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Abstract 
 
Recent studies in econometrics and statistics include many applications of random 
parameter models.  The underlying structural parameters in these models are often not 
directly informative about the statistical relationship of interest.  As a result, standard 
significance tests of structural parameters in random parameter models do not necessarily 
indicate the presence or absence of a ‘significant’ relationship among the model 
variables.  This note offers a suggestion on how to examine the results of estimation of a 
general form of random parameter model. We also extend results on computing 
individual level parameters in a random parameters setting and show how simulation 
based estimates of parameters in conditional distributions can be used to examine the 
influence of model covariates (marginal effects) at an individual level 
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1.  Introduction 
 
 The availability of large, high quality panel data sets has made models that can 
accommodate individual heterogeneity, such as the random parameters (RP) model, 
increasingly attractive.  The hierarchical nature of this model’s parameterization often 
makes ambiguous the computation of certain results, such as marginal effects, that are 
usually of interest.  Moreover, since the models are typically nonlinear and the 
‘parameters’ are random variables, not fixed estimated quantities, assessments of 
statistical significance, also of common interest, cannot be assessed by the usual 
approach.  (The model shares this aspect with Bayesian formulations of econometric 
models that are also becoming increasingly common.)  This note will lay out a generic 
form of the random parameters model, then suggest computations that can be used to 
display empirical evidence on these two model characteristics.   

Section 2 defines a broad class of random parameter models that encompasses 
many of the received applications.  Section 3 discusses simulation based estimation of the 
model parameters and interesting ‘post estimation’ results.  An application is provided to 
illustrate the computations. Section 4 extends the results to estimation of marginal effects 
in a nonlinear model and demonstrates with a second application.  A comparison to a 
similar set of procedures based on Allenby and Rossi’s (1999) Bayesian formulation is 
discussed in Section 5.  Some conclusions are drawn in Section 6. 
 
2.  Estimating Random Parameters Models 
 
 This section will describe a general form of the random parameters model.  Many 
of the received applications of random parameters models have used the linear regression 
framework, though there is a large and growing literature on nonlinear models with 
random parameters, which we will consider again later in the paper.  To begin, the 
generic model framework is set up.  The mathematical framework will be laid out first, 
then attention is turned to the specific model parameters. 
 We consider a formulation of an RP model that encompasses many of the 
applications in the literature [e.g. Revelt and Train (1998), Train (2003), Layton and 
Brown (2000), Allenby and Rossi (1999), and Greene (2004)] and implementations such 
as Stata (2002), SAS (2003), LIMDEP (Econometric Software, 2003) and MLWin 
(2002)]. We formulate the RP models in terms of the likelihood function for a set of 
observations collected in a panel data setting (though the model can be applied in cross 
section data, so the notation is only used to achieve a greater level of generality).  The 
following will sketch the procedures. More detailed treatments may be found in Train 
(2003) and in Greene (2003).   

The density for an observation is 
 
(1) f(yit | xit, zi, vi, βi, θ)  =  g(yit, βi′xit, θ), i = 1,…,n, t = 1,…, Ti > 1, 
 
(2) βi  =  β  +  ∆zi  +  Γvi 
  
where xit contains all the main covariates, including both time varying and time invariant 
variables, zi is a set of time invariant variables that enter the means of the random 
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parameters and yit is the response variable. The random vector vi induces the random 
variation in the reduced form parameters of the model.1  The structural parameters can 
include a set of fixed (nonrandom) parameters, θ, which would include, e.g., the standard 
deviation of the disturbance, σ, in a tobit or linear regression model, the shape parameters 
in a gamma regression model, or the dispersion parameter in a negative binomial model.  
(Note that θ might be null, e.g., in a binary choice model, such as probit or logit.)  The 
remaining structural parameters of the model are β, ∆, and Γ which define the random 
parameters; β is the vector of constant terms in the means of the random parameters, ∆ is 
a matrix of parameters that multiply the covariates in the distribution of the random 
parameters, and Γ is an unrestricted lower triangular matrix, also to be estimated.  Since β 
and the nonzero elements of Γ are free parameters, no generality is lost by assuming that 
vi has mean vector zero and diagonal covariance matrix with no unknown parameters.  
For example, if random parameters are assumed to be normally distributed, then Var[vi] = 
I.  The conditional (on xit and zi) variance of βi is Γ Γ′, which is an unrestricted full 
matrix.  ‘Fixed’ (nonrandom) slope parameters in the model may be specified by 
constraining corresponding rows in ∆ and Γ to equal zero. (See the application below.)  A 
‘hierarchical’ model with interactions is obtained when rows of Γ are constrained to 
equal zero while ∆ remains unrestricted.  A familiar, simple random coefficients model is 
obtained when ∆ is a zero matrix, so that βi = β +  wi. The ‘random effects’ model 
familiar in econometric panel data models results if ∆ is zero and only the overall 
constant term in the model is random.  Many other permutations of the model can be cast 
in this framework through suitable modifications of the parameters and/or stochastic 
specifications. The density can be specified to accommodate many cases of interest to 
practitioners, such as static probit and logit models, models for counts, linear regression 
models, duration models, and many others.  [See LIMDEP (2003).] Finally, the 
simulation estimation method described here allows the distribution of vi to be nonnormal 
- it may be any type of random variable for which random draws can be simulated. 

