
 
   and  

1
1

=
=∑ itJ

it , jj
d

1
1

=
=∑ itJ

it , jj
P .       (0.4) 

 
The ‘model’ consists of the interesting or useful features of Pit,j.  The preceding assumes that at 
time t, the consumer makes a single decision.  It will be necessary in Section 0.4 to extend the 
model to cases of two or more decisions.  This is straightforward, but requires a small change in 
notation and interpretation.  We will defer that extension until we encounter it in the discussion in 
Section 0.4. 
 We close this section with some definitions of terms that will be used throughout the text.  
The individual characteristics such as gender or education are denoted zit.  Attributes of the 
choices, such as prices, are denoted xit,j.  We denote by binomial or multinomial choice, the single 
choice made between either two or more than two choices.  The term binary choice is often used 
interchangeably with the former.  A bivariate choice or multivariate choice is the set of 2 or more 
choices made in a single choice situation.  In one of our applications, an individual chooses not to 
visit a physician or to visit at least once; this is a binomial choice.  This coupled with a second 

                                                 
3 Some formulations of the models, such as models of heteroscedasticity and the random parameters model, 
will also involve additional parameters.  These will be introduced later.  They are omitted at this point to 
avoid cluttering the notation. 
4 In some settings, it will be appropriate to model “none” or “the outside choice” as the Jitth choice. 
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decision, whether to visit the hospital, constitute a bivariate choice.  In a different application, the 
choice of which of four modes to use for travel constitutes a multinomial choice. 
 
0.2.2  Estimation and inference 
 
 ‘Estimation’ in this setting is less clearly defined than in the familiar linear regression 
model.  If the model is fully parametric, then the way that the parameters interact with the 
variables in the model, and the particular function that applies to the problem are all fully 
specified.  The model is then 
 
 Pit,j  = F(j,Xit,zit,β,γ,uit), j = 1,..., Jit. 
 
We will consider models that accommodate unobserved individual heterogeneity, uit in Sections 
0.7 and 0.8.  For the present, to avoid an inconvenience in the formulation, we consider a model 
involving only the observed data.  Various approaches to estimation of parameters and derivative 
quantities in this model have been proposed, but the likelihood based estimator is by far the 
method of choice in the received literature.  The log likelihood for the model is 
 
 ln L  =  , ,1 1 1

ln ( , , , )X zi itn T J
it j it iti t j

d F j
= = =∑ ∑ ∑ β γ , i = 1,...,n, t = 1,...,Ti. 

 
The maximum likelihood estimator is that function of the data that maximizes lnL.5 (See, e.g., 
Greene (2008, Chapter 14, for discussion of maximum likelihood estimation.)  The Bayesian 
estimator will be the mean of the posterior density, 
 

 
 ,

( , )( , | , , )
( , )

D X Z L gp
L g d d

×
=

×∫ β γ

β γ
β γ

β γ β γ
  

 
where g(β,γ) is the prior density for the model parameters and (D,X,Z) is the full sample of data 
on all variables in the model.  (General discussions of Bayesian methods may be found in Koop 
(2003), Lancaster (2004) and Geweke (2005).)   Semiparametric methods, generally in the index 
form,  
 
 Pit,j  =  F(j,Xijβ, zit′γ), j = 1,..., Jit  
 
but without a specific distributional assumption are common in the received literature, 
particularly in the analysis of binary choices and panel data.  These will be considered briefly in 
Sections 0.3.5 and 0.7.2.  Nonparametric analysis of discrete choice data is on the frontier of the 
theory, and does not play much of a role in the empirical literature.  We will note this segment of 
the development briefly in Section 0.3.5 but not examine it in detail. [See Li and Racine (2007).] 
 Estimation and inference about model parameters is discussed in the sections to follow. 
Though the model is commonly formulated as an ‘index function,’ model, even in this form, it 
will generally bear little resemblance to the linear regression model.  As in other nonlinear cases, 
the interpretation of the model coefficients is ambiguous.  Partial effects on the probabilities 
associated with the choices for individual i at time t are defined as 

                                                 
5 The formulation assumes that the Ti choices made by individual i are unconditionally independent.  This 
assumption may be inappropriate.  In one of our applications, the assumption is testable. 
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 δ(j,Xit′β, zit′γ)  =  ∂F(j,Xit′β, zit′γ)/∂  = F,⎛
⎜
⎝ ⎠

x
z
it j

it

⎞
⎟  ′( j,Xitβ, zit′γ) ⎛ ⎞

⎜ ⎟
⎝ ⎠

β
γ

. 

 
These are likely to be of interest for particular individuals, or averaged across individuals in the 
sample.   A crucial implication for use of the model is that these partial effects may be quite 
different from the coefficients themselves.  Since there is no ‘regression’ model at work, this calls 
into question the interpretation of the model and its parts.  No generality is possible at this point.  
We will return to the issue below.  
 A related exercise in marginal analysis of the sample is to examine the aggregate 
outcomes predicted by the model, 
 
  , ,1 1

ˆˆˆ ( , , )X zn n
t j it it it ji i

n F j
= =

′= =∑ ∑β γ d

, ,

 
where the ‘^’ indicates the estimate from the model.  For example, if xit,j,k denotes a policy 
variable – a price or a tax, we might be interested in 
 
 . 1 0

, , ,1 1
ˆ ˆˆ ( , , | ) ( , , | )X z X zn n

t j it it it j k it it it j ki i
n F j x F j x

= =
′ ′∆ = −∑ ∑β γ β γ

 
 Although the subject of the impact in the partial effect is already scaled – it is a 
probability between zero and one – it is still common for researchers to report elasticities of 
probabilities rather than partial effects.   These are 
 

 , , , , ,
( , , )(variable ) variable coefficient
( , , )

X z
X z

it it
it j it j k it j k k

it it

F j
F j

′ ′
η = × ×

′
β γ
β γ

. 

 
This is prominently the case in the analysis of multinomial choice models, as we will explore in 
Section 0.7.   
 Finally, again because the model does not correspond to a regression except in a very 
loose sense, the concept of fit measures is also ambiguous.  There is no counterpart to ‘explained 
variation’ or ‘total variation’ in this class of models, so the idea behind the coefficient of 
determination (R2) in linear regression has no meaning here.  What is required to assess the fit of 
the model is first a specification of how the model will be used to predict the outcome (choice), 
then an assessment of how well estimated model does in that regard.  Various measures are 
considered below. 
 
0.2.3  Applications 
 
It will be helpful in the exposition below to illustrate the computations with a few concrete 
examples based on ‘live’ data.  We will use two familiar data sets.  The RWM Health Care data 
(our appellation) was used in Riphahn, Wambach and Million (2003) to analyze utilization of the 
German health care system.  The data set used is an unbalanced panel of 7,293 individual families 
observed from one to seven times.  It is part of the German Socioeconomic Panel data set 
(GSOEP).   These data were downloaded from the archive site of the Journal of Applied 
Econometrics.   We will use these to illustrate the single equation and panel data binary and 
ordered choice models and models for counts presented in Sections 0.3 to 0.7.  The second data 
set is also widely used, to illustrate multinomial choice models.  These data from Hensher and 
Greene (e.g., 2003) are a survey of 210 travelers between Sydney and Melbourne who chose 
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among four modes, air, train, bus and car.  We will use these data to illustrate a few multinomial 
choice models in Section 0.7. 
 
0.3  Binary Choice 
 
The fundamental building block in the development of discrete choice models is the basic model 
for choice between two alternatives.  We will formulate this in a random utility framework with 
utility of two choices, 
 
 Ui,1  =  xi,1′β  +  zi′γ + εi,1
     
 Ui,0  =  xi,0′β  +  zi′γ + εi,0
 
For convenience at this point, we assume there is a single choice made, so Ti = 1.  The utility 
functions are in the index form, with characteristics and attributes and common (generic) 
coefficients.  The random terms, εi,1 and εi,0 represent unmeasured influences on utility.  (Looking 
forward, without these random terms, the model would imply that with sufficient data (and 
consistent parameter estimators), utility could be ‘observed’ exactly, which seems improbable at 
best.)  Consistent with the earlier description, the analyst observes the choice most preferred by 
the individual, that is, the one with the greater utility, say choice 1.  Thus, the observed outcome 
reveals that 
 
 Ui,0 > Ui,0
or 
 xi,1′β  +  zi′γ + εi,1  >  xi,2′β  +  zi′γ + εi,0
or           (0.15) 
 (xi,1′β  - xi,0′β) + (zi′γ - zi′γ) >  (εi,0 - εi,1) 
or 
 (xi,1 - xi,0)′β  >  (εi,0 - εi,1). 
 
This exercise reveals several identification problems in the model as stated so far.  First, we have 
implicitly assumed that in the event that the two utilities are equal, the consumer chooses 
alternative 0.  This is a normalization.  Recall that we assumed earlier that the individual makes 
exactly one choice.  Second, it is evident that in describing the choice process in this fashion, it is 
the relative values of the attributes of the choices that matter, the difference between xi,1 and xi,0 is 
the determinant of the observed outcome, not the specific values of either.  Third, note that the 
choice invariant component, zi has fallen out of the choice process.  The implication is that unless 
the individual’s characteristics influence the utilities differently by γ1 and γ0, it is not possible to 
measure their impact on the choice process.  Finally, εi,1 and εi,0 are random variables with so far 
unspecified means and variances.  With respect to the means, if they are µ1 and µ2, only µ0 - µ1 
enter the choice.  As such, if the means were µ1+φ and µ0+φ, the same outcome would be 
observed.  These means cannot be measured with observed data, so at least one, say µ0, is 
normalized to zero.  Finally, consider the outcome of scaling both utilities by an arbitrary 
constant, σ.  The new random components would be σεi,1 = εi,1* and σεi,2 = εi,2*, and β and γ 
would be scaled likewise.  However, this scaling of the model would have no impact on the 
observed outcome in the last line above.  The same choice would be observed whatever positive 
value σ takes.  Thus, there is yet one more indeterminacy in the model.  This can be resolved in 
several ways.  The most common expedient is to normalize the scaling of the random components 
to one. 
 Combining all of these, we obtain a conventional form of the model for the choice  
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between two alternatives, 
 

 ∆Ui  =  µ1 + (∆xi)′β  +  zi′(γ1 - γ0)  +  εi0-εi1, E[εi0-εi1|Xi,zi] = 0, Var[εi0-εi1|Xi,zi] = 1. 
 
 di1   =  1  if  ∆Ui > 0 and di1 = 0 otherwise, 
 
 di2  =  1 – di1. 
 
In a more familiar arrangement that combines all these ideas, we would have 
 
 di*  =  α + xi′β + zi′γ + εi

 (0.1) 
 di = 1 if di* > 0, and di = 0 otherwise,  
 
where di = 1 indicates choice 1 is selected. 
  
0.3.1  Regression models 
 
 The preceding describes an underlying theoretical platform for a binary choice, based on 
a model of random utility.  In order to translate it to an econometric model, we will add the 
assumptions behind the stochastic component of the specification, εi. To this point, the 
specification is semiparametric.  We have not assumed anything specific about the underlying 
distribution, only that εi represents the random (from the point of view of the econometrician) 
element in the net utility function of individual i. The restrictions imposed (zero mean, unit 
variance) are normalizations related to the identification issue, not intended to be substantive 
restrictions on behavior. (Indeed, the unit variance assumption turns out to be unnecessary for 
some treatments as well.  We will return to this below.) 
 We can approach the specification in (0.1) from a different viewpoint.  The random 
utility approach specifies that di* represents the strength of the individual’s preference for 
alternative 1 relative to alternative 2.  An alternative approach departs from (0.1) as a latent 
regression model.  The dependent variable is assumed to be unobservable; the observation is a 
censored variable that measures di* relative to a benchmark, zero.  For an example, consider a 
model of loan default.  One would not typically think of loan default as a utility maximizing 
choice.  On the other hand, in the context of (0.1), one might think of di* as a latent measure of 
the financial distress of individual i.  If di* is high enough, the individual defaults, we observe di 
= 1.  By this construction, the appropriate model for di is a censored regression.  Once we endow 
εi with a proper probability distribution, (0.1) can be construed as a regression model. 
 With the assumption of a specific distribution for ε, we obtain a statement of the choice 
probabilities, 
 
 Prob(di = 1 | Xi,zi)  = Prob(di* > 0 | xi,zi)  

    = Prob(xi′β + zi′γ + εi > 0). 

    = Prob[εi > -(xi′β + zi′γ)] 

    = 1 – Prob[εi ≤ -(xi′β + zi′γ)] 

    =  Pi,1. 
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It follows that 
 
 E[di | xi,zi] =  0 × Prob(di = 0 | xi,zi) + 1 × Prob(di = 1 | xi,zi) 
  
   =  Prob(di = 1 | xi,zi) 
 
so we now have a regression model to manipulate as well.  The implied probability endowed by 
our assumption of the distribution of εi becomes the regression of di on xi,zi.  By this construction, 
one might bypass the random utility apparatus, and simply embark on modeling 
 
 di = E[di | Xi,zi]  +  ai
  
  = Prob(di = 1 | Xi,zi) + ai
  
where, by construction, ai has zero mean, conditioned on the probability function.  A remaining 
step is to construct the appropriate conditional mean function.  A linear probability model, 
 
 di  =  xi′β + zi′γ + ai, 
 
has been suggested in some settings.  [See, e.g., Aldrich and Nelson (1984), Caudill (1988), 
Heckman and Snyder (1997) and Angrist (2001).]  The linear probability model has some 
significant shortcomings, the most significant of which is that the linear function cannot be 
constrained to lie between zero and one, so its interpretation as a probability model is suspect.  
With few exceptions, including those noted, researchers have employed proper probability 
distributions for the implied regressions.  The logit model and probit model described in the next 
section are the overwhelming choices in the received literature. 
 
0.3.2  Estimation and inference in parametric binary choice models 
 
A parametric model is completed by specifying a distribution for εi.  Many candidates have been 
proposed, though there is little in the way of observable evidence that one can use to choose 
among the candidates.6  For convenience, we will assume a symmetric distribution, such as the 
normal or logistic which are used in the overwhelming majority of studies.  For a symmetric 
distribution, 
 
 1 – Prob[εi ≤ -( xi′β + zi′γ)]  = Prob(εi ≤ xi′β + zi′γ) 

     = F(xi′β + zi′γ). 
 
Once again relying on the symmetry of the distribution, the probabilities associated with the two 
outcomes are 
 
 Prob(di = 1|xi,zi)  =  F(xi′β + zi′γ) 
and  
 Prob(di = 0|xi,zi)  =  F[-(xi′β + zi′γ)]. 
 
For the two outcomes di = j, j = 0,1, these may be combined in the form suggested earlier, 
 
                                                 
6 See, for example, the documentation for LIMDEP (Econometric Software, 2007) or Stata (Stata, Inc., 
2007). 
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 F(j, xi′β + zi′γ)  =  F[(2j – 1)(xi′β + zi′γ)]   
 
where 

 F(c)  =  Λ(c)  =  exp( )
1 exp( )

c
c+

 for the logistic distribution and 

  

 F(c)  =  Φ(c)  =  21 1
22

exp( )
 c

z dz
π−∞

−∫  for the normal distribution. 

 
The assumption of the logistic distribution gives rise to the logit model while the normal 
distribution produces the probit model. 
 
Parameter estimation 
 
 The model is now fully parameterized, so the analysis can proceed based either on the 
likelihood function or the posterior density.  We consider the maximum likelihood estimator first, 
and the Bayesian estimator in Section 0.3.4. 
 The log likelihood function for the observed data is 
 
 lnL  =   

1
lnProb( | )x ,zn

i i ii
d d

=
=∑

        =   
1 0
lnProb( 1| ) lnProb( 0 | )x ,z x ,z

i i

n n
i i i i id d

d d
= =

= + =∑ ∑ i

        =  
1
ln [(2 1)( )]x zn

i i ii
F d

=
′ ′− +∑ β γ  

 
Estimation by maximizing the log likelihood is straightforward for this model.  The gradient of 
the log likelihood is 
 

 
1 1

[(2 1)( )]ln (2 1)
[(2 1)( )]

xx z g
zx z

n nii i i
i ii i

ii i i

F dL d
F d= =

′ ′ ′ ⎛ ⎞− +∂
= − =⎜ ⎟′ ′− +⎛ ⎞ ⎝ ⎠∂⎜ ⎟

⎝ ⎠

∑ ∑β γ
β β γ
γ

= g. 

 
The maximum likelihood estimators of the parameters are found by equating g to zero, an 
optimization problem that requires an iterative solution.7  For convenience in what follows, we 
will define  

 qi = (2di – 1), wi = , θ = ⎛x
z

i

i

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎞
⎜ ⎟
⎝ ⎠

β
γ

, ci = qiwi′θ,  Fi = F(ci), Fi′ = dFi/dci = fi .  

 
(Thus, Fi is the cdf and fi is the density for the assumed distribution.)  It follows that  
 
 gi =  qi Fi′(ci) wi = qi fi wi. 
 

                                                 
7 We are assuming that the data are ‘well behaved’ so that the conditions underlying the standard optimality 
properties of MLEs are met here.  The conditions and the properties are discussed in Greene (2008).  We 
will take them as given in what follows. 
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Statistical inference about the parameters is done using one of the three conventional estimators 
of the asymptotic covariance matrix, the Berndt et al. (1974) estimator based on the outer 
products of the first derivatives 

 VBHHH  =  , 
1

1
g gn

i ii

−

=
⎡ ⎤′
⎣ ⎦∑

the actual Hessian, 
 

 VH  =  
11 22

21 1

( )ln w wn n i i i
i ii i

i

F F FL
F

−−

= =

⎡ ⎤′′⎡ ⎤ −∂ ′− = −⎢ ⎥⎢ ⎥′∂ ∂⎣ ⎦ ⎣ ⎦
∑ ∑θ θ

'
 

or the expected Hessian, which can be shown to equal 
 

 VEH  =  
1 12

1 1

( ) ( )ln
(1 )

w w
i

n n i i
d ii i

i i

f c f cLE
F F

−

i

−

= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ −∂ ′− = −⎢ ⎥ ⎢ ⎥⎜ ⎟′∂ ∂ −⎝ ⎠ ⎣ ⎦⎣ ⎦
∑ ∑θ θ

 

 
[It has become common, even de riguer, to compute a ‘robust’ covariance matrix for the MLE 
using VH×VBHHH

-1×VH under the assumption that the maximum likelihood estimator is ‘robust’ to  
failures of the specification of the model.  In fact, there is no obvious failure of the assumptions 
of the model (distribution, omitted variables, heteroscedasticity, correlation across observations) 
for which the MLE remains consistent so the virtue of the ‘corrected’ covariance matrix is 
questionable.  See Freedman (2006).] 
 For the two distributions considered here, the derivatives in the preceding are relatively 
simple.  For the logistic, 
 
 F(c)  =  Λ(c), f(c) = F′(c) = Λ(c)[1 - Λ(c)],  

 F′′(c) = F′(c)[1 - 2Λ(c)] = Λ(c)[1 - Λ(c)] [1 - 2Λ(c)]. 

 
For the normal distribution (probit model), the counterparts are 
 
 F(c)  =  Φ(c), f(c) =F′(c) = φ(c), F′′(c) = -cφ(c). 
 
In both cases, f(c) = f(-c) and F(-c) = 1 – F(c).  For estimation and inference purposes, a further 
convenient result is, for the logistic distribution, 
 
 -[F(c)F′′(c) - (F′(c))2]/F(c)2 = Λ(c) (1-Λ(c)) > 0  for all c 
 
while for the normal distribution,  
 
 -[F(c)F′′(c) - (F′(c))2]/F(c)2 = c[φ(c)/Φ(c)] + [φ(c)/Φ(c)]2 > 0 for all c.8
 
The implication is that both the second derivatives matrix and the expected second derivatives 
matrix are negative definite for all values of the parameters and data for both models.  
Optimization using Newton’s method or the method of scoring will always converge to the 

                                                 
8 The sign of the result for the logistic distribution is obvious.  See, e.g., Maddala (1983) for a proof of the 
result for the normal distribution. 
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unique maximum of the log likelihood function, so long as the weighting matrix (VBHHH, VH or 
VEH) are not singular.9
 
Residuals and predictions 
 
 Two additional useful results are obtained from the necessary conditions for maximizing 
the log likelihood function.  First, the component of the score function that corresponds to the 
constant term is 
 

 
1

( ) 0.
( )

w
w

n i i
ii

i i

F qq
F q=

′ ′
=

′∑ θ
θ

 

 
The terms in this sum are the generalized residuals for the model.  As do the ordinary residuals in 
the regression model, the generalized residuals sum to zero at the MLE.  These terms have been 
used for specification testing in this model.  [See Chesher and Irish (1987).]  For the logit model, 
it can be shown that the result above implies that 
 

 
1 1

1 1 ( )n n
i ii i

d F
n n= =

′=∑ ∑ w θ or [ ]1

1 ( )wn
i ii

d F
n =

′ 0− =∑ θ  

 
when F is evaluated at the maximum likelihood estimators of the parameters.  The implication is 
that the average of the predicted probabilities from the logit model will equal the proportion of 
the observations that are equal to one.  A similar (albeit inexact) outcome will be seen in 
empirical results for the probit model. The theoretical result for the probit model has not been 
shown analytically. 
 
Marginal effects 
 
 Partial effects in the binary choice model are computed for continuous variables using the 
general result 
 

 δi = 
Prob( 1| ) ( )i i

i
i

d f∂ = ′=
∂

w w
w

θ θ  

 
For a binary variable such as gender or degree attained, the counterpart would be 
 
 ∆i  =  F(wi′θ + γk) – F(wi′θ ) 
 
where γk is the coefficient on the dummy variable of interest (assumed to be a characteristic of the 
individual).  These are typically evaluated for the average individual in the sample, though 
current practice somewhat favors the average partial effect, 
 

                                                 
9 There are data configurations, in addition to simple multicollinarity, that can produce singularities.  One 
possibility is that of a variable in xi or zi that can predict di perfectly based on a specific cut point in the 
range of that variable.  Another is an empty cell in the 2×2 cross tabulation of the binary variable di and a 
binary variable in xi or zi. 
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1

1

1

Prob( 1| )1

1 ( )

1 ( )

n i i
i

i

n
ii

n
ii

d
n

f
n

f
n

=

=

=

∂ =
=

∂

′=

⎛ ⎞′= ⎜ ⎟
⎝ ⎠

∑

∑

∑

w
w

   w

   w

δ

θ θ

θ θ.

 

 
(The two estimators will typically not differ substantively.) Standard errors for partial effects are 
usually computed using the delta method.  Let V denote the estimator of the asymptotic 
covariance matrix of the MLE of θ.  For a particular vector, wi,  
 

 [ ]( ) [ ( )]i
i i if f∂ ′ ′ ′ ′= = +

′∂
w I w wδ

Γ θ
θ iθ θ . 

