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Abstract
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umenting firm dynamics around the IPO date. A particularly striking finding
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decline at the IPO date. The comparative advantage of my approach is that
it produces further implications that are in line with the data. Most impor-
tantly, the model predicts that the IPO coincides with an increase in sales and
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trial Organization literature, the firm growth rate is shown to be decreasing
in age and size.
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1 Introduction.

The Initial Public Offering of equity is a special moment in the life cycle of a firm.

In most cases, it results in radical changes in ownership structure, capital structure,

and size of operations. Empirical studies have also found that the IPO moment

is characterized by a series of puzzling regularities. The most studied of them

is the well-known phenomenon of underpricing. Another one is that IPO stocks

consistently underperform with respect to the stocks of non-issuing firms.1 In this

paper I focus on a further stylized fact, documented by Degeorge and Zeckhauser

[12], Jain and Kini [20], Mikkelson, Partch and Shah [26], Pagano, Panetta and

Zingales [27], and Fama and French [15]. These studies present evidence that, for

IPO firms, measures of operating performance such as ratios of Operating Earnings

and Cash Flows over Book Value of Assets exhibit a sudden decline in the fiscal

year in which the offering takes place, and keep on worsening for a few more years.

If, as I argue in Section 2, the observed dynamics of such measures is not the result

of mismeasurement or accounting manipulation, then we need to acknowledge that

profitability does actually decrease in the aftermath of the IPO. Understanding why

this is the case is an interesting research question.2

In this paper I build on the existing literature on firm dynamics, embedding the

IPO decision in a simple dynamic stochastic model of firm behavior. I show that

for variables such as profitability, capital expenditures, and sales, the post-IPO dy-

namics predicted by the model is consistent with the available empirical evidence.

Operating performance peaks in the fiscal year preceding the IPO and declines there-

after. Such decline is accompanied by an increase in capital expenditures and sales.

The model’s predictions are also consistent with a series of empirical regularities on

the process of firm growth, pointed out by the Industrial Organization literature.

Most importantly, the firm growth rate decreases with age and size.

I consider the intertemporal decision problem of a risk-averse agent (entrepreneur),

with preferences defined over consumption and effort. The entrepreneur is endowed

with a talent for managing, a production technology (firm), and an initial amount

1See Loughran and Ritter [23].
2A number of answers to this question have been conjectured in the past, none of which has

won universal acclaim. In Section 2 I survey all of them in some detail.
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of wealth. Production is assumed to depend on physical capital and on managerial

effort. Factors’ productivity is stochastic. The needs of physical capital can be

financed through issue of equity and debt. However, at every date, the debt out-

standing must be lower than a certain level, which is an increasing function of the

equity. In other words, the entrepreneur is borrowing constrained.

Within every period, the timing is as follows. First, the entrepreneur has to

decide whether to go public or stay private. Going public implies selling stock to

outside investors, assumed to be risk neutral. Then, before the productivity level

becomes known, the entrepreneur decides how much to borrow. After the shock to

the technology is realized, the effort choice is made, production is undertaken, and

consumption, dividend distribution, and portfolio decisions are taken.

Going public is costly. First, there are fixed and proportional listing costs. Sec-

ond, and more importantly, rational and forward-looking investors expect that, ev-

erything else equal, managerial effort will drop when the entrepreneur’s equity stake

falls. Thus the price at which subscribers will be willing to buy the stock is posi-

tively related to the stake retained by the initial owner. There are two benefits from

going public. First, the IPO allows the firm to overcome the borrowing constraints

that keep production at a sub-optimal level. Second, it gives the entrepreneur the

chance to unload part of the risk she bears to risk-neutral investors.3

The decision to go public is triggered by a sudden and persistent change in total

factor productivity. Such event has the effect of widening the gap between efficient

and actual capital level in such a way that the marginal benefit deriving from the

expansion of the operations outweighs the marginal cost due to issuing costs and

absence of commitment.