Observations are conditionally (on the random effects) independent. Dependence 
of the Ti observations for a particular individual results from the common, invariant vi. 
Conditioned on vi, the contribution of the observations from individual (or ‘group’) i is 
the joint density,  
 
(3)  

1
( | , , , ) ( , , )iT

i i i i i it i itt
L g

=
′=∏y X z v xΛ βy θ

                                                

 
where Λ is the full set of structural parameters, [β, ∆, Γ, θ].  In order to estimate these 
parameters, it is necessary to operate on the unconditional likelihood – the unobserved 
random term vi must be integrated out.  The contribution of observation i to the 
unconditional likelihood is 
 

 
1 We will assume continuous variation of the parameters. The finite mixtures (latent classes) approach to 
modeling heterogeneity provides an attractive alternative, but this is considered elsewhere.  See,. e.g., 
Allenby and Rossi (1999), Hagenaars and McCutcheon (2001), Greene (2003). 
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The integrals will not exist in closed form, but since they are of the form of expectations, 
they can be estimated by simulation, instead.  The simulated log likelihood is 
 

(5) ,1 1 1

1log log ( , , ).iTn R
S ii r t

L g
R= = =

′= ∑ ∑ ∏ xt i r ity β θ  

 
Note that the simulation is over R draws on vi,r through βi,r as defined in (2).  The 
maximum simulated likelihood estimator is obtained by maximizing (5) over the full set 
of structural parameters, Λ.  (The relevant theory for this class of estimators can be found 
elsewhere, including Train (2003), Greene (2003) and Gourieroux and Monfort (1996). 
Estimates of the structural parameters and estimates of their asymptotic standard errors 
are based on maximization of the log likelihood function in (5). 
 The preceding encompasses many of the received random parameters models.  
The linear model with random coefficients results if g(…) is the normal density.  Other 
familiar cases, some of which have already appeared in the literature, such as the random 
coefficients probit model [Sepanski (2000), Guilkey and Murphy (1993), Greene (2004)] 
are special cases.   

Other applications which formulate the parameter heterogeneity in terms of 
discrete variation [i.e., latent class models - see, for example, deSarbo et al. (1995)] are 
similar.  Estimation of individual level parameters in latent class models is treated 
essentially the same as suggested here for continuous variation. [See Greene (2004) and 
Kamakura and Wedel (2004) for discussion and applications]. 
 
3.  Simulation Based Estimation of Individual Parameters with an 
     Application to American Movies 
 
 To illustrate the models and calculations, we will consider two applications.   A 
recent application in marketing, Craig, Douglas and Greene (2003) which modeled the 
foreign box office receipts of 299 movies released in 8 countries over a 6 year period is 
used to suggest a useful way to examine the coefficients in a random parameters model 
and to give evidence on statistical significance.  An application based on the probit model 
for binary choice is used to demonstrate the computation of marginal effects in the next 
section. 
 The structural equations of the linear RP model examined by Craig et al. are 
 
 (a)  LogSalesi,c = αi,c  +  βi,c LogSalesi,US  +  τ1CDc + τ2McDc + τ3Ec 
      +  Σg λgGenrei,g  +  Σt φt Dt  +  εi,c 
(6) 
 (b)  αi,c   =  α  +  δα logIncomec  +  γαvi,α 
 
