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Abstract 
 
The most familiar fixed effects (FE) and random effects (RE) panel data treatments for count data 
were proposed by Hausman, Hall and Griliches (HHG) (1984).  The Poisson FE model is 
particularly simple and is one of a small few known models in which the incidental parameters 
problem is, in fact, not a problem.  The same is not true of the negative binomial (NB) model.  
Researchers are sometimes surprised to find that the HHG formulation of the FENB model allows 
an overall constant – a quirk that has also been documented elsewhere. We resolve the source of 
the ambiguity, and consider the difference between the HHG FENB model and a ‘true’ FENB 
model that appears in the familiar index function form.  
 The familiar RE Poisson model using a log gamma heterogeneity term produces the NB 
model.  The HHG RE NB model is also unlike what might seem the natural application in which 
the heterogeneity term appears as an additive common effect in the conditional mean. We 
consider the lognormal model as an alternative RENB model in which the common effect appears 
in a natural index function form.   
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1  Introduction 
 
The most familiar panel data treatments, fixed effects (FE) and random effects (RE), were 
proposed for count data models by Hausman, Hall and Griliches (HHG) (1984).  The Poisson FE 
model is particularly simple to analyze, and has long been recognized as one of a small handful of 
models in which the incidental parameters problem [see Neyman and Scott (1948) and Lancaster 
(2000)] is, in fact, not a problem.  The same is not true of the negative binomial (NB) model.  
Researchers are sometimes surprised to find, moreover, that the HHG formulation of the FENB 
model allows an overall constant – a quirk that has been documented elsewhere [see Allison 
(2000) and Allison and Waterman (2002), for example].  This note resolves the source of the 
ambiguity, and considers the difference between the HHG FENB model and a ‘true’ FENB model 
that appears in the familiar index function form that is used in other familiar settings.  The true 
FENB model has not been used by applied researchers, in part because of the absence of a 
computational method.  We have developed a method of computing the true FENB model that 
allows a comparison to the HHG formulation.   
 The familiar RE Poisson model using an additive log gamma heterogeneity term in the 
conditional mean produces an uncomplicated NB model.  The HHG RENB model, however, is 
also unlike what might seem the natural application in which the heterogeneity term appears as an 
additive common effect in the conditional mean.  Theirs was a practical solution to the problem.  
Here, we consider the lognormal model as an alternative and compare it to the HHG 
formulation.The lognormal model provides a means of specifying the RE NB model in a natural 
index function form.  We will develop this model, and, once again, compare it to the HHG 
formulation.  The various models discussed and developed below are applied in a large, rich 
panel data set that allows a detailed comparison. 

 
2  Basic Functional Forms for Count Data Models 
 
The canonical regression specification for a variable Y that is a count of events is the Poisson 
regression, 
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where xi is a vector of covariates and, i = 1,…,N, indexes the N observations in a random sample.  
[The regression model is developed in detail in a vast number of standard references such as CT 
(1986, 1998, 2005), Winkelmann (2003) and Greene (2008).] 
 The negative binomial model is the standard extension that is used to circumvent the 
equidispersion property of the Poisson model, Var[yi|xi] = E[yi|xi] = λi.  The model can also be 
motivated by introducing latent heterogeneity into the Poisson model.1  We write 
 
(2-2)  E[yi|xi,εi] = exp(α+xi′β + εi) = hiλi, 
 
where hi = exp(εi) is assumed to have a one parameter gamma distribution, G(θ,θ) with mean 1 and 
variance 1/θ  = κ; 
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Integrating hi out of the conditional density produces the negative binomial marginal distribution, 
 

 
1 This general approach is discussed at length by Gourieroux, Monfort and Trognon (1984), CT (1986, 
1997), Winkelmann (2003) and HHG (1984). 
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Both the Poisson and NB random variables have conditional mean functions 
 
(2-5)  E[yi|xi] = λi. 
 