3There is a considerable literature on the costs and benefits of going public. See Roell [29] for
a comprehensive list and Pagano, Panetta, and Zingales [27] for an assessment of their relative
empirical importance. My own modelling choices are motivated by the following considerations.
First of all, there is large evidence (see Section 2) that at least in the United States, firms use
the IPO proceeds in order to finance capital expenditures. I argue that this might be due to
the existence of financing constraints that preclude firms from expanding through the issue of
debt. The benefits of diversification, instead, arise naturally in the model once I assume that the
entrepreneur is risk-averse and there exists a large number of diversified potential subscribers for
the issue. Finally, the cost of going public that is caused by the decrease in the entrepreneur’s
equity stake also emerges endogenously, once I make the natural assumption that firm performance
depends on managerial effort.
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To my knowledge, this is the first paper that attempts to provide a rational-

ization for the observed post-IPO dynamics of operating performance. However,

there is an extensive theoretical literature that focuses on other aspects of the IPO

decision. Allen and Faulhaber [2], Benveniste and Spindt [4], and Welch [33] pro-

vide explanations for the underpricing phenomenon. Alti [3] and Cao and Shi [5]

present models that produce clustering as an equilibrium outcome. Zingales [35]

and Mello and Parsons [25] focus on the role of the IPO in maximizing the proceeds

an initial owner obtains when selling her company. Pagano and Roell [28], Chem-

manur and Fulghieri [6], and Subrahmanyam and Titman [31] consider the problem

of an entrepreneur that wishes to raise new equity while retaining control and faces

the choice between going public and selling stock to private financiers. Maksimovic

and Pichler [24] analyze how the determinants of the IPO decision, its timing, and

the magnitude of the underpricing, are affected by technological risks and by the

information revealed by rival firms’ offerings.

The remainder of this paper is organized as follows. In Section 2 I analyze in

greater detail the empirical evidence on the post-IPO dynamics of operating per-

formance indicators. I argue that such dynamics is not the result of either mismea-

surement or accounting manipulation. Next, I review the explanations that have

been conjectured so far, underlining their shortcomings. Finally, I provide a simple

example that illustrates the mechanism at work in my model, to be introduced in

Section 3. In Section 4 I characterize the dynamics implied by a version of the model,

in which I abstract from the IPO. In Section 5 I analyze the determinants of the

IPO decision. Section 6 describes the implications of the model for the dynamics of

equity, capital expenditure, and profitability around the IPO date. Finally, Section

7 concludes and provides tentative directions for future research.
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2 Operating Performance of IPO Firms: Empiri-

cal Evidence and Competing Explanations.

2.1 The Empirical Evidence.

At the beginning of Section 1, I recalled a number of recent papers that document the

operating performance of IPO firms. As I have already stated, the finding common

to all of these studies is that the post-issue operating performance of IPO firms, as

measured by their Operating Return on Assets,4 deteriorates in the aftermath of

the IPO and keeps on doing so for a few more years. Here I focus on the evidence

presented by Jain and Kini [20] (JK, from now on) and Mikkelson, Partch and Shah

[26] (MPS).5 The figures reported in Table 1 are borrowed from JK and represent

median percentage changes with respect to the fiscal year preceding the IPO.6 The

data in the first row tells us that, at the median, the Operating Return on Assets

falls in the IPO year and keeps on declining for two more years. It recovers a little

in the following year, remaining however well below its pre-IPO level. Obviously

these results could be driven by a generalized decline in profitability that hit the

industries to which a large part of the IPO firms belong. This seems not to be

the case. In fact, the values reported by JK remain statistically and economically

significant also when adjusted for industry effect.7

One could also argue that in the aftermath of the IPO the denominator of the

ROA (i.e. the book value of assets) increases because of the cash injection generated

by the offering, while the numerator (i.e. the earnings) remains constant, since new

assets become productive only with a lag. A first objection to this explanation is

4The Operating Return on Assets is defined as the ratio between operating income (before
depreciation and taxes) and total assets.