 (c) βi,c   =  β  +  δβ logIncomec  +  γβvi,β 
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where ‘c’ indicates the country (UK, Australia, Germany, Austria, Argentina, Chile, 
Spain and Mexico), ‘i’ indicates the film, i = 1,...,299, the box office sales and income 
figures are in per capita terms, Genrei,g are twelve (after one is dropped) dummy 
variables indicating which of 13 genres characterizes the film, Dt, t = 1997,...,2002, are 
year dummy variables (the first is dropped), Ec is a dummy variable for the English 
speaking countries, and two variables, cultural distance, CDc, and McDonald’s 
restaurants per capita, McDc are used to measure cultural similarity to the U.S.  (Details 
on the data may be found in the cited paper.)  Note that the panel nature of the data set 
arises from the multiple country release of each film, not through observation of the same 
film at several points in time.  Since there is no ‘time series’ aspect to the model, this 
grouping of observations produces the same characteristics as the more familiar panel 
data arrangement. 
 We note before proceeding that the reduced form of the model obtained by 
inserting (6.b.) and (6.c.) in (6.a.) becomes a simple linear model with logIncomec and an 
interaction variable, LogSalesi,US × logIncomec added to the equation.  In this form, 
although the compound disturbance, εi,c + γαvi,α +  γβvi,βLogSalesi,US, is heteroscedastic, 
the structural parameters can be estimated consistently, albeit not efficiently, by ordinary 
least squares.  However, in what follows, the structural parameters are of secondary 
interest; we are interested in estimation of the individual level parameters.  Moreover, the 
consistency of the conventional estimation method applied to the reduced form will not 
carry over to nonlinear models such as the probit, logit or Poisson regression models.  
 The ‘effect’ of interest, the effect of (log) US sales on (log) foreign sales for a 
particular film (in a particular country) in this model is 
 
(7) βi | Incomec   =  ∂E[LogSalesi,c| logIncomec ,vi,β]/∂LogSalesi,US   
 
   =  β  +  δlogIncomec +  σβ

                                                

vi,β,  
 
where vi,β ~ N[0,1].  We seek to ascertain whether U.S. box office sales are a ‘significant’ 
determinant of foreign box office sales for a film and, ultimately, to obtain film specific 
estimates of the parameters, βi,c.2  Obviously, a finding that individual estimates of β and 
δ are individually ‘significant’ does not imply that the random coefficient on the left is, in 
total, correspondingly so. Of course, even neglecting the random parameters aspect of the 
model, this interpretation of marginal effects in the presence of interactions is a common 
problem even in conventional linear regression models.  [See Wooldridge (2000, pp. 224-
231) for commentary.] Moreover, in the present setting, large variation due to the 
normally distributed random component, σβvi,β, might dominate the random parameter.  
Since the ‘coefficient’ differs across individuals by construction, the meaning of the 
significance results for individual structural coefficients is somewhat ambiguous.  See, 
for example, Layton and Brown (2000), who fit a random parameters discrete choice 
model and base their assessment of ‘significance’ on estimates of the structural 

 
2 In the model formulation in (1) and (2), the heterogeneity in the means of the coefficients, zi, varies across 
individuals but is time invariant.  In this application, the income variable varies across country, but not 
across films, so, in fact, the heterogeneity in the parameters is provided largely by the random component, 
vβ,i, not by zi. 
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parameters only.  The presence of  ∆zi in βi brings a level of generality that is not typical 
in the received applications.  Most are of the simple form βi = β +  wi.  It is the additional 
source of heterogeneity, ∆zi, that creates the interaction terms, and this term which makes 
ambiguous the interpretation of the coefficients alone as marginal effects.   
 In this application, the computation of (7) is complicated by the presence of the 
random effect and by our interest in individual level effects. Computing  

 will be uninformative since there is no film specific information 
in the estimate – this is merely an estimate of the common unconditional mean. More 
generally, in the model in (1)-(2), this computation would correspond to some kind of 
average across films rather than this specific individual.  [See Train (2003, Chapter 10, 
for discussion of this distinction.]  For each film, we can estimate the conditional mean, 
E[β

,
ˆ ˆ

i c clogIncomeββ = β+ δ

i,c | logSalesi,c,logSalesi,US, xi,c,zc, c = 1,…,8],3 using Bayes theorem, where zc is log 
per capita income and xf,c is all other variables in the model including the log per capita 
U.S. box office.  The empirical distribution of the estimated film specific estimates will 
then suggest whether the results document a systematic relationship between U.S. and 
local box office receipts. 

For convenience, let yi denote the observations on the local box office for this 
film for all countries for which it is observed, and let Xi denote the observations on all 
other variables for this film, including US box office, genre, McD, log of per capita 
income, and so on, again for all countries.  Then, the conditional mean for the specific 
film in a particular country is 

 
(8) E[βi,c | yi, Xi]  =  

,
, , 

( | , )
i c

i c i c i i i c,f d
β
β β β∫ y X  

 
where f(βi,c|yi,Xi) is the conditional density of βi,c given all the information available in 
the sample on this film.  This conditional distribution is constructed using Bayes theorem 
as follows: 

f(βi,c|yi,Xi) =  ,( , |
( | )
i c i i

i i

f
f
β )y X

y X
       

(9)   =  , ,

, , 

( | , ) ( | )
.