The model in (2-4) is the “NB2” form of the model, in reference to the conditional variance, 
 
(2-6)  Var[yi|xi]  =  λi[1 + (1/θ)λi.] = λi + κλi

P, 
 
where P = 2.  [See CT (1986).]  The NB1 form (P = 1), which has the same conditional mean 
function, λi, but conditional variance 
 
(2-7)  Var[yi|xi] = λi[1 + (1/θ)] = λi[1 + κ], 
 
is obtained by replacing θ with θλi in the density (2-4).  (This is not a simple reparameterization of 
the model.  E.g., the log likelihood functions for the two models will differ, and the parameters of 
the NB1 model are not one to one functions of those in the NB2 model.) 
 Consider, instead, introducing the heterogeneity in (2-2) as a normally distributed variable 
with mean zero and standard deviation σ.  Then, the conditional Poisson model is 
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The unconditional density would be 
 

(2-9)   P(yi|xi)  =  
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where φ(εi) denotes the standard normal density.  Maximum likelihood estimates of the model 
parameters are obtained by maximizing the unconditional log likelihood function with respect to 
the model parameters (α, β, σ).   Butler and Moffitt’s (1982) Hermite quadrature based method 
may be used.  [See, e.g., Greene (2007).]  Simulation is another effective approach to maximizing 
the log likelihood function.  [See Train (2003) and Greene (2007, 2008).]  
 
3.  Models for Panel Data 
 
 The Poisson fixed effects model, 
 

(3-1)  P(yit|xit)  =  exp( ) , exp(
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is one of only a few known cases in which maximization of the full log likelihood, 
 
(3-2)  lnL  =  ln P(yit|xit)  1 1
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with respect to (αi,i=1,...,N, β) produces an estimate of β that is numerically identical to the 
maximizer of the conditional log likelihood based on 
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[See Lancaster (2000).]   

Hausman, Hall and Griliches (1984) (HHG) report the following results for a fixed 
effects negative binomial (FENB) model: 

(3-5)       ( ) ( )
( )

1 1
1 2 1

11 1

( ) 1 ( ), , , | ,
( 1) (i

T T T
t it t itT it it

i i iT i t it T T
t it itt it t it

y yp y y y y
yy

= =
=

== =

⎡ ⎤Γ Σ + Γ Σ γ Γ + γ⎣ ⎦Σ =
Γ + Γ γΓ Σ +Σ γ ∏X…

)
, 

    γit  = exp(xit′β ),  

    δi = φi/exp(μi), 

    E[yit|xit]  =  γit / δi  =  exp(xit′β + μi)/φi, 
 
    Var[yit|xit]  =   γit / δi

2 = exp(xit′β + 2μi)/φi
2. 

 
The specification appears to allow fixed effects in both the mean (through μi) and the standard 
deviation (through φi).  The conditional density in (3-5) is free of both fixed effects, which would 
seem to solve the heterogeneity problem in the familiar fashion.  This is the default FENB 
formulation used in popular software packages such as Stata, SAS and LIMDEP.  But, this leaves 
the conundrum:  Researchers accustomed to the admonishment that fixed effects models cannot 
contain overall constants or time invariant covariates are sometimes surprised to find (perhaps 
accidentally) that this fixed effects model allows both.  Why can this model coexist with an 
overall constant term or even an additional set of additive fixed effects? 
 To resolve the question, return to the HHG formulation of the conditional probability.  
Using their notation, the departure point is a Poisson model conditioned on an unobserved 
conditional mean, 

 Prob[Yit = yit|λit]  =  exp( )
( 1)
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it it
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Now, assume that the unobserved λit is distributed as Gamma(γit,δ) where 
 
   γit  =  exp(xit′β). 
 

Then   f(λit|xit)  =  
1exp( )

( )
it it it it
δ δ−γ −γ λ λ

Γ δ
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It follows, then  E[λit|xit]  =  γit/δ 
 
and   Var(λit|xit)  = γit/δ2. 
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By integrating λit out of the joint density for (yit,λit), we obtain the marginal density reported in 
HHG [their equation (3.1)] 
 

 Prob(Yit = yit|xit)  =  ( ) 1 .
( ) ( 1) 1 1

it ity
it it

it it

y
y
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This is the NB1 model that is obtained by replacing λi in our (2.4) with λit = δγit and θ with 1/δ.  It 
follows, then, that the conditional mean function in the HHG model, in our notation, would be 
 
   E[yit|xit]  =  δλit 
If we now define 
   θi = exp(αi)/φi, 
then it appears that 
   E[yit|xit]  =  exp(xit′β + αi) / φi 
and 
   Var[yit|xit]   =  exp(xit′β + 2αi) / φi

