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1.  Introduction 
 
 Based on the wisdom in Heckman’s (1979) treatment of the linear model, there seems to be 
a widespread tendency (temptation) to extend his approach to other frameworks by mimicking his 
two step approach.  Thus, for example, Wynand and van Praag (1981), in an early application, 
proposed to fit a probit model with sample selection with the following two steps: 
 
 Step 1. Fit the probit model for the sample selection equation. 
 Step 2. Using the selected sample, fit the second step probit model merely by adding 
  the inverse Mills ratio from the first step to the main probit equation as 
  an additional independent variable. 
 
Another, similar application to the Poisson regression model is Greene (1994). This approach is 
inappropriate for several reasons 
 
 •  The impact on the conditional mean of the model of interest will not take the form of an 
     inverse Mills ratio.  That is specific to the linear model.  (See Terza (1995) for a 
    development in the context of the Poisson regression.) 
 •  The bivariate normality assumption needed to justify the inclusion of the inverse Mills 
     ratio in the second model generally does not appear anywhere in the model. 
 •  The dependent variable, conditioned on the sample selection, is unlikely to have the 
     distribution described by the model in the absence of selection. That would be needed to 
     use this approach.  Note that this even appears in the canonical linear case.  The normally 
     distributed disturbance in the absence of sample selection has a nonnormal distribution in 
     the presence of selection.  That is the salient feature of Heckman’s development. 
 
Counterparts to these three problems will show up in any nonlinear model.  One cannot generally 
‘correct for selectivity’ by dropping the inverse Mills ratio into the model at a convenient point. 
 We describe an internally consistent method of incorporating ‘sample selection’ in a model. 
The method is based on the premise that motivated Heckman’s canonical studies on the subject, that 
the force of ‘sample selectivity’ is exerted through the behavior of the unobservables in the model.  
As  such, the key to modeling the effect is to introduce the unobservables that might be affected into 
the model in a reasonable way that maintains the internal consistency of the model itself.  For 
example, in the Poisson model, the standard approach to introducing unobserved heterogeneity is 
through the conditional mean, specifically, 
 
(1)   λi(εi) =  exp(β′xi + εi) 
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The negative binomial model arises if it is assumed that the unobserved heterogeneity, εi, has a log 
gamma distribution.   ‘Selectivity’ would arise if the unobserved heterogeneity in this conditional 
mean is correlated with the unobservables in the sample selection mechanism. 
 This note describes an appropriate method of incorporating sample selection in a nonlinear 
model.  This approach to selection in the linear model has only been extended to a relatively small 
range of other models, such as the Poisson regression Terza (1995, 1998)), (Greene (1997),  the 
multinomial logit model (Terza (2002)) and the probit model (Wynand and van Praag (1981), 
Boyes et al. (1989), Greene (1992)).  Wooldridge (2002) states “Heckman’s approach is known to 
only work for specialized nonlinear models, such as an exponential regression model...  
Unfortunately, [it] does not extend easily to general nonlinear models.”  The method described here 
of handling many types of nonlinear models is, in fact, quite straightforward with modern software. 
 
2.  A Generic Model for Sample Selection 
 
 The generic model will take the form 
 
   zi*    =  α′wi  +  ui  ui ~ N[0,1], 

   zi     =  1(zi*   >  0)  (probit selection equation) 

   λi| εi =  β′xi + σεi, εi ~ N[0,1] (index function with heterogeneity)1 

(2)   yi |xi, εi  ~  f(yi | xi,εi)  (index function model for outcome) 

   [ui,εi] ~ N[(0,1),(1,ρ,1)] 

   yi,xi  are observed only when zi = 1. 
 
‘Selectivity’ is transmitted through the parameter ρ.  At first blush, the framework might seem to 
impose an additional random element, ε, and parameter, it’s variance, σ2, on the main model.  
However, if one is to argue that sample selection has an impact on the model, then the implication 
is that there exists the unobserved ε through which it operates.  As such, this is a natural 
formulation of the problem, and if the model is to be internally consistent, the additional elements 
are unavoidable. 
 The log likelihood function for the full model is the joint density for the observed data.  
When zi equals one, (yi,xi,zi,wi) are all observed. We seek f(yi, zi=1|xi,wi).  To obtain it, proceed as 
follows: 

(3)   f(yi, zi=1|xi,wi)  = 
∞

−∞∫  f(yi,zi=1|xi,wi,εi) f(εi)dεi. 