( | , ) ( | )
i

i i c i i c i

i i c i i c i i c

f f
f f

β ,d
β β

β β β∫
y X X

y X X
 

 
The joint density in the numerator is the product of the marginal distribution of βi,c, 
which is the normal (or other) distribution defined by (6), and the conditional distribution 
of the dependent variable given the parameter βi,c, which is the term in the likelihood 
function before the integration in (4).  The denominator is the marginal distribution of yi 
obtained by integrating βi,c out of the joint distribution. The conditional mean of this 
distribution is then obtained by the definition, 
 

                                                 
3 Note that although (7) is in terms of a specific film in a specific country, what follows will present a film 
specific effect conditioned on the incomes of all countries in which it was observed. 

6 6



(10) E[βi,c | yi, Xi]   = ,
, , ,

, ,

( | , ) ( | )
.
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i

i c i i c i i c i i c
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,

,

d
 

 
In order to estimate the conditional mean in (10), we would insert the estimated 

parameters for the remainder of the model in the likelihood function and the marginal 
density of βi, then compute the integrals.  However, the integrals will not exist in closed 
form.  They can be computed by simulation, by the same method used to compute the 
simulated likelihood earlier.  The simulation estimator of the conditional mean is, then 
 

(11) , , , ,1
,

, ,1

ˆ ˆ(1/ ) ( , , )ˆ[ | , ]
ˆ(1/ ) ( , , )

R
i c r i i i rr

i c i i R
i i i rr

R L v
E

R L v
β=

β=

β
β = ∑

∑
y X

y X
y X

 

 
where is the contribution to the likelihood function (not its log) of film i 
evaluated at all the estimated parameters and the rth simulated value, 

, ,
ˆ( , ,i i i rL v βy X

ˆ ˆ ˆ log

)

, , , ,ˆi c r c i rIncomeβ+ δ vβ ββ = + σ .  Note that the simulation is over the draws of vi,β,r.  
(Also, we note that the random constant term in the model is also simulated.)  In the 
results below, we will also make use of the estimated conditional variance of βi,c,           
Var[βi,c | yi, Xi]   = E[βi,c

2|yi,Xi] – (E[βi,c|yi,Xi])2.   This is estimated in the same fashion 
by first estimating the conditional expected square, with 
 

(12) 
2
, , , ,2 1

,
, ,1

ˆ ˆ(1/ ) ( , , )ˆ[ | , ]
ˆ(1/ ) ( , , )

R
i c r i i i rr

i c i i R
i i i rr

R L v
E

R L v
β=

β=

β
β = ∑

∑
y X

y X
y X

. 

 
The standard deviation of the conditional distribution is estimated with 
 

(13) ( )22
, , ,

ˆ ˆ. .[ | , ] [ | , ] [ | , ]i c i i i c i i i c i iS D E Eβ = β − βy X y X y X . 

 
 Table 1 (reproduced from Craig, Douglas and Greene (2003) presents the 
maximum simulated likelihood estimates for the model coefficients.  The estimates in the 
first column are the nonrandom parameters counterparts to the RPM in (6). These are 
estimated by ordinary least squares.4  This model is a linear regression model, where (2) 
implies that logIncome and an interaction with logUSBox will also appear in the model.  
The second column gives the least squares estimates of (6) ignoring the random 
parameters specification, including logIncome and the interaction term.  (Note the zero 
‘income effects.’) The third column presents the maximum simulated likelihood 
estimates of the full RP model.  Based on the likelihood ratio test, the hypothesis of 
homogeneity of the model coefficients is soundly rejected; χ2 = 2(3154.532 - 3007.729) = 
293.606 with 2 degrees of freedom.  As to whether US Box office results significantly 

                                                 
4 Since the parameters are assumed to be nonrandom, no adjustment for heteroscedasticity is needed. 
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effect foreign sales, the least squares results strongly suggest so – the coefficient (1.131 
in the presence of the income effect, 1.204 without it) appears to be strongly ‘significant’ 
with t ratios well in excess of 4.0.  But, as noted above, given the interaction term in the 
model, this assessment is incomplete.  In the center column, note that the coefficient  on 
per capita US box is 1.204 with a t ratio of 25.6.  In the first column, the counterpart 
would be 1.131 + 0.011(logIncome) which requires a specific value of logIncome. 
Inserting the full sample mean of 6.4927 gives a result of 1.204 again.  Using the 
estimated asymptotic covariance matrix for the two OLS coefficients [.05925/                              
-.008909,0.0013729] produces an estimated asymptotic standard error of 0.04597, so the 
results are almost identical to the preceding case.  Based only on the OLS results, it 
seems clear that the data do suggest a significant relationishup.  But, in the random 
parameters model, the simple t ratio on the estimate of β̂  is 1.82 and that on  is only -
0.5.  Neither is statistically significant, so one might be tempted to conclude that the 
relationship is insignificant.  Once again, however, it is  necessary to consider the full 
effect, not just the structural coefficients.  However, in the random parameters case, the 
simple mean estimator, itself, becomes an ambiguous estimator of the population 
quantities of interest. 