5Degeorge and Zeckhauser [12] study a peculiar subset of IPO firms, namely reverse leveraged
buyouts. Pagano, Panetta, and Zingales [27] consider a sample of firms that went public on the
Milan Stock Exchange. Both sets of firms differ in many respects from the average US firm at
its first IPO. In the United States IPO firms tend to be small and young firms that use the IPO
proceeds in order to finance growth. The reverse LBO firms considered by Degeorge and Zeckhauser
and the Italian IPO firms studied by Pagano, Panetta, and Zingales, are much larger and older
entities, and tend to use the cash raised at the IPO in order to reduce their leverage.

6Year 0 is with the fiscal year in which the IPO takes place.
7JK compute the industry-adjusted change in operating performance as the difference between

the change in operating performance as reported in Table 1 and the median change of all firms in
the industry.

4



Periods following the IPO
0 +1 +2 +3

Operating ROA -3.58 -7.6 -10.53 -9.09
Operating Cash Flow/ Total Assets -3.92 -7.92 -7.4 -6.44
Sales 37.22 69.92 108.09 143.15
Capital Expenditures 90.45 141.61 144.66 167.33

Table 1: Post-IPO Dynamics

Source: Jain and Kini (1994)

that, if it held, it would imply that the Operating ROA reaches its lowest value in

year 0. According to Table 1 instead, it keeps on declining for a few more years.

Furthermore, JK show that if the numerator is augmented by the interest proceeds

on the cash raised at the IPO, the decrease in profitability turns out to be less

important, but still significant.8

It has also been suggested that the decline in Operating ROA could be due to

the discretion that managers enjoy when preparing income statements. The argu-

ment is that firms preparing to go public artificially inflate their earnings in order

to influence investors’ valuation. Teoh, Welch and Wong [32] provide evidence that

supports this conjecture. They also argue that immediate and radical accounting

reversals in the aftermath of the IPO are not feasible, because they would ren-

der earnings management activities transparent enough to trigger lawsuits against

the management. For this reason, I conclude, the creative accounting explanation

predicts that operating returns, after having peaked in the pre-IPO year, decrease

smoothly over a few years, rather than display such a dramatic drop in the IPO

year. JK test for the robustness of their finding by computing a measure of operat-

ing performance, cash-flows over book value of assets, that is much less vulnerable

to accounting manipulation. The second row in Table 1 reports their results. While

the magnitudes change, the finding seems to withstand the test. In light of the above

discussion, from now on I will assume that the decline in the measures of operating

performance is not an artifact, but actually attests a decrease in profitability.

8As an alternative robustness test, MPS scale the operating returns by sales, instead of assets.
The dynamics of this ratio is very similar to the one displayed by the operating ROA.
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2.2 Existing Explanations.

The empirical papers I am relying upon have conjectured other potential explana-

tions for the phenomenon under study. Such explanations rely either on adverse

selection or on moral hazard considerations. According to the adverse selection ar-

gument, the decline in operating performance would occur simply because insiders

have private information with regard to their firms’ prospects, and decide to take

them public only when profitability is about to decline permanently. Leland and

Pyle [22] suggest that, in presence of adverse selection, firms with good projects

could separate themselves from firms with worse prospects, simply by retaining a

significant ownership stake in the firm. Under some conditions, the latter would

not find it profitable to imitate the strategy of the former. Thus, everything else

equal, the adverse selection argument predicts a positive correlation between the

stake retained by pre-IPO owners and post-IPO performance. According to the

moral hazard hypothesis, first outlined by Jensen and Meckling [21], higher own-

ership retention by managers reduces their incentives to undertake value-reducing

projects. Since IPOs are associated with a sudden and significant decline in man-

agerial ownership, such hypothesis could actually explain the drop in profitability.

The same argument also predicts that profitability is positively related to the equity

stake retained by managers. JK and MPS attempt at testing the relevance of either

theory for the problem at hand, reaching opposite results. My opinion is that the

shortcomings of both testing strategies limit severely the scope of their conclusions.