 
For a binary variable in the model in addition to (or in) the wi, the corresponding row of Γi would 
be  
 
 Γi,k = ∂∆i,k/∂(θ′,γk)  =  f(wi′θ + γk)[wi, 1] – f(wi′θ)[wi, 0] 
 
For the particular choice of wi, then, the estimator of the asymptotic covariance matrix for δi 
would be ΓiVΓi′, computed at the maximum likelihood estimates.  It is common to do this 
computation at the means of the data, 1

1
n
in == Σw iw .  For the average partial effect, the 

computation is complicated a bit because the terms in δ are correlated – they use the same 
estimator of the parameters – so the variance of the mean is not (1/n) times the sum of the 
variances.  It can be shown [see Greene (2008), chapter 23] that the appropriate computation for 
this computation reduces to 

 Est.Asy.Var[ δ ]  =  ′VΓ Γ  where 
1

1 n
iin =

= ∑Γ Γ . 

 
An alternative approach to computing standard errors for the marginal effects is the method of 
Krinsky and Robb (1986).  The a set of R random draws is taken from the estimated (asymptotic) 
normal population with mean ˆ

MLEθ and variance V and the empirical mean squared deviation of 
the estimated partial effects is computed around that computed using the MLE; 
 

 Est.Asy.Var[ δ ]  =  ( )( )1

1 R
r rrR =

′− −∑ δ δ δ δ  

 
where rδ  is computed at the random draw and δ is computed at ˆ

MLEθ . 
 An empirical conundrum can arise when doing inference about partial effects rather than 
coefficients.  For any particular variable, wk, the preceding theory does not guarantee that both 
the estimated coefficient, θk and the associated partial effect, δk will both be ‘statistically 
significant,’ or statistically insignificant.  In the event of a conflict, one is left with the 
uncomfortable problem of simultaneously rejecting and not rejecting the hypothesis that a 
variable should appear in the model.  Opinions differ on how to proceed.  Arguably, the inference 
should be about θk, not δk, since in the latter case, one is testing a hypothesis about a function of 
all the coefficients, not just the one of interest. 
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Hypothesis tests 
 
Conventional hypothesis tests about restrictions on the model coefficients, θ, can be carried out 
using any of the three familiar procedures.  Given the simplicity of the computations for the 
maximum likelihood estimator, the likelihood ratio test is a natural candidate.  The likelihood 
ratio statistic is 
 
 λLR  =  2[lnL1  - lnL0] 
 
where ‘1’ and ‘0’ indicate the values of the log likelihood computed at the unrestricted 
(alternative) estimator and the restricted (null) estimator, respectively.  A hypothesis that is 
usually of interest in this setting is the null hypothesis that all coefficients save for the constant 
term are equal to zero.  In this instance, it is simple to show that regardless of the assumed 
distribution,  
 
 ln L0 = n [P1 ln P1 + P0 ln P0] 
 
where P1 is the proportion of observations for which di equals one, which is also 1

1
n
i ind d== Σ , and 

P0 = 1 – P1.  
 Wald statistics use the familiar results, all based on the unrestricted model.  The general 
procedure departs from the null hypothesis 
 
 H0:  r(θ, c) = 0 
 
where r(θ, c) is a vector of M functionally independent restrictions on θ and c is a vector of 
constants.  The typical case is the set of linear restrictions, H0:Rθ - c = 0, where R is a matrix of 
constants.  The Wald statistic for testing the null hypothesis is constructed using the delta method 
to obtain an asymptotic covariance matrix for [r(θ, c)].  The statistic is 
 
 λWALD  =  [r(θ, c)]′ [R(θ, c) V R(θ, c)′]-1 [r(θ, c)] 
 
where R(θ, c) = ∂r(θ, c)/∂θ′ and all computations are carried out using the unrestricted maximum 
likelihood estimator.  The standard ‘t test’ of the significance of a coefficient is the most familiar 
example.   
 The Lagrange multiplier statistic is 
 
 λLM  =  g0′ V0 g0 

 
where ‘0’ indicates that the computations are done using the restricted estimator and V is any of 
the estimators of the asymptotic covariance matrix of the MLE mentioned earlier.  Using VBHHH 
produces a particularly convenient computation, as well as an interesting and surprisingly simple 
test of the null hypothesis that all coefficients save the constant are zero.  Using VBHHH and 
expanding the terms, we have 
 

 λLM  =  . ( ) ( ) ( )1
0 2 0 2

1 1 1
( )n n n

i i i i i i i i i ii i i
q f q f q f

−

= = =

′ ′∑ ∑ ∑w w w 0w
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An immediate simplification occurs because qi
2 = 1.  The density is computed at the restricted 

estimator, however obtained.  If the null hypothesis is that all coefficients are zero save for the 
constant, then, for the logit model, fi 

0 = f 0 = P1(1-P1). For the probit model, the estimator of the 
constant term will be Φ-1(P1) and f0 = φ[Φ-1(P1)].  Taking this constant outside the summation in g 
leaves 1 1 1 0[ ]n

i i iq n P P=Σ = −w w w0  where 1w is the sample mean of the n1 observations with di 
equal to one and 0w is the mean of the n0 remaining observations.  Note that the constant f 0 falls 
out of the resulting statistic for both logit and probit models, and we are left with the LM statistic 
for testing this null hypothesis, 
 
 λLM  =  ( ) 12

1 1 0 0 1 1 0 0[ ] [ ]n P P P P−′ ′− −w w W W w w , 
 
where W is the data matrix with ith row equal to wi′. As in the case of the LR statistic, the same 
computation is used for both the probit and logit models. 
 
Specification tests 
 
Two specification issues are typically addressed in the context of these parametric models, 
heteroscedasticity and the distributional assumption.  For the former, since there are no useful 
‘residuals’ whose squares will reveal anything about scaling in the model, general approaches 
such as the Breusch and Pagan (1979, 1980) LM test or the White (1980) test are not available.  
Heteroscedasticity must be built into the model and tested parametrically.  Moreover, there is no 
robust approach to estimation and inference that will accommodate heteroscedasticity without 
specifically making it part of the model.  (The so called robust covariance matrix is not robust to 
heteroscedasticity in a binary choice setting.  In linear regression, the OLS estimator and White’s 
(1980) heteroscedasticity robust covariance matrix serve that purpose.)  A common approach to 
modeling heteroscedasticity in parametric binary choice models is based on Harvey’s (1976) 
exponential model, 
 
 di*  =  xi′β + zi′γ + εi, E[εi|xi,zi,vi] = 0, Var[εi| xi,zi,vi] = [exp(vi′τ)]2 

 
 di = 1 if di* > 0, and di = 0 otherwise,  
 
where vi is a known set of variables (that does not include a constant term) and τ is a new 
parameter vector to be estimated.  The adjustment of the log likelihood is fairly straightforward; 
the terms are changed to accommodate 
 
 Prob(di = 1 | xi,zi,vi)  =  F[wi′θ / exp(vi′τ)]. 
 
Maximization of the likelihood function with respect to all the parameters is somewhat more 
complicated, as the function is no longer globally concave.  Further complications arise in 
interpretation of the model.  The partial effects in this augmented model are 
 

 δi = Prob( 1| , )
[ exp( )exp( )

i i i i

i i ii

i

d f
′⎛ ⎞⎛ ⎞∂ =

= ⎜ ⎟⎜ ⎟′ ′′⎛ ⎞ ⎝ ⎠⎝ ⎠∂⎜ ⎟
⎝ ⎠

w v w
w w vv
v

θθ
]−( θ)/ τ ττ

. 

 
If wi and vi have variables in common, then the two effects are added.  Whether they do or not, 
this once again calls into question the interpretation of the original coefficients in the model.  If 
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wi and vi do share variables, then the partial effect may have sign and magnitude that both differ 
from those of the coefficients, θ.  At a minimum, as before, at least the scales of the partial effects 
are different from those of the coefficients. 
 For testing for homoscedasticity, the same three statistics as before are useable.  (This is a 
parametric restriction on the model; H0:τ = 0.)  The derivatives of the log likelihood function are 
presented in Greene (2008, Chapter 23).  As usual, the LM test is the simplest to carry out.  The 
term necessary to compute the LM statistic under the null hypothesis is 
 

 gi = . 
( )

i
i i

i i

q f
⎛ ⎞
⎜ ⎟′−⎝ ⎠

w
w vθ

 
 A second specification test of interest concerns the distribution.  Silva (2001) has 
suggested a score (LM) test that is based on adding a constructed variable to the logit or probit 
model.  An alternative test for testing the two competing models could be based on Vuong’s 
(1989) statistic.  Vuong’s test is computed using 
 

 λVuong  =  
m

n m
s

 where m  = 1
1[ln ( ) ln ( )]n

i i in L probit L logit=Σ −  

 
and sm is the sample standard deviation.  Vuong shows that under certain assumptions (likely met 
here for these two models), λVuong has a limiting standard normal distribution.  Large positive 
values (larger than +1.96) favor the probit model while large negative values (less than -1.96) 
favor the logit model.  The power of these statistics for this setting remains to be investigated.  As 
with all specification tests, the power depends crucially on the true but unknown underlying 
model, which may be unlike either candidate model. 
 
The fit of the model 
 
As noted earlier, in modeling binary (or other discrete) choices, there is no direct counterpart to 
the R2 goodness of fit statistic.  A common computation which, unfortunately in spite of its name, 
does not provide such a measure is the likelihood ratio index, which is also called the 
 
 pseudo R2 =  1 – lnL/lnL0
 
where lnL is the log likelihood for the estimated model (which must include a constant term) and 
lnL0 is the log likelihood function for a model that only has a constant.  It is tempting to suggest 
that this measure measures the ‘contribution’ of the variables to the fit of the model.  It is a 
statistic that is between zero and one, and it does rise unambiguously as variables are added to the 
model.  However, the ‘fit’ aspect of the statistic is ambiguous, since the likelihood function is not 
a fit measure.  As a consequence, this measure can be distressingly small in a model that contains 
numerous precisely measured (highly significant) coefficients. [See Wooldridge (2002) for 
discussion.] 
 This does leave open the issue of how to assess the fit of the estimated model to the data.  
In order to address the question, the analyst must first decide what rule will be used to predict the 
observed outcome using the model, then determine how successful the model (and rule) are.  A 
natural approach, since the model predicts probabilities of events is to use the estimated 
probability, F(wi′θ).  The prediction is based on a rule 
 
 Predict di = 1 if the estimated Prob(di = 1|wi) is greater than P*   (0.2) 
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where P* is to be chosen by the analyst.  The usual choice of P* is 0.5, reasoning that if the 
model predicts that the event is more likely to occur than not, we should predict that it will.10  A 
summary 2×2 table of the number of cases in which the rule predicts correctly and incorrectly can 
be used to assess the fit of the model.  Numerous single valued functions of this tally have been 
suggested as counterparts to R2.  For example, Cramer (1999) proposed 
 
 λC  =  (average |dîP i= 1)  -  (average |dîP i = 0) 
 
This measure counts the correct predictions, and adds a penalty for incorrect predictions.  Other 
modifications and similar alternatives have been suggested by Efron (1978), Kay and Little 
(1986), Ben-Akiva and Lerman (1985) and Zavoina and McKelvey (1975). 
 
0.3.3  A Bayesian estimator 
 
The preceding has developed the classical maximum likelihood estimator for binomial choice 
models.  A Bayesian estimator for the probit model illustrates an intriguing technique for 
censored data models.  [This treatment builds on an example in Lancaster (2004).] The model 
framework is, as before, 
 
 di* = wi′θ + εi,  εi ~ N[0,1]       (0.3) 
 
 di   = 1 if di* > 0, otherwise di = 0.       (04) 
 
The data consist of (d,W) = (di,wi),i=1,...,n.  The random variable di has a Bernoulli distribution 
with probabilities 
 
 Prob[di = 1|wi,θ] = Φ(wi′θ) 

 Prob[di = 0|wi,θ] = 1 - Φ(wi′θ). 
 
The likelihood function for the observed data, d, conditioned on W and θ is 
 
 L(d|W,θ)  =  

1

1[ ( )] [1 ( )]n
i ii

di id
=

−′ ′−∏ w wΦ θ Φ θ . 
 
To obtain the posterior mean (Bayesian estimator), we assume a noninformative, flat (improper) 
prior for θ, 
  
 p(θ)  ∝  1. 
 
By Bayes theorem, the posterior density would be 
 

                                                 
10 Recall that the average predicted probability, P̂  equals the average outcome in the binary choice model, 
P1.  To a fair approximation, the standard deviation of the predicted probabilities will equal [P1(1-P1)].5.  If 
the sample is highly unbalanced, say P1 < .05 or P1 > .95, then a predicted probability as large as (or as 
small as) 0.5 may become unlikely.  It is common in unbalanced panels for the simple prediction rule 
always to predict the same value. 
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and the estimator would be the posterior mean, 
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 Evaluation of the integrals in  is hopelessly complicated, but a solution using 
the Gibbs sampler and the technique of data augmentation, pioneered by Albert and Chib (1993) 
is surprisingly simple.  We begin by treating the unobserved d

BAYESIANθ̂

i*s in (0.3) as unknowns to be 
estimated, along with θ.  Thus, the (K+n)×1 parameter vector is α = (θ, d*).   We now construct a 
Gibbs sampler.  Consider, first, p(θ | d*,d,W).  If di* is known, then di is known.  It follows that 
 
 p(θ | d*,d, W)  =  p(θ | d*, W). 
 
This posterior comes from a linear regression model with normally distributed disturbances and 
known σ2 = 1.   [See (0,3) above.]  This is the standard case for Bayesian analysis of the normal 
linear model with an uninformative prior for the slopes and known σ2  – See, e.g., Koop (2003) or 
Greene (2008, Section 18.3.1) with the additional simplification that σ2 = 1.  It follows that 
 
 p(θ | d*, d, W)  =  N[q*, (W′W)-1]   
where 
 q*  = (W′W)-1W′d*. 
 
For di*, ignoring di for the moment, it would follow immediately from (0.3) that 
 
 p(di* | θ, W)  =  N[wi′θ, 1]. 
 
However, di is informative about di*.  If di equals one, we know that di* > 0 and if di equals zero, 
then di* < 0.  The implication is that conditioned on θ, W, and d, di* has a truncated (above or 
below zero) normal distribution.  The standard notation for this is this  is  
 
 p(di* | θ , di=1, wi) = N+ [wi′θ,1] 
 
 p(di* | θ,  di=0, wi) = N– [wi′θ,1]. 
  
These results set up the components for a Gibbs sampler that we can use to estimate the posterior 
means E[θ | d,W] and E[d* | d,W]. 
 
Gibbs sampler for the binomial probit model 
 
 The iterations for the Gibbs sampler for the binomial probit model are computed as 
follows: 
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(1)  Compute W′W once at the outset and obtain L such that LL′ = (W′W)-1. 
(2)  Start θ at any value such as 0. 
(3)  Obtain draws Ui,r from the standard uniform distribution.  Greene (2008, Chapter 17, shows 
       how to transform a draw from U[0,1] to a draw from the truncated normal with underlying 
       mean µ and standard deviation σ.  For this application, µ = wi′θ and σ = 1, so the draws from 
       p(d*|θ,d,W) are obtained as 
 

  
* 1
, 1 , 1

* 1
, 1 , 1

( ) 1 (1 ) ( ) if  1

( ) ( ) if  0
i r i r i r i r i

i r i r i r i r i

d r U d

d r U d

−
− −

−
− −

′ ′⎡ ⎤= + − − =⎣ ⎦
′ ′⎡ ⎤= + − =⎣ ⎦

w w

w w             

θ Φ Φ θ

θ Φ Φ θ

 

                                                

 
        This step is used to draw the n observations on di,r*(r) 
(4)   To draw an observation from the multivariate normal population of p(θ | d*,d,W], we need 
        to draw from the normal population with mean qr-1* and variance (W′W)-1. For this 
        application, we use the results at step 3 to compute q* = (W′W)-1W′d*(r).  We obtain the 
        vector, v, of K draws from the N[0,1] population, then θ(r) =  q* + Lv. 
 
The iteration cycles between steps (3) and (4).  This should be repeated several thousand times, 
discarding the burn-in draws, then the estimator of θ is the sample mean of the retained draws.  
The posterior variance is computed with the variance of the retained draws.  Posterior estimates 
of di* would typically not be useful. 
 This application of the Gibbs sampler demonstrates in an uncomplicated case how the 
algorithm can provide an alternative to actually maximizing the log likelihood.  The similarity of 
the method to the EM algorithm [Dempster, Laird and Rubin (1977)] is not coincidental.  Both 
procedures use an estimate of the unobserved, censored data, and both estimate θ by using OLS 
using the predicted data. 
 
0.3.4  Semiparametric models 
 
The fully parametric probit and logit models remain by far the mainstays of empirical research on 
binary choice. Fully nonparametric discrete choice models are fairly exotic and have made only 
limited inroads in the literature. Most of that literature is theoretical [e.g., Matzkin (1993)]. The 
middle ground is occupied by a few semiparametric models that have been proposed to relax the 
detailed assumptions of the probit and logit specifications. The single index model of Klein and 
Spady (1993) has been used in several applications, including Gerfin (1996), Horowitz (1993), 
and Fernandez and Rodriguez-Poo (1997), and provides the theoretical platform for a number of 
extensions.11

The single index model departs from a regression formulation, 

 E[di | wi] = E[di | wi′θ]. 
Then 
 Prob(di = 1 | wi) = F(wi′θ | wi) = G(wi′θ), 

where G is an unknown continuous distribution function whose range is [0, 1]. The function G is 
not specified a priori; it is estimated (pointwise) along with the parameters. (Since G as well as θ 
is to be estimated, a constant term is not identified; essentially, G provides the location for the 
index that would otherwise be provided by a constant.) The criterion function for estimation, in 
which subscripts n denote estimators based on the sample of n observations of their unsubscripted 
counterparts, is 

 
11 A symposium on semiparametric modeling is Hardle and Manski (1993). 

 18



 
1

1ln { ln ( ) (1 ) ln[1 ( )]}.w w
n

n i n i n i n i n
i

L d G d G
n =

′ ′= + − −∑ θ θ  

The estimator of the probability function, Gn, is computed at each iteration using a nonparametric 
kernel estimator of the density at w i n′θ . For the Klein and Spady estimator, the nonparametric 
regression estimator is 

 
( | 1)( ) ,
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where gn(zi | di) is the kernel estimate of the density of zi = w i n′θ  This result is 

 
1

1( | 1) ;wn
i m n

n i i j
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zg z d d K
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= = ⎜ ⎟

⎝ ⎠
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gn(zi | di = 0) is obtained by replacing d  with 1 d−  in the leading scalar and dm with 1 – dm in 
the summation. The scalar hn is the bandwidth. There is no firm theory for choosing the kernel 
function or the bandwidth. Both Horowitz and Gerfin used the standard normal density. Two 
different methods for choosing the bandwidth are suggested by them. Klein and Spady provide 
theoretical background for computing asymptotic standard errors. 
 Manski’s (1975, 1985, 1986, 1987) maximum score estimator is yet less parameterized 
than Klein and Spady’s model.  The estimator is based on a fitting rule, 
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The parameter α is a preset quantile, and qi = 2di – 1 as before. If α is set to 1
2 ,  then the 

maximum score estimator chooses the θ to maximize the number of times that the prediction has 
the same sign as z. This result matches our prediction rule in (0.2) with P* = 0.5. So for α = 0.5, 
the maximum score estimator attempts to maximize the number of correct predictions. Since the 
sign of w′θ is the same for all positive multiples of θ , the estimator is computed subject to the 
constraint that θ′θ = 1. Variants of semiparametric estimators are discussed in Li and Racine 
(2007), including a modification by Horowitz (1992) and an estimator suggested by Lewbel 
(2000). 
 The semiparametric estimators of θ are robust to variation in the distribution of the 
random elements in the model, and even to heteroscedasticity.  Robustness is an ambiguous virtue 
in this context.  As we have seen, the raw coefficients are of questionable value in interpreting the 
model – in order to translate them to useful quantities we have computed partial effects and 
predicted probabilities.  But, the semiparametric models specifically program around the 
assumption of a fixed distribution   They thus sacrifice the ability to compute partial effects or 
probabilities.  What remains is the estimator of θ and in some cases a covariance matrix that can 
be used to test significance of coefficients or test hypotheses about restrictions on structural 
coefficients.13  Perhaps for these reasons, applied work in binary choice remains overwhelmingly 
dominated by the parametric models. 
 

                                                 
12 See Manski (1975, 1985, 1986) and Manski and Thompson (1986).  For extensions of this model, see 
Horowitz (1992), Charlier, Melenberg and van Soest (1995), Kyriazidou (1997) and Lee (1999)  
13 Bootstrapping has been used to estimate the asymptotic covariance matrix for the maximum score 
estimator, however, Abrevaya and Huang (2005) have recently cast doubt on the validity of that approach.  
No other strategy is available for statistical inference in this model.  
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0.3.5  Endogenous right hand side variables 
 
The presence of endogenous right hand side variables in a binary choice model presents familiar 
problems for estimation. The problem is made worse in nonlinear models because even if one has 
an instrumental variable readily at hand, it may not be immediately clear what is to be done with 
it.  The instrumental variable estimator for the linear model is based on moments of the data, 
variances and covariances.  In a binary choice setting, we are not using any form of least squares 
to estimate the parameters, so the IV method would appear not to apply.  Generalized method of 
moments is a possibility.  Consider the model 
 
 di*  =  xi′β + γzi + εi

 di = 1(di* > 0) 

 E[εi | zi] = g(zi) ≠ 0. 
 
Thus, zi is endogenous in this model.  The maximum likelihood estimators considered earlier will 
not consistently estimate (β,γ).  (Without an additional specification that allows us to formalize 
Prob(di = 1|xi,zi), we cannot state what the MLE will, in fact, estimate.)  Suppose that we have a 
relevant (not ‘weak’) instrumental variable, wi such that 
 
 E[εi|wi,xi] = 0 

 E[wizi] ≠ 0. 
 
A natural instrumental variable estimator would be based on the “moment” condition 
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However, di* is not observed, di is, but the “residual,” di - xi′β  - γzi, would have no meaning even 
if the true parameters were known.14  One approach that was used in Avery et al. (1983), Butler 
and Chatterjee (1997) and Bertschek and Lechner (1998) is to assume that the instrumental 
variable is orthogonal to the residual [d –Φ( xi′β + γ zi)], that is, 
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This form of the moment equation, based on observables, can form the basis of a straightforward 
two step GMM estimator. 
 The GMM estimator is not less parametric than the full information maximum likelihood 
estimator described below because the probit model based on the normal distribution is still 
invoked to specify the moment equation.15  Nothing is gained in simplicity or robustness of this 
approach to full information maximum likelihood estimation, which we now consider.  (As 

                                                 
14 One would proceed in precisely this fashion if the central specification were a linear probability model 
(LPM) to begin with.  See, e.g., Eisenberg and Rowe (2006) or Angrist (2001) for an application and some 
analysis of this case. 
15 This is precisely the platform that underlies the GLIM/GEE treatment of binary choice models in, e.g. the 
widely used programs, SAS and Stata .) 
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Bertschek and Lechner argue, however, the gains might come in terms of practical 
implementation and computation time.  The same considerations motivated Avery et al.) 
 The maximum likelihood estimator requires a full specification of the model, including the 
assumption that underlies the endogeneity of zi.  This becomes essentially a simultaneous equations 
model.  The model equations are 
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We are assuming that there is a vector of instrumental variables, wi.  Probit estimation based on di 
and (xi,zi) will not consistently estimate (β,γ) because of the correlation between zi and εi induced by 
the correlation between ui and εi.  Several methods have been proposed for estimation of this model.  
One possibility is to use the partial reduced form obtained by inserting the second equation in the 
first. This becomes a probit model with probability Prob(di = 1|xi,wi) = Φ(xi′β* + wi′α*).  This will 
define a consistent estimator of β* = β/(1+γ2σu

2+2γσuρ)1/2 and α* = γα/(1+γ2σu
2+2γσuρ)1/2 as the 

coefficients on xi and wi, respectively. (The procedure will estimate the sum of the elements of β* 
and α* for any variable that appears in both xi and wi.) In addition, linear regression of zi on wi 
produces estimates of α and σ2, but there is no method of moments estimator of ρ or γ produced 
by this procedure, so this estimator is incomplete.  Newey (1987) suggested a ‘minimum chi-
squared’ estimator that does estimate all parameters.  A more direct, and actually simpler 
approach is full information maximum likelihood.   
 The log likelihood is built up from the joint density of di and zi, which we write as the 
product of the conditional and the marginal densities, 
 
 f(di,zi)  =  f(di|zi) f(zi). 
 