δ̂

 Figure 1 below shows for each of the 299 films the range given by the estimated 
conditional mean plus and minus 2.5 conditional standard deviations, using, once again, 
the full sample mean of income.5  With conditional normality, this range would 
encompass over 99% of the mass of each conditional distribution.  Since the conditional 
distributions are not necessarily normal or symmetric, the actual mass may be slightly 
less than this, but will be more than 95%.  The horizontal lines in the figure are drawn at 
the sample mean of the 299 estimated conditional means (1.21) and at zero.  The dots in 
the centers of the bars show the film specific point estimates, the posterior means in (11).  
The vertical bars divide the data into the six years of observations.  Only two of these 299 
intervals include zero, and those only slightly.  We conclude that the relationship between 
US and foreign box office is indeed, positive and significant, and that for all but two 
films, there is almost certainly a positive relationship between US box office and foreign 
box office. 
 In principle, one could estimate the conditional means and variances for other 
functions of the model parameters.  Discrete choice analysis of consumer preferences 
provides an important example.  It is common in the discrete choice literature to use the 
model parameters to estimate ‘willingness to pay’ values.  This is computed as the ratio 
of a quantity coefficient to a price coefficient. For example, Layton and Brown (2000) 
examine a stated preference survey over programs for mitigating forest loss due to global 
climate change in the context of a random parameters (mixed) multinomial logit model.  
Estimates of the RP model include a price coefficient and coefficients on three levels of 
forest loss under the programs.  Discussion of results considers significance levels of 
structural parameters – their model corresponds to (1)-(2) with ∆ = 0 and some zeros 
placed in Γ.  The basic reported results corresponding to our Table 1 include for one of 
the models, a price coefficient of -.1185 and coefficients on three programs 
corresponding to 2,500 ft. loss, 1,200 ft. and 600 ft. of –11.1871, -5.1586 and –1.9483, 

                                                 
5 Note that the results suggest that separate means could be computed by country.  In the more general case 
in which zi varies only acros individuals, only a single value would be implied. 
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respectively.  Discussion of willingness to pay estimates report only the three ratios of      
–0.1185 to these values as the point estimates, and overall confidence intervals.  In 
precisely this application, one could, instead, compute 
 

(14) 
( ), ,1

,1

ˆ ˆ ˆ(1/ ) / ( )
ˆ[ | ]

ˆ(1/ ) ( )

R
program i price i i rr

program i R
i rr

,R L data
E WTP data

R L data
=

=

β β
=

∑
∑

 

 
The conditional standard deviation could be computed in the same fashion  See Hensher,  
Greene and Rose (2003) for another application. 
 
4.  Estimating Marginal Effects in Nonlinear Random  
      Parameters Models 
 
 The computations described in the preceding section could also be applied to 
other more involved functions in a model. For example, the marginal effects in binary 
choice models or in models for counts such as the Poisson regression model are 
complicated nonlinear functions of all the model parameters and the data.  One could 
estimate these for each individual in a sample.   We consider a straightforward 
application, the binary probit model.  The probit model with random heterogeneously 
distributed parameters would be 
 
 yit* =  βi′xit  +  εit, εit ~ N[0,1] 
 
(15) yit   =  1(yit*  >  0) 
 
 βi  =  β  +  ∆zi  +  Γvi, vi ~ N[0,I]. 
 
Assuming that both εit and vi are normally distributed, by direct substitution, we find the 
unconditional result, 
 

(16) Pr ob[ 1| , ]
1
i it i it

it it i
it it

y
 ′ ′ ′+

= = Φ  
′ ′+  

x z xx z
x x

β ∆
ΓΓ

 

Thus, as noted earlier, unlike the linear regression model, this model cannot be estimated 
consistently just by adding the interaction terms to the original model and using the 
conventional maximum likelihood estimator.6 
 The random parameters probit model can be estimated as suggested in Section 2.  
The conditional joint density for the ith individual is 
 

                                                 
6 It can be estimated conventionally by basing a likelihood function on (16), as suggested by Sepanski 
(2000) and Guilkey and Murphy (1993).  However, maximum simulated likelihood estimation provides a 
much richer set of results in that it facilitates estimation of the individual level parameters.  It is also likely 
to be easier given the complexity of the function in (16). 
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(17) 
1

( | , , , ) [(2 1)iT
i i i i i it it

L y
=

]it′= Φ −∏y X z v xΛ β  
 
where, as before, βi  =  β  +  ∆zi  +  Γvi.  Estimates of the structural parameters are 
obtained by maximizing (5) with this function. The probability is the conditional (on xit) 
mean function, so the marginal effects are 
 

(18)   =  ( , | )it i ix z vδ ( ) ( )i i i i it
 ′+ + φ + +  

z v z v xβ ∆ Γ β ∆ Γ .7 

 
Note that since all parameters appear in the scale factor, the marginal effects for all 
variables are random, even if the corresponding coefficients are not.  As before, it is 
necessary to integrate out the random unobserved heterogeneity.  The unconditional 
marginal effects for individual i at time t are, therefore 
 
(18) ( , )it ix zδ  =  [ ]( , | )

i it i iv x z vΕ δ  

= . ( ) ( ) ( )
i

i i i i it ig d ′+ + φ + +  ∫v z v z v x vβ ∆ Γ β ∆ Γ iv

 
One might compute this using the individual group means rather than at a particular point 
in time.  As before, the integration must be done by simulation, as in (11). 
 