The main problem is that both papers fail to recognize that the equity stake re-

tained by managers is endogenous and thus is correlated with a number of firm-

and possibly industry- specific characteristics. I argue that the only way to control

for such endogeneity is to build a model that links explicitly managerial actions to

managerial ownership and other firm characteristics.

2.3 A New Explanation.

We have just seen that the moral hazard explanation relates the change in prof-

itability to a structural change that characterizes firms at the IPO stage, namely
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the decrease in the managers’ equity stake. In the same fashion, it seems sensible to

investigate whether the IPO triggers other relevant changes in firms’ fundamental

characteristics and conduct. It is to such analysis that I turn now.

In the case of the United States, IPO firms tend to be smaller and younger

than public firms,9 and most of them use the IPO proceeds to finance novel cap-

ital expenditures. Both JK and MPS find that in their samples median capital

expenditures and sales increase dramatically in the years following the IPO. MPS

contribute further evidence by reporting that the median liabilities/assets ratio de-

clines on impact but then rises. Given that in the years following the offering firms

exhibit high growth in assets, I deduce that also liabilities increase in the aftermath

of the IPO. Several scholars have found it hard to reconcile the post-IPO decrease in

profitability with the concurrent increase in capital expenditures and sales. In this

paper I argue that 1) the two phenomena are perfectly compatible, 2) they can be

rationalized as implications of a standard dynamic model of firm growth, and 3) the

same model is able to replicate further, non-IPO related, features of the life-cycle

of a firm.

In recent years, the empirical research in Industrial Organization has produced

a body of (by now) well-established findings on firm dynamics, that naturally com-

plement the evidence reported above. Contributions by Hall [19], Evans [14], and

Dunne, Roberts and Samuelson [13] suggest that large firms grow at a slower rate

than smaller firms and young firms grow faster than older ones. Further, small firms

pay fewer dividends, invest more (relative to size) and are more leveraged. Finally,

small firms have higher values of Tobin’s q.

Among the possible mechanisms that could be responsible for the observed rela-

tion between size, age, and growth, one that finds favor among scholars relies on the

role of financing constraints, and in particular on the finding that such constraints

seem to affect young and small firms more than older and larger ones.10 In the last

9See, for example, Fama and French [15] and Gompers [17] for detailed evidences supporting
this statement.

10Up to date, the most cited study in the area is by Fazzari, Hubbard and Petersen [16], who
estimate reduced-form investment equations across groups of firms classified by their investment
behavior. Their results indicate a substantially greater sensitivity of investment to cash flow for
those firms that plow back most of their earnings. Whited [34] applies a methodology already
used in consumption studies in order to study the effects of borrowing constraints on household
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few years, a number of theoretical papers have shown that by incorporating borrow-

ing constraints in an optimizing model of firm dynamics with decreasing returns to

scale, it is possible to replicate the cited empirical evidence on the growth process.

In brief, the mechanism is as follows. Consider a borrowing constrained, risk-neutral

agent operating a deterministic technology that exhibits decreasing returns to phys-

ical capital, the only input. Her optimal strategy is to postpone consumption and

reinvest all earnings at least until the marginal return equals the opportunity cost of

capital. As the capital grows, its average return falls, and so does its growth rate.11

The basic insight of this paper is that, enriching this simple structure in order

to accommodate the IPO decision, one obtains a model that, while retaining the

properties just outlined, is able to replicate the evidence on firm dynamics around

the IPO date. Here is an heuristic rendering of why this is the case. First, notice

that the hypothesis of decreasing returns to scale is equivalent to assuming that

business projects available to entrepreneurs are heterogenous with respect to their

profitability, and that rational managers implement them in decreasing order of

profitability. Think of a small, private firm endowed with a list of projects. Each

of them requires the same level of capital expenditures and has the same level of

operating costs. However, they differ in the cash-flows they generate. Figure 1

illustrates the example. Every bin represents a project. The surface of the bin

measures the gross cash-flow. The level of total per-period costs is given by ch. As

a result, the net cash-flow of a given project is given by the area of the bin that lies

above the line of height ch. With costs ch, only projects 1 through 4 produce strictly

positive cash-flows. The firm will find it worth investing in all of them and no one

else. It will do so, conditional on the availability of the necessary resources. Now

expenditures. This methodology exploits the observation that the investment Euler equation of the
standard neoclassical model should be violated for firms that face financing constraints. Whited
partitions the firms in her sample in two sets depending on several measures of financial distress
and finds that the unconstrained Euler equation fails to hold for the a priori constrained firms,
while it performs much better for the remaining firms.