2. 
 
and the HHG model follows.  
 The loose end in the derivation is that the interpretation of θi as displacing the mean and 
variance at the same time is incorrect.   The firm specific scale factor θi is just that.  It acts only 
on the variance of the random variable.  It is a single parameter, not the product of two separately 
identified parameters.  Indeed, θi could be written as the product of any number of individual 
specific parameters, and the group of them would still fall out of the conditional density.  The 
apparent individual specific effect in the conditional mean is an artifact of the functional form 
chosen for θi.  To see this clearly, note that αi cannot vary independently of φi.  Thus, HHG’s 
statement that “both φi and μi are allowed to vary across firms” is incorrect.  Only φi/exp(μi) is 
allowed to vary across firms. 
 In the two negative binomial models considered, the conditional mean functions are 

 
(3-6)  NB1(HHG):  E[yit | xit]  =  (1/θi)φit = (1/θi)exp(α + xit′β ) 
  NB2(FE):      E[yit | xit]  =  λit     = exp(αi + xit′β), 
 
Thus, the conditional mean function in the HHG model is homogeneous.  The fixed effect in the 
model is introduced through the scaling parameter, θi, which enters the conditional variance of 
the random variable; 
 
(3-7)  NB1(HHG):  Var [yit | xit] = (1/θi)φit[1 + (1/θi)], 
  NB2(FE):      Var [yit | xit] = λit [1 + (1/θ)λit]. 
 
The relationship between the mean and the variance is quite different for the two models.  For 
estimation purposes, one can explain the apparent contradiction noted earlier by observing that in 
the NB1 formulation, the individual effect is built into the scedastic (scaling) function, not the 
conditional mean. (In principle, given this finding, one could have a second set of fixed effects, in 
the mean of the HHG model.)  Greene (2007) analyzes the more familiar, FENB2 form with the 
same treatment of λit.  Estimates for both models appear below.    

Theory does not provide a reason to prefer the NB1 formulation over the more familiar 
NB2 model.  The NB1 form does not share the usual interpretation of the fixed effect as carrying 
only the the time invariant heterogeneity into the conditional mean function. The HHG model 
being conditionally independent of the fixed effects, does finess the incidental parameters 
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problem – the estimator of β in this NB1 model is consistent.  This is not the case for the FENB2 
form.  But, it remains unclear what role the fixed effects play in the NB1 model, and how they 
relate to the fixed effects in other familiar treatments. 
 The conditional NB1 specification obviates brute force maximization of the 
unconditional NB2 (or NB1) log likelihood function with respect to β and all N constants αi, 
which is a significant practical advantage (notwithstanding the incidental parameter problem). 
However, Greene (2004) provides a solution to this problem that enables the computation even 
with large N.  The estimates below are based on this method. 
 The random effects Poisson model can be formed by writing  
 
(3-8)  λit = exp(α + xit′β + ui) 
 
where ui is independent of xit.  Under the assumption that ui has a log gamma density with exp(ui) 
~ G(θ,θ) as earlier in the cross section case, the unconditional joint density for individual i is 
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This is a negative binomial, NB2 distribution for Yi = 1
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t=Σ yit with mean Λi = λit.  The Poisson 

RE model could also be specified with lognormal heterogeneity.  Analysis would follow precisely 
along the lines of Section 2.  The joint probability would be computed from 
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The implied log likelihood function and its derivatives can be approximated using either 
quadrature or simulation.   

Like the fixed effects model, introducing random effects into the negative binomial 
model adds some additional complexity.  An approach that would preserve the form of the model 
would be to begin with a Poisson model and write 

 
(3-11)  λit = exp(α + xit′β + εit + ui), 
 
where both εit and ui are log gamma distributed with parameters θ and μ, respectively.  This 
would correspond to a mixed negative binomial model.  [The model used in Riphahn (2003).]  If 
it is assumed that εit has the G(θ,θ) distribution assumed in Section 2 and ui has a normal 
distribution with mean zero and standard deviation σ, then we obtain a “true” random effects NB 
model that parallels the model developed earlier.  The conditional negative binomial model will 
result from 
 
(3-12)  P(yit|xit,ui)  =  

 
( | , , ) ( )
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Changing the variable to hit = exp(εit) and integrating over hit instead produces the negative 
binomial (NB2) model with conditional mean E[yit|xit,ui] = exp(xit′β + σui) and dispersion 
parameter θ. The resulting conditional density is 
 

  P(yit|xit,ui) =  
( ) (1 )

( 1) ( )
ityit

it it
it

y r r
y

θΓ + θ
−

Γ + Γ θ
, 

(3-13)  λit     = exp( )xit′α + β , 

  rit    =  θ/ (θ +exp(σui)λit). 
 