(19) , ,1
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 Bertschek and Lechner (1998) analyzed the product and innovation activity of 
1,270 German manufacturing firms observed in five years, 1984 - 1988, in response to 
imports and foreign direct investment.  [See Bertschek and Lechner (1998).]  The model 
and different approaches to estimation of a panel probit model are described in Greene 
(2003, 2004).  To illustrate these computations, we continue that analysis here. 

The basic model to be estimated is a probit model based on the latent regression 

 , 
8

1 ,
2

*
it k it k it

k
y x

=

= β + β + ε∑ ( )* 0it ity y= >1 , i = 1,...,1270, t = 1984,...,1988. 

where 
 yit   =   1  if a product innovation was realized by firm i in year t, 0 otherwise, 
 x2,it =   Log of industry sales in DM, 
 x3,it  =  Relative firm size = ratio of employment in business unit to employment 
  in the industry (times 30), 
 x4,it  =  Import share = ratio of industry imports to (industry sales plus imports), 
 x5,it  =  FDI share = Ratio of industry foreign direct investment to (industry sales, 

                                                 
7 The effects would be computed as the difference in probabilities rather than as the derivative if the 
associated regressor were a dummy variable.  The approach would be the same.  In the interest of brevity, 
we treat only the simpler case of a continuous independent variable. 
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  plus imports), 
 x6,it  =  Productivity  =  Ratio of industry value added to industry employment, 
 x7,it  =  Raw materials sector = 1 if the firm is in this sector, 
 x8,it  =  Investment goods sector = 1 if the firm is in this sector, 
 x9,it  =  Consumer goods sector = 1 if the firm is in this sector (not used) 
 x10,it =  Food sector = 1 if the firm is in this sector (not used).8 
 

Descriptive statistics and further discussion appear in the earlier papers. Primary 
interest in the study was in the effect of imports (x4,it) and inward foreign direct 
investment (x5,it) on innovation.  Both are hypothesized to have a significant positive 
effect. Parameter estimates for the random parameters model are estimated under the 
specification 
 
 βi  =  β  +  Γvi, 
 
that is, with no interaction terms.  Parameter estimates for the random parameters model 
are presented in Table 2 with the estimates of a pooled probit model (assuming that there 
are no common unobserved effects).  As might be expected, the estimates are somewhat 
similar, but do differ noticeably.  Figures 2 and 3 are kernel density estimates for the 
distribution of the individual parameters, β4,i and β5,i based on (11).  Consistent with the 
findings in the article and in Greene (2004), we conclude that both imports and FDI do 
strongly influence innovation. 
 Marginal effects for the pooled probit model are shown in Table 3.  The second 
row in Table shows the averages of the 1,270 individual estimates of the marginal effects. 
The differences across the two models are large, but perhaps less than the differences in 
the coefficients might suggest.  Table 4 shows the averages of the estimated marginal 
effects by the four industry groups.  There is considerable difference across the 
industries.  Finally, Figure 4 shows the estimates of the marginal effect of imports on 
innovation for a sample of 200 of the consumer goods firms.  The horizontal lines in the 
figure are drawn at zero and 0.436 which is the marginal effect computed at the sample 
means using the pooled probit model. 
 
 
 

                                                 
8Firms are classified into four industry groups, raw materials, investment goods, consumer goods and food.  
Only two of the industry dummy variables are included in the model. The original study does not elaborate 
on why the third was not included.  We have retained the original specification. 
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5.  Bayesian Analysis of Individual Heterogeneity 
 