11Among the models that exploit this mechanism are Clementi and Hopenhayn [7] and Cooley
and Quadrini [9]. Clementi and Hopenhayn [7] show that the borrowing constraint arises as a
feature of the optimal lending contract in an environment characterized by asymmetric information
with respect to the firm’s cash flow. Cooley and Quadrini [9] consider a general equilibrium model
with heterogenous firms, whose operations are constrained by an exogenous financing constraint.
The industry dynamics implied by their model displays many of the features I have described
above.
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Figure 1: An Illustrative Example.

assume that a sudden technological improvement lowers the operating costs, so that

total costs fall to the level cl. The immediate effect is an increase in the measures

of operating performance, because the decrease in costs translates one to one in an

increase in net cash flows. A further effect is that projects 5 through 8 become

viable. In case the management decides to raise the cash needed to finance all the

projects through a public offering of equity, we would observe an increase in capital

expenditures, sales, and total earnings, but also a deterioration in the measures of

performance (i.e. average productivity) with respect to the pre-IPO levels. Further,

if the program of capital expenditures takes time to implement, the deterioration of

such measures will not occur instantaneously, but rather over a time.

3 The Model.

Time is discrete and the time horizon is infinite. I consider the decision problem

as of time zero of a single agent (entrepreneur), who is endowed with an amount of

cash M and a production technology.

In every period t, the technology produces one homogeneous good with inputs of

physical capital and managerial effort (et), according to the function F (kt, et, zt) =

ztk
γ
t eϕ

t . The random variable zt ∈ Z indicates the level of total factor productivity
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and is distributed according to G (zt | zt−1). I assume decreasing returns to scale,

i.e. γ, ϕ > 0 , γ + ϕ < 1.

Preferences are defined by the utility function12 u(ct, et) = 1
1−ξ

[(
ct − e1+η

t

1+η

)1−ξ

− 1

]
,

where 0 < ξ < 1 , η > 0, and where ct denotes consumption at time t.

The entrepreneur can smooth consumption over time by investing in two assets,

namely her company’s equity and a riskless asset, yielding a constant per-period

return r. I denote the book value of the firm’s equity as kt and the entrepreneur’s

stake in it as αt ∈ [0, 1]. I will say that the company is privately held when αt = 1,

and publicly held when α < 1. The entrepreneur’s holding of the risk-free asset is

denoted by at, at ≥ 0. The restriction at ≥ 0 implies that the entrepreneur cannot

sell the riskless asset short (alternatively, she cannot borrow). Finally, I assume that

the entrepreneur discounts future utility at the constant rate β < 1
1+r

.13

While the entrepreneur is not allowed to borrow to finance consumption, the firm

can borrow (at the rate r) in order to increase the level of physical capital employed

in production beyond the value of equity kt. I assume that the firm can borrow up

to a level that is a linear increasing function of the equity. Letting bt denote debt,

I impose that bt ≤ skt, s > 0.14

A further assumption is that in every period there is a positive and constant prob-

ability ρL that the company’s assets become worthless. Since in such an event the

firm would have to file for bankruptcy, from now on I will refer to it as the bankruptcy

event (state).15,16 For simplicity, I assume that in case the bankruptcy state real-

12This particular utility function is usually referred to as GHH because it was first introduced
by Greenwood, Herkowitz and Huffman [18]. In the remainder of the paper it will be sometimes
useful to rewrite it as the composition of two functions. That is, I will write u (c, e) = v (x (c, e)),
where v (x) = 1

1−ξ

[
x1−ξ − 1

]
and x (c, e) = c− e1+η

1+η .
13The restriction β < 1

1+r is introduced to insure that the support of the distribution of asset
holdings be bounded.