We can then estimate the parameters by forming the conditional (on ui) log likelihood and 
integrating ui out either by quadrature or simulation.   Note that ui can be assumed to be either log 
gamma or normally distributed, but in either case, there will be no closed form for the integrals. 

Hausman et al.’s (1984) random effects negative binomial model is a hierarchical model 
that derives from a heterogeneous Poisson model.  The mean in the Poisson model is exp(ui)λit 
where exp(ui) has G(θ,θ) density.  This produces the NB kernel.  The unconditional distribution is 
obtained by treating pit = [exp(ui)λit]/[Σtexp(ui)λit] as a random vector with Dirichlet mixing 
distribution. Each pair of means, μit = exp(ui)λit  μis = exp(ui)λis is such that μit/(μit+μis) has a beta 
distribution with parameters a and b.  The resulting unconditional density is 
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This is the common form of the RENB model that is incorporated in several contemporary 
computer packages.  As before, the relationship between the heterogeneity and the conditional 
mean function is unclear, and there is no obvious interpretation of the hyperparameters a and b – 
the distribution was chosen for mathematical convenience.  The parameters can be directly 
interpreted in the effects model in (3-11), where the estimated standard deviation of ui can be 
directly interpreted against the other parameters in the model.  Moreover, the HHG model does not 
admit of a ready test of the homogeneous model.    Estimates of the two forms of the fixed and 
random effects model are presented in Section 4 for a comparison. 
 
4.  Applications 
 
 In "Incentive Effects in the Demand for Health Care: A Bivariate Panel Count Data 
Estimation," Riphahn, Wambach and Million (2003) employed a part of the German 
Socioeconomic Panel (GSOEP) data set to analyze two count variables, DocVis, the number of 
doctor visits in the last three months and HospVis, the number of hospital visits in the last year.  
The authors employed a bivariate panel data (random effects) Poisson model to study these two 
outcome variables.  A central focus of the investigation was the role of the choice of private 
health insurance in the intensity of use of the health care system, i.e., whether the data contain 
evidence of moral hazard. We will use these data to illustrate the model extensions described 
above.2   

 
2 The raw data are published and available for download on the Journal of Applied Econometrics data 
archive website, The URL is given below Table 1. 
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 The RWM data set is an unbalanced panel of 7,293 individual families observed from 
one to seven times. The number of observations per family varies from one to seven (1,525, 
1,079, 825, 926, 1,051, 1000, 887) with a total number of observations of 27,326.   The variables 
in the data file are listed in Table 1 with descriptive statistics for the full sample. They estimated 
separate equations for males and females and did not report any estimates based on the pooled 
data.  Table 2 reports descriptive statistics for the two subsamples.  The figures given all match 
those reported by RWM. The outcome variables of interest in the study were doctor visits in the 
last three months and number of hospital visits last year.   
 The base case count model used by the authors included the following variables in 
addition to the constant term: 
 
 xit =  (Age, Agesq, HSat, Handdum, Handper, Married, Educ, Hhninc, 
   Hhkids, Self, Civil, Bluec, Working, Public, AddOn) 
 
and a set of year effects, 
 
 t = (YEAR1985, YEAR1986, YEAR1987, YEAR1988, YEAR1991, YEAR1994). 
 