To derive the conditional distribution, we use results for the bivariate normal, and write 
 
 εi|ui   =  [(ρσ)/σ2] ui  +  vi,  
 
where vi is normally distributed with Var[vi] = (1 - ρ2).  Inserting this in the first equation, we 
have 
 di*|zi  =  xi′β + γzi  +  (ρ/σ)ui  +  vi. 
 
Therefore, 

 Prob[di = 1|xi,ui]  =  
2

( / )
1
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Inserting the expression for ui = (zi – wi′α), and using the normal density for the marginal 
distribution of zi in the second equation, we obtain the log likelihood function for the sample, 
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This is labeled the control function approach in the recent literature.  Maximization of (0,5) is 
straightforward.  It can be simplified further by use of the Olsen (1978) transformation, τu = 1/σu 
and πu = α/σu, and by letting η = β / (1 - ρ2)1/2 and λ = γ / (1 - ρ2)1/2 and estimating η, λ, τu, πu and 
ρ.  The original parameters can be recovered from the inverse transformations, and the delta 
method can be used to obtain the asymptotic covariance matrix. 
 
0.3.6  Panel data models 
 
The ongoing development of large, rich panel data sets on individual and family market 
experiences, such as the GSOEP data we are using here, has brought attention to panel data 
approaches for discrete choice modeling.  The extensions of familiar fixed and random effects 
models are not direct and bring statistical and computational issues that are not present in linear 
regression modeling.  This section will detail the most widely used techniques.  This area of 
research is one of the most active theoretical arenas as well.  We will only have space to note the 
theoretical frontiers briefly in the conclusions. 
 
Panel data modeling frameworks 
 
The natural departure point for panel data analysis of binary choice is the extension of the fixed 
and random effects linear regression models.  Since the models considered here are nonlinear, 
however, the convenient least squares and feasible generalized least squares methods are 
unavailable.  This proves to be more than an inconvenience in this setting, as it mandates 
consideration of some specification issues.  We will begin by considering extensions of the fixed 
and random effects models, then turn to more general models of individual heterogeneity, the 
random parameters and latent class models.  The various models described here all carry over to a 
range of specifications.  However, in the applied literature, the binary choice model is the leading 
case. 
 
Fixed effects model 
 
The fixed effects model would be 
 
 dit*  = αi + xit′β + zi′γ + εit,t = 1,...,Ti, i = 1,...,n 
 
 dit = 1 if dit* > 0, and dit = 0 otherwise.  
 
We have made the distinction between time varying attributes and characteristics, xit, and time 
invariant characteristics, zi. The common effects, αi may be correlated with the included 
variables, xit.  Since the model is nonlinear, the least squares estimator is unusable.  The log 
likelihood is 
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In principle, direct (brute force) maximization of the function with respect to (α1,...,αn,β,γ) can be 
used to obtain estimates of the parameters and estimates of their asymptotic standard errors.  
However, several issues arise. 
 
(1) The number of individual intercept parameters may be excessive.  In our application, for 

example, there are 7,293 families.  Direct maximization of the log likelihood function for this 
many parameters is likely to be difficult.  This purely practical issue does have a 
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straightforward solution, and is, in fact, not an obstacle to estimation.  See Greene (2001, 
2008, Chapter 23). 

(2) As in the case of the linear model, it is not possible to estimate the parameters that apply to 
time invariant variables, zi.  In the linear case, the transformation to group mean deviations 
turns these variables into columns of zeros.  A similar problem arises in this nonlinear model. 

(3) For groups of observations in which the outcome variable, dit is always one or always zero for 
t = 1,...,Ti, such observation groups must be dropped from the sample. 

(4) The full maximum likelihood estimator for this model is inconsistent, a consequence of the 
incidental parameters problem. [See Neyman and Scott (1948) and Lancaster (2000).] The 
problem arises because the number of parameters in the model, αi, rises with n.  With small T 
or Ti this produces a bias in the estimator of β that does not diminish with increase in n.  The 
best known case, that of the logit model with T = 2, was documented by Andersen (1970), 
Hsiao (1986) and Abrevaya (1997), who showed analytically that with T = 2, the maximum 
likelihood estimator of θ for the binary logit model in the presence of the fixed effects will 
converge to 2θ.  Results for other distributions and other values of T have not been obtained 
analytically, and are based on Monte Carlo studies.  Table 1 below, extracted from Greene 
(2001, 2004a,b), demonstrates the effect in the probit, logit, and ordered probit model 
discussed in Section 0.5.  (The conditional estimator is discussed below.)  The model contains 
a continuous variable, xit1 and a dummy variable, xit2.  The population values of both 
coefficients are 1.0.  The results, which are consistent with other studies, e.g., Katz (2001), 
suggest the persistence of the “small T bias” out to fairly large T. 

 
Table 1. Means of Empirical Sampling Distributions, n = 1000 Individuals Based on 200 
Replications.  Table entry is 1 2,β β . 

 T=2 T=3 T=5 T=8 T=10 T=20 
    β1     β2   β1     β2    β1     β2    β1     β2   β1     β2   β1     β2

Logit 2.020,  2.027 1.698,  1.668 1.379,  1.323 1.217,  1.156 1.161,  1.135 1.069,  1.062 

Logit-Ca 0.994, 1.048 1.003,  0.999 0.996,  1.017 1.005,  0.988 1.002,  0.999 1.000,  1.004 

Probit 2.083,  1.938 1.821,  1.777 1.589,  1.407 1.328,  1.243 1.247,  1.169 1.108,  1.068 

Ord. Probit 2.328,  2.605 1.592,  1.806 1.305,  1.415 1.166,  1.220 1.131,  1.158 1.058,  1.068 
aEstimates obtained using the conditional likelihood function – fixed effects not estimated. 
 
 The problems listed, particularly the last, have made the full fixed effects approach 
unattractive.  The specification, however, remains an attractive alternative to the random effects 
approach considered next.  Two approaches have been taken to work around the incidental 
parameters problem in the fixed effects model.  A variety of semiparametric models have been 
suggested, such as Honore and Kyriazidou (2000a,b) and Honore (2002).16  In a few cases, 
including the binomial logit model (but not the probit model), it is possible to condition the fixed 
effects out of the model.  The operation is similar to the group mean deviations transformation in 
the linear regression model.  For the binary logit model (omitting the time invariant variables), we 
have 
 

 Prob(dit = jit | xit)  =  
exp[ ( )]
1 exp( )

x
x

it i it

i it

j ′α +
′+ α +
β
β

 where jit is the observed value. 

 
                                                 
16 Much of the recent research in semiparametric and nonparametric analysis of discrete choice and limited 
dependent variable models has focused on how to accommodate individual heterogeneity in panel data 
models while avoiding the incidental parameters problem. 
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This is the term that enters the unconditional log likelihood function.  However, conditioning on 
1

iT
t it ij S= =Σ , we have the joint probability 
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[See Rasch (1960), Andersen (1970) and Chamberlain (1980).]  The denominator of the 
conditional probability is the summation over the different realizations of (di1,...,di,Ti) that can sum 
to Si.  Note that in this formulation, if Si = 0 or Ti, then there is only one way for the realizations 
to sum to Si, and the one term in the denominator equals the observed result in the numerator.  
The probability equals one, and, as noted in point (3) above, this group falls out of the estimator. 
The conditional log likelihood is the sum of the logs of the joint probabilities.  The log likelihood 
is free of the fixed effects, so the estimator has the usual properties, including consistency. This 
estimator was used by Cecchetti (1986) and Willis (2006) to analyze magazine price changes. 
 The conditional estimator is consistent, so it bypasses the incidental parameter problem.  
However, it does have a major shortcoming.  By avoiding the estimation of the fixed effects we 
have precluded computation of the partial effects or estimates of the probabilities for the 
outcomes.  So, like the robust semiparametric estimators, this approach limits the analyst to 
simple inference about β itself.  One approach that might provide some headway out of this 
constraint is to compute second step estimates of αi.  Since we have in hand, a consistent 
estimator of β, we treat that as known, and return to the unconditional log likelihood function.  
For individual i, the contribution to the log likelihood is 
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For convenience, denote the ‘known’ xit′β as bit.  The first order condition for maximizing lnL 
with respect to αi, given the known β, is 
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This is one equation in one unknown that can be solved iteratively to provide an estimate of αi.  
The resulting estimator is inconsistent, since Ti is fixed – the resulting estimates are likely also to 
be highly variable because of the small sample sizes. However, the inconsistency results not 
because it converges to something other than αi.  The estimator is inconsistent because its 
variance is O(1/Ti).  As such, an estimator of the average partial effects, 
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may yet provide a useful estimate of the partial effects.  This estimator remains to be examined 
empirically or theoretically. 
 The fixed effects model has the attractive aspect that it is a robust specification.  The four 
shortcomings listed above, especially items (2) and (4) do reduce its appeal, however.  The 
wisdom from the linear model does not carry over to binary choice models because the estimation 
and inference problem change substantively in nonlinear settings.  The statistical aspects of the 
random effects model discussed next are more appealing.  However, the model assumption of 
orthogonality of the unobserved heterogeneity and the included variables is also unattractive.  The 
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Mundlak (1978) device is an intermediate step between these two that is sometimes used.  The 
approach relies on a projection of the effects on the time invariant characteristics and group 
means of the time variables; 
 
 αi =  zi′γ + π0 + xi uu′ + σπ i where E[ui| xi ] = 0 and Var[ui| xi ] = 1. 
 
(The location parameter π0 accommodates a nonzero mean while the scale parameter, σu, picks up 
the variance of the effect.  So the assumptions of zero mean and unit variance for ui are just  
normalizations.)  Inserting this result in the fixed effects model produces a type of random effects 
model, 
 
 dit*  = xit′β  + zi′γ + π0 + xi uu′ i+ σπ  + εit, t = 1,...,Ti, i = 1,...,n 
 
 dit = 1 if dit* > 0, and dit = 0 otherwise.  
 
If the presence of the projection on the group means successfully picks up the correlation between 
αi and xit, then the parameters (β,γ,π0,π,σu) can be estimated by maximum likelihood as a random 
effects model.  The remaining assumptions (functional form, distribution) are assumed to hold (at 
least approximately), so that the random effects treatment is appropriate. 
 
Random Effects Models and Estimation 
 
As suggested in the preceding, section, the counterpart to a random effects model for binary 
choice would be 
 
 dit*  = xit′β  + zi′γ + σuui + εit, t = 1,...,Ti, i = 1,...,n,  
 
where E[ui|xit] = 0 and Var[ui|xit] = 1 and 
 
 dit = 1 if dit* > 0, and dit = 0 otherwise.  
 
(Since the random effects model can accommodate time invariant characteristics, we have 
reintroduced zi in the model.)  The random effects model is fit by maximum likelihood assuming 
normality for εit and ui. (The most common application is the random effects probit model.)   
 To begin, suppose the common effect is ignored, and the ‘pooled’ model is fit by simple 
ML, ignoring the presence of the heterogeneity.  The (incorrectly) assumed model is 
 
 Prob(dit = 1 | xit) = F(xit′β + zi′γ). 
 
In the presence of ui, the correct model is 
 
 Prob(dit= 1| xit)   =  Prob(εit + σuui < xit′β + zi′γ) 

    = 
2 2
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it it iv ′ ′< +x zβ γ , vit ~ N[0,1]. 

 
Thus, the marginal probability that dit equals one obeys the assumptions of the familiar probit.  
However, the coefficient vector is not β, it is βu = β/(1 + σu

2)1/2 and likewise for γ.  The upshot is 
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that ignoring the heterogeneity (random effect) is not so benign here as in the linear regression 
model.  In the regression case, ignoring a random effect that is uncorrelated with the included 
variables produces an inefficient, but consistent estimator.   
 In spite of the preceding result, it has become common in the applied literature to report 
‘robust,’ ‘cluster corrected’ asymptotic covariance matrices for pooled estimators such as the 
MLE above.  The underlying justification is that while the MLE may be consistent (though it 
rarely is, as exemplified above), the asymptotic covariance matrix should account for the 
correlation across observations within a group.  The corrected estimator is 
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where Hit = ∂2lnF(qit(xit′β + zi′γ))/∂θ∂θ′ and git = ∂lnF(qit(xit′β + zi′γ))/∂θ and all terms are 
computed at the pooled MLE.  The estimator has a passing resemblance to the White (1980) 
estimator for the least squares coefficient estimator.  However, the usefulness of this estimator 
rests on the assumption that the pooled estimator is consistent, which will generally not be the 
case. 
 Efficiency is a moot point for this estimator, since the probit MLE estimates β with a bias 
toward zero; 
 
 plim ˆ

MLEβ    =  βu   
   =  β/(1 + σu

2)1/2

   =  β (1 - ρ2)1/2, 
 
where ρ2 = Corr2[εit+ui, εis+ui] for t ≠ s. Wooldridge (2002) suggests that this may not be an issue 
here, since the real interest is in the partial effects, which are, for the correct model, 
 
 δit = ∂Prob[dit = 1 | xit,zi]∂ xit  =  βu φ(xit′βu + zi′γu) . 
 
These would then be averaged over the individuals in the sample.  It follows, then, that the 
‘pooled’ estimator, that ignores the heterogeneity does not estimate the structural parameters of 
the model correctly, but it does produce an appropriate estimator of the average partial effects. 
 In the random effects model, the observations are not statistically independent – because 
of the common ui, the observations (di1,...,di,Ti,ui) constitute a Ti+1 variate random vector.  The 
contribution of observation i to the log likelihood is this joint density, which we write 
 
 f(di1,...,di,Ti,ui | Xi) = f(di1,...,di,Ti | Xi,zi,ui)f(ui). 
 
Conditioned on ui, the Ti random outcomes, di1,...,di,Ti, are independent.  This implies that (with 
the normality assumption now incorporated in the model) the contribution to the log likelihood is 
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where φ(ui) is the standard normal density.  This joint density contains the unobserved ui, which 
must be integrated out of the function to obtain the appropriate log likelihood function in terms of 
the observed data.  Combining all terms, we have the log likelihood for the observed sample, 
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 Maximization of the log likelihood with respect to (β,σu) requires evaluation of the 
integrals in (0.6).  Since these do not exist in closed form, some method of approximation must be 
used.  The most common approach is the Hermite quadrature method suggested by Butler and 
Moffitt (1982).  The approximation is written 
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where wh and zh are the weights and nodes of the quadrature [See Abramovitz and Stegun (1971)] 
and H is the number of nodes chosen (typically 20, 32 or 64).  An alternative approach to the 
approximation is suggested by noting that  
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The expected value can be approximated satisfactorily by simulation by using a sufficiently large 
sample of random draws from the population of ui; 
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Sampling from the standard normal population is straightforward using modern software [see 
Greene (2008, Chapter 17)].  The right hand side converges to the left hand side as R increases 
[so long as n /R  0 – see Gourieroux and Monfort (1996)].17  The simulated log likelihood to 
be maximized is 
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Recent research in numerical methods has revealed alternative approaches to random sampling to 
speed up the rate of convergence in the integration.  Halton sequences [see Bhat (1999), for 
example] are often used to produce approximations which provide comparable accuracy with far 
fewer draws than the simulation approach. 
 
Dynamic Models 
 
 An important extension of the panel data treatment in the previous section is the dynamic 
model, 
 
 dit* = xit′β + zi′γ + λdi,t-1 + αi + εit

(0.7) 
 dit  =  1 if dit* > 0 and 0 otherwise. 
 

 
17 The requirement does not state how large R must be, only that it ‘increase’ faster than n1/2.  In practice, 
analysts typically use several hundred, perhaps up to 1,000 random draws for their simulations. 
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Recent applications include Hyslop’s (1999) analysis of labor force participation, Wooldridge’s 
(2005) study of union membership and Contoyannis et al’s (2004) analysis of self reported health 
status in the British Household Panel Survey.18  In these and other applications, the central feature 
is state dependence, or the initial conditions problem.  The individual tends to ‘stick’ with their 
previous position.  Wooldridge (2002) lays out conditions under which an appropriate treatment 
is to model the individual effect as being determined by the initial value in 
 
 αi  =  α0 + α1di0 + i′x π + σuui, ui ~ N[0,1].     (0.8) 
 
This is the Mundlak treatment suggested earlier with the addition of the initial state in the 
projection.19  Inserting (0.7) in (0.8) produces an augmented random effects model that can be 
estimated, as in the static case, by Hermite quadrature or maximum simulated likelihood. 
     Much of the contemporary literature has focused on methods of avoiding the strong parametric 
assumptions of the probit and logit models.  Manski (1987) and Honore and Kyriadizou (2000a,b) 
show that Manski’s (1986) maximum score estimator can be applied to the differences of unequal 
pairs of observations in a two period panel with fixed effects. An extension of lagged effects to a 
parametric model is Chamberlain (1980), Jones and Landwehr (1988) and Magnac (1997) who 
added state dependence to Chamberlain’s fixed effects logit estimator. Unfortunately, once the 
identification issues are settled, the model is only operational if there are no other exogenous 
variables in it, which limits is usefulness for practical application.  Lewbel (2000) has extended 
his fixed effects estimator to dynamic models as well.  In this framework, the narrow assumptions 
about the independent variables once again limit its practical applicability. Honore and 
Kyriazidou (2001) have combined the logic of the conditional logit model and Manski’s 
maximum score estimator.  They specify 

 Prob(di0 = 1| Xi,zi, αi)  =  F0(Xi,zi, αi) where Xi = (xi1,xi2,...,xiT), 
Prob(dit = 1| Xi,zi, αi,di0,di1,...,di,t-1)  =  F(xit′β + zi′γ +  αi  + λdi,t-1)  t = 1,...,T 

The analysis assumes a single regressor and focuses on the case of T = 3.  The resulting estimator 
resembles Chamberlain’s but relies on observations for which xit = xi,t-1 which rules out direct 
time effects as well as, for practical purposes, any continuous variable. The restriction to a single 
regressor limits the generality of the technique as well. The need for observations with equal 
values of xit is a considerable restriction, and the authors propose a kernel density estimator for 
the difference, xit - xi,t-1, instead which does relax that restriction a bit.  The end result is an 
estimator which converges (they conjecture) but to a nonnormal distribution and at a rate slower 
than n-1/3. 
       Semiparametric estimators for dynamic models at this point in the development are still 
primarily of theoretical interest. Models that extend the parametric formulations to include state 
dependence have a much longer history, including Heckman (1978, 1981a, 1981b, 1981c), 
Heckman and MaCurdy (1980), Jakubson (1988), Keane (1993) and Beck et al. (2001) to name a 
few.20

                                                 
18 See, as well, Hsiao (2003) for a survey of dynamic panel data models and other applications by van 
Doorslaer (1987), Wagstaff (1993) and Vella and Verbeek (1999). 
19 This is the formulation used by Contoyannis et al.  Wooldridge suggested, instead, that the projection be 
upon all of the data, (xi1,xi2,...)  Two major practical problems with this approach are that in a model with a 
large number of regressors, which is common when using large, elaborate panel data sets, the number of 
variables in the resulting model will become excessive.  Second, this approach breaks down if the panel is 
unbalanced, as it was in the Contoyannis et al. study. 
20 Beck et al. (2001) is a bit different from the others mentioned in that in their study of “state failure,” they 
observe a large sample of countries (147) observed over a fairly large number of years, 40.  As such, they 
are able to formulate their models in a way that makes the asymptotics with respect to T appropriate.  They 
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Parameter Heterogeneity: Random Parameters and Latent Class Models 
 
 Among the central features of panel data treatments of individual data is the opportunity 
to model individual heterogeneity, both observed and unobserved.  The preceding discussion 
develops a set of models in which latent heterogeneity is embodied in the additive effect, αi.  We 
can extend the model to allow heterogeneity in the other model parameters as well,.  The resulting 
specification is 
 
 dit*  =  wit′θi + αi + εi, dit   =  1(dit* > 0). 
 
The specification is completed by the assumptions about the process that generates the individual 
specific parameters.  Note that in this formulation, the ‘effect,’ αi is now merely an individual 
specific constant term.  It is thus convenient to absorb it into the rest of the parameter vector, θi 
and assume that wit contains a constant. 
 A random parameters model (or mixed model or hierarchical model) in which parameters 
are continuously distributed across individuals, can be written 
 
 θi  =  θ0  +  ∆zi + Γui
 
where ui is a set of uncorrelated random variables with means zero (means are absorbed in θ0) 
and variances 1 (nonunit variances are contained in the parameter matrix Γ).  The random effects 
model examined earlier emerges if ∆ = 0 and the only random component in θi is the constant 
term, in which case, Γ would have a single nonzero diagonal element equal to σu.  For the more 
general case, we have a random parameters formulation in which 
 
 E[θi | zi] = θ0 + ∆zi
 
 Var[θi | zi] = ΓΓ′. 
 
A random parameters model of this sort can be estimated by Hermite quadrature [See Rabe-
Hesketh et al. (2005) or by maximum simulated likelihood.  [See Train (1999) and Greene (2008, 
Chapters 17 and 23).]  The simulated log likelihood function for this model will be 

 ( )01 1 1

1ln ln ( ( ))w z uiTn R
S it iti r tR

L q
= = =

′= +∑ ∑ ∏ Φ θ ∆ Γi ir+

                                                                                                                                                

. 

 
Partial effects in this model can be computed by averaging the partial effects at the population 
conditional means of the parameters, E[θi|zi] = θ0+∆zi. 
 
0.3.7  Application 
 
In "Incentive Effects in the Demand for Health Care: A Bivariate Panel Count Data Estimation" 
by Riphahn, Wambach and Million (2003), the authors were interested in counts of physician 
visits and hospital visits.  In this application, they were particularly interested in the impact that 
the presence of private insurance had on the utilization counts of interest, i.e., whether the data 
contain evidence of moral hazard. The raw data are published and available for download on the 
Journal of Applied Econometrics data archive website, The URL is given below.  The sample is 

 
can analyze the data essentially in a time series framework.  Sepanski (2000) is another application which 
combines state dependence and the random coefficient specification of Akin, Guilkey and Sickles (1979). 