14The choice of imposing an exogenous borrowing constraint is motivated by the need to keep a
rather complicated structure as tractable as possible. Recent papers by Albuquerque and Hopen-
hayn [1] and Clementi and Hopenhayn [7] show how the borrowing constraint can emerge as an
endogenous feature of the optimal lending contract in environments characterized by enforcement
problems and asymmetric information, respectively.

15A further restriction on the parameter space is needed to insure that in all states of nature in
which the company is viable, total resources are enough to pay back principal and interest. Such
restriction is s < 1

r . It is easy to check that it implies kt < sktr, where skt is the maximum level
of debt when the book value of equity is kt.

16Notice that my assumptions imply that firm’s debt is risky. However, the rate the firm pays on
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izes, the entrepreneur is not allowed to start a new company. After bankruptcy, her

risk-free asset holdings will be her only source of income.

In every period, the timing is the same for public and private firms, with one

important exception. If the firm is private, the entrepreneur has to decide whether or

not to take it public. I assume that the IPO decision is taken at the very beginning

of the period. If she decides to go public, the entrepreneur chooses the equity stake

she is going to retain after the IPO. The remaining of the equity of the new public

company is sold to outside risk-neutral investors. Going public is costly. I assume a

fixed cost N and proportional costs in measure of a fraction d of the IPO proceeds. I

also assume that the entrepreneur’s equity stake α is irrevocably set at the IPO. This

implies that the entrepreneur will not be able to either sell part of her holdings in

the open market, conduct a seasoned offering, or take the company private. These

assumptions are made in order to insure tractability of an already very complex

problem.17 In later sections, as I present the results, I will discuss at length the

role of these hypothesis and I will argue that the most relevant achievements of my

analysis do not depend on them.

The timing of the remaining events does not depend on the status of the firm

(public of private). I describe it with the help of Figure 2. In case bankruptcy

hits, the entrepreneur faces a simple deterministic consumption/saving problem.

She has to choose the optimal allocation of her wealth between consumption and

savings. The decision problem upon survival is more interesting. Before the state

of productivity zt is observed, the entrepreneur decides how much debt to issue

(bt). Once zt becomes known, the entrepreneur takes the effort decision et. Then

production occurs. Finally, the agent consumes and chooses next period’s book

equity level kt+1 and risk-free asset holdings at+1.

The decision problem of the entrepreneur can be written as a sequence of two

dynamic programming problems, which I am going to describe in the remainder of

it is set exogenously at the level r. From the discussion that follows, it will be clear that allowing
the borrowing rate to depend on the risk of cash flows would considerably complicate the analysis,
without having any impact on the most relevant results of the paper.

17In Appendix C I outline the technical issues that prevent the characterization of the solution,
once these simplifying assumptions are dispensed with.
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Figure 2: The Timing.

this section. In doing so, I proceed backwards. First, I describe the problem when

the company is public. Then I move on to discuss the decision problem when the

firm is private.

3.1 The Post-IPO Decision Problem.

Let W (α, a, k, z−1) represent the expected discounted utility of the entrepreneur

when she holds the riskless asset in quantity a, total book equity is k, her stake in it

is α, and the productivity state in the previous period was z−1. Then W (α, a, k, z−1)

solves the functional equation (P1):

W (α,a, k, z−1) = (P1)

max
b<sk





(1− ρL)

∫

 max

c(z),e(z)

a′(z),k′
(z)

u(c(z), e(z)) + βW (α, a′(z), k
′
(z), z)


 dG(z | z−1)+

+ρL max
cL,a′L

u(cL, 0) + βWL(a′L)

}
,

s.t. c(z) = α
[
k + z(k + b)γeϕ

(z) − rb− k′(z)