 Allenby and Rossi (1999) have studied the issue discussed here at length in the 
context of a discrete brand choice model.  Their model framework is different from our 
application, but is encompassed in the generic form given earlier.  They focused on a 
Bayesian approach while suggesting that the classical form of these computations was 
likely to be extremely cumbersome.  The preceding suggests that in fact, that is not 
actually the case.  (We note that the platform for their analysis was a multinomial probit 
(MNP) model, which they fit with Markov Chain Monte Carlo Methods.  They are 
certainly correct that simulation based estimation of the MNP model is cumbersome in 
the extreme, and has not advanced beyond quite moderate sized applications. As Train 
(2003) has analyzed extensively, this limitation is relaxed in several attractive directions 
by the mixed logit model, which is more flexible. Thus, we will eschew conclusions 
about the model in particular, and consider the general issues that they raised.) 
 The main focus of Allenby and Rossi (1999) is the estimation of household 
(individual) level parameters.  In the Bayesian context, this is achieved by estimation of 
the posterior means of βi.  The posterior distributions follow from the assumed priors 
(normal in their cases) and are easily drawn from or analyzed (as in their figure 1.)  
Regarding a classical approach, they suggest (in their equation (20)) precisely the 
calculation suggested in our (11), but observe that the calculation is “substantially more 
computationally demanding than the full Bayesian approach and offers only approximate 
answers.”  The preceding shows that the first of these is clearly overstated.  The 
computations described here are straightforward to apply (we used the built in routines in 
LIMDEP 8.0).  It is true that the Bayesian ‘estimates’ are exact, but only for the assumed 
priors and the data used. (A different posterior is asssociated with every different data 
set.)  Also, it should be remembered that the Gibbs sampler is also a simulation based 
estimator subject, at least, to simulation variance; it is not a clear window into the true 
population. The Bayesian posterior means are not ‘exact’ measures of quantities that are 
only measured approximately by the classical methods.  The classical methodology is 
explicitly directed toward characterizing the sampling distribution.  There is no 
counterpart to the posterior.  The two methods are estimating different quantities. We do 
note, though, whether this point/counterpoint is actually substantive may itself be moot. 
Regardless of the setting, with uninformative priors, the posterior is dominated by the 
likelihood.  Huber and Train (2001) have compiled some empirical evidence that the 
numerical answers that one obtains with hierarchical Bayes and classical ‘mixed models’ 
are likely to be essentially the same. 
 One comparison does remain.  In Allenby and Rossi’s analysis, the posterior 
analysis provides a full statement of the posterior distribution, not just its first few 
moments.  (Again, this is derived from the assumed prior).  It is not likely that the same 
information could be obtained from the classical estimates.  The unconditional normal 
distribution implied by (2) does not imply normality of the conditional – as they note, the 
shape of the conditional density will be influenced by the data.  How one could sample 
directly from the conditional distribution, for example, to construct a kernel density 
estimate, remains to be established.  However, again, this may be of limited practical 
import – the quantities of interest are likely to be the HPD intervals in the Bayesian or the 
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‘confidence’ intervals in the classical case, and in either framework, there is no great 
difficulty in obtaining these. 
 
6.  Conclusion 
 

Random parameters (RP) models, also known as hierarchical models, mixed 
models, and random coefficients models, are enjoying a flowering in the applied as well 
as theoretical literature.  [For a sample in just one area, discrete choice modeling, see 
Train (2003).]  This note has proposed an extension of the existing classical, simulation 
based techniques that suggests a useful approach to the question of ‘significance’ as well 
as to the more general issue of how one can make effective use of the results after 
estimating an RP model for estimating individual level quantities of interest.  The 
proposed device combines use of the numerical statistical results with a useful graphical 
summary of the estimates to provide data on individual level heterogeneity as well as 
more general conclusions about the model’s implications for relationships among the 
component variables. 
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Table 1.  Estimated Regressions for Log Per Capita Box Office, All Countries 
(Estimated Standard Errors in Parentheses)a 

 Fixed Parameters Models (OLS) Random Parameters  
Model (MSL) 

Variable Fixed Parameters 
Cultural Dist. -0.192 (0.168)** -0.155 (0.017)** -0.156 (0.010)** 
Macs Per Capita  0.057 (0.004)**  0.040 (0.004)**  0.040 (0.003)** 
English Lang. -0.260 (0.083)**  0.120 (0.079)  0.138 (0.052)** 
Drama -0.138 (0.137) -0.130 (0.142) -0.138 (0.086) 
Romance  0.008 (0.201)  0.022 (0.207)  0.042 (0.127) 
Comedy -0.165 (0.134) -0.151 (0.138) -0.140 (0.085) 
Action  0.110 (0.133)  0.118 (0.137)  0.092 (0.084) 
Fantasy  0.509 (0.185)**  0.526 (0.191)**  0.559 (0.123)** 
Adventure  0.108 (0.156)  0.110 (0.161)  0.141 (0.099) 
Family -0.476 (0.160)** -0.498 (0.165)** -0.591 (0.092)** 
Animated  0.148 (0.160)  0.152 (0.165)  0.149 (0.103) 
Thriller -0.049 (0.170) -0.033 (0.176) -0.074 (0.106) 
Mystery  0.403 (0.295)  0.383 (0.304)  0.227 (0.198) 
Science Fiction  0.042 (0.173)  0.039 (0.179)  0.009 (0.112) 
Horror  0.172 (0.160)  0.157 (0.165)  0.058 (0.112) 
Year 1998 -0.237 (0.081)** -0.314 (0.084)** -0.566 (0.050)** 
Year 1999 -0.160 (0.084)* -0.245 (0.087)** -0.445 (0.050)** 
Year 2000 -0.332 (0.083)** -0.410 (0.085)** -0.587 (0.051)** 
Year 2001 -0.339 (0.083)** -0.419 (0.085)** -0.640 (0.052)** 
Year 2002 -0.619 (0.084)** -0.701 (0.087)** -0.929 (0.050)** 