Conditioned on εi, zi and yi are independent.  Therefore, 
 
(4)   f(yi,zi=1|xi,wi,εi)  =  f(yi|xi,εi)Prob(zi=1|wi,εi). 
 
The first part, f(yi |xi,εi) is the conditional index function model, however specified. By joint 
normality, f(ui|εi)  =  N[ρεi , (1-ρ2)], so ui = ρεi + ( 1 2− ρ )vi where vi ~ N[0,1]. Therefore, 
Prob(zi=1|wi,εi)  is  

                                                 
1 The use of the linear index form is a convenience.  The random component, ε, could enter the model in 
some other form, with no change in the general approach. 
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(5)   Prob(zi=1|wi,εi)  = ( )2[ ]/ 1i i′Φ + ρε −ρwα . 

 
Combining terms and using the earlier approach, the unconditional joint density is obtained by 
integrating ε out of the conditional density.  Recall εi ~ N[0,1], so f(εi) is simply φ(εi).  Thus,  
 

(6)   f(yi,zi=1|xi,wi) = −∞
∞
∫ f(yi|xi,εi) ( )2[ ]/ 1i i′Φ + ρε − ρwα ( )i idφ ε ε . 

 
By exploiting the symmetry of the normal cdf 
 

(7)   Prob(zi=0|wi,εi)  = ( )2[ ] / 1i i′Φ − + ρε −ρwα  

(8)   Prob(zi=0|wi) = −∞
∞
∫ ( )2[ ] / 1i i′Φ − + ρε −ρwα ( )i idφ ε ε . 

 
Expressions (6) and (8) can be combined by using the symmetry of the normal cdf, 
 

(9) f(yi,zi|xi,wi) = −∞
∞
∫ [(1 –  zi) + zi f(yi|xi,εi)] ( )2(2 1)[ ]/ 1i i iz ′Φ − + ρε − ρwα ( )i idφ ε ε , 

 
where for zi equal to zero, f(yi,zi | xi,wi) is just Prob(zi=0|wi).  Maximum likelihood estimates of 
the model parameters are obtained by maximizing the full log likelihood function, 
 
(10)   log L  = 

1

N

i=∑ logf(yi,zi | xi,wi) 
 
with respect to the model parameters [β,σ,α,ρ].   
 This formulation is not completely novel.  Most of the elements appear in Terza (1995, 
1998) in applications to the Poisson regression and some related variants, e.g., in Greene (1997).2 
This note adds to those results by extending them to the generic framework suggested here, and 
by proposing a convenient and surprisingly straightforward method of doing the estimation 
 
3.  Maximizing the Log Likelihood 
 
 Let v  =  ε/ 2 , θ = σ 2 , τ = 2 [ρ/ 1 2− ρ ], and γ = [1/ 1 2− ρ ]α.  After making the 
change of variable and reparameterizing the probability as before, we obtain 
 

(11)                f(yi,zi=1|xi,wi)  = 1
π −∞

∞
∫ exp(-v2) f(yi|xi,vi)Φ(γ′wi + τvi) dvi 

 

                                                 
2 Both Terza (1995, 1998) and Greene (1997) focused on the Poisson regression model.  Greene employed 
the quadrature method described here.  Terza also suggests the possibility of maximizing the log likelihood 
with quadrature, but then derives the actual conditional mean post selection, and also proposes nonlinear 
least squares as the preferred method. It will generally not be possible to derive the explicit form of the 
conditional mean; the Poisson (and a few other models) are unusual in the simple form, E[y|x,ε] = exp(β′x 
+ σε).  The simulation based approach is new with this survey. 
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where the index function model now involves λi|vi =  β′xi + θvi.  Maximum likelihood estimates of 
[β, γ, θ, τ] are obtained by maximizing the reparameterized log likelihood.   No closed form exists 
for the function, but in this form, it can be approximated with Hermite quadrature. (See Butler 
and Moffitt (1982).)  The approximation is  
 