 29



an unbalanced panel of 7,293 households.  The number of observations varies from one to seven 
(1,525, 1,079, 825, 926, 1,051, 1000, 887) with a total number of observations of 27,326.  The 
variables in the data file are listed in Table 2. (Only a few of these were used in our applications.) 
 
Table 2.  Variables in German Health Care Data File 
Variable       Mean         Standard Deviation 
--------------------------------------------------------------------------------------------------------------------- 
YEAR  calendar year of the observation   1987.82      3.17087   
AGE    age in years       43.5257      11.3302     
FEMALE  female = 1; male = 0   .478775      .499558   
MARRIED  married = 1; else = 0   .758618      .427929 
HHKIDS  children under age 16 in the household = 1; else = 0  
        .402730      .490456 
HHNINC  household nominal monthly net income in German marks / 10000 
        .352084      .176908  
WORKING  employed = 1; else = 0   .677048      .467613     
BLUEC   blue collar employee = 1; else = 0   .243761 .429358 
WHITEC  white collar employee = 1; else = 0 .299605 .458093    
SELF   self employed = 1; else = 0  .0621752 .241478   
BEAMT  civil servant = 1; else = 0  .0746908 .262897 
EDUC   years of schooling    11.3206      2.32489 
HAUPTS  highest schooling degree is Hauptschul = 1; else = 0 
        .624277      .484318     
REALS   highest schooling degree is Realschul = 1; else = 0 
        .196809      .397594     
FACHHS  highest schooling degree is Polytechnical= 1; else = 0 
         .0408402   .197924     
ABITUR  highest schooling degree is Abitur = 1; else = 0   
        .117031      .321464 
UNIV   highest schooling degree is university = 1; else = 0    
        .0719461  .258403 
HSAT   health satisfaction, 0 - 10  6.78543      2.29372   
NEWHSAT*,**  health satisfaction, 0 - 10  6.78566      2.29373   
HANDDUM  handicapped = 1; else = 0   .214015      .410028   
HANDPER  degree of handicap in pct, 0 - 100  7.01229      19.2646    
DOCVIS  number of doctor visits in last three months  
        3.18352    5.68969   
DOCTOR** 1 if DOCVIS > 0, 0 else   .629108 .483052 
HOSPVIS  number of hospital visits in last calendar year 
        .138257      .884339   
HOSPITAL** 1 of HOSPVIS > 0, 0 else    .0876455 .282784 
PUBLIC  insured in public health insurance = 1; else = 0  
        .885713 .318165 
ADDON   insured by add-on insurance = 1; else = 0   
        .0188099   .135856 
--------------------------------------------------------------------------------------------------------------------- 
Data source: http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/.  From 
  Riphahn, R., A. Wambach and A. Million "Incentive Effects in the Demand for Health Care: A Bivariate 
  Panel Count Data Estimation," Journal of Applied Econometrics, 18, 4, 2003, pp. 387-405. 
Notes: * NEWHSAT = HSAT; 40 observations on HSAT recorded between 6 and 7 were changed to 7. 
            ** Transformed variable not in raw data file. 

 30

http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/


 The model to be examined here (not the specification used in the original study) is 
 
     Prob(Doctorit = 1|xit) = F(β1 + β2Ageit + β3Incomeit + β4Kidsit + β5Educationit + β6Marriedit). 
 
(In order to examine fixed effects models, we have not used any of the time invariant variables, 
such as gender.)  Table 3 lists the maximum likelihood estimates and estimated asymptotic 
standard errors for several model specifications.  Estimates of the logit model are shown first, 
followed by the probit estimates.  There is a surprising amount of variation across the estimators.  
The coefficients are in bold to facilitate reading the table.  The empirical regularity that the 
MLE’s of the coefficients in the logit model are typically about 1.6 times their probit counterparts 
is strikingly evident in these results (e.g., the ratios are 1.613 and 1.597 for the coefficients on age 
and income, respectively). The apparent differences between the logit and probit results are 
resolved by a comparison of the partial effects shown in Table 3.  As anticipated, the results are 
essentially the same for the two models.  The first two rows of partial effects in Table 3 compare 
the partial effects computed at the means of the variables in the first row to the average partial 
effects, computed by averaging the individual partial effects, in the second.  As might be 
expected, the difference between them is inconsequential. 
 The log likelihood for the probit model is slightly larger than for the logit, however, it is 
not possible to compare the two on this basis – the models are not nested.  The Vuong statistic 
based on vi = lnLi(logit)  - lnLi(probit) equals -7.44, which favors the probit model.  The 
aggregated prediction of the pooled logit model is shown below.   The usual prediction rule in 
(0.2), P* = .5 produces the following results: 
      Predicted 

Actual 0 1 
0 378 9757 
1 394 16797 

 
 
 
 
Thus, we obtain correct prediction of (378+16797)/27326 = 62.9% of the observations.  In spite 
of this apparently good model performance, the pseudo-R2 is only 1 –(–17673.10) /(–18019.55) = 
0.01923.  This suggests the disconnection between these two measures of model performance.  
As a final check on the model itself, we tested the null hypothesis that the five coefficients other 
than the constant term are zero in the probit specification.  The likelihood ratio test is based on 
the statistic 
 
 λLR = 2[-17670.94 – 27326(.37089ln.37089 + .62911 ln.62911)) = 697.22. 
 
The Wald statistic based on the full model is λWALD = 686.991. The LM statistic is computed as 
 
 λLM = g0′X (G0′G0)-1X′g0
 
where g0 is the derivative of the full log likelihood when the estimated model contains only a 
constant term.  This is equal to qitφ(qitβ0)/Φ(qitβ0) where β0 = Φ-1(.62911) = .32949.  Then the ith 
row of G is git,0 times the corresponding row of X.  The value of the LM statistic is 715.97.  The 
95% critical value from the chi squared distribution with 5 degrees of freedom is 11.07, so in all 
three cases, the null hypothesis that the slopes are zero is rejected. 
 The second set of probit estimates were computed using the Gibbs sampler and a 
noninformative prior.  We used only 500 replications, and discarded the first 100 for the burn in.  
The similarity to the maximum likelihood estimates is what one would expect given the large 
sample size. We note however, that, notwithstanding the striking similarity of the Gibbs sampler 
to the MLE, this is not an efficient method of estimating the parameters of a probit model.  The 
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estimator requires generation of thousands of samples of potentially thousands of observations.  
We used only 500 replications to produce the results in Table 3.  The computations took about 
five minutes.  Using Newton’s method to maximize the log likelihood directly took less than five 
seconds.  Unless one is wedded to the Bayesian paradigm, on strictly practical grounds, the MLE 
would be the preferred estimator. 
 Table 3 also lists the probit and logit random and fixed effects estimates.  The random 
effects estimators produce a reasonably large estimate of ρ2, roughly 0.44.  The high correlation 
across observations does cast some doubt on the validity of the pooled estimator.  The pooled 
estimator is inconsistent in either the fixed or random effects cases.  The logit results include two 
fixed effects estimators.  The line marked “U” is the unconditional (inconsistent) estimator.  The 
one marked “C” is Chamberlain’s consistent estimator.  Note for all three fixed effects estimators, 
it is necessary to drop from the sample any groups that have Doctorit equal to zero or one for 
every period.  There were 3,046 such groups, which is about 42% of the sample.  We also 
computed the probit random effects model in two ways, first by using the Butler and Moffitt 
method, then by using maximum simulated likelihood estimation.  In this case, the estimators are 
very similar, as might be expected.  The estimated correlation coefficient, ρ2, is computed as 
σu

2/(σε
2+σu

2).  For the probit model, σε
2 = 1.  The MSL estimator computes su = 0.9088376, from 

which we obtained ρ2.  The estimated partial effects for the models are also shown in Table 3.  
The average of the fixed effects constant terms is used to obtain a constant term for the fixed 
effects case.  Once again there is a considerable amount of variation across the different 
estimators.  On average, the fixed effects models tend to produce much larger values than the 
pooled or random effects models. 
 Finally, we carried out two tests of the stability of the model. All of the estimators listed 
in Table 3 derive from a model in which it is assumed that the same coefficient vector applies in 
every period.  To examine this assumption, we carried out a homogeneity test of the hypothesis 
 
 H0: β1 = β2 = ... = βT
 
for the seven periods in the sample.  The likelihood ratio statistic is 
 
 λ  =  )12 ln lnT

t t POOLEDL L=
⎡ ⎤−⎣ ⎦Σ  

 
The first part is obtained by dividing the sample into the seven years of data – the number of 
observations varies (3,874, 3,794, 3,792, 3,661, 4,483, 4,340, 3,377) – then estimating the model 
separately for each year.  The calculated statistic is 202.97.  The critical value from the chi 
squared distribution with (T-1)6 = 36 degrees of freedom is 50.998, so the homogeneity 
assumption is rejected by the data.  As a second test, we separated the sample into men and 
women and once again tested for homogeneity.  The likelihood ratio test statistic is 
 
 λ   =  2[lnLFEMALE + lnLMALE – lnLPOOLED] 

  =  2[(-7855.219377) + (-9541.065897) – (-18019.55) 

  =   1246.529452. 
 
The critical value from the chi squared distribution with 6 degrees of freedom is 12.592, so this 
hypothesis is rejected as well. 
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Table 3 Estimated Parameters for Panel Data Binary Choice Models 
                                                      Variable  

Model 
 
Estimate ln L Constant Age Income Kids Education Married 
β 
(ME) 
[APE] 

  
0.25112 

 0.020709 
(0.00481) 
[0.00471] 

 -0.18592 
(-0.0432) 
[-0.0423] 

 -0.22947 
(-0.0536) 
[-0.0522] 

 -0.045587 
(-0.0106) 
[-0.0104] 

  0.085293 
 (0.0199) 
 [0.0194] 

St.Er.  0.091135  0.001285   0.075064   0.029537   0.005646   0.033286 

Logit 
Pooled 

Rob.SE
e

 
 
-17673.10 

 0.12827  0.001743   0.091546   0.038313   0.008075   0.045314 

β 
(ME) 

-0.13460 
 

 0.039267 
(0.00642) 

  0.021914 
 (0.00358) 

 -0.21598 
(-0.0354) 

 -0.063578 
(-0.0103) 

  0.025071 
 (0.00410) Logit R.E. 

ρ2=0.41607 
St.Er. 

-15261.90 
 0.17764  0.002465   0.11866   0.047738   0.011322   0.056282 

β 
(ME) 

 0.10475 
(0.0249) 

 -0.060973 
(-0.0145) 

 -0.088407 
(-0.0210) 

 -0.11671 
(-0.0277) 

 -0.057318 
(-0.0136) Logit 

F.E.(U)a

St.Er. 
 -9458.64 

 

 0.007255   0.17829   0.074399   0.066749   0.10609 
β 
(ME) 

 0.084760 
(0.00730) 

 -0.050383 
(-0.00434) 

 -0.077764 
(-0.00670) 

 -0.090816 
(-0.00782) 

 -0.052072 
(-0.00448) Logit 

F.E.(C)b
St.Er. 

 -6299.02 
 

 0.006502   0.15888   0.066282   0.056673   0.093044 

β 
(ME) 

 0.15500 
 

 0.012835 
(0.00484) 

 -0.11643 
(-0.0439) 

 -0.14118 
(-0.0534) 

 -0.028115 
(-0.0106) 

  0.052260 
 (0.0198) 

St.Er.  0.056516  0.000790   0.046329   0.018218   0.003503   0.020462 
Probit 
Pooled 

Rob.SEe
-17670.94 

 0.079591  0.001074   0.056543   0.023614   0.005014   0.027904 
β (Mean)  0.15729  0.012807  -0.11319  -0.14160  -0.028234   0.050943 Bayesian 

Pooled 
Probit β (Var.) 

 
    N/A 

 0.057824  0.000784   0.048868   0.017385   0.003437   0.020729 

β 
(ME) 

 0.034113  0.020143 
(0.00560) 

 -0.003176 
(-0.00088) 

 -0.15379 
(-0.0428) 

 -0.033694 
(-0.00938) 

  0.016325 
 (0.00454) Probit:REc 

ρ2=0.44789 
St.Er. 

-16273.96 
 0.096354  0.001319   0.066672   0.027043   0.006289   0.031347 

β 
(ME) 

 0.033290  0.020078 
(0.00715) 

 -0.002973 
(-0.00106) 

 -0.153579 
(-0.0547) 

 -0.033489 
(-0.0119) 

  0.016826 
 (0.00599) Probit:REd 

ρ2=0.44799 
St.Er. 

-16279.97 
 0.063229  0.000901   0.052012   0.020286   0.003931   0.022771 

β 
(ME) 

 0.062528 
(0.0239) 

 -0.034328 
(-0.0132) 

 -0.048270 
(-0.0185) 

 -0.072189 
(-0.0277) 

 -0.032774 
(-0.0126) Probit 

F.E.(U) 
St.Er. 

 -9453.71  

 0.004322   0.10745   0.044559   0.040731  0.063627 
a Unconditional fixed effects estimator, b Conditional fixed effects estimator, c Butler and Moffitt Estimator 
d Maximum simulated likelihood estimator e Robust, “cluster” corrected standard error 

 

 



0.4  Bivariate and multivariate binary choice 
 
The health care data contain two binary variables, Doctor and Hospital, that one would expect to 
be at least correlated if not jointly determined.   The extension of the binary choice to more than 
one choice is relatively uncomplicated, but does bring new statistical issues as well as new 
practical complications.  We consider several two equation specifications first, as these are the 
leading cases, then consider the extension to an arbitrary number of binary choices. 
 
0.4.1  Bivariate binary choice 
 
A two equation binary choice model would take the form of a seemingly unrelated regressions 
model, 
 
 di,1*  =  wi,1′θ1 + εi,1,  di,1 = 1 if di,1* > 0,  
 di,2*  =  wi,2′θ2 + εi,2,  di,2 = 1 if di,2* > 0, 
 
where ‘1’ and ‘2’ distinguish the equations (and are distinct from the periods in a panel data 
case).  The bivariate binary choice model arise when the two disturbances are correlated.  There is 
no convenient approach for this model based on the logistic model, so we assume bivariate 
normality at the outset.  The bivariate probit model has 
 
 F(εi,1,εi,2)  =  N2[(0,0),(1,1),ρ], -1 < ρ < 1. 
 
The probability associated with the joint event di,1 = di,2 = 1 is then 
 
 Prob(di,1 = 1, di,2 = 1 | wi,1, wi,2) = 2 ,1 1 ,2 2,  ,  i i′ ′⎡ ⎤Φ ρ⎣ ⎦w wθ θ  
 
where Φ2[c1,c2,ρ] denotes the bivariate normal cdf.  The log likelihood function is the joint 
density for the observed outcomes.  By extending the formulation of the univariate probit model 
in the preceding section, we obtain 
 
 ( ) ( ) ( )2 ,1 ,1 1 ,2 ,2 2 ,1 ,21

ln ln ,  ,  n
i i i i i ii

L q q q
=

⎡ ⎤′ ′= Φ ⎣ ⎦∑ w wθ θ q ρ  

 
The bivariate normal integral does not exist in closed form, and must be approximated, typically 
with Hermite quadrature.   
 The model is otherwise conventional and the standard conditions for maximum 
likelihood estimators are obtained.  Interpretation of the model does bring some complications, 
however.  First, θ1 and θ2 are not the slopes of any recognizable conditional mean function.  Nor 
are the derivatives of the possibly interesting Prob(di,1 = 1, di,2 = 1 | wi,1, wi,2).  Both of these are 
complicated functions of all the model parameters and both data vectors.  [See Greene (2008, 
Section 23.8.3 and  Christofides et al. (1997, 2000).  Since this is a two equation model, it is 
unclear what quantity should be analyzed when interpreting the coefficients in relation to partial 
effects.  One possibility is the joint probability,  Prob(di,1=1,di,2=1) = 2 ,1 1 ,2 2,  ,  i i′ ′⎡ ⎤Φ ρ⎣ ⎦w wθ θ , that 
is analyzed by Christofides et al.  Greene (1996, 2008) considers, instead, the conditional mean 
function E[di,1 | di,2 = 1,wi,1, wi,2] = 2 ,1 1 ,2 2,  ,  i i′ ′⎡ ⎤Φ ρ⎣ ⎦w wθ θ /Φ[ ,2 2i′w θ ].  In either case, the raw 
coefficients bear little resemblance to the partial effects. 
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 For hypothesis testing about the coefficients, the standard results for Wald, LM and LR 
tests apply.  The LM test is likely to be cumbersome because the derivatives of the log likelihood 
function are complicated.  The other two are straightforward.  A hypothesis of interest is the null 
hypothesis that the correlation is zero.  For testing 
 
 H0: ρ = 0, 
 
all three likelihood based procedures are straightforward.  The application below demonstrates.  
The Lagrange multiplier statistic derived by Kiefer (1982) is  
 

 λLM  =  

2

,1 1 ,2 2
,1 ,21

,1 ,1 1 ,2 ,2 2

2
,1 1 ,2 2

1
,1 1 ,1 ,2 2 ,2 2

( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

w w
w w

w w
w w w w

n i i
i ii

i i i i

n i i

i
i i i i

q q
q q=

=

⎧ ⎫′ ′⎡ ⎤φ φ⎪ ⎪
⎨ ⎢ ⎥⎬′ ′Φ Φ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫′ ′⎡ ⎤φ φ⎪ ⎪⎣ ⎦
⎨ ⎬′ ′ ′ ′Φ Φ − Φ Φ −⎪ ⎪⎩ ⎭

∑

∑
1

θ θ
θ θ

θ θ

θ θ θ θ

 

 
where the two coefficient vectors are the MLEs from the univariate probit models estimated 
separately. 
 
0.4.2  Recursive simultaneous equations  
 
Section 0.3.5 considered a type of simultaneous equations model in which an endogenous 
regressor appears on the right hand side of a probit model.  Two other simultaneous equations 
specifications have attracted interest.  Amemiya (1985) demonstrates that a fully simultaneous 
bivariate probit model, 
 
 di,1*  = wi,1′θ1 + γ1di,2 + εi,1,  di,1 = 1 if di,1* > 0,  
 di,2*  = wi,2′θ2 + γ2di,1 + εi,2,  di,2 = 1 if di,2* > 0, 
 
is internally inconsistent, and unidentified.  However, a recursive model, 
 
 di,1*  =  wi,1′θ1 + εi,1,  di,1 = 1 if di,1* > 0,  
 di,2*  =  wi,2′θ2 + γ2di,1 + εi,2,  di,2 = 1 if di,2* > 0, 
 (εi,1εi,2) ~ N2[(0,0),(1,1),ρ] 
 
is a straightforward extension of the model.  (For estimation of this model we have the 
counterintuitive result that it can be fit as an ordinary bivariate probit model with the additional 
right hand side variable in the second equation, ignoring the simultaneity.  The recent literature 
provides a variety of applications of this model including Greene (1998), Fabbri, Monfardini and 
Radice (2004), Kassouf and Hoffman (2006), White and Wolaver (2003), Gandelman (2005), and 
Greene et al. (2006).   
 Interpretation of the components of this model is particularly complicated. Typically, 
interest will center on the second equation.  For a few of the examples cited, in Greene (1998), 
the second equation concerned presence of a gender economics course in a college curriculum 
while the first equation specified presence of a women’s studies program on the campus.  In 
Kassouf and Hoffman (2003), the authors were interested in the occurrence of work related 
injuries while the first, conditioning equation specified the use or nonuse of protective equipment.  
Fabbri et al. (2004) analyzed the choice of Cesarean delivery conditioned on hospital type (public 
or private).  In Greene et al. (2006), the main equation concerned use of a check cashing facility 
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while the conditioning event in the first equation was whether or not the individual participated in 
the banking system.  In all of these cases, the margin of interest is the impact of the variables in 
the model on the probability that di,2 equals one.  Because di,1 appears in the equation, there is 
(potentially) a direct effect (in wi,2) and an indirect effect transmitted to di,2 through the impact of 
the variable in question on the probability that di,1 equals one.  Details on these computations 
appear in Greene (2008) and Kassouf and Hoffmann (2006). 
 
0.4.3  Sample selection in a bivariate probit model 
 
Another bivariate probit model that is related to the recursive model of the preceding section is 
the bivariate probit with sample selection.  The structural equations are 
 
 di,1* = wi,1′θ1 + εi,1, di,1 = 1 if di,1* > 0, 0 otherwise, 
 di,2* = wi,2′θ2 + εi,2, di,2 = 1 if di,2* > 0, 0 otherwise, and if di,1 = 1, 
 di,2,wi,2 are unobserved when di,1 = 0, 
 (εi,1εi,2) ~ N2[(0,0),(1,1),ρ]. 
 
The first equation is a ‘selection equation.’  Presence in the sample for observation of the second 
equation is determined by the first.  Like the recursive model, this framework has been used in a 
variety of applications.  The first was a study of the choice of deductibles in insurance coverage 
by Wynand and van Praag (1981).  Boyes, Hoffman and Low (1989) and Greene (1992) studied 
loan default in which the application is the selection rule.  More recently, McQuestion (2000) has 
used the model to analyze health status (selection) and health behavior, and Lee et al. (2003) have 
studied consumer adoption of computer banking technology. 
 Estimation of this sample selection model is done by maximum likelihood in one step.21  
The log likelihood is 
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As before, estimation and inference in this model follows the standard procedures. 
 
0.4.4  Multivariate binary choice and the panel probit model 
 
In principle, the bivariate probit model can be extended to an arbitrary number of equations, as  
 
 di,1*  =  wi,1′θ1 + εi,1,  di,1 = 1 if di,1* > 0,  
 di,2*  =  wi,2′θ2 + εi,2,  di,2 = 1 if di,2* > 0 
 ... 
 di,M  =  wi,M′θM + εi,M,  di,M = 1 if di,M* > 0, 
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21 Wynand and van Praag used a two step procedure similar to Heckman/s (1979) procedure for the linear 
model.  Applications since then have used the MLE. 
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The obstacle to use of this model is the computational burden.  The log likelihood is computed as 
follows:  Let 
 
 Qi = diag(qi,1,qi,2,...,qi,M) 
 bi = (wi,1′θ1 , wi,2′θ2, ..., wi,M′θM)′ 
 ci = Qibi
 Di = QiRQi
then,  
 

1
ln ln [ , ]n

M i ii
L

=
= Φ∑ c D  

 
Evaluation of the M variate normal cdf cannot be done analytically or with quadrature.  It is done 
with simulation, using the GHK simulator. [See Geweke, et al. (1994).] 
 This form of the model also generalizes the random effects probit model examined 
earlier.  We can relax the assumption of equal cross period correlations by writing 
 
 dit*  =  wit′θ  +  εit,  dit = 1 if dit* > 0, 0 otherwise, 
 (εi1,...,εiT)  ~  N[0,R]. 
 
This is precisely the model immediately above with the constraint that the coefficients in the 
equations are all the same.  In this form, it is conventionally labeled the panel probit model.22  
Bertschek and Lechner (1998) devised a GMM estimator to circumvent the computational burden 
of this model.  Greene (2004a) examined the same model, and considered alternative 
computational procedures as well some variations on the model specification. 
 