The same specification was used for both DocVis and HospVis.  We will use their specification in 
our count models.  The estimated year effects are omitted from the reported results in the paper.   
 Table 3 presents the estimated fixed and random effects Poisson  models for the males in 
the sample.  (The authors also segregated the subsamples.  For brevity, we have only reported the 
results for males.)   Based on the likelihood ratio test (which is valid in this case because the MLE 
is consistent), the “no effects” model is rejected convincingly.  The chi squared statistic with 
(3,687-714) degrees of freedom is 41,156.36.  The large degrees of freedom approximation in 
Greene (2008, result B-37) provides a standard normal test statistic of 209.79.  (Note, there 3,687 
individuals in the sample.  However, 714 of them had zero visits in every period.  These 
observations contribute a 1.00 to the likelihood function – Prob(yi1=0,yi2=0,...|Σ t yit=0) = 1, so 
constant terms cannot be estimated for them.  The marked difference between the base case 
Poisson model (no effects) and the fixed effects estimates in the second column are to be 
expected.  The random effects estimates in the third and fourth columns are quite similar.  Two 
noticable differences are the coefficients on marital status and children in the household.  Save for 
these, the Poisson random effects do not differ appreciably across the two platforms.  The 
estimated variances of the heterogeneity are likewise quite similar.  The similarities of the 
competing models does not carry over to the negative binomial specifications. 
 Estimates for the fixed and random effects negative binomial models appear in Table 4.  
The two sets of fixed effects estimates are quite different.  The statistical significance and the 
signs of several of the coefficients change across the two specifications, including AGE, 
MARRIED, EDUC, CIVIL, and ADDON.  The magnitudes of several of the coefficients change 
substantively, notably the coefficient on PUBLIC, which is five times larger in the “true” fixed 
effects estimates.  The signs and statistical significance of the period effects reverse several times 
as well.   The difference between the HHG and true FE models is that HHG builds the effects into 
the variance of the random variable, not the mean.  Thus, we cannot conclude that the HHG 
estimator is a consistent estimator of a model that contains a heterogeneous mean.  It is a 
consistent estimator in the context of a model with heterogeneous variance.  We have convincing 
evidence from the Poisson model that there is substantial latent heterogeneity in the mean of the 
random variable.  The log likelihood function for the “no effects” NB model falls to -27,480, 
which is thousands less than the log likelihood for either fixed effects specification.  Thus, it is 
reasonable to conclude that the HHG estimator is at least potentially problematic.  This finding 
does not weigh in favor of the true FE estimator, however.  There is no minimally sufficient 
statistic for αi in the NB2 model, so we are led to expect that the incidental parameters problem 
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will surface in this setting.  It remains to be investigated how substantial the biases (if there are 
any) will be, however.  It seems unlikely that the simple proportional results widely known for 
the probit and logit models will carry over to this setting.  The FE approach produces a bit of a 
Hobson’s choice.  The HHG model does not actually build the heterogeneity into the mean of the 
random variable, so we might suspect that it suffers from an “omitted variable” problem.  The 
true fixed effects estimates differ enough from the HHG estimates in this very large sample that 
one might suspect the appearance of the incidental parameters problem. 
 The random effects estimates for the NB models also differ substantially.  In this case, 
however, there is no simple comparison one can draw.  There are fewer sign changes, but, the 
magnitudes and statistical significance are surprisingly variable for a sample as large as this one.  
Once again, we suspect that the models differ in subtle, but significant structural ways.  We have 
no way of interpreting the parameters of the beta distribution in the HHG model that implies a 
decomposition of the variance of the heterogeneity.   For the lognormal model, we can 
decompose the variance as follows:  The variance of the log gamma term is ψ′(θ) = ψ′(1/1.0192) 
= 1.681.  The variance of the time invariant lognormal component is .79792 = .637.  The total is 
thus 2.318.  A counterpart that does not assume that the lognormal component is time invariant 
was estimated by treating the sample as a cross section.  The same decomposition produces 
ψ′(.9043)=1.909 and .69612 = .485 for a nearly identical total of 2.394. 
 