(12) log LQ  =     [ ] ( )1 1

1log (1 ) ( | , ) (2 1)N H
h i i i i h i i hi h

z z f y v z v
= =

⎡ ⎤′ω − + Φ ⎡ − + τ ⎤⎢ ⎥⎣ ⎦π⎣ ⎦
∑ ∑ x wγ  

 
where vh and ωh are the nodes and weights for the quadrature.  The BHHH estimator of the 
asymptotic covariance matrix for the parameter estimates is a natural choice given the complexity 
of the function.  The first derivatives must be approximated as well.  For convenience, let 
 
   Pih   =   f(yi| xi, vh)  
(13)   Φih =  Φ[(2zi – 1)(γ′wi + τvh )]  (normal CDF) 
   φih =  φ[(2zi – 1) (γ′wi + τvh )]  (normal density) 
 
and to save some notation, denote the individual terms summed in the log likelihood as log Li.   
We also use the result that ∂P(.,.)/∂z  =  P×∂logP(.,.)/∂z for any argument z which appears in the 
function.  Then, 
 

   
log QL∂

⎛ ⎞
∂⎜ ⎟θ⎝ ⎠

β
 =   

1 1

log ( | , )1 1
i

H ii i h
h i ih ihz h

hi i

f y vz P
vL= =

⎡ ⎤ ⎛ ⎞∂
ω Φ ⎜ ⎟⎢ ⎥∂λπ ⎝ ⎠⎣ ⎦

∑ ∑
xx  

(14) 

   
log QL∂

⎛ ⎞
∂⎜ ⎟τ⎝ ⎠

γ
 =   

1 1

1 1 [(1 ) ]
i

H i
h ih i i ihz h

hi

z z P
vL= =

⎛ ⎞
ω φ − + ⎜ ⎟

π ⎝ ⎠
∑ ∑

w
    

 
Estimates of the structural parameters, (α,ρ,σ) and their standard errors are computed using the 
delta method.  
 Simulation is another effective approach to maximizing the log likelihood function.  (See 
Train (2003) and Greene (2003).) The  log likelihood function is  
 
(15)  logL = 

1
logN

i=∑   −∞
∞
∫ [(1-zi) + zi f(yi|xi,σεi)] ( )[(2 1) ]i i iz ′Φ − + τεwγ  ( )i idφ ε ε . 

 
The simulated log likelihood would be 
 

(16)  logLS = 
1
logN

i=∑ 1

1 R

rR =∑ [(1-zi) + zi f(yi|xi,σεir)] ( )[(2 1) ]i i irz ′Φ − + τεwγ  

 
where εir is a set of R random draws from the standard normal population.  (We would propose to 
improve this part of the estimation by using Halton draws instead.  See Train (2003, pp. 224-
238).)  Derivatives of the simulated log likelihood for the ith observation are 
 

          ,
1

,

log log ( | , )1 1
log

R iS i i i ir
i ir irr

irS i i

L f yz P
L R =

∂ ⎡ ⎤ ⎛ ⎞∂ σε
= Φ ⎜ ⎟⎢ ⎥ ε∂λ⎛ ⎞ ⎝ ⎠⎣ ⎦∂⎜ ⎟σ⎝ ⎠

∑
xx

β
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(17) 

   ,
1

,

log 1 1 [(1 ) ]
log

R iS i
ir i i irr

irS i

L
z z P

L R =

∂ ⎛ ⎞
= φ − + ⎜ ⎟ε⎛ ⎞ ⎝ ⎠∂⎜ ⎟τ⎝ ⎠

∑
w

γ
 

 
where Φir, φir and Pir are defined as in (13) using εir in place of vh. 
 
4.  Applications 
 
 The following will present four applications of the technique in widely diverse models.  
The first is based on the quadrature method while the second and third use simulation.  
Differences between these two methods are not expected to have any implications for 
computational or statistical efficiency.  The Poisson and logit applications are template uses of 
the method described above.  An extension of the method is required for the stochastic frontier 
model.  Finally, the multinomial logit model is an application that is quite straightforward to 
place in the model framework developed here. 
 