0.4.5  Application 
 
 Riphahn et al. studied the joint determination of two counts, doctor visits and hospital 
visits.  One would expect these to be highly correlated, so a bivariate probit model should apply 
to Doctor = 1(DocVis > 0) and Hospital = 1(HospVis > 0).  The simple product moment 
correlation coefficient is inappropriate for binary variables. The tetrachoric correlation is used 
instead; this turns out to be the estimate of ρ in a bivariate probit model in which both equations 
contain only a constant term.  The first estimated model in Table 4 reports a value of 0.311 with a 
standard error of only 0.0136, so the results are consistent with the conjecture.  The second 
estimates assume ρ = 0; those for the ‘Doctor’ equation are reproduced from Table 3.  As noted, 
there is evidence that ρ is positive.  Kiefer’s Lagrange multiplier statistic equals 399.20.  The 
limiting distribution is chi squared with one degree of freedom – the critical value is 3.84, so the 
hypothesis that the outcomes are conditionally uncorrelated is rejected.  The Wald and likelihood 
ratio statistics based on the unrestricted model are 21.4962 = 462.08 and 2[17670.94+8084.465 - 
25534.46] = 441.998, respectively, so the hypothesis is rejected based on all three tests.  The third 
model in Table 4 is the unrestricted bivariate probit model.  The fourth model shown in Table 4 is 
the recursive bivariate probit model with Doctor added to the right hand side of the Hospital 
equation.  The results do not support this specification; the log likelihood is almost unchanged. It 
is noteworthy that in this expanded specification, the estimate of ρ is no longer significant, as 
might have been expected. 

                                                 
22 Since the coefficient vectors are assumed to be the same in every period, it is only necessary to normalize 
one of the diagonal elements in R to 1.0.  See Greene (2004a) for discussion. 
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Table 4  Estimated Bivariate Probit Models (Standard errors in parentheses) 
 (1) 

Tetrachoric Corr. 
(2) 

Uncorrelated 
(3) 

Bivariate Probit 
(4) 

Recursive Probit 
 Doctor Hospital Doctor Hospital Doctor Hospital Doctor Hospital 
Constant  .329 

(.0077) 
-1.355 
(.0107) 

 .155 
(.0565) 

-1.246 
(.0809) 

 .155 
(.0565) 

-1.249 
(.0773) 

.155 
(.0565) 

-1.256 
(.481) 

Age  .000 
(.000) 

 .000 
(.000) 

 .0128 
(.0008) 

 .00488 
(.0011) 

 .0128 
(.0008) 

.00489 
(.0011) 

.0128 
(.0008) 

.00486 
(.0025) 

Hhninc  .000 
(.000) 

 .000 
(.000) 

-.116 
(.0463) 

 .0421 
(.0633) 

-.118 
(.0462) 

.0492 
(.0595) 

-.118 
(.0463) 

.0496 
(.0652) 

Hhkids  .000 
(.000) 

 .000 
(.000) 

-.141 
(.0182) 

-.0147 
(.0256) 

-.141 
(.0181) 

-.0129 
(.0257) 

-.141 
(.0181) 

-.0125 
(.0386) 

Educ  .000 
(.000) 

 .000 
(.000) 

-.0281 
(.0035) 

-.0260 
(.0052) 

-.0280 
(.0035) 

-.0260 
(.0051) 

-.0280 
(.0035) 

-.0260 
(.0066) 

Married  .000 
(.000) 

 .000 
(.000) 

 .0522 
(.0205) 

-.0547 
(.0279) 

 .0519 
(.0205) 

-.0546 
(.0277) 

.0519 
(.0205) 

-.0548 
(.0313) 

Doctor   .00912 
(.663) 

ρ .311  (.0136) 0.000 .303 (.0138) .298 (.366) 

Ln L -25898.27 -17670.94 -8084.47 -25534.46 -25534.46 

 
0.5  Ordered choice 
 
 In the preceding sections, the consumer is assumed to maximize utility over a pair of 
alternatives.  Models of ordered choice describe settings in which individuals reveal the strength 
of their utility with respect to a single outcome.  For example, in a survey of voter preferences 
over a single issue (a new public facility or project, a political candidate, etc.), random utility is, 
as before, 
 
 Ui*  =  xi′β + zi′γ  +  εi. 
 
The individual reveals a censored version of Ui* through a discrete response, for example, 
 
 yi    =   0: strongly dislike, 
  1: mildly dislike, 
  2: indifferent, 
  3: mildly prefer, 
  4: strongly prefer. 
 
The translation between the underlying Ui* and the observed yi produces the ordered choice 
model, 
 
 yi  =   0  if Ui* ≤  µ0

  1  if 0  <  Ui* ≤  µ1   
  2  if  µ1 < Ui* ≤ µ2
  ... 
  J  if  µJ-1 < Ui* ≤ µJ. 
 
where µ0,...,µJ are threshold parameters that are to be estimated with the other model parameters 
subject to µj > µj-1 for all j.  Assuming β contains a constant term, the distribution is located by 
the normalization µ0 = 0. (Note that in the form of our initial specification, this model would not 
contain any choice specific xi variables, as there is only one ‘alternative.’  We retain the current 
notation for simplicity and consistency with other treatments.)  At the upper tail, µJ = +∞.  
Probabilities for the observed outcomes are derived from the laws of probability, 
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 Prob(yi = j | xi,zi)  = Prob(di,j = 1 | xi,zi) 

      = Prob(µj-1 < Ui* ≤  µj) where  µ -1 = -∞. 
 
As before, the observed data do not reveal information about the scaling of εi, so the variance is 
normalized to one.  Two standard cases appear in the literature; if εi has a normal distribution, 
then the ordered probit model emerges while if it has the standardized logistic distribution, the 
ordered logit model is produced.  (Other distributions have been suggested – the model is 
internally consistent with any continuous distribution over the real line – however, these two 
overwhelmingly dominate the received applications.)   

By the laws of probability, 
 
 Prob(yi = j  |xi,zi) = Prob(Ui* ≤  µj)  -  Prob(Ui* ≤  µj-1) 
    = F(µj - xi′β - zi′γ) - F(µj-1 - xi′β - zi′γ) 
 
where F(c) is the assumed cdf, either normal or logistic.  These are the terms that enter the log 
likelihood for a sample of n observations.  The standard conditions for maximum likelihood 
estimation apply here.  The results in Table 1 suggest that the force of the incidental parameters 
problem in the fixed effects case is similar to that for the binomial probit model. 

As usual in discrete choice models, partial effects in this model differ substantively from 
the coefficients.  Note, first, there is no obvious regression at work.  Since yi is merely a labeling 
with no implicit scale, there is no conditional mean function to analyze.  In order to analyze the 
impact of changes in a variable, say income, one can decompose the set of probabilities.  For a 
continuous variable in xi, for example,  

 
δi,k(j) = ∂Prob(yi = j |xi,zi)/∂xi,k = -βk[f(µj - xi′β - zi′γ) – f(µj-1 - xi′β - zi′γ)], j = 0,…,J, 

 
where f(c) is the density, dF(c)/dc.  The sign of the partial effect is ambiguous, since the 
difference of the two densities can have either sign.  Moreover, since 0Prob( 1| , ) 1x zJ

j i i iy=Σ = = , 

it follows that =0.  Since the cdf is monotonic, there is one sign change in the set of 
partial effects.  The example below demonstrates.  For purposes of using and interpreting the 
model, it seems that the coefficients are of relatively little utility – neither the sign nor the 
magnitude directly indicates the effect of changes in a variable on the observed outcome. 

1 , ( )J
j i k j=Σ δ

 Terza (1985) and Pudney and Shields (2000) suggested an extension of the ordered 
choice model that would accommodate heterogeneity in the threshold parameters.  The extended 
model is 
 
 Prob(yi = j | xi,zi) =  F(µi,j - xi′β - zi′γ) - F(µi,j-1 - xi′β - zi′γ) 
where 
   µi,j =  vi′πj where π0 = 0 
 
for a set of variables vi.  The model as shown has two complications   First, it is straightforward 
to constrain the fixed threshold parameters to preserve the ordering needed to ensure that all 
probabilities are positive.23  When there are variables vi in the construction, it is no longer 
possible to produce this result parametrically.  The authors (apparently) did not find it necessary 
to confront this constraint.  As second feature of the model (which was examined at length by the 
                                                 
23 For example, the parameters can be written in terms of a set of latent parameters so that µ1 = τ1

2, µ2 = 
τ1

2+τ2
2, and so on.  Typically, the explicit reparameterization is unnecessary. 
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authors) is the unidentifiability of elements of πj when vi and (xi,zi) contain the same variables.  
This is a result of the linear functional form assumed for µi,j.  Greene (2007), Harris and Zhao 
(2007) and Greene et al. (2007) suggested alternative parameterizations that circumvents these 
problems, a restricted version, 
 
 µi,j = exp (µj + vi′π) 
 
and a counterpart to Pudney and Shields’s formulation, 
 
 µi,j = exp(vi′πj).24

 
0.5.1  Specification analysis 
 
 As in the binary choice case, the analysis of micro- level data is likely to encounter 
individual heterogeneity not only in the means of utilities (xi,zi) but also in the scaling of Ui*, that 
is, in the variance of εi. Building heteroscedasticity into the model as in the binary choice model 
shown earlier is straightforward.  If 
 
 E[εi

2 | vi] = [exp(vi′τ)]2 

 
then the log likelihood would become 
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As before, this complicates (even further) the interpretation of the model components and the 
partial effects. 
 There is no direct test for the distribution, since the alternatives are not nested.  The 
Vuong test is a possibility, however the power of this test and its characteristics remain to be 
examined both analytically and empirically. 
 
0.5.2  Bivariate ordered probit models 
 
There are several extensions of the ordered probit model that follow the logic of the bivariate 
probit model we examined in Section 0.4.  A direct analog to the base case two equation model 
was used by Butler et al. (1998) who analyzed the relationship between the level of calculus 
attained and grades in intermediate Economics courses for a sample of Vanderbilt University 
students.  The two step estimation approach involved the following strategy:  (We are stylizing 
the precise formulation a bit in order to compress the description.)  Step 1 involved a direct 
application of the  

 
24 One could argue that this reformulation achieves identification purely ‘through functional form’ rather 
than through the theoretical underpinnings of the model.  Of course, this assertion elevates the linear 
specification to a default position of prominence which seems unwarranted.  Moreover, arguably, the 
underlying theory (as in fact suggested in passing by Pudney and Shields (2000)) is that there are different 
effects of the regressors on the thresholds and on the underlying utility. 
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ordered probit model of Section 0.5 to the level of calculus achievement, which is coded 0,1,...,6; 
 
  mi*   =  xi′β  +  εi, εi|xi~ N[0,1], 
  mi =  0  if  -∞ < mi* < 0, 
       1  if  0   < mi* < µ1, 
       ... 
       6  if  µ5  < mi* < +∞. 
 
The authors argued that although the various calculus courses can be ordered discretely by the 
material covered, the differences between the levels cannot be measured directly.  Thus, this is an 
application of the ordered probit model.  The independent variables in this first step model 
included SAT scores, foreign language proficiency, indicators of intended major and several other 
variables related to areas of study.   
 The second step of the estimator involves regression analysis of the grade in the 
intermediate microeconomics or macroeconomics course.  Grades in these courses were 
translated to a granular continuous scale (A = 4.0, A- = 3.7, etc.). A linear regression is specified, 
 
  Gradei  =  zi′δ + ui, where ui|zi ~ N[0,σu

2]. 
 
Independent variables in this regression include, among others, (1) dummy variables for which 
outcome in the ordered probit model applies to the student (with the zero reference case omitted), 
(2) grade in the last calculus course, (3) several other variables related to prior courses, (4) class 
size, (5) freshman GPA, etc.  The unobservables in the Grade equation and the math attainment 
are clearly correlated, a feature captured by the additional assumption that (εi,ui|xi,zi) ~ 
N2[(0,0),(1,σu

2),ρσu]. A nonzero ρ captures this “selection” effect. With this in place, the dummy 
variables in (1) above have now become endogenous.  The solution is a selection correction,   
 
  Gradei|mi  =  zi′δ  + E[ui|mi] + vi

       =  zi′δ  + (ρσu)[λ(xi′β,µ1,...,µ5)] + vi. 
 
They thus adopt a control function approach to accommodate the endogeneity of the math 
attainment dummy variables.  The term λ(xi′β,µ1,...,µ5) is a generalized residual that is 
constructed using the estimates from the first stage ordered probit model. [A precise statement of 
the form of this variable is given in Tobias and Li (2006).]  Linear regression of the course grade 
on zi and this constructed regressor is computed at the second step.  The standard errors at the 
second step must be corrected for the use of the estimated regressor using what amounts to a 
Murphy and Topel (1985) correction. 
 Li and Tobias (2006) in a replication of and comment on Butler et al. (1998), after 
roughly replicating the classical estimation results with a Bayesian estimator, observe that the 
Grade equation above could also be treated as an ordered probit model.  The resulting bivariate 
ordered probit model would be 
 
 mi*   =  xi′β  +  εi,   and gi*   =  zi′δ   +  ui, 
 mi =  0  if  -∞ < mi* < 0,   gi =  0  if  -∞ < gi* < 0, 
      1  if  0   < mi* < µ1,        1  if  0   < gi* < α1, 
      ...           ... 
      6  if  µ5  < mi* < +∞.      11  if  µ9  < gi* < +∞ 
where       (εi,ui|xi,zi) ~ N2[(0,0),(1,σu

2),ρσu]. 
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Tobias and Li extended their analysis to this case simply by “transforming” the dependent 
variable in Butler et al.’s second equation.  Computing the log likelihood using sets of bivariate 
normal probabilities is fairly straightforward for the bivariate ordered probit model. [See Greene 
(2007).] However, the classical study of these data using the  bivariate ordered approach remains 
to be done, so a side by side comparison to Tobias and Li’s Bayesian alternative estimator is not 
possible.  The endogeneity of the calculus dummy variables in (1) remains a feature of the model, 
so both the MLE and the Bayesian posterior are less straightforward than they might appears. 

The bivariate ordered probit model has been applied in a number of settings in the recent 
empirical literature, including husband and wife’s education levels [Magee et al. (2000)], family 
size [(Calhoun (1991)] and many others.  In two early contributions to the field of pet 
econometrics, Butler and Chatterjee analyze ownership of cats and dogs (1995) and dogs and 
televisions (1997). 
 
0.5.3  Panel data applications 
 
Fixed effects 
 
D’Addio et al. (2003), using methodology developed by Frijters et al. (2004) and Ferrer-i-
Carbonel et al. (2004) analyzed survey data on job satisfaction using the Danish component of the 
European Community Household Panel.  Their estimator for an ordered logit model is built 
around the logic of Chamberlain’s estimator for the binary logit model. (Section 23.5.2). Since 
the approach is robust to individual specific threshold parameters and allows time invariant 
variables, so it differs sharply from the fixed effects models we have considered thus far as well 
as from the ordered probit model of Section 0.5.  Unlike Chamberlain’s estimator for the binary 
logit model, however, their conditional estimator is not a function of minimal sufficient statistics. 
As such, the incidental parameters problem remains an issue.   
 Das and van Soest (1999) proposed a somewhat simpler approach.  [See, as well, Long’s 
(1997) discussion of the “parallel regressions assumption,” which employs this device in a cross 
section framework.]  Consider the base case ordered logit model with fixed effects, 
 
  yit* = αi + xit′β + εit, εit|Xi ~ N[0,1] 
  yit   =  j  if  µj-1 < yit* < µj, j = 0,1,...,J and µ-1 = -∞, µ0 = 0, µJ = +∞. 
 
The model assumptions imply that 
 
  Prob(yit = j|Xi)  =  Λ(µj – αi – xit′β)  -  Λ(µj-1 – αi – xit′β) 
 
where Λ(c) is the cdf of the logistic distribution.  Now, define a binary variable 
 
   wit,j  =  1 if yit > j, j = 0,...,J-1. 
 
It follows that 
   Prob[wit,j = 1|Xi]  =  Λ(αi – µj  + xit′β ) 
        =  Λ(θi  + xit′β ). 
 
The “j” specific constant, which is the same for all individuals, is absorbed in θi.  Thus, a fixed 
effects binary logit model applies to each of the J-1 binary random variables, wit,j.  The method in 
Section 0.3.6 can now be applied to each of the J-1 random samples.  This provides J-1 
estimators of the parameter vector β (but no estimator of the threshold parameters).  The authors 
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propose to reconcile these different estimators by using a minimum distance estimator of the 
common true β.    The minimum distance estimator at the second step is chosen to minimize 

   ( ) (1 1 1
0 0
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q − − −
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where  is the j,m block of the inverse of the (J-1)K×(J-1)K partitioned matrix V that 

contains .  The appropriate form of this matrix for a set of cross section 

estimators is given in Brant (1990).  Das and van Soest (2000) used the counterpart for 
Chamberlain’s fixed effects estimator, but do not provide the specifics for computing the off 
diagonal blocks in V. 
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 The full ordered probit model with fixed effects, including the individual specific 
constants, can be estimated by unconditional maximum likelihood using the results in Greene 
(2008, Section 16.9.6.c). The likelihood function is concave [see Pratt (1981)], so despite its 
superficial complexity, the estimation is straightforward.  (In the application below, with over 
27,000 observations and 7,293 individual effects, estimation of the full model required roughly 
five seconds of computation.)  No theoretical counterpart to the Hsiao (1986, 2003) and Abrevaya 
(1997) results on the small T bias (incidental parameters problem) of the MLE in the presence of  
fixed effects has been derived for the ordered probit model.  The Monte Carlo results in Table 1, 
suggest that biases comparable to those in the binary choice models persist in the ordered probit 
model as well.  As in the binary choice case, the complication of the fixed effects model is the 
small sample bias, not the computation. The Das and van Soest approach finesses this problem – 
their estimator is consistent – but at the cost of losing the information needed to compute partial 
effects or predicted probabilities. 
 
Random effects 
 
The random effects ordered probit model has been much more widely used than the fixed effects 
model. Applications include Groot and van den Brink (2003) who studied training levels of 
employees, with firm effects and gains to marriage, Winkelmann (2004) who examined 
subjective measures of well being with individual and family effects, Contoyannis et al. who 
analyzed self reported measures of health status and numerous others. In the simplest case, the 
quadrature method of Butler and Moffitt (1982) can be used to maximize the log likelihood. 
 
0.5.4  Applications 
 
The German Health Care data that we have used earlier includes a self reported measure of health 
satisfaction, HSAT, that takes values 0,1,...,10.  This is a typical application of a scale variable 
that reflects an underlying continuous variable, “health.”  The frequencies and sample proportions 
for the reported values are as follows: 
 
NEWHSAT 0 1 2 3 4 5 6 7 8 9 10 

Frequency 447 255 642 1173 1390 4233 2530 4231 6172 3061 3192 

Proportion 1.6% 0.9% 2.3% 4.2% 5.0% 15.4% 9.2% 15.4% 22.5% 11.2% 11.6% 

 
We have fit pooled, and panel data versions of the ordered probit model to these data.  The model 
used is 
 
 Uit* = β1 + β2 Ageit + β3 Incomeit + β4 Educationit + β5 Marriedit + β6 Workingit + εit + ci
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where ci will be the common fixed or random effect. Table 5 lists five estimated models.  
(Standard errors for the estimated threshold parameters are omitted.)  The first is the pooled 
ordered probit model.  The second and third are fixed effects.  Column 2 shows the unconditional 
fixed effects estimates using the results in Greene (2008).  Column 3 shows the Das and van 
Soest estimator.  For the minimum distance estimator, we used an inefficient weighting matrix, 
the block diagonal matrix in which the jth block is the inverse of the jth asymptotic covariance 
matrix for the individual logit estimators.  With this weighting matrix, the estimator is  
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and the estimator of the asymptotic covariance matrix is approximately equal to the bracketed 
inverse matrix.  The fourth set of results is the random effects estimator computed using the 
maximum simulated likelihood method.  This model can be estimated using Butler and Moffitt’s 
quadrature method, however we found that even with a large number of nodes, the quadrature 
estimator converged to a point where the log likelihood was far lower than the MSL estimator, 
and at parameter values that were implausibly different from the other estimates.  Using different 
starting values and different numbers of quadrature points did not change this outcome.  The 
MSL estimator for a random constant term is considerably slower, but produces more reasonable 
results.  The fifth set of results is the Mundlak form of the random effects model, that includes the 
group means in the models as controls to accommodate possible correlation between the latent 
heterogeneity and the included variables. As noted earlier the components of the ordered choice 
model must be interpreted with some care.  By construction, the partial effects of the variables on 
the probabilities of the outcomes must change sign, so the simple coefficients do not show the 
complete picture implied by the estimated model.  Table 6 shows the partial effects for the pooled 
model to illustrate the computations. 
 Winkelmann (2004) used the random effects approach to analyze the subjective well 
being (SWB) question (also coded 0 to 10) in the German Socioeconomic Panel (GSOEP) data 
set.  The ordered probit model in this study is based on the latent regression 
 
    yimt*  =  ximt′β  +  εimt + uim + vi. 
 
The independent variables include age, gender, employment status, income, family size and an 
indicator for good health.  An unusual feature of the model is the nested random effects [see 
Greene (2008, Section 9.7.1)] which include a family effect, vi, as well as the individual family 
member (i in family m) effect, uim.  The GLS/MLE approach that would be used for the linear 
regression model is unavailable in this nonlinear setting.  Winkelmann, instead employed Hermite 
quadrature procedure to maximize the log likelihood function. 
 Contoyannis, Jones and Rice (2004) analyzed a self assessed health scale that ranged 
from 1 (very poor) to 5 (excellent) in the British Household Panel Survey. Their model 
accommodated a variety of complications in survey data.  The latent regression underlying their 
ordered probit model is 
    hit* = xit′β + Hi,t-1′γ + αi + εit, 
 
where xit includes marital status, race, education, household size, age, income, and number of 
children in the household.  The lagged value, Hi,t-1 is a set of binary variables for the observed 
health status in the previous period.  )  In this case, the lagged values capture state dependence – 
the assumption that the health outcome is redrawn randomly in each period is inconsistent with 
evident runs in the data.  The initial formulation of the regression is a fixed effects model.  To 
control for the possible correlation between the effects, αi, and the regressors, and the initial 
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conditions problem that helps to explain the state dependence, they use a hybrid of Mundlak’s 
(1978) correction and a suggestion by Wooldridge (2002) for modeling the initial conditions, 
 
    αi  =  α0 + ′x α1 +  Hi,1′δ + ui, 
 
where ui is exogenous.  Inserting the second equation into the first produces a random effects 
model that can be fit using Butler and Moffitt’s quadrature method. 
 