]
+ a(1 + r)− a′(z) ∀ z, (1)

k + z(k + b)γeϕ
(z) − rb− k′(z) ≥ 0 ∀ z, (2)

cL = a(1 + r)− a′L, (3)

a′(z), a
′
L ≥ 0 ∀ z. (4)
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Conditional on the choice of b, the value of the entrepreneur is given by the

average of two terms. The first one represents the expected discounted utility, con-

ditional on survival of the firm, while the second one is the expected discounted

utility, conditional on bankruptcy. In the latter case the physical capital is un-

productive, thus the entrepreneur will exert no effort. From next period on, she

will consume out of her risk-free asset holdings only. The function WL(a′L) yields

the continuation value of the entrepreneur, conditional on the occurrence of the

bankruptcy state.18

Condition (1) is the budget constraint in all states in which the company is viable.

The expression in square brackets corresponds to dividends. In fact, dividends equal

the difference between total resources (i.e. initial equity plus revenues minus interest

payment) and tomorrow’s equity. The entrepreneur holds the claim to a fraction α

of the distributed dividends. Consumption equals dividends plus the gross proceeds

from the investment in the asset a, minus next period holding a′. Condition (2)

makes sure that dividends are always non-negative.19

Equation (3) is the budget constraint in case bankruptcy occurs. Since the firm’s

assets are not productive, dividends are identically zero.

The solution to the functional equation (P1) yields policy functions (optimal

decision rules) for debt issue (b∗), managerial effort (e∗(z)), book equity (k′∗(z)), and

risk-free asset holdings (a′∗(z)). Such functions can be used in order to compute the

expected discounted sum of dividends distributed by the firm, which coincides with

the market value of equity in the case in which shareholders are risk neutral. Given

a set of state variables (α, a, k, z−1), the equity’s market value is given by the price

function P (α, a, k, z−1) that solves the functional equation

P (α, a, k, z−1) =

(1− ρL)

∫ [
(k + z(k + b∗)γe∗ϕ(z) − rb∗ − k′∗(z)) +

1

1 + r
P (α, a′∗(z), k

′∗
(z), z)

]
dG(z | z−1).

(5)

18The function WL(a′L) is computed analytically in Appendix A.
19In other words, this conditions insures that equity increases only through the reinvestment of

earnings.
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3.2 The Pre-IPO Decision Problem.

When the firm is private, the functional equation describing the entrepreneur’s prob-

lem is slightly more involved. The IPO decision process can be decomposed into

three steps. First, the entrepreneur needs to figure out the value of staying private

at least one more period. Then she will gauge the value of going public. Finally, she

will decide for the opportunity that yields the highest expected discounted utility.

The first step is the simplest. Let V (a, k, z−1) represent the continuation utility,

conditional on keeping the company private at least one more period.20 Then, if the

entrepreneur decides not to go public, her value is given by Vpr(a, k, z−1), where

Vpr(a, k, z−1) = max
b<sk





(1− ρL)

∫

 max

c(z),e(z)

a′
(z)

,k′
(z)

u(c(z), e(z)) + βV (a′(z), k
′
(z), z)


 dG (z | z−1) +

+ρL max
cL,a′L

u (cL, 0) + βWL(a′L)

}
,

(P2)

s.t. c(z) =
[
k + z(k + b)γeϕ

(z) − rb− k′(z)

]
+ a(1 + r)− a′(z) ∀ z,

k + z(k + b)γeϕ
(z) − rb− k′(z) ≥ 0 ∀ z,

cL = a(1 + r)− a′L,

a′(z), a
′
L ≥ 0 ∀z.

The second step is modelled as follows. The entrepreneur enters the new period

with a portfolio allocation (a, k). Let I denote her contribution to the equity of

the new public company. Then, if aipo denotes her holdings of risk-free asset in the

aftermath of the IPO, her budget constraint reads as follows:21

aipo = a + (k − I). (6)

20Recall that I have assumed that at time zero the entrepreneur owns all of the equity and does
not have other means to sell shares other than the IPO. This implies that before the IPO takes
place, α = 1.