4.1  A Poisson Model with Sample Selection 
 
 This application has been well developed, for example in Terza (1995, 1998) who 
proposed FIML and nonlinear least squares approaches.  (See, as well, Greene (1997, 2003) who 
applied the FIML approach developed here.  Setting up the model for maximum likelihood 
estimation, we use (9), 
 

(18) f(yi,zi|xi,wi) = −∞
∞
∫ [(1 –  zi) + zi f(yi|xi,εi)] ( )2(2 1)[ ]/ 1i i iz ′Φ − + ρε − ρwα ( )i idφ ε ε , 

 
with 

(19)  f(yi | xi,εi) = exp( | , )( | , ) , | , exp( ).
( 1)

x x  x x
iy

i i i i i i
i i i i i

iy
−λ ε λ ε ′λ ε = + σε

Γ +
β  

 
As noted earlier, both Greene and Terza used Hermite quadrature to maximize the log likelihood 
function. 
 Greene (1992, 1994, 1997) analyzed credit card account default and credit behavior 
(derogatory reports) using a sample of applications and first year histories from a major credit 
card vendor.  The data used in those studies are described in Table 1.  The variable cardhldr is a 
binary variable which indicates whether the individual’s application for the major credit card was 
accepted.   The selected sample is the 10,499 individuals in the sample whose credit card 
application was accepted.  (The sample is actually ‘choice based.’   In the true population at the 
time, the acceptance rate for this brand of credit card was considerably lower than this.  The point is 
addressed in Greene (1992).)   
 In the count model application, the number of derogatory reports is analyzed.  A major 
derogatory report is a report to the credit reporting agency of an account that becomes 60 days 
delinquent.  The large majority of individuals in the study (and the population) have zero reports.  
But, the values in the sample ranged from zero to 22 for the full sample and zero to 14 in the 
selected sample.  The force of the selection in this application should be substantial, since the 
number of major derogatory reports is a major, indeed, the dominant criteria for whether an 
application for a credit card is accepted or rejected.  Table 2 shows the estimated acceptance 
(selection) equations.  The ‘uncorrected’ equation is estimated as the first step in the estimation to 
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provide starting values for the FIML estimator.  The ‘corrected’ equation is estimated jointly with 
the count model.  As anticipated, the effect of the sample selection is substantial.  Table 3 gives the 
estimates of the count models.  Once again, as expected, the estimates change considerably when 
the nonrandom sampling is accounted for.  The mean predicted number of derogatory reports in the 
selected sample is 0.09634.  The counterpart of the uncorrected model is 0.15325. 
 There is a minor extension of this model that might be interesting for this application.  The 
major derogatory reports variable, as well as all the covariates in that equation are, in fact, observed 
for all observations.  Thus, to use the full sample of data, the appropriate log likelihood would be 
 

(20) f(yi,zi|xi,wi) = −∞
∞
∫ f(yi|xi,εi)] ( )2(2 1)[ ]/ 1i i iz ′Φ − + ρε −ρwα ( )i idφ ε ε , 

 
We leave this for further investigation. 
 
4.2  A Binary Logit Model with Sample Selection 
 
 To illustrate the technique using the simulation based estimator, we construct a binary 
logit model subject to sample selection.  The immediate obstacle to direct FIML estimation is the 
lack of a functional form for the joint distribution of a normally distributed ε and the logistically 
distributed variable that underlies the logit model.  We use the template described above, instead.  
The main equation of interest is 
 

(18)   Prob(yi=1|xi.εi)  =  exp( )
1 exp( )

i i

i i

′ + σε
′+ + σε

x
x

β
β

, εi ~ N[0,1] 

The simulated log likelihood function is 

(19)      logLS  =  
1
logN

i=∑ 1

1 R

rR =∑ exp( )(1 )
1 exp( )