 
Table 5  Estimated Ordered Probit Models for Health Satisfaction 
 (1) 

Pooled 
(2) 

Fixed Effects 
Unconditional 

(3) 
Fixed Effects
Conditional 

(4) 
Random 
Effects 

(5) 
Random Effects 

Mundlak Controls 
Variable     Variables Means 
Constant  2.4739 

(0.04669) 
   3.8577 

(0.05072) 
 3.2603 
(0.05323) 

 

Age -0.01913 
(0.00064) 

-0.07162 
(0.002743) 

-0.1011 
(0.002878) 

-0.03319 
(0.00065) 

-0.06282 
(0.00234) 

 0.03940 
(0.002442) 

Income  0.1811 
(0.03774) 

 0.2992 
(0.07058) 

 0.4353 
(0.07462) 

 0.09436 
(0.03632) 

 0.2618 
(0.06156) 

 0.1461 
(0.07695) 

Kids  0.06081 
(0.01459) 

-0.06385 
(0.02837) 

-0.1170 
(0.03041) 

 0.01410 
(0.01421) 

-0.05458 
(0.02566) 

 0.1854 
(0.03129) 

Education  0.03421 
(0.002828) 

 0.02590 
(0.02677) 

 0.06013 
(0.02819) 

 0.04728 
(0.002863) 

 0.02296 
(0.02793) 

 0.02257 
(0.02807) 

Married  0.02574 
(0.01623) 

 0.05157 
(0.04030) 

 0.08505 
(0.04181) 

 0.07327 
(0.01575) 

 0.04605 
(0.03506) 

-0.04829 
(0.03963) 

Working  0.1292 
(0.01403) 

-0.02659 
(0.02758) 

-0.007969 
(0.02830) 

 0.07108 
(0.01338) 

-0.02383 
(0.02311) 

 0.2702 
(0.02856) 

µ1
 0.1949  0.3249  0.2726 0.2752 

µ2
 0.5029  0.8449  0.7060 0.7119 

µ3
 0.8411  1.3940  1.1778 1.1867 

µ4
 1.111  1.8230  1.5512 1.5623 

µ5
 1.6700  2.6992  2.3244 2.3379 

µ6
 1.9350  3.1272  2.6957 2.7097 

µ7
 2.3468  3.7923  3.2757 3.2911 

µ8
 3.0023  4.8436  4.1967 4.2168 

µ9
 3.4615  5.5727  4.8308 4.8569 

σu
 0.0000  0.0000  1.0078 0.9936 

ln L -56813.52 -41875.63 

 

-53215.54       -53070.43 

 
Table 6  Estimated Marginal Effects: Pooled Model 
HSAT    Age     Income     Kids   Education  Married   Working 
 0    0.0006   -0.0061   -0.0020   -0.0012   -0.0009   -0.0046 
 1    0.0003   -0.0031   -0.0010   -0.0006   -0.0004   -0.0023 
 2    0.0008   -0.0072   -0.0024   -0.0014   -0.0010   -0.0053 
 3    0.0012   -0.0113   -0.0038   -0.0021   -0.0016   -0.0083 
 4    0.0012   -0.0111   -0.0037   -0.0021   -0.0016   -0.0080 
 5    0.0024   -0.0231   -0.0078   -0.0044   -0.0033   -0.0163 
 6    0.0008   -0.0073   -0.0025   -0.0014   -0.0010   -0.0050 
 7    0.0003   -0.0024   -0.0009   -0.0005   -0.0003   -0.0012 
 8   -0.0019    0.0184    0.0061    0.0035    0.0026    0.0136 
 9   -0.0021    0.0198    0.0066    0.0037    0.0028    0.0141 
10   -0.0035    0.0336    0.0114    0.0063    0.0047    0.0233 
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0.6  Models for counts 
 
 A model that is often used for interarrival times at such facilities as telephone switches, 
ATM machines, or the service windows of banks or gasoline stations is the exponential model, 
 
 f(t)  =  θ exp (-θt), t > 0, θ > 0, 
 
where the continuous variable, t, is the time between arrivals.  The expected interarrival time in 
this distribution is E[t] = 1/θ.   Consider the number of arrivals, y, that occur per unit of time.  It 
can be shown that this discrete random variable has the Poisson probability distribution 
 
 f(y)  =  exp(-λ)λy / y!, λ = 1/θ > 0, y = 0,1,... 
 
The expected value of this discrete random variable is E[y] = 1/θ. The Poisson regression model 
arises from the specification 
 
 E[yi|xi]  =  λi = exp(xi′β). 
 
The loglinear form is used to ensure that the mean is positive.  Estimation of the Poisson model 
by maximum likelihood is straightforward owing to the simplicity of the log likelihood and its 
derivatives, 
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Inference about parameters is based on either the actual (and expected) Hessian,  
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or the BHHH estimator which is 
 

 VBHHH  =  
1 1 12 2

1 1
ˆ ˆ  ( ) =  n n

i i i i i i ii i
y

− − −

= =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤′ ′ ′ ′= − λ = ε ⎣ ⎦⎣ ⎦ ⎣ ⎦∑ ∑x x x x X XΕ . 

 
Hypothesis tests about the parameters may be based on the likelihood ratio or Wald statistics, or 
the Lagrange multiplier statistic which is particularly convenient here, 
 

 λLM  =   0 0
BHHH1 1

ˆ ˆn n
i ii i= =

′⎡ ⎤ ⎡ε ε⎣ ⎦ ⎣∑ ∑x V x⎤
⎦

 
where the residuals are computed at the restricted estimates.  For example, under the null 
hypothesis that all coefficients are zero save for the constant term,  0ˆ

i yλ = , 0ˆ i iy yε = −  and 
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 The Poisson model is one in which the MLE is robust to certain misspecifications of the 
model, such as the failure to incorporate latent heterogeneity in the mean (i.e., one fits the Poisson 
model when the negative binomial is appropriate.)  In this case, the robust (sandwich) covariance 
matrix, 
 

 Robust Est.Asy.Var      =  ˆ⎡ ⎤
⎣ ⎦β

1ˆX X
−

⎡ ⎤′⎣ ⎦Λ 2ˆX X⎡ ⎤′⎣ ⎦Ε
1ˆX X

−
⎡ ⎤′⎣ ⎦Λ  

 
is appropriate to accommodate this failure of the model.  It has become common to employ this 
estimator with all specifications, including the negative binomial.  One might question the virtue of 
this. Since the negative binomial model already accounts for the latent heterogeneity, it is unclear 
what additional failure of the assumptions of the model this estimator would be robust to.  
 Since the model is a true regression model, the predicted values,  are meaningful 
quantitative forecasts of the actual outcomes, y

ˆ
iλ

i.  The simple squared correlation between and yˆ
iλ i 

will be indicative of the fit of the model, though it is not a measure of variation explained.  
Moreover, though it is likely in practice, the theory does not guarantee that this r2-like measure will 
increase when variables are added to the model.  Several alternative measures of fit for count data 
models are suggested in Greene (2008, Chapter 25).  One which has an intuitive appeal is based on 
the model deviances, ei = 2[yi ln (yi/ ˆ

iλ ) – (yi - ˆ
iλ )] (where 0 ln0 is understood to equal zero).  An 

associated fit measure based on this measure is 
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where l( ) indicates the evaluation of the log likelihood function with yˆiy i predicted by the indicated 

.  (Thus, l(yˆiy i) is the original log likelihood.)  [See Cameron and Windmeijer (1993).] 
 
0.6.1  Heterogeneity and the negative binomial model 
 
 The Poisson model is typically only the departure point for the analysis of count data.  
The simple model has (at least) two shortcomings that arise from heterogeneity that is not 
explicitly incorporated in the model. 
 One easily remedied minor issue concerns the units of measurement of the data.  In the 
Poisson model (and negative binomial model below), the parameter λi is the expected number of 
events per unit of time.  Thus, there is a presumption in the model formulation, e.g., the Poisson, 
that the same amount of time is observed for each i.  In a spatial context, such as measurements of 
the incidence of a disease per group of Ni persons, or the number of bomb craters per square mile 
(London, 1940), the assumption would be that the same physical area or the same size of population 
applies to each observation.  Where this differs by individual, it will introduce a type of 
heteroscedasticity in the model.  The simple remedy is to modify the model to account for the 
exposure, Ti, of the observation as follows: 
 

 exp( )( )Prob( | , ) , exp( ), 0,1,....
!

x  x  
j

i i i i
i i i i i

T Ty j T j
j

− φ φ ′= = φ = =β  

 
The original model is returned if we write λi = exp( ln )xi Ti′ +β .  Thus, when the exposure differs by 
observation, the appropriate accommodation is to include the log of exposure in the regression part 
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of the model with a coefficient of 1.0.  (For less than obvious reasons, the term “offset variable” is 
commonly associated with the exposure variable Ti.)  Note that if Ti is the same for all i, lnT will 
simply vanish into the constant term of the model (assuming one is included in xi.) 
 The less straightforward restriction of the Poisson model is that E[yi|xi] = Var[yi|xi]. This 
equidispersion assumption is a major shortcoming.  Observed data rarely if ever display this feature.  
The very large amount of research activity on functional forms for count models is often focused on 
testing for equidispersion and building functional forms that relax this assumption. 
 The overdispersion found in observed data can be attributed to omitted heterogeneity in 
the Poisson model.  A more complete regression specification would be 
 
 E[yi|xi]  =  λi =  hi exp(xi′βi) =  exp(xi′β + εi) 
 
where the heterogeneity, hi has mean one and nonzero variance.  Two candidates for the 
distribution of εi have dominated the literature, the lognormal model discussed later and the log 
gamma model.  The more common specification is the log gamma model, which derives from the 
gamma variable, 
 
 f (hi)  =  [θθ/Γ(θ)]exp(-θhi)hi

θ-1, hi > 0.25

 
This gamma distributed random variable has mean 1.0 and variance 1/θ.  (A separate variance 
parameter is not identified – the scaling in the model is, once again, absorbed by the coefficient 
vector.)  If we write the Poisson – log gamma model as  
 

f(yi | xi,hi) = ex  p( )( ) / ( 1)iy
i i i i ih h y− λ λ Γ +

 
then the unconditional distribution is 
 

 f(yi|xi)  =  
  

 0  0
( , | ) ( | , ) ( )i i i i i i i i if y h x dv f y x h f h dh

∞ ∞
=∫ ∫  

 
The integral can be obtained in closed form; the result is the negative binomial model, 
 

 Prob(Y = yi|xi) =  
( ) (1 )

( 1) ( )
iyi

i i
i

y r r
y

θΓ θ +
−

Γ + Γ θ
, 

 λi  = , exp( )i′x β

 ri =  λi / (θ + λi). 
 

The recent literature, mostly associating the result with Cameron and Trivedi (1986, 
1998)  defines this form of the negative binomial model as the Negbin 2 (NB2) form of the 
probability This is the default form of the model in the common econometrics packages that 
provide an estimator for this model.  The Negbin 1 (NB1) form of the model results if θ in the 
preceding is replaced with θi = θλi.  Then, ri reduces to r = 1/(1+θ), and the density becomes 
 

 Prob(Y = yi|xi) =  
( )

(1 )
( 1) ( )

i iyi i

i i

y
r r

y
θλΓ θλ +

−
Γ + Γ θλ

 

                                                 
25 No theory justifies the choice of the log gamma density.  It is essentially the same as a conjugate prior in 
Bayesian analysis, chosen for its mathematical convenience. 
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This is not a simple reparameterization of the model.  The results in the example below 
demonstrate that the log likelihood functions are not equal at the maxima, and the parameters are 
not simple transformations in one model vs. the other.  We are not aware of a theory that justifies 
using one form or the other for the negative binomial model.  Neither is a restricted version of the 
other, so we cannot carry out a likelihood ratio test of one versus the other.  The more general 
Negbin P (NBP) family [Greene (2007b)] does nest both of them, so this may provide a more 
general, encompassing approach to finding the right specification. The Negbin P model is 
obtained by replacing θ in the Negbin 2 form with θλi

2-P.  We have examined the cases of P = 1 
and P = 2 above.  

       Prob(Y = yi|xi) =  
( )

( 1) ( )

iyQ Q
i i i

Q Q Q
i i i i i i

Q
iy

y

θλ
⎛ ⎞ ⎛ ⎞Γ θλ + θλλ
⎜ ⎟ ⎜ ⎟Γ + Γ θλ θλ + λ θλ + λ⎝ ⎠ ⎝ ⎠

, Q = 2 – P. 

 
The conditional mean function for the three cases considered is  
 
   E[yi|xi]  = exp(xi′β) × θ2-P  =  αP-2 λi, where α = 1/θ. 
 
The parameter P is picking up the scaling.  A general result is that for all three variants of the 
model, 
   Var[yi|xi]  =  λi (1 + αλi

P-1). 
 
Thus, the NB2 form has a variance function that is quadratic in the mean while the NB1 form’s 
variance is a simple multiple of the mean.  There have been many other functional forms 
proposed for count data models, including the generalized Poisson, gamma, and Polya-Aeppli 
forms described in Winkelmann (2003) and Greene (2007a, Chapter 24). 
 The heteroscedasticity in the count models is induced by the relationship between the 
variance and the mean.  The single parameter θ picks up an implicit overall scaling, so it does not 
contribute to this aspect of the model.  As in the linear model, microeconomic data are likely to 
induce heterogeneity in both the mean and variance of the response variable.  A specification that 
allows independent variation of both will be of some virtue.  The result 
 
   Var[yi|xi]  =  λi (1 + (1/θ)λi

P-1) 
 
suggests that a natural platform for separately modeling heteroscedasticity will be the dispersion 
parameter, θ, which we now parameterize as 
 
   θi   =  θ exp(zi′δ) 
 
Operationally, this is a relatively minor extension of the model.  But, it is likely to introduce quite a 
substantial increase in the flexibility of the specification.  Indeed, a heterogeneous Negbin P model is 
likely to be sufficiently parameterized to accommodate the behavior of most data sets.  (Of course, 
the specialized models discussed below, for example, the zero inflation models, may yet be more 
appropriate for a given situation.) 
 
0.6.2  Extended models for counts: Two part, zero inflation, sample selection, bivariate 
 
Sources of ‘nonPoissonness’ arise from a variety of sources in addition to the latent heterogeneity 
modeled in the previous section.  A variety of two part models have been proposed to 
accommodate elements of the decision process. 
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Hurdle model 
 
 The hurdle model [Mullahy (1986), Gurmu (1997)] consists of a participation equation 
and a conditional Poisson or negative binomial model.  The structural equations are 
 
 Prob(yi > 0 | zi)           = a binary choice mechanism, such as probit or logit 
 Prob(yi = j | yi > 0,xi)  =  truncated Poisson or negative binomial. 
 
[See Shaw (1988).]  For a logit participation equation and a Poisson count, the probabilities for 
the observed data that enter the log likelihood function would be 
 

 Prob(yi = 0 | zi) = 1
1 exp( )i′+ z α

 

 
 Prob(yi = j | xi,zi) = Prob(yi > 0|zi) × Prob(yi = j | yi > 0,xi)   

     =  exp( ) exp( )
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This model might apply for on site counts of use of certain facilities such as recreation sites.  The 
expectation in the hurdle model is easily found using the rules of probability 
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As usual, the intricacy of the function mandates some caution in interpreting the model 
coefficients.  In particular,  
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The complication of the partial effects is compounded if zi contains any of the variables that also 
appear in xi.  The other part of the partial effect is 
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Zero inflation models 
 
 A related formulation is the zero inflation model, which is a type of latent class model.  
The model accommodates a situation in which the zero outcome can arise in either of two 
mechanisms.  In one regime, the outcome is always zero; in the other, the outcome is generated 
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by the Poisson or negative binomial process that might also produce a zero.  The example 
suggested in Lambert’s (1992) pioneering application is a manufacturing process that produces 
number of defective parts, yi, equal to zero if the process is under control or yi equal to a Poisson 
outcome if the process is not under control.  The applicable distribution is 
 
 Prob(yi = 0|xi, zi) = Prob(regime 0|zi) + Prob(regime 1|zi)Prob(yi = 0| regime 1,xi) 
 
     =  F(ri|zi) + [1 – F(ri|zi)] Prob(yi = 0 | xi) 
 
 Prob(yi = j | yi > 0, xi,zi)  =    [1 – F(ri|zi)] Prob(yi =  j | xi) 
 
The density governing the count process may be the Poisson or negative binomial model.  The 
regime process is typically specified as a logit model, though the probit model is often used as 
well.  Finally, two forms are used for the regime model, the standard probit or logit model with 
covariate vector, zi, and the zip-τ form, which takes the form (for logit – Poisson model), 
 
 Prob(yi = 0 | xi)  =  Λ(τxi′β)  +  [1 - Λ(τxi′β)]exp(-λi) 
 
 Prob(yi = j | yi > 0,xi)  =  [1 - Λ(τxi′β)] exp(λi) λi

j / j! 
 
where λi = exp(xi′β) and τ is a single new, free parameter to be estimated. (Researchers usually 
find that the τ form of the model is more restrictive than desired.)  The conditional mean function 
is 
 E[yi | xi,zi]  =   [1 – F(ri|zi)]λi 
 
Sample selection 
 
We consider an extension of the classic model of sample selection [Heckman (1979)] to the models 
for count outcomes.  In the context of the applications considered here, for example, we might 
consider a sample based on only those individual who have health insurance.  The generic model 
will take the form 
 
 si*    =  zi′α  +  ui  ui ~ N[0,1], 

 si     =  1(si*   >  0)   (probit selection equation) 

 λi| εi =  exp(β′xi + σεi) εi ~ N[0,1] (index function with heterogeneity) 

 yi |xi, εi  ~  Poisson(yi | xi,εi)  (Poisson model for outcome) 

 [ui,εi] ~ N[(0,1),(1,ρ,1)] 

 yi,xi  are observed only when si = 1. 
 
The count model is the heterogeneity model suggested earlier with lognormal rather than log 
gamma heterogeneity.  The conventional approach of fitting the probit selection equation, 
computing an inverse Mills ratio and adding it as an extra regressor in the Poisson model, is 
inappropriate here.  [See Greene (1995, 1997, 2007c).]. A formal approach for this model is 
developed in Terza (1998) and (Greene, 1994, 2006, 2007b,c).  Formal results collected in 
Greene (2006).  The generic result for the count model (which can be adapted to the negative 
binomial or other models) is 
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The integral does not exist in closed form, however, the model can be fit by approximating the 
integrals with Hermite quadrature, 
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or simulation, for which the simulated log likelihood is 
 

 logLS = 
1
logN

i=∑ 1

1 R

rR =∑ [(1-si) + si f(yi|xi,σεir)] ( )[(2 1) ]i i i irs ′Φ − + τεz γ  

 
where γ = α/(1 - ρ2)1/2 and τ = ρ / (1 - ρ2)1/2.  There is a minor extension of this model that might be 
interesting for the health care application examined in this study.  The count variables and all the 
covariates in both equations would be observed for all observations.  Thus, to use the full sample of 
data, the appropriate log likelihood would be 
 
 f(yi,zi|xi,zi) = f(y−∞

∞
∫ i|xi,εi)] ( )(2 1)[ ]i i i is ′Φ − + τεz γ ( )i idφ ε ε , 

 
Bivariate Poisson model 
 
The application from which our examples are drawn was a study of the two count variables, 
DocVis and HospVis.  The authors were interested in a bivariate count model for the two 
outcomes.  One approach to formulating a two equation Poisson is to treat the correlation as 
arising from the intervention of a latent common Poisson process.  The model is 
 
 y1  =  y1* + U 
 y2  =  y2* + U 
 
where y1*, y2* and U have three independent Poisson processes.  This model is analogous to the 
seemingly unrelated regressions model.  [See King (1989).]  The major shortcoming of this 
approach is that it forces the two variables to be positively correlated.  For the application 
considered here, it is at least possible that the preventive motivation for physician visits could 
result in a negative correlation between physician and in-patient hospital visits.  The approach 
proposed by Riphahn et al, adapted for a random effects panel data model is yit,j  ~ Poisson (λit,j) 
where 
 λit,j  = exp(xit,j′β  +  ui,j + εit,j), j = 1,2.26

 
where the unique heterogeneity (εit,1,εit,2), has bivariate normal distribution with correlation ρ and 
the random effects, which are constant through time, independent normal distributions.  Thus, the 

                                                 
26 A similar model was estimated by Munkin and Trivedi (1999). 
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correlation between the conditional means is that induced by the two lognormal variables 
exp(εit,1) and exp(εit,2).  The implied correlation between yit,1 and yit,2 was not derived.  This would 
differ from ρ, since both variables have additional variation around the correlated conditional 
mean functions.  The precise result (suppressing the independent variables for convenience) is 
 
 Cov[y1,y2]  =  E[Cov(y1,y2|ε1,ε2,u)] + Cov[E[y1|ε1,u],E[y2|ε2,u]]. 
 
The parameter ρ in this model is merely Cov{ln E[y1|ε1,u], lnE[y2|ε2,u]}.  How this relates to the 
unconditional covariance, Cov[y1,y2] that motivates the analysis remains to be derived. 
 
 
 In order to formulate the log likelihood function, the random components must be 
integrated out.  There are no closed forms for the integrals based on the normal distributions – the 
problem is similar to that in the sample selection model.  The authors used a quadrature procedure 
to approximate the integrals.  The log likelihood could also be maximized by using simulation.  
Separate models were fit for mean and women in the sample. The pooling hypothesis was 
rejected for all specifications considered. 
 
0.6.3  Panel data models 
 
The maximum likelihood estimator of the fixed effects Poisson regression model, 
 

 Prob(yit = j|xit)  =  exp( ) , 0,1,...; exp( )
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is one of a very small number of cases in which the unconditional maximum likelihood estimator 
is equal to the conditional MLE (conditioned on the sum of the outcomes) and, hence, in which 
there is no incidental parameters problem.  The unconditional MLE of β is consistent in n.  A 
conditional estimator that is not a function of the fixed effects is found by obtaining the joint 
distribution of (yi1, . . . , ) conditional on their sum. For the Poisson model, the conditional 

probability is: 
iTi

y

 1
1 2

1 1

1

!
, , , |

!

i

ii
it

i i

T

it TT
t y

i i iT it itT
i t

it
t

y
,p y y y y p

y

=

= =

=

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠=⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠

∑
∑ ∏

∏
…  

where 

 
1 1

exp( ) exp( ) .
exp( ) exp( )

x x
x xi i

i it it
it T T

t i it t it

p
= =

′ ′α +
= =

′ ′Σ α + Σ
β β

β β
 

The contribution of group i to the conditional log-likelihood is 

  
1

ln ln .
iT

i it
t

L y
=

= ∑ itp

The contribution to lnL of a group in which yit = 0 in every period is zero.  Such groups fall out of 
the estimator.   
 The first order conditions for maximizing the log likelihood function for the Poisson 
model with respect to the constant terms is 
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This implies an explicit solution for αi in terms of β in this model, 
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[The estimators of αi are still inconsistent, however, because their variances are O(1/T).] 
Unlike the regression or the probit model, this does not require that there be within group 
variation in yit - all the values can be the same.  It does require that at least one observation for 
individual i be nonzero, however.  
 The random effects probit model is assembled in precisely the fashion of the negative 
binomial model.  If the Poisson model is formed with log gamma heterogeneity, exactly as done 
earlier, with 
  lnλit  =  xit′β + lnhi
 
where   hi ~ Gamma(θ,θ), 
 
then, the conditional joint probability is 
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Then the random effect is swept out by obtaining 
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This is exactly the approach used earlier to condition the heterogeneity out of the Poisson model 
to produce the negative binomial model. The steps produce the negative binomial distribution, 
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For estimation purposes, we have a negative binomial distribution for Yi = Σtyit with mean Λi = 
Σtλit.  Thus, the 

Hausman, Hall and Griliches (1984) (HHG) report the following conditional density for 
the fixed effects negative binomial (FENB) model: 
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which is free of the fixed effects.  This is the default FENB formulation used in popular software 
packages such as SAS, Stata and LIMDEP.  Researchers accustomed to the admonishments that 
fixed effects models cannot contain overall constants or time invariant covariates are sometimes 
surprised to find (perhaps accidentally) that this fixed effects model allows both. [This issue is 
explored at length in Allison (2000) and Allison and Waterman (2002).]   The resolution of this 
apparent contradiction is that the HHG FENB model is not obtained by shifting the conditional 
mean function by the fixed effect, lnλit = xit′β + αi, as it is in the Poisson model.  Rather, the 
HHG model is obtained by building the fixed effect into the model as an individual specific θi in 
the Negbin 1 form.  In the negative binomial models, the conditional mean functions are 

 
NB1:  E[yit | xit]  =  θiφit = θi exp(xit′β ) = exp(xit′β  + ln θi), 

NB2:  E[yit | xit]  =  exp(αi)φit = λit = exp(xit′β  + αi), 
 
so, superficially, the formulations do produce the same interpretation.  However, the parameter θi 
in the NB1 model enters the variance function in a different manner; 
 
 NB1:  Var [yit | xit] = θiφit[1 + θi], 
 NB2:  Var [yit | xit] = λit   [1 + θλit], 
 
The relationship between the mean and the variance is different for the two models.  For 
estimation purposes, one can explain the apparent contradiction noted earlier by observing that in 
the NB1 formulation, the individual effect is identified separately from the mean in the scedastic 
(scaling) function. This is not true for the FENB2 form.  In order to obtain a counterpart to the 
HHG model, we would replace θ with θi (and λi with λit).  Greene (2007a) analyzes the more 
familiar, FENB2 form with the same treatment of λit.  Estimates for both models appear below.  
Comparison of the suggested NB2 model to the HHG model remains for future investigation. 