 
  
  
 
 
 
 
 

 Random Parameters 
 Constant 
Intercept  0.556 (0.358) -0.975 (0.183)** -3.649 (1.313)** 
Income Effect -0.250 (0.048)**  0.000 (0.000)  0.359 (0.164)** 
Std. Deviation  0.000  0.000  0.177 

 
 
  

 PerCapita US Box 
Intercept  1.131 (0.245)**  1.204 (0.047)**  1.669 (0.917) 
Income Effect  0.011 (0.037)  0.000b (0.000) -0.057 (0.114) 
Std. Deviation  0.000b  0.000b  0.369 

 
  
 

                                       Γ21  =  Ib 
Disturbance 
std.deviation. 

 1.022  1.053 0.934 

Log Likelihood -3154.532 -3220.691 -3007.729 
R2  0.505  0.475  

 
 

a*(**) Indicates significant at 95% (99%) significance level. 
bFixed at this value. 
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Table 2.  Estimated Components of the Fixed and Random Parameters Models for Innovation. 
(Estimated Standard Errors in Parentheses) 
 Pooled 

Probit 
Random Parameters Probit 

Variable  
β 

     
β 

Elements of  Γ 
Constant       log Sales      RelSize         Imports        FDI        Prod.           Raw Mtl.   Invst. 

Std. 
Devs. 

Constant    -1.96
(.230) 

-3.620 
(0.575) 

3.56 
(0.703) 

0      0 0 0 0 0 0 3.562

log Sales .137 
(.022) 

0.339 
(0.056) 

 0.269 
(0.067) 

0.0849 
(0.0228) 

0       0 0 0 0 0  .2827

Relative 
size 

1.073 
(.142) 

5.009 
(0.596) 

 2.632 
(0.603) 

-4.56 
(1.066) 

1.90 
(0.511) 

0      0 0 0 0 5.597

Imports       1.134
(.151) 

1.727 
(0.293) 

 0.937 
(0.543) 

-0.113 
(0.621) 

1.227 
(0.287) 

1.161 
(0..286) 

0 0 0 0 1.935

FDI      2.853
(.402) 

3.655 
(0.739) 

 5.665 
(1.400) 

1.183 
(1.048) 

 0.631 
(0.611) 

-1.431 
(0.742) 

2.479 
(0.751) 

0 0 0 6.487

Prod.     -2.34
(.715) 

-6.005 
(1.924) 

-4.62 
(1.771) 

6.673 
(2.393) 

-1.339 
(1.332) 

-3.987 
(1.098) 

7.964 
(1.113) 

5.999 
(1.057) 

0 0 13.526

Raw 
Material 

-.278 
(.081) 

-0.230 
(0.213) 

 0.775 
(0.382) 

-0.654 
(0.453) 

 0.215 
(0.751) 

-0.130 
(0.666) 

-0.665 
(0.346) 

1.215 
(0.425) 

0.354 
(0.378) 

0  1.770

Inv 
Goods 

.187 
(.039) 

0.312 
(0.077) 

0.191 
(0.190) 

0.597 
(0.207) 

0.404 
(0.0947) 

-0.0372 
(0.0894) 

-0.375 
(0.098) 

 0.117 
(0.105) 

-0.622 
(0.044) 

0.288 
(0.048) 

1.087 

Log L -4114.046 -3504.078 
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Table 3.  Average Estimates of Marginal Effects 

 logSales RelSize Imports FDI Prod Raw Mtl. Inv. Good 
Pooled  0.068 0.413 0.437 1.099 -0.902 -0.110 0.072 
Random Parame  0.081 1.211 0.395 0.877 -1.532 -0.031 0.058 
 
        Table 4. Sample Average Estimated Marginal Effects by Industry from  
                                  Random Parameters Model 

 Investment Consumer Raw Material Food 
Imports 0.391 0.389 0.403 0.471 
FDI 0.928 0.791 0.818 1.108 

 

Plot of 99% Probability Interval for USBox Coefficient
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 Figure 1.  99% Confidence Intervals for Film Specific Coefficients on logUSBox 
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