x
x
i ir

i i
i ir

z z
⎡ ⎤′⎛ ⎞+ σε

− +⎢ ⎥⎜ ⎟′+ + σε⎢ ⎥⎝ ⎠⎣ ⎦

β
β

( )[(2 1) ]i i irz ′Φ − + τεwγ  

 
The binary logit model with normal heterogeneity would be a special case of the multinomial logit 
model in Terza (2002). 
 The logit equation is used to model default on the credit card account.  The selection model 
arises as default is only observed for those with cardhldr = 1, and without question, the 
determination of cardholder status is based on the vendor’s attempt to forecast the probability of 
default.  We will demonstrate the technique developed here by using a binary logit model for the 
default equation.  (We concede the issue of probit versus logit as a functional form is a minor point.  
The purpose here is to demonstrate the use of the proposed method, not to redo the original study 
with an eye toward obtaining new results.) 
 We note a small, but potentially substantive difference between this model and the bivariate 
probit model employed in Greene (1992) and Boyes, Hoffman and Low (1989).  The variance of ε 
is a free parameter in this model.  It is assumed to equal one in the bivariate probit model.  Our 
model could be employed with a probit, rather than a logit formulation to investigate the 
implication.  (Of course, for the probit model, the bivariate model has already been established in 
the literature.)  We leave this for further research to analyze. It should also be noted that the 
presence of the unobserved ε implies that the marginal distribution for the default model is 
something other than the logit model – it reverts to the logit model when σ equals zero. 
 Greene (1992, 1997) analyzed usage and default patterns for a sample of individuals 
applying for and using a major credit card.  He used a bivariate probit model to accommodate the 
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sample selection issue. Descriptive statistics for a subset of the variables in the data set of 13,444 
observations are as follows.  We are interested in the probability of default, conditioned on 
cardholder status. Estimates of the probit cardholder status equation are given in Table 2.  The 
‘Corrected’ estimates are those estimated jointly with the default equation.  The ‘Uncorrected 
results are estimated in isolation.  Both use the full sample of 13,444 observations.  Table 3 presents 
the estimates for the logit default models.  These are based on the subsample of 10,499 observations 
whose applications were accepted.  Notwithstanding the intuitive appeal of the formulation, it 
appears that the impact of the sampling mechanism here is fairly small.  The results are quite similar 
for both sets of results.  For this particular application, we could speculate on why that might be the 
case.  The cardholder status variable is not actually being determined jointly with the default 
outcome, as the model would suggest.  The cardholder status is the outcome of a screening 
procedure that is outsourced by the credit card vendor, while the default outcome is determined by 
the individual.  Thus, the first step screen arguably represents the attempt by the credit scorer to 
forecast the default indicator, and, by implication, to predict whether ε is likely to be large or small.  
By this interpretation, we would not expect ρ to be very large. 
 
4.3  Sample Selection in a Stochastic Frontier Model 
 
 We will apply the preceding technique to the stochastic frontier model.  The notation and 
mechanics of the procedure differ slightly in this context, though the overall development is the 
same as in the generic model given earlier. A slight change in notation is employed to maintain 
consistency with the familiar standard in this literature.  The modified frontier model is 
 
   di* = α′zi  +  wi, di = 1(di* > 0),  (Selection equation) 

   yi   = β′xi  +  σvvi  - ui,   (Stochastic frontier model) 

   ui =  |σuUi| with Ui ~ N[0,1], 

   (vi,wi) ~  Bivariate standard normal with [(0,0),(1, ρ, 1)], 

   (yi,xi) only observed when di = 1. 
 
Thus, the selection operates through the heterogeneity component of the production model, not 
the inefficiency.  The observation status is not viewed as a function of the level of inefficiency.  
(Note, for convenience later, we have moved the scale parameters on v and u explicitly into the 
structural model.) For convenience, the observation subscript will be omitted in this part of the 
derivation.  The selection equation may be recomposed as follows:  Write the bivariate 
distribution of v and w in terms of the conditional distribution of w given v and the marginal 
distribution of v.  From the bivariate normality assumption, 
 
   w|v  =  ρv + h where h ~ N[0, (1 - ρ2)] and h is independent of v. 
 
Therefore,   d*|v = α′z  +  ρv + h,  d = 1(d* > 0|v). 
 
Then, using familiar results for the probit model, 
 

   Prob[d = 1 or 0 | z,v]  =  
2

(2 1)
1
z vd

⎡ ⎤⎛ ⎞′ + ρ⎢ ⎥⎜ ⎟Φ −
⎜ ⎟⎢ ⎥− ρ⎝ ⎠⎣ ⎦

α . 
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As before, we consider the sample in two parts.  For the selected observations, d = 1, conditioned 
on v, the joint density for y and d is the product of the marginals since conditioned on v, y and d 
are independent.  Thus, 
 
   f(y,d=1|x,z,v)  =  f(y|x,v) Prob(d=1|z,v). 
 