5.  Conclusions 
 
 We have examined some aspects of the most familiar forms of fixed and random effects 
models for count data. We find that the lognormal distribution provides a natural method of 
introducing time invariant heterogeneity into the model.  We also proposed an alternative to the 
HHG fixed effects model.  In this case, the results leave a choice to be made, and a point for further 
research.  In the HHG fixed effects NB model, the fixed effects enter the model through the 
dispersion parameter rather than the conditional mean function. This has the implication that time 
invariant variables can coexist with the effects.  This calls the interpretation of the heterogeneity in 
the model into question.  We propose to apply the direct fixed effects approach suggested in Greene 
(2004) as an appropriate approach to introducing fixed effects into the NB model.  While the 
proposed approach does parallel the treatment of fixed effects in other received models, like many 
of them, the specification may also suffer from the incidental parameters problem.  In some specific 
cases, such as binary choice models, the MLE FE estimator has been found to exhibit a significant 
bias when T is small (as it is in our application).  However, the negative binomial model remains to 
be examined.  As shown in Greene (2004), not all estimators are biased away from zero, and some 
are (apparently) not biased at all.   On the other hand, the HHG model provides a sufficient statistic 
for the fixed effects, so the estimator in their model would not exhibit an “incidental parameters 
problem.”  Because the conditional mean function in the HHG model remains homogeneous, 
however, one might expect a “left out variable” problem instead. We cannot characterize at this 
point which specification is likely to be more problematic in terms of the features of the population 
one is interested in studying. This remains an issue to be studied further. 
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Table 1.  Variables in German Health Care Data File 
Variable Measurement Mean Standard 

Deviation 
ID household identification, 1,...,7293   
YEAR calendar year of the observation 1987.82 3.17087 
YEAR1984 dummy variable for 1984 observation .141770 .348820 
YEAR1985 dummy variable for 1984 observation .138842 .345788 
YEAR1986 dummy variable for 1984 observation .138769 .345712 
YEAR1987 dummy variable for 1984 observation .134158 .340828 
YEAR1988 dummy variable for 1984 observation .164056 .370333 
YEAR1991 dummy variable for 1984 observation .158823 .365518 
YEAR1994 dummy variable for 1984 observation .123582 .329110 
AGE   age in years 43.5257 11.3302 
AGESQ*  * age saquared/1000 2.02286 1.00408 
FEMALE female = 1; male = 0 .478775 .499558 
MARRIED married = 1; else = 0 .758618 .427929 
HHKIDS children under age 16 in the household = 1; else = 0 .402730 .490456 
HHNINC*** household nominal monthly net income,  

German marks / 10000 
.352084 .176908 

EDUC years of schooling 11.3206 2.32489 
WORKING employed = 1; else = 0 .677048 .467613 
BLUEC blue collar employee = 1; else = 0 .243761 .429358 
WHITEC white collar employee = 1; else = 0 .299605 .458093 
SELF self employed = 1; else = 0 .0621752 .241478 
CIVIL civil servant = 1; else = 0 .0746908 .262897 
HAUPTS highest schooling degree is Hauptschul = 1; else = 0 .624277 .484318 
REALS highest schooling degree is Realschul = 1; else = 0 .196809 .397594 
FACHHS highest schooling degree is Polytechnical= 1; else = 0 .0408402 .197924 
ABITUR highest schooling degree is Abitur = 1; else = 0 .117031 .321464 
UNIV highest schooling degree is university = 1; else = 0 .0719461 .258403 
HSAT health satisfaction, 0 - 10 6.78543 2.29372 
NEWHSAT*,** health satisfaction, 0 - 10 6.78566 2.29373 
HANDDUM handicapped = 1; else = 0 .214015 .410028 
HANDPER degree of handicap in pct, 0 - 100 7.01229 19.2646 
DOCVIS number of doctor visits in last three months 3.18352 5.68969 
DOCTOR*  * 1 if DOCVIS > 0, 0 else 629108 .483052 
HOSPVIS number of hospital visits in last calendar year .138257 .884339 
HOSPITAL** 1 of HOSPVIS > 0, 0 else .0876455 .282784 
PUBLIC insured in public health insurance = 1; else = 0 .885713 .318165 
ADDON insured by add-on insurance = 1; else = 0 .0188099 .135856 
Data source: http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/.   
From Riphahn, R., A. Wambach and A. Million "Incentive Effects in the Demand for Health Care: A 
Bivariate Panel Count Data Estimation," Journal of Applied Econometrics, 18, 4, 2003, pp. 387-405. 
Notes: * NEWHSAT = HSAT; 40 observations on HSAT recorded between 6 and 7 were changed to 7. 
            ** Transformed variable not in raw data file. 
            *** Divided by 1,000 rather than 10,000 by RWM.  We used this scale to ease comparison of 
      coefficients. 
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 Table 2.  Descriptive Statistics by Gender 
Males Females  