21In the case in which I > k, the entrepreneur subscribes a fraction of the newly issued shares.
Instead, in the case in which I < k, the entrepreneur is actually selling part of her stock holding
to new investors. That is, she is conducting a secondary offering.
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In addition, the entrepreneur has to determine kipo, i.e. the magnitude of the

firm’s equity after the offering, and the stake she is going to retain (α). These two

values are jointly determined by the following condition:

kipo − I = (1− d)(1− α)P (α, aipo, kipo, z−1)−N. (7)

Equation (7) is an accounting relation. The left-hand side represents the contribu-

tion of outside shareholders to the equity of the public company. The right-hand

side consists of the net proceedings of the IPO. Substituting (6) in (7), I obtain the

restriction

aipo = [a + k −N ] + (1− d)(1− α)P (α, aipo, kipo, z−1)− kipo. (8)

For given choices of α and kipo, condition (8) yields the volume of post-IPO risk-free

asset holding aipo. Finally, the value of going public is given by Vipo(a, k, z−1) as

determined by

Vipo(a, k, z−1) = max
α,kipo

W (α, aipo, kipo, z−1), (P3)

s.t. (8),

α ∈ [0, 1],

aipo ≥ 0.

The final step consists of comparing the value of staying private with the value

of going public and opting for the solution that yields the highest reward. This

means that the expected discounted utility for the entrepreneur when the company

is private equals the maximum of the two. Thus the value function V (α, a, k, z−1)

must solve the functional equation given by (P2), (P3), and (P4) below, with

P (α, aipo, kipo, z−1) satisfying (5).

V (a, k, z−1) = max {Vpr(a, k, z−1), Vipo(a, k, z−1)} . (P4)
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4 Post-IPO Dynamics.

In this section I study the dynamics of the firm after the IPO has taken place. In

other words, I characterize the solution to the decision problem described by the

program (P1). Such solution consists of a set of policy functions (optimal decisions

rules) for managerial effort, dividend distribution, capital expenditures, and debt. It

will also be of interest to understand how the evolution of these variables differ from

that implied by existing dynamic optimizing models of entrepreneurial behavior.22

It is worth reminding which innovations I introduce with respect to this literature.

First of all, in my model production depends on managerial effort. Second, the en-

trepreneur is risk-averse. Finally, the entrepreneur has access to a further (risk-free)

financial asset, besides her firm’s equity. All of these hypothesis were introduced

in order to accommodate the IPO decision. However, it is easy to argue that they

make for a much closer approximation of reality.

I begin by describing the determinants of the effort level e. Given the particular

choice of preferences I have made, there is no wealth effect on the effort choice.

This implies that when (2) does not bind (i.e. when dividends strictly positive),

managerial effort depends on contemporary variables only. Namely, the productivity

level z, the capital employed in production (k + b), and the stake α. It is easy to

show that

e = (αzϕ)
1

1+η−ϕ (k + b)
γ

1+η−ϕ . (9)

As common sense dictates, conditional on capital and productivity level, man-

agerial effort is increasing in the stake α. However, as we will see in Section 6, this

does not imply that the IPO, by bringing about a decrease in α, causes a decline

in the effort supplied by the entrepreneur. The reason is that, given the comple-

mentarity of the factors in production, effort is an increasing function of the capital

in place and the productivity parameter z. Therefore, the change in effort at the

IPO stage will also depend on the evolution of the random variable z and of the

endogenous variables k and b.

22See Cooley and Quadrini [8] for example.
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In Section 4.1 I describe the optimal dividend distribution and portfolio allo-

cations policies of the entrepreneur, in a version of the model without bankruptcy

state. This exercise will be helpful in building intuition for the predictions of the

general model with bankruptcy, to be discussed in Section 4.2.

4.1 The Model Without Bankruptcy.

An important observation is that there exists a level of equity beyond which the

entrepreneur becomes indifferent between reinvesting the