We have the second part above.  For the first part, 
 
   y| x,v  =  (β′x  +  σvv )  - u   

where u is the truncation at zero of a normal variable with standard deviation σu.  The density of u 
is trivial, since before truncation it (σuU) has zero mean and variance σu

2, so f(u) = 2φ(u/σu), u > 
0.  The Jacobian of the transformation from u to y is 1/σu, so by the change of variable, the 
conditional density is 
 

  ( )2( | , ) , ( ) 0.v
v

u u

v yf y v v y
′⎛ ⎞+ σ − ′= φ + σ − ≥⎜ ⎟σ σ⎝ ⎠

xx xβ
β  

 
Therefore, the joint conditional density is 
 

  
2

( )2( , 1| , , )
1

x zx z v

u u

v y vf y d v
⎛ ⎞′⎛ ⎞ ′+ σ − + ρ⎜ ⎟= = φ Φ⎜ ⎟ ⎜ ⎟σ σ −ρ⎝ ⎠ ⎝ ⎠

β α  

 
To obtain the unconditional density, it is necessary to integrate v out of the conditional density.  
Thus, 
 

  
2

( ))2( , 1| , ) ( )
1

v
v

u u

v y vf y d f v dv
⎛ ⎞′⎛ ⎞ ′σ − − + ρ⎜ ⎟= = φ Φ⎜ ⎟ ⎜ ⎟σ σ −ρ⎝ ⎠ ⎝ ⎠

∫
x zx z β α  

 
The relevant term in the log likelihood is log f(y,d=1|x,z).  For the nonselected observations, the 
contribution to the log likelihood is the log of the unconditional probability of nonselection, 
which is, once again, 
 

  Prob(d=0|z)  =  
2

( )
1
z

v

v f v dv
⎡ ⎤⎛ ⎞′ + ρ⎢ ⎥⎜ ⎟Φ −
⎜ ⎟⎢ ⎥− ρ⎝ ⎠⎣ ⎦

∫
α  

 
 The integrals do not exist in closed form, so these terms cannot be evaluated as is.  
Before proceeding, we note the additional complication, β′x + σvv – y = u > 0, so the density f(v) 
is not the standard normal that intuition might suggest; it is a truncated normal. The integrals can 
be computed by simulation.  By construction, 
 

      
2 2

) )2 2( )
1 1

x + x +z zv v
vv

u u u u

v y v yv vf v dv E
⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′⎛ ⎞ ⎛ ⎞′ ′σ − σ −+ ρ + ρ⎢ ⎥⎜ ⎟ ⎜ ⎟φ Φ = φ Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ σ σ⎢ ⎥−ρ −ρ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

∫
β βα α  
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so by sampling from the distribution of v, we can compute the function of v and average to obtain 
the integrals.  In order to sample the draws on v, we note the implied truncation, 
 
   v  > (y - β′x)/σv  or  v  >  ε/σv. 
 
Draws from the truncated normal can be obtained using result (E-1) in Greene (2003).  Let A 
equal a draw from the uniform (0,1) population.  The desired draw from the truncated normal 
distribution will be 
 
   vr  =  Φ-1 [Φ(ε/σv) + ArΦ(-ε/σv)] 
 
Collecting all terms, then, the simulated log likelihood will be 
 
    

1 2 2

)1 2log log (1- )
1 1

R v ir ir ir
S i ii r

u u

v y v vL d d
R =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′⎛ ⎞σ − + ρ ρ⎪ ⎪⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟= φ Φ Φ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟σ σ⎢ ⎥ ⎢ ⎥− ρ −ρ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
∑ ∑ x + z z -+β α −α  

  
where the draws on vir are as shown above.  Derivatives of this simulated log likelihood are 
obtained numerically using finite differences.   
 A final detail concerns the estimated parameters.  The preceding shows how to estimate 
(α, β, σu, σv).  In the stochastic frontier setting, the interesting parameters are λ = σu/σv and σ2 = 
σu

2 + σv
2.  These can be obtained after estimation.  Standard errors, if desired, can be computed 

using the delta method. 
 