Variable Mean Standard Dev. Mean Standard Dev. 
YEAR 1987.84 3.19003 1987.80 3.14985 
YEAR1984 .141613 .348665 .141940 .349002 
YEAR1985 .138875 .345828 .138806 .345757 
YEAR1986 .138173 .345094 .139418 .346395 
YEAR1987 .134171 .340848 .134144 .340820 
YEAR1988 .162396 .368826 .165864 .371973 
YEAR1991 .157551 .364332 .160208 .366813 
YEAR1994 .127220 .333231 .119621 .324530 
AGE   42.6526 11.2704 44.4760 11.3192 
AGESQ    1.94628 .987385 2.10623 1.01543 
FEMALE .000000 .000000 1.00000 .000000 
MARRIED .765148 .423921 .751510 .432154 
HHKIDS .412975 .492386 .391577 .488122 
HHNINC .359054 .173564 .344495 .180179 
EDUC 11.7287 2.43649 10.8764 2.10911 
WORKING .850312 .356777 .488420 .499885 
BLUEC .340237 .473805 .138730 .345677 
WHITEC .299937 .458246 .299243 .457944 
SELF .0856561 .279865 .0366124 .187815 
CIVIL .117812 .322397 .0277459 .164250 
HAUPTS .601137 .489682 .649469 .477155 
REALS .176086 .380907 .219369 .413835 
FACHHS .0536404 .225315 .0269051 .161812 
ABITUR .146949 .354068 .0844608 .278088 
UNIV .0961876 .294859 .0455553 .208527 
HSAT 6.92436 2.25148 6.63417 2.32951 
NEWHSAT 6.92459 2.25148 6.63441 2.32953 
HANDDUM .227295 .419007 .199559 .399538 
HANDPER 8.13371 20.3288 5.79143 17.9562 
DOCVIS 2.62571 5.21121 3.79080 6.11113 
DOCTOR .559503 .496464 .704884 .456112 
HOSPVIS .127782 .930209 .149660 .831416 
HOSPITAL .0779330 .268076 .0982191 .297622 
PUBLIC .861055 .345902 .912558 .282492 
ADDON .9175525 .131323 .0201789 .140617 
Sample Size 14,243 13,083 

 
 

 12



 Table 3  Estimated Panel Data Poisson Models, Males  (t ratios in parentheses)  

Fixed Effects Random Effects  Variable 
No Effects Unconditional FE log gamma (NB) lognormal 

Constant 2.639   (39.46)  2.6369   (24.56)  2.0775  (19.39) 

AGE      -.00732 (-2.64)  .0008051  (.06) -.02950  (-7.56) -.02694  (-6.96) 

AGESQ     .1407   (4.54)  .4797    (4.42)  .4883   (10.94)  .5003   (11.39) 

HSAT     -.2149  (-51.9) -.1682  (-50.59) -.1808 (-160.17) -.1828 (-161.27) 

HANDDUM  .1011   (8.71)  .003135   (.17) -.001932  (-.24)  .000159   (.02) 

HANDPER  .001992(10.73)  .0000     (.01)  .001630  (7.68)  .001198  (5.81) 

MARRIED  .02058  (2.32) -.01136   (-.34) -.01282  (-1.22)  .03822   (3.55) 

EDUC -.01483 (-7.96) -.06482  (-3.02) -.03379  (-5.85) -.03474  (-5.95) 

HHNINC     -.1729  (-7.27) -.1786   (-2.72) -.1759   (-6.16) -.2058   (-7.04) 

HHKIDS   -.1108 (-12.86)  .04577   (1.95)  .007354   (.86) -.01688  (-1.87) 

SELF     -.2914 (-16.18) -.03933   (-.71) -.1372   (-7.39) -.1517   (-8.38) 

CIVIL    -.05026 (-2.64) -.1375   (-2.01) -.01156   (-.45) -.01119   (-.43) 

BLUEC    -.08920 (-9.01) -.06725  (-2.18) -.03458  (-2.63) -.04332  (-3.34) 

WORKING -.07478 (-7.62)  .03806   (1.23)  .004875   (.37) -.001994  (-.16) 

PUBLIC  .1145   (7.32)  .1044    (2.30)  .1057    (5.53)  .1109    (5.80) 