Once again, theory does not provide a reason to prefer the NB1 formulation over the 
more familiar NB2 model.  The NB1 form does extend beyond the interpretation of the fixed 
effect as carrying only the sum of all the time invariant effects in the conditional mean function. 
The appearance of lnθi in the conditional mean is an artifact of the exponential mean form; θi is a 
scaling parameter in this model.  In its favor, the HHG model, being conditionally independent of 
the fixed effects, finesses the incidental parameters problem – the estimator of β in this model is 
consistent.  This is not the case for the FENB2 form.   

Like the fixed effects model, introducing random effects into the negative binomial 
model adds some additional complexity.  We do note, since the negative binomial model derives 
from the Poisson model by adding latent heterogeneity to the conditional mean, adding a random 
effect to the negative binomial model might well amount to introducing the heterogeneity a 
second time.  However, one might prefer to interpret the negative binomial as the density for yit in 
its own right, and treat the common effects in the familiar fashion.  HHG’s (1984) random effects 
negative binomial model is a hierarchical model that is constructed as follows.  The heterogeneity 
is assumed to enter λit additively with a gamma distribution with mean 1, Γ(θi,θi).  Then, θi/(1+θi) 
is assumed to have a beta distribution with parameters a and b.  The resulting unconditional 
density after the heterogeneity is integrated out is 
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As before, the relationship between the heterogeneity and the conditional mean function is 
unclear, since the random effect impacts the parameter of the scedastic function.  An alternative 
approach that maintains the essential flavor of the Poisson model (and other random effects 
models) is to augment the NB2 form with the random effect, 
 

 Prob(Y = yit|xit,εi ) =  
( ) (1 )

( 1) ( )
ityit

it it
it

y r r
y

θΓ θ +
−

Γ + Γ θ
, 

 λit  = , exp( )it i′ + εx β

 rit =  λit / (θ + λit). 
 
We then estimate the parameters by forming the conditional (on εi) log likelihood and integrating εi 
out either by quadrature or simulation.  The parameters are simpler to interpret by this construction.  
Estimates of the two forms of the random effects model are presented below for a comparison. 
 
0.6.4  Applications 
 
The study by Riphahn et al. (2003) that provided the data we have used in numerous earlier 
examples analyzed the two count variables DocVis (visits to the doctor) and HospVis (visits to the 
hospital).  The authors were interested in the joint determination of these two count variables.  
One of the issues considered in the study was whether the data contained evidence of moral 
hazard, that is, whether health care utilization as measured by these two outcomes was influenced 
by the subscription to health insurance.  The data contain indicators of two levels of insurance 
coverage, Public, which is the main source of insurance, and Addon, which is a secondary 
optional insurance.  In the sample of 27,326 observations (family/years), 24,203 individuals held 
the public insurance.  (There is quite a lot of within group variation in this.  Individuals did not 
routinely obtain the insurance for all periods).  Of these 24,203, 23,689 had only public insurance 
and 514 had both types.  (One could not have only the addon insurance.)  To explore the issue, we 
have analyzed the DocVis variable with the count data models described above.  Figure 1 below 
shows a histogram for this count variable.  (There is a very long tail of extreme observations in 
these data, extending up to 121..  The histogram omits the 91 observations with DocVis greater 
than 40.  All observations are included in sample used to estimate the models.)  The exogenous 
variables in our model are 
 
 xit = (1, Age, Education, Income, Kids, Public) 
 
(Variables are described in Table 2.  Those listed are a small subset of those used in the original 
study, chosen here only for a convenient example.) 
 Table 6 presents the estimates of the several count models.  In all specifications, the 
coefficient on Public is positive, large, and highly statistically significant, which is consistent 
with the results in the authors’ study.  The large spike at zero in the histogram casts some doubt 
on the Poisson specification.  As a first step in extending the model, we estimated an alternative 
model that has a distribution that appears more like that in the figure, a geometric regression 
model, 
 
 Prob(yi = j | xi)  =  (1 ) j

i iπ − π , πi = 1/(1 + λi), λi = exp(xi′β), j = 0,1,... 
 
This is the distribution for the number of failures before the first success in independent trials 
with success probability equal to πi.  It is suggested here simply as an alternative functional form 
for the model.  The two models are similarly parameterized.  The geometric model also has 
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conditional mean equal to (1-πi)/πi = λi, like the Poisson.  The variance is equal to (1/πi)λi > λi, so 
the geometric distribution is overdispersed – it allocates more mass to the zero outcome.  Based 
on the log likelihoods, the Poisson model would be overwhelmingly rejected.  However, since the 
models are not nested, this is not a valid test.  Using, instead, the Vuong statistic based on vi = 
lnLi(geometric) – lnLi(Poisson), we obtain a value of +37.89, which, as expected, strongly rejects 
the Poisson model. 
 The various formal test statistics strongly reject the hypothesis of equidispersion.  
Cameron and Trivedi’s (1990) semiparametric tests from the Poisson model have t statistics of 
22.147 for gi = µi and 22.504 for gi = µi

2.  Both of these are far larger than the critical value of 
1.96.  The LM statistic [see Winkelmann (2003)] is 972,714.48, which is also larger than the 
(any) critical value.  On any of these bases, we would reject the hypothesis of equidispersion.  
The Wald and likelihood ratio tests based on the negative binomial models produce the same 
conclusion.  For comparing the different negative binomial models, note that Negbin 2 is the 
worst of the three by the likelihood function, though NB1 and NB2 are not directly comparable.  
On the other hand, in the NBP model, the estimate of P is more than 10 standard errors from 
1.0000 or 2.000, so both NB1 and NB2 would be rejected in favor of the unrestricted NBP form 
of the model.  The NBP and the heterogeneous NB2 model are not nested either, but comparing 
the log likelihoods, it does appear that the heterogeneous model is substantially superior.  We 
computed the Vuong statistic based on the individual contributions to the log likelihoods, with vi 
= lnLi(NBP) - lnLi(NB2-H).  The value of the statistic is -3.27.  On this basis, we would reject 
NBP in favor of NB2-H.  Finally, with regard to the original question, the coefficient on Public is 
larger than 10 times the estimated standard error in every specification.  We would conclude that 
the results are consistent with the proposition that there is evidence of moral hazard. 
 Estimates of the two 2 part models, zero inflated and hurdle, are presented in Table 7.  
The regime equation for both is assumed to be a logit binary choice model with 
 
 zit = (1, Age, Female, Married, Kids, Income, Self Employed) 
 
There is little theoretical basis for choosing between the two models.  The interpretation of the 
data generating process is quite similar.  Each posits a regime in which the individual chooses 
whether or not to ‘participate’ in the health care system and a process that generates the count 
when they do.  Nonetheless, there is little doubt that both are improvements on the Poisson 
regression.  The average predicted probability of the zero outcome is 0.04826, so the model 
predicts 0̂nP  = 1,319 zero observations.  The frequency in the sample is 10,135..  The 
counterparts for the ZIP model are 0.36340 and 9,930.  The Poisson model is not nested in the 
ZIP model – setting the ZIP coefficients to zero forces the regime probability to ½, not to 1.0.  
Thus, the models cannot be compared based on their log likelihoods.  The Vuong statistic 
strongly supports the zero inflation model, with V = +47.05.  Similar results are obtained for the 
hurdle model with the same specification. 
 The German health care panel data set contains 7,293 individuals with group sizes 
ranging from 1 to 7.  Table 8 presents the fixed and random effects estimates of the equation for 
DocVis.  The pooled estimates are also shown for comparison.  Overall, the panel data treatments 
bring large changes in the estimates compared to the pooled estimates. There is also a 
considerable amount of variation across the specifications.  With respect to the parameter of 
interest, Public, we find that the size of the coefficient falls substantially with all panel data 
treatments.  Whether using the pooled, fixed or random effects specifications, the test statistics 
(Wald, LR) all reject the Poisson model in favor of the negative binomial.  Similarly, either 
common effects specification is preferred to the pooled estimator.  There is no simple basis for 
choosing between the fixed and random effects models, and we have further blurred the 
distinction by suggesting two formulations of each of them.  We do note, the two random effects 
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estimators are producing similar results, which one might hope for.  But, the two fixed effects 
estimators are producing very different estimates.  The NB1 estimates include two coefficients, 
Income and Education that are positive, but negative in every other case.  Moreover, the 
coefficient on Public which is large and significant throughout the table has become small and 
less so with the fixed effects estimators. 
 
 

 
Figure 1   Histogram of count variable DocVis 
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Table 6  Estimated Pooled Models for DocVis  (Standard errors in parentheses) 
Variable Poisson Geometric Negbin 2 Negbin 2 

Heterogeneous 
Negbin 1 Negbin P 

Constant  0.7162 
(0.03287) 

 0.7579 
(0.06314) 

 0.7628 
(0.07247) 

 0.7928 
(0.07459) 

 0.6848 
(0.06807) 

 0.6517 
(0.07759) 

Age  0.01844 
(0.000332) 

 0.01809 
(0.00669) 

 0.01803 
(0.000792) 

 0.01704 
(0.000815) 

 0.01585 
(0.00070) 

 0.01907 
(0.0008078) 

Education -0.03429 
(0.00180) 

-0.03799 
(0.00343) 

-0.03839 
(0.003965) 

-0.03581 
(0.004034 

-0.02381 
(0.00370) 

-0.03388 
(0.004308) 

Income -0.4751 
(0.02198) 

-0.4278 
(0.04137) 

-0.4206 
(0.04700) 

-0.4108 
(0.04752) 

-0.1892 
(0.04452) 

-0.3337 
(0.05161) 

Kids -0.1582 
(0.00796) 

-0.1520 
(0.01561) 

-0.1513 
(0.01738) 

-0.1568 
(0.01773) 

-0.1342 
(0.01647) 

-0.1622 
(0.01856) 

Public  0.2364 
(0.0133) 

 0.2327 
(0.02443) 

 0.2324 
(0.02900) 

 0.2411 
(0.03006) 

 0.1616 
(0.02678) 

 0.2195 
(0.03155) 

P  0.0000 
(0.0000) 

 0.0000 
(0.0000) 

 2.0000 
(0.0000) 

 2.0000 
(0.0000) 

 1.0000 
(0.0000) 

 1.5473 
(0.03444) 

θ  0.0000 
(0.0000) 

 0.0000 
(0.0000) 

 1.9242 
(0.02008) 

 2.6060 
(0.05954) 

 6.1865 
(0.06861) 

 3.2470 
(0.1346) 

δ (Female)  0.0000 
(0.0000) 

 0.0000 
(0.0000) 

 0.0000 
(0.0000) 

-0.3838 
(0.02046) 

 0.0000 
(0.0000) 

 0.0000 
(0.0000) 

δ (Married)  0.0000 
(0.0000) 

 0.0000 
(0.0000) 

 0.0000 
(0.0000) 

-0.1359 
(0.02307) 

 0.0000 
(0.0000) 

 0.0000 
(0.0000) 

Ln L -104440.3   -61873.55 -60265.49 -60121.77 -60260.68 -60197.15 

 
 
Table 7  Two part models for DocVis 
 Poisson Poisson/Logit Zero Inflation Poisson/Logit Hurdle 
Variable Count Count Regime Count Regime 
Constant  0.7162 

(0.03287) 
 1.3689 
(0.01338) 

 0.4789 
(0.0651) 

 1.4187 
(0.0128) 

-0.5105 
(0.0637) 

Age  0.01844 
(0.000332) 

 0.01067 
(0.00013) 

-0.01984 
(0.00133) 

 0.01059 
(0.00012) 

 0.02068 
(0.00131) 

Education -0.03429 
(0.00180) 

-0.02038 
(0.00075) 

 0.0000 
(0.0000) 

-0.02215 
(0.00072) 

 0.0000 
(0.0000) 

Income -0.4751 
(0.02198) 

-0.4131 
(0.00869) 

 0.1663 
(0.0758) 

-0.4560 
(0.00831) 

-0.2499 
(0.0724) 

Kids -0.1582 
(0.00796) 

-0.08639 
(0.00316) 

 0.2306 
(0.0303) 

-0.08862 
(0.00297) 

-0.2378 
(0.0297) 

Public  0.2364 
(0.0133) 

 0.1573 
(0.00604) 

 0.0000 
(0.0000) 

 0.1547 
(0.006037) 

 0.0000 
(0.0000) 

Female  0.0000 
(0.0000) 

 0.0000 
(0.0000) 

-0.58789 
(0.0265) 

 0.0000 
(0.0000) 

 0.5812 
(0.0260) 

Married  0.0000 
(0.0000) 

 0.0000 
(0.0000) 

-0.1257 
(0.0342) 

 0.0000 
(0.0000) 

 0.1271 
(0.0336) 

Self Employed  0.0000 
(0.0000) 

 0.0000 
(0.0000) 

 0.4172 
(0.0521) 

 0.0000 
(0.0000) 

-0.4137 
(0.0513) 

log likelihood -104440.3 -83648.75 -83988.80 
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Table 8  Estimated Panel Data Models for Doctor Visits (Standard errors in parentheses) 

 Poisson Negative Binomial
Fixed Effects Random Effects 

 
 
Variable 

Pooled 
(Robust S.E.) 

Fixed 
Effects 

Random 
Effects 

Pooled NB2 
FE-NB1 FE-NB2  HHG-Gamma Normal

Constant  0.7162 
(0.1319) 

 0.0000  0.4957 
(0.05463) 

 0.7628 
(0.07247) 

-1.2354 
(0.1079) 

 0.0000 -0.6343 
(0.07328) 

 0.1169 
(0.06612) 

Age  0.01844 
(0.001336) 

 0.03115 
(0.001443) 

 0.02329 
(0.0004458) 

 0.01803 
(0.0007916) 

 0.02389 
(0.001188) 

 0.04479 
(0.002769) 

 0.01899 
(0.0007820) 

 0.02231 
(0.0006969) 

Educ -0.03429 
(0.007255) 

-0.03803 
(0.01733) 

-0.03427 
(0.004352) 

-0.03839 
(0.003965) 

 0.01652 
(0.006501) 

-0.04589 
(0.02967) 

-0.01779 
(0.004056) 

-0.03773 
(0.003595) 

Income -0.4751 
(.08212) 

-0.3030 
(0.04104) 

-0.2646 
(0.01520) 

-0.4206 
(0.04700) 

 0.02373 
(0.05530) 

-0.1968 
(0.07320) 

-0.08126 
(0.04565) 

-0.1743 
(0.04273) 

Kids -0.1582 
(0.03115) 

-0.001927 
(0.01546) 

-0.03854 
(0.005272) 

-0.1513 
(0.01738) 

-0.03381 
(0.02116) 

-0.001274 
(0.02920) 

-0.1103 
(0.01675) 

-0.1187 
(0.01582) 

Public  0.2365 
(0.04307) 

 0.1015 
(0.02980) 

 0.1535 
(0.01268) 

 0.2324 
(0.02900) 

 0.05837 
(0.03896) 

 0.09700 
(0.05334) 

 0.1486 
(0.02834) 

 0.1940 
(0.02574) 

θ  0.0000  0.0000  1.1646 
(0.01940) 

 1.9242 
(0.02008) 

 0.0000  1.9199 
(0.02994) 

 0.0000  1.0808 
(0.01203) 

a  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  2.1463 
(0.05955) 

 0.0000 

b  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  3.8011 
(0.1145) 

 0.0000 

σ  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.9737 
(0.008235) 

lnL -104440.3       -60337.13   -71763.13 -60265.49 -34016.16 -49476.36 -58182.52 -58177.66

 

 



0.7  Multinomial unordered choices 
 
We now extend the random utility, discrete choice model of Sections 0.2 – 0.4 to a setting in 
which the individual chooses among multiple alternatives.  [See Hensher, Rose and Greene 
(2005).] The random utility model, as before, is 
 
 Uit,j  =  xit,j′β  +  zit′γ  +  εit,j, j = 1,...,Jit, t = 1,...,Ti, 
 
where, as before, we consider individual i in choice situation t, choosing among a possibly 
variable number of choices, Jit and a possibly individual specific number of choice situations.  For 
the present, for convenience, we assume Ti = 1 – a single choice situation.  This will be 
generalized later.  The extension to variable choice set sizes, Jit, turns out to be essentially a 
minor modification of the mathematics, so it will also prove convenient to assume Jit is fixed at J.   
The random utility model is, thus, 
 
 Ui,j  =  xi,j′β  +  zi′γ  +  εi,j, j = 1,...,J, i = 1,...,n. 
 
The earlier assumptions are extended as well.  The axioms of choice will imply that preferences 
are transitive, reflexive, and complete.  Thus, in any choice situation, the individual will make a 
choice, that that choice, ji will be such that 
 
  >  U, iit jU i,m  for all m = 1,...,J and m ≠ ji. 
 
 Reverting back to the classical problem of utility maximization over continuous choices 
subject to a budget constraint produces the complete set of demands,  di(prices, income).  
Inserting the demands back into the utility function produces the indirect utility function, 
 
 Ui*  =  Ui [d, x(prices, income)]. 
 
This formulation is convenient for discrete choice modeling, as the data typically observed on the 
right hand sides of the model equations will be income, prices, and other characteristics of the 
individual such as age and set, and attributes of the choices, such as model or type.  The random 
utility model for multinomial unordered choices, is then taken to be defined over the indirect 
utilities. 
 
0.7.1  Multinomial logit and multinomial probit models 
 
Not all stochastic specifications for εi,j are consistent with utility maximization.  McFadden 
(1981) showed that the i.i.d., type 1 extreme value distribution, 
 
 F(εi,j)  =  exp(-exp(-εi,j)), j = 1,...,J, i = 1,...,n, 
 
produces a probabilistic choice model that is consistent with utility maximization.  The resulting 
choice probabilities are 
 

 Prob(di,j = 1 | Xi,zi)  =  ,

1 ,

exp( )
exp( )

x z
x z

i j i j
J
m i m i= m

′ ′+
′ ′Σ +

β γ

β γ
, di,j = 1 if Ui,ji  > Ui,m,,m = 1,...,J and m ≠ j. 
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This is the multinomial logit model.  The components, xi,j are the attributes of the choices (prices, 
features, etc.) while zi is the characteristics of the individual (income, age, sex).  We noted at the 
outset of Section 0.2 that identification of the model parameters requires that γ vary across the 
choices.  Thus, the full model 
 

 Prob(di,j = 1 | Xi,zi)  =  ,

1 ,

exp( )
,  ,

exp( )
i j i j

JJ
m i m i m=

′ ′+
=

′ ′Σ +

x z
0

x z
β γ

γ
β γ

,  

 
 di,j = 1 if   > U, ii jU i,m,,m = 1,...,J and m ≠ ji. 
 
The log likelihood function is 
 

 lnL  =  ,
,1 1

1 ,

exp( )
ln

exp( )
n J i j i j

i j Ji j
m i m i m

d
= =

=

′ ′⎡ ⎤+
⎢ ⎥′ ′Σ +⎢ ⎥⎣ ⎦

∑ ∑
x z

x z
β γ

β γ
 

 
 The multinomial logit specification implies the peculiar restriction that  
 

 
.

ln Prob( ) [1( ) Prob( )]
i m

choice j j m choice m∂ =
= = − =

∂x
β  

 
Thus, the impact of a change in an attribute of a particular choice on the set of choice 
probabilities is the same for all (other) choices.  For example, in our application,  
 

 
ln ln ln ( )TRAIN BUS CAR

AIR Cost
AIR AIR AIR

P P P P
Cost Cost Cost

∂ ∂ ∂
= = = −

∂ ∂ ∂
β

]

 

 
This striking result, termed the independence from irrelevant alternatives (IIA), follows from the 
initial assumptions of independent and identical distributions for εi,j.  This is a major shortcoming 
of the model, and has motivated much of the research on specification of the discrete choice 
models.  Many model extensions have been proposed, including a heteroscedastic extreme value 
model [Bhat(1995)] and the DOGIT (dodging the logit model, Gaudry and Dagenais (1979)) and 
a host of others.  The major extensions of the canonical multinomial logit model (MNL) have 
been the multinomial probit model, the nested logit model and the current frontier, the mixed 
logit model.  We consider each of these in turn. 
 
Multinomial Probit Model 
 
The multinomial probit (MNP) model [Daganzo (1979)] replaces the i.i.d. assumptions of the 
multinomial logit model with a multivariate normality assumption, 
 
 εi  ~ [ ,JN 0 Σ
 
This specification relaxes the independence assumption.  In principle, it can also relax the 
assumption of identical (marginal) distributions as well.  Recall that since only the most preferred 
choice is revealed, information about utilities is obtained in the form of differences, Ui,j – Ui,m.  It 
follows that identification restrictions are required – only some, or certain combinations of 
elements of Σ are estimable.  The simplest approach to securing identification that is used in 
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practice is to impose that the last row of Σ be equal to (0,0,...,1), and one other diagonal element 
also equal 1.  The remaining elements of Σ may be unrestricted, subject to the requirement that 
the matrix be positive definite.  This can be done by a Cholesky decomposition, Σ = CC′ where C 
is a lower triangular matrix. 
 The MNP model relaxes the IIA assumptions.  The shortcoming of the model is the 
computational demands.  The relevant probabilities that enter the log likelihood function and its 
derivatives must be approximated by simulation.  The GHK simulator [Lerman and Manski 
(1977), Geweke et al. (1994)] is commonly used.  The Gibbs sampler with noninformative priors 
[Allenby and Rossi (1999) and Rossi and Allenby (2003)] has also proved useful for estimating 
the model parameters.  Even with the GHK simulator, however, computation of the probabilities 
by simulation is time consuming. 
 