4.4  Sample Selection and a Multinomial Logit Model 
 
 Many authors have considered models in which the selection mechanism is extended 
from the binomial probit model to a multinomial model – the multinomial logit model is the 
natural choice.  Thus, rather than selecting either ‘in’ or ‘out’ of the sample (zi= 0 or 1 in our 
earlier model), the authors model the case in which zi may take one of J+1 values, and then the 
selection is nonrandomly into group j, j = 0,1,...,J.  The model to be fit after selection is typically 
a linear model.  Lee’s (1983) results for the binary logit model selection mechanism, which (by 
implication) uses a copula method, have remained the formulation of choice for the past two 
decades.  (For implementation, see, e.g., Econometric Software, Inc. (2003).)  Two issues can be 
raised with respect to this relatively modest extension of the original Heckman (1979) model: 
 

 (1)   The technique is purely mechanical.  It is less than obvious how the force of 
the sample selection acts to connect the unobservables in the multinomial 
logit model.  Indeed, the presence of the unobservables in the multinomial 
logit model is, itself, less than obvious.  This is fairly straightforward to 
remedy, as we show below. 
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(2)    Another interesting extension that remains undeveloped in this literature is 
one that reverses the role of the multinomial outcome model and the 
sample selection equation.3  In particular, continuing the analysis of this 
paper, we are interested in a multinomial outcome, say mode of health 
treatment, after selection, say, whether an individual had some prior 
treatment such as visiting a physician. 

 
 This model can be easily accommodated in the framework developed here, at the same 
time, making transparent how the unobservables in the model can play a role in the logit model.  
We propose the outcome model to be developed around a random utility framework: 
 
   Uij  =  β′xij  +  uij  +  σjεi, j = 0,1,...,J. 
 
   yi    =  j  if Uij > Uik, ∀  k ≠  j. 
 
Conditioned on εi, if uij is distributed as type 1 extreme value, then this produces the multinomial 
logit model.  (See, e.g., Greene (2003) or Hensher, Rose and Greene (2005).)  Thus, Terza’s 
(2002) model would be, in this context: 
 

  f(yi|xi,εi)  =  Prob(yi = j|xi,εi)  =  
0

exp( )

exp( )

x

x
ij j i

J
ij j ij=

′ + σ ε

′ + σ ε∑
β

β
. 

 
(Terza considered the case in which the data are characteristics of the individual rather than 
attributes of the choices.  This mandates a renormalization of the coefficients, but is otherwise the 
same model.) 
 We assume that the latent heterogeneity enters the utility functions linearly in the same 
fashion that the observed indicators do.  In order to avoid forcing a scaling restriction on the 
model, there is a separate scale factor in each utility function.4  Note, finally, for identification, 
we must have one of the scale parameters normalized at zero, so σ0 = 0 is imposed.  With this 
outcome model specified, the rest of the selectivity model is defined by (6) – (9). 
 
5.  Conclusion 
 
 This note has described a generic approach to modeling sample selection in a nonlinear 
model.  The intuitively appealing approach of inserting an inverse Mills ratio into the model of 
interest at a convenient point to ‘deal with selection bias’ is inappropriate for several reasons.  On 
the other hand, in all but the simplest cases, it will not be possible to deduce the appropriate 
conditional mean or other conditional feature of the model, post selection.  The framework gives 
a straightforward, internally consistent method of introducing selection into a nonlinear model 
and a method of maximum likelihood estimation that can be easily programmed in any platform 
that supports either quadrature based or simulation based optimization. 
 

                                                 
3 A search of “multinomial logit” + “sample selection” will turn up thousands of references to the first 
(Lee) model, seemingly most of them related to implementations in LIMDEP or Stata, but, it appears, none 
to the second application noted above. 
4 That there is none on the extreme value terms is one of the shortcomings of the multinomial logit model.  
This particular restriction is easily relaxed. However, after doing so, it would be exceedingly cumbersome 
to extend the selection model to the expanded form – the less restrictive model is not a minor extension of 
the MNL model.  See Bhat (1995) and Econometric Software (2003). 
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 Table 1.  Data Used in Analysis of Major Derogatory Reports and Default. 
Variable            Symbol  Mean      Standard Deviation   
 