ADDON  .06084  (2.39) -.04068   (-.73) -.03437  (-1.19) -.0343   (-1.21) 

YEAR1985 2.639   (39.46)  .05690   (2.37)  .08268   (8.87)  .08383   (8.95) 

YEAR1986 -.00732 (-2.64)  .1063    (3.53)  .1622   (18.82)  .1618   (18.86) 

YEAR1987  .1407   (4.54)  .04392   (1.11)  .1145   (11.32)  .1109   (10.64) 

YEAR1988 -.2149 (-151.9) -.09314  (-1.94)  .01033   (1.00)  .002153   (.20) 

YEAR1991  .1011   (8.71) -.2429   (-3.10) -.05520  (-4.22) -.07157  (-5.64) 

YEAR1994  .001992(10.73) -.06790   (-.62)  .1985   (12.53)  .1713   (11.17) 

κ      .9879   (38.57)  

σ    1.0051   (91.11) 

ln L -42774.74 -21696.56 -32850.59 -32897.37 

N 3687 (714 unusable in FE) 3687 

Σi Ti 14243 14243 
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Table 4  Estimated Panel Data Negative Binomial Models, Males  (t ratios in parentheses)  

Fixed Effects Random Effects  Variable 
HHG Unconditional FE HHG lognormal 

Constant 1.2571   (4.04)  1.8500    (8.79) 2.8711    (9.85) 

AGE      -.06890 (-5.23) -.01465   (-.55) -.06123  (-6.54) -.04729  (-3.64) 

AGESQ     .9328   (6.23)  .6122    (2.95)  .8085    (7.51)  .6677    (4.41) 

HSAT     -.1461 (-26.53) -.1858  (-27.74) -.1839  (-42.07) -.2287  (-37.96) 

HANDDUM -.02760  (-.74) -.02142   (-.54) -.01461   (-.43) -.02789   (-.59) 

HANDPER  .003961 (4.74)  .002916  (2.40)  .004813  (7.52)  .006229  (5.92) 

MARRIED  .04188   (.97) -.01870   (-.30)  .1158    (3.84)  .07753   (1.92) 

EDUC  .04176  (4.09) -.07045  (-2.02) -.004814  (-.85) -.02949  (-3.45) 

HHNINC     -.006220 (-.07) -.08619   (-.75) -.04278   (-.59) -.1071   (-1.15) 

HHKIDS    .02149   (.63)  .03225    (.74) -.05129  (-1.98) -.05727  (-1.65) 

SELF     -.2327  (-3.66) -.3279   (-3.25) -.2792   (-6.31) -.3388   (-5.40) 

CIVIL    -.09470 (-1.33) -.3001   (-2.46)  .002865   (.06) -.007380  (-.11) 

BLUEC    -.1222  (-3.12) -.1035   (-1.76) -.05024  (-1.76) -.02313   (-.55) 

WORKING  .1358   (2.91)  .1051    (1.74)  .05998   (1.64)  .02431    (.48) 

PUBLIC  .01414   (.22)  .07094    (.91)  .06681   (1.46)  .06861   (1.10) 

ADDON  .1136   (1.06) -.005359  (-.05)  .1273    (1.45)  .03729    (.32) 

YEAR1985  .06908  (1.61)  .09386   (2.12)  .06592   (1.64)  .1147    (2.62) 

YEAR1986  .1312   (3.15)  .1551    (2.84)  .1379    (3.57)  .2103    (4.87) 

YEAR1987  .1025   (2.24)  .07871   (1.10)  .09462   (2.29)  .1335    (2.52) 

YEAR1988  .06409  (1.55) -.001798  (-.02)  .07583   (2.02)  .09372   (2.22) 

YEAR1991  .06162  (1.41) -.1119    (-.83)  .09586   (2.47)  .05652   (1.23) 

YEAR1994  .2230   (4.83)  .07991    (.43)  .2544   (6.54)  .3137    (6.47) 

κ   1.8131   (41.31)  1.0192   (50.76) 

σ     .7979   (34.31) 

a   3.1782 (21.53)  

b   6.2577 (17.94)  

ln L -15690.87 -23000.24 -26824.63 -26881.20 

N 3687 (714 have Σtyit = 0) 3687 

Σi Ti 14243 14243 
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