0.7.2  Nested logit models 
 
The nested logit model allows for grouping of alternatives into ‘nests’ with correlation across 
elements in a group.  The natural analogy is to a ‘tree structure,’  For example, Figure 2 suggests 
an elaborate, three level treatment of an eight alternative choice set:: 
 
                                Commute       TRUNK 
                                   │ 
                   ┌───────────────┴────────────────┐ 
                   │                                │ 
                Private                                  Public              LIMBS  
                   │                                │ 
           ┌───────┴───────┐               ┌────────┴──────┐ 
           │               │               │               │ 
          Fly             Drive            Land            Water       BRANCHES 
           │               │               │               │ 
       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐       ┌───┴───┐ 
       │       │       │       │       │       │       │       │ 
    Plane     Helicopter    Car_Drv   Car_Ride  Train           Bus        Ferry           Raft   TWIGS 
      Figure 2  Nested choice set. 
 
The specific choice probabilities are redefined to be the conditional probability of alternative j in 
branch b, limb l, and trunk r, j|b,l,r,  At the next level up the tree, we define the conditional 
probability of choosing a particular branch in limb l, trunk r, b|l,r, the conditional probability of 
choosing limb in trunk r, l|r, and, finally, the probability of choosing trunk r.  By the laws of 
probability, the unconditional probability of the observed choices made by an individual is 
 

P(j,b,l,r)  =  P(j|b,l,r) × P(b|l,r) × P(l|r) × P(r). 
 
This is the contribution of an individual observation to the likelihood function for the sample.  (Note 
in our example, there is only one trunk, so P(r) = 1.) 
 The two level nested logit model is the leading case, and occupies most of the received 
applications.   In this instance, a common specification places the individual specific characteristics, 
such as demographic variables, in the branch probabilities.  For this basic model, then, 
 

 P(j|b)   = | |

||

exp( ) exp( )
exp( ) exp( )

x x
   =   

x
j b j b

q b bq b
IV

′ ′

′∑
β β

β
, 
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where IVb is the inclusive value for branch b,  
 
 IVb   =  log Σq|b exp(xq|b′β).   
 
At the next level up the tree, we define the conditional probability of choosing a particular branch 
 

 P(b) = [ ]
[ ]

[ ]exp ( ) exp ( )
exp ( ) exp( )

z z
   =   

z
b i b b b i b b

s i s ss

IV IV
IV IV

′ ′λ + λ +
′λ +∑

γ γ
γ

, 

 
where I is the inclusive value for the model, 
 
 IV  =  log Σs exp[λs (zi′δs +  IVs)].   
 
The original MNL results if the inclusive parameters, λs are all equal to one. 
 Alternative normalizations and aspects of the nested logit model are discussed in Hensher 
and Greene (1999) and Hunt (2000).  A second form moves the scaling down to the twig level, 
rather than at the branch level.  Here it is made explicit that within a branch, the scaling must be the 
same for alternatives, but it can differ between the branches. 
 

 P(j|b) = | |

||

exp ( ) exp ( )
exp( )exp ( )

x x
   =   

x
b j b b j b

bb q bq b
IV

′ ′⎡ ⎤ ⎡ ⎤µ µ⎣ ⎦ ⎣ ⎦
′⎡ ⎤µ⎣ ⎦∑
β β

β
. 

 
Note in the summation in the inclusive value that the scaling parameter is not varying with the 
summation index.  It is the same for all twigs in the branch.  Now, IVb is the inclusive value for 
branch b,  
 
 IVb =  log Σq|b exp[µb  (xq|b′β)].     
 
At the next level up the tree, we define the conditional probability of choosing the particular branch,  
 

 P(b) = 
( )

( )
( )exp (1/ ) exp (1/ )

exp( )exp (1/ )
z z

   =   
z

i s b b i s b b

i s s ss

IV IV
IVIV

′ ′⎡ + µ ⎤ ⎡ + µ⎣ ⎦ ⎣ ⎦
′⎡ + µ ⎤⎣ ⎦∑

γ γ

γ

⎤
, 

 
where IVl is the inclusive value for limb l, 
 
 Il  =  . ( )| | ||

log exp ' (1/ )yl s l s l s ls l
IV⎡ ⎤γ + µ⎣ ⎦∑ α

 
 In the nested logit model with P(j,b,l,r)  =  P(j|b,l,r) × P(b|l,r) × P(l|r) × P(r), the 
marginal effect of a change in attribute ‘k’ in the utility function for alternative ‘J’ in branch ‘B’ 
of limb ‘L’ of trunk ‘R’ on the probability of choice ‘j’ in branch ‘b’ of limb ‘l’ of trunk ‘r’ is 
computed using the following result: Lower case letters indicate the twig, branch, limb and trunk 
of the outcome upon which the effect is being exerted.  Upper case letters indicate the twig, 
branch, limb and trunk which contain the outcome whose attribute is being changed: 
 

 log ( , , , ) ( | , , , ) ( )
( ) | , , , )

P alt j limb l branch b trunk r D k J B L R k F
x k alt J limb L branch B trunk r

∂ = = = =
= = ∆ ×

∂ = = = =
, 
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where  ∆(k) = coefficient on x(k) in U(J|B,L,R) 
 
and    F   =  1(r=R) × 1(l=L) ×   1(b=B) × [1(j=J) - P(J|BLR)]                                   (trunk effect), 
                    1(r=R) × 1(l=L) × [1(b=B)  - P(B|LR)] × P(J|BLR)] × τB|LR                   (limb effect), 
                    1(r=R) × [1(l=L) - P(L|R)] × P(B|LR)  ×  P(J|BLR)  × τB|LR × σL|R              (branch effect), 
                    [1(r=R) - P(R)] ×    P(L|R)  × P(B|LR) ×   P(J|BLR)  × τB|LR × σL|R × φR    (twig effect). 
 
where τB|LR,  σL|R and φR are parameters in the MNL probabilities.  The marginal effect is 
 
 ∂ P(j,b,l,r)/∂x(k)|J,B,L,R  =  P(j,b,l,r) ∆(k) F. 
 
A marginal effect has four components, an effect on the probability of the particular trunk, one 
on the probability for the limb, one for the branch, and one for the probability for the twig.  
(Note that with one trunk, P(l) = P(1) = 1, and likewise for limbs and branches.)  For continuous 
variables, such as cost, it is common to report, instead, 
  
 Elasticity = x(k)|J,B,L,R × ∆(k|J,B,L,R) × F. 
 
 The formulation of the nested logit model imposes no restrictions on the inclusive value 
parameters.  However, the assumption of utility maximization and the stochastic underpinnings 
of the model do imply certain restrictions.  For the former, in principle, the inclusive value 
parameters must be between zero and one.  For the latter, the restrictions are implied by the way 
that the random terms in the utility functions are constructed.  In particular, the nesting aspect of 
the model is obtained by writing 
 
   εj|b,l,r =  uj|b,l,r  +  vb|l,r. 
 
That is, within a branch, the random terms are viewed as the sum of a unique component and a 
common component.  This has certain implications for the structure of the scale parameters in 
the model.  In particular, it is the source of the oft cited (and oft violated) constraint that the IV 
parameters must lie between zero and one.  These are explored in Hunt (2000) and Hensher and 
Greene (1999).  
 
 0.7.3  Mixed logit and error components models 
 
This model is somewhat similar to the random coefficients model for linear regressions.  (See 
Bhat (1996), Jain, Vilcassim, and Chintagunta (1994), Revelt and Train (1998), Train (2003), and 
Berry, Levinsohn, and Pakes (1995).)  The model formulation is a one level multinomial logit 
model, for individuals i = 1,...,n in choice setting t.  We begin with the basic form of the 
multinomial logit model, with alternative specific constants αji and attributes xji, 
 

 Prob(yit = j|Xit)  = 
( )

( )
,

,1

exp

exp

x

xit

ji i it j i
J

qi i it q iq=

′α

′α∑
+ β

+ β
. 

 
The random parameters model emerges as the form of the individual specific parameter vector, βi  
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is developed. The most familiar, simplest version of the model specifies 
 
 βki =  βk  +  σkvki, 
 αji =  αj   +  σjvji, 
 
where βk is the population mean, vki is the individual specific heterogeneity, with mean zero and 
standard deviation one, and σk is the standard deviation of the distribution of βkis around βk. The 
term ‘mixed logit’ is often used in the literature [e.g., Revelt and Train (1998) and, especially, 
McFadden and Train (2000)].  The choice specific constants, αji and the elements of βi are 
distributed randomly across individuals with fixed means.  A refinement of the model is to allow 
the means of the parameter distributions to be heterogeneous with observed data, zi, (which does 
not include a constant).  This would be a set of choice invariant characteristics that produce 
individual heterogeneity in the means of the randomly distributed coefficients so that 
 
 βki    =  βk  +  zi′δk  +  σkvki, 
 
and likewise for the constants.  The model is not limited to the normal distribution.  One 
important variation is the lognormal model, 
 
 βki   =  exp(βk  +  zi′δk +  σkvki). 
 
The vkis are individual and choice specific, unobserved random disturbances - the source of the 
heterogeneity.  Thus, as stated above, in the population, if the random terms are normally 
distributed, 
 
             βki   ~  Normal or Lognormal [βk + zi′δ k, σ k

2]. 
 
(Other distributions may be specified.)  For the full vector of K random coefficients in the model,  
we may write the full set of random parameters as 
 
 βi  =  β  +  ∆zi  +  Γvi. 
 
where Γ is a diagonal matrix which contains σk on its diagonal. 
 Hensher and Greene (2006) and Greene and Hensher (2006) have developed a 
counterpart to the random effects model that essentially generalizes the mixed logit model to a 
stochastic form of the nested logit model.  The general notation is fairly cumbersome, but an 
example suffices to develop the model structure.  Consider a four outcome choice set, Air, Train, 
Bus, Car.  The utility functions in an MNL or mixed logit model could be 
 
 Uit,Air   =  αAir  + xit,Air′βi   +  εit,Air  +  θ1Ei,Private  
 Uit,Train  =  αTrain + xit,Train′βi   +  εit,Train   +  θ2EiPublic  
 Uit,Bus  =  αBus  + xit,Bus′βi   +  εit,Bus   +  θ2EiPublic  
 Uit,Car  =      xit,Car′βi  +  εit,Car  +  θ1Ei,Private  
 
where the components, Ei,Private and Ei,Public are independent, normally distributed random elements 
of the utility functions.  Thus, this is a two level nested logit model. 
 The probabilities defined above are conditioned on the random terms, εi and the error 
components, Ei.  The unconditional probabilities are obtained by integrating vik and Eim out of the 
conditional probabilities: Pj  =  Ev,E[P(j|εi,Ei)].  This is a multiple integral which does not exist in 
closed form. The integral is approximated by simulation.  [See Hensher and Greene (2006) and 
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Greene (2007) for discussion.]  Parameters are estimated by maximizing  the simulated log 
likelihood, 
 
0.7.4  Applications 
 
The multinomial choice models are illustrated with a well known data survey of commuters 
between Sydney and Melbourne  [see Greene (2007) and references cited.)  A sample of 210 
travelers were asked which of four travel modes they chose, among Air, Train, Bus or Car..  The 
variables used in the models are  
 
 TTME = Terminal time, in minutes, zero for car, 
 INVT = In vehicle time for the journey, 
 GC     = generalized cost = in vehicle cost + a wage times INVT, 
 HINC = household income, 
 PSIZE = traveling party size. 
 
Descriptive statistics for the data used in estimation are shown in Table 9.  We note before 
beginning, the sample proportions for the four travel modes in this sample are 0.27619, 0.30000, 
0.14286 and 0.28095, respectively.  Long study of this market revealed that the population values 
of these proportions would be closer to 0.14, 0.13, 0.09 and 0.64, respectively.  The sample 
observations were deliberately drawn so that the car alternative received fewer observations than 
random sampling would predict.  The sample is choice based.  A general adjustment for that 
phenomenon is the Manski-Lerman (1977) WESML correction, which consists of two parts. 
First, we would fit a weighted log likelihood, 
 

 lnL(WESML)  =  
1 1

lnn J j
ij iji j

j

d
p= =

π
∑ ∑ Π  

 
where dij = 1 if individual i chooses alternative j and 0 otherwise, πj is the true population 
proportion, pj is the sample proportion, and Πij is the probability for outcome j implied by the 
model.  The second aspect of the correction is to use a sandwich style corrected estimator for the 
asymptotic covariance matrix of the MLE, 
 
 V(WESML)  =  H-1 (G′G) H-1

 
where H is the inverse of the (weighted) Hessian and (G′G)-1 would be the BHHH estimator 
based on first derivatives.  The results to follow do not include this correction – the results in the 
example would change slightly if they were incorporated. 
 We fit a variety of models.  The same utility functions were specified for all: 
 
 Ui,AIR   =  αAIR    + βtt TTMEi,AIR     + βit INVTi,AIR    + βgc GCi,AIR     + γA HINCi + εi,AIR, 
 Ui,TRAIN =  αTRAIN + βtt TTMEi,TRAIN + βit INVTi,TRAIN + βgc GCi,TRAIN            + εi,TRAIN, 
 Ui,BUS   =  αBUS    + βtt TTMEi,BUS    + βit INVTi,BUS     + βgc GCi,BUS            + εi,BUS, 
 Ui,CAR   =         βtt TTMEi,CAR    + βit INVTi,CAR     + βgc GCi,CAR            + εi,CAR, 
 
Model MNL is the base case multinomial logit model.  Model MNP is the multinomial probit  
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model.  The three NL models are nested logit models with different tree structure, 
 
 NL(1)  =  Private(air,car), Public(train,bus). 
 NL(2)  =  Fly(air), Ground(train, bus, car) 
 NL(3)  =  Fly(air), Rail(train), Drive(car), Autobus(bus). 
 
For the third of these, one of the inclusive value parameters, µj must be constrained to equal one.  
Model HEV is the extreme value model with the variances allowed to differ across utility 
functions.  In addition, we introduced heteroscedasticity in the model, so that 
 
 Var[εi,j]  =  σj

2 × exp(θ Party Sizei). 
 
Finally, the last model is a random parameters specification in which the parameters on TTME, 
INVT and GC are allowed to vary randomly across individuals. 
 
Table 9   Descriptive Statistics for Variables 
Variable   Mean             Std.Dev.       Mean           Std.Dev. 
Air All 210 Observations 58 Observations that chose AIR 

TTME 
INVT 
GC 
PSIZE 
HINC 

   61.010     15.719 
  133.710     48.521 
  102.648     30.575 
    1.743      1.012 
   34.548     19.711 

  46.534    24.389 
 124.828    50.288 
 113.552    33.198 
   1.569      .819 
  41.724    19.115 

Train All 210 Observations 63 Observations that chose TRAIN 
TTME 
INVT 
GC 
PSIZE 
HINC 

   35.690     12.279 
  608.286    251.797 
  130.200     58.235 
    1.743      1.012 
   34.548     19.711 

  28.524    19.354 
 532.667   249.360 
 106.619    49.601 
   1.667      .898 
  23.063    17.287 

Bus All 210 Observations 30 Observations that chose BUS 
TTME 
INVT 
GC 
PSIZE 
HINC 

   41.657     12.077 
  629.462    235.408 
  115.257     44.934 
    1.743      1.012 
   34.548     19.711 

  25.200    14.919 
 618.833   273.610 
 108.133    43.244 
   1.333      .661 
  29.700    16.851 

Car All 210 Observations 59 Observations that chose CAR 
TTME 
INVT 
GC 
PSIZE 
HINC 

     .000       .000 
  573.205    274.855 
   95.414     46.827 
    1.743      1.012 
   34.548     19.711 

    .000      .000 
 527.373   301.131 
  89.085    49.830 
   2.203     1.270 
  42.220    17.685 

  
 There is no useable scalar fit measure for the multinomial choice model.  (The Pseudo-R2 
was proposed for this model but, as noted earlier, is not an effective measure of fit.)  One 
approach to assessing model fit is a cross tabulation of actual vs. predicted outcomes.  The 
computation would be 
 
  1 , ,

ˆˆ int n
mj i i m i jn P=

⎡ ⎤= ⎣ ⎦Σ d

 
where ,î mP  is the predicted probability for outcome m and di,j is the binary indicator for whether 
individual i chose alternative j.  Table 11 reports this computation for the multinomial logit model 
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Table 10  Estimated Multinomial Choice Models (Standard errors in parentheses) 
 MNL MNP NL(1) NL(2) NL(3) HEV RPL 
αAIR

 3.139 
(0.984) 

-2.769 
(1.997) 

1.110 
(.877) 

3.261 
(.879) 

1.825 
(.621) 

2.405 
(2.692) 

6.930 
(4.053) 

αTRAIN
 3.558 
(0.443) 

3.137 
(1.0599)

1.468 
(.452) 

3.039 
(.601) 

2.113 
(.493) 

6.701 
(2.852) 

17.994 
(4.745) 

αBUS
 3.134 
(0.452) 

2.581 
(.419) 

.971 
(.475) 

2.721 
(.604) 

1.877 
(.746) 

6.150 
(2.483) 

16.556 
(4.585) 

αCAR
 0.000 
(0.000) 

.000 
(0.000) 

.000 
(0.000) 

.000 
(0.000) 

.000 
(0.000) 

.000 
(0.000) 

.000 
(0.000) 

TermTime -0.0963 
(0.0103) 

-.0548 
(.0227) 

-.0655 
(.0116) 

-.0742 
(.00134)

-.0415 
(.0148) 

-.164 
(.0799) 

-.385 
(.0857) 

Inv.Time -.00379 
(.00118) 

-.00447 
(.00139)

-.00422 
(.000919)

-.0167 
(.00142)

-.00767 
(.00197)

-.00744 
(.00300) 

-.0241 
(.00589)

Gen.Cost -.00139 
(.00623) 

-.0183 
(.00827)

-.000449 
(.00467) 

.00639 
(.00679)

-.00051 
(.00340)

-.0299 
(.0185) 

-.0397 
(.0238) 

Income .0185 
 (.0108) 

.0702 
(.0398) 

.0169 
(.00691) 

.0195 
(.00878)

.00868 
(.00389)

.0604 
(.0456) 

.156 
(.0715) 

Scale(1) 5.073 
(2.172) 

3.097 
(.627) 

1.278 
(.289) 

3.400 
(1.238) 

.386 
(.189) 

.261 
(.0794) 

Scale(2) 1.221 
(.911) 

1.989 
(.423) 

.197 
(.0679) 

1.0839 
(.109) 

.745 
(.376) 

.0176 
(.00564)

Scale(3) 1.000 
(0.000) 

1.130 
(.144) 

.964 
(.587) 

.0369 
(.0350) 

Scale(4) 

 

1.000 
(0.000) 

  

1.000 
(0.000) 

1.000 
(0.000) 

 

Party Size  -.208 
(.0739) 

 

ρ(Air,Train) .736 
(.323) 

ρ(Air,Bus) .649 
(.475) 

ρ(Train,Bus) 

 

.655 
(.292) 

 

ln L -193.498 -191.826 -178.714 -166.366 -190.930 -186.174 -168.109 

MNP, scale parameters are standard deviations, NL1, scale parameters are IV parameters 
NL2, scale parameters are IV parameters, NL(3) Scale parameters are IV parameters 
HEV, scale parameters are σj,  RPL, scale parameters are sd’s of random parameters  
 

Table 11  Predicted vs. Actual Choicesa

 Predicted Outcomes 
Actual 
Outcomes 

Air 
MNL  NL 

Train 
MNL  NL 

Bus 
MNL  NL 

Car 
MNL  NL 

Total 

Air 33  32  8   7  4  4 13  15    58 
Train  7   6 37  49  5  7 14  11    63 
Bus  4   3  5   7 16 16  5   4    30 
Car 14  16 12   9  5  4 27  31    59 
Total 58  57 63  63 30 30 59  61   210 
a Column totals subject to rounding error.  Row totals are actual counts. 
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and for the first nested logit model in Table 10 (NL(1)).  We can see from the counts on the 
diagnoals of the matrix, by this measure, the nested logit model fits slightly better.  The 
improvement in fit is achieved by a much better match of the model predictions for the choice of 
Train. 
 Table 12 lists the estimates of the elasticities of the choice probabilities with respect to 
changes in the generalized cost of each mode.  The force of the IID assumptions of the 
multinomial logit model can be seen in the cross elasticities.  For example, the elasticity of the 
choice probabilities for Train, Bus and Car with respect to changes in GC of Air are all 0.0435.  
The counterparts for Train, Bus and Car are -.0455, 0,0210 and 0.0346, respectively.  None of the 
other models listed have this property. 
 
Table 12   Estimated Elasticities with Respect to Changes in GC 

CG changes in choices: Effects is on 
choice of: Air Train Bus Car 
 
Air 

MNL    -.0994 
MNP    -.5230 
NL(2)   .595- 
HEV    -.9158 
RPL    -.4808 

MNL     .0455 
MNP     .3060 
NL(2)  -.0310 
HEV     .3771 
RPL     .2361 

MNL     .0210 
MNP     .1179 
NL(2)   -.0200 
HEV     .2339 
RPL     .1440 

MNL       .0346 
MNP      .1006 
NL(2)   -.0430 
HEV      .2144 
RPL      .0663 

 
Train 

MNL     .0435 
MNP     .3889 
NL(2)  -.2440 
HEV      .3443 
RPL     .3167 

MNL    -.1357 
MNP   -3.4650 
NL(2)  -.2160 
HEV   -1.7389 
RPL   -1.4151 

MNL      .0210 
MNP     1.1148 
NL(2)   -.127 
HEV     .4105 
RPL     .5715 

MNL      .0346 
MNP      .9416 
NL(2)    .5420 
HEV      .4621 
RPL      .2360 

 
Bus 

MNL     .0435 
MNP     .2859 
NL(2)  -.2440 
HEV     .4744 
RPL     .7109 

MNL     .0455 
MNP     2.454 
NL(2)  -.2160 
HEV    1.2723 
RPL    1.8434 

MNL     -.1394 
MNP    -4.4750 
NL(2)    .6100 
HEV    -3.1008 
RPL    -2.9242 

MNL      .0346 
MNP     1.2686 
NL(2)   -.2900 
HEV       .8358 
RPL       .3246 

 
Car 

MNL     .0435 
MNP     .1113 
NL(2)   -.2440 
HEV     .4133 
RPL     .2489 

MNL     .0455 
MNP     .8592 
NL(2)   .3940 
HEV     .8108 
RPL     .6300 

MNL      .0210 
MNP      .5587 
NL(2)   -.1270 
HEV      .6190 
RPL      .2973 

MNL     -.0982 
MNP    -1.4023 
NL(2)   -.2900 
HEV    -1.7829 
RPL    -1.0332 

 
0.8  Summary and conclusions 
 
The preceding has outlined the basic modeling frameworks that are used in analyzing 
microeconomic data when the response variable corresponds to a discrete choice.  The essential 
binary choice model is the foundation for a vast array of applications and theoretical 
developments.  The full set of results for the fully parametric models based on the normal 
distribution as well as many non- and semiparametric models are well established.  Ongoing 
contemporary theoretical research is largely focused on less parametric approaches and on panel 
data.  The parametric models developed here still overwhelmingly dominate the received 
applications. 
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