In full sample of 13,444 observations 
Cardholder status (binary)    CARDHLDR   .780943  .413623       
Age     AGE        33.6031       10.0141     
Yearly income in $   INCOME     34240.5       17774.5     
Owns or rents home (binary)  OWNRENT    .455965       .498076     
Self employed (binary)   SELFEMPL   .057944       .233646     
Months at current residence  CURNTADD   55.3189       63.0897   
Yearly income in $   INCOME     34240.5       17774.5     
Number of dependents   DEPDNT     1.01726       1.27910    
Income per dependent   INCPER     21719.7       13591.2    
Holds another major credit card (binary) CREDMAJR   .813076       .389865    
Number of active credit accounts   TRADACCT   6.42205       6.10691   
Major derogatory reports   MAJORDRG 0.46281  1.43272 
 
In selected sample of 10,499 observations with CARDHLDR = 1 
Defaulted (binary)   DEFAULT    .094866       0.29304 
Major derogatory reports   MAJORDRG 0.15325  0.46157 
Yearly income in $   INCOME     35662.5       18395.0     
Average yearly card expenditure  AVGYREXP   3012.37      3987.27     
Number of dependents   DEPDNT     0.99038       1.27389    
Income per dependent   INCPER     22581.4       13755.0    
Holds another major credit card (binary) CREDMAJR   0.84332       0.36352    
Number of active credit accounts   TRADACCT   7.11887       6.19853    
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Table 2.  Estimated Probit Models for Cardholder Status 
 Corrected Uncorrected 
Variable Estimate      (Standard error) Estimate (Standard error) 
Constant  .3179*     (.04276)   .4428*    (.04560) 

Age .0004522*   (.001255) -.003439*  (.001426) 

Income  .1201*     (.007565)  .1209*    (.008788) 

Ownrent  .7535*     (.02449)  .1633*    (.02767) 

SelfEempl -.2684*     (.04176) -.3355*    (.05107) 

Curntadd  .0006350*  (.0001851)  .00003522 (.0002146) 

ρ -.9562*      (.1092)  .0000 

Log likelihood  -6899.529      

 
 
Table 3.  Estimated Poisson Models for Major Derogatory Reports 
 Corrected Uncorrected 
Variable Estimate (Standard error) Estimate (Standard error) 
Constant -1.0160*    (.2155) -2.9379*  (.08973) 

Income -.2170*     (.04695) .001189    (.020295) 

AvgYrExp -.2581*     (.1065) .02789*    (.003048) 

Depdnt  .07922     (.05692)  .1968*    (.03234) 

IncPer -.04537     (.06119) -.04551    (.06547) 

Credmajr -.2033*     (.08529) -.07497    (.07428) 

Tradacct -.03341*    (.006382) .04140*   (.003587) 

σ 2.2562      (.1092)  .0000 

ρ  -.9562*      (.1092)  .0000 

Log likelihood  -4831.23822 

Combined log likelihood -11212.18      -11730.77      
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Table 4.  Estimated Probit Models for Cardholder Status 
 Corrected Uncorrected 
Variable Estimate      (Standard error) Estimate (Standard error) 
Constant  .3453*     (.08122)   .4428*    (.04560) 

Age -.003423*   (.001423) -.003439*  (.001426) 

Income  .1211*     (.007859)  .1209*    (.008788) 

Ownrent  .1633*     (.02731)  .1633*    (.02767) 

SelfEempl -.3359*     (.05090) -.3355*    (.05107) 

Curntadd  .00003581  (.0002171)  .00003522 (.0002146) 

ρ  .1917      (.1275)  .0000 

.   
 
 
Table 5.  Estimated Logit Models for Default 
 Corrected Uncorrected 
Variable Estimate (Standard error) Estimate (Standard error) 
Constant -1.0160*    (.2155) -1.07508*  (.1241) 

Income -.2170*     (.04695) -.2168*    (.04635) 

AvgYrExp -.2581*     (.1065) -.2582*    (.1171) 

Depdnt  .07922     (.05692)  .07903    (.05575) 

IncPer -.04537     (.06119) -.04551    (.06547) 

Credmajr -.2033*     (.08529) -.2034*    (.08519) 

Tradacct -.03341*    (.006382) -.03339*   (.006411) 

σ  .1171      (.3646)  .0000 

ρ  .1917      (.1275)  .0000 

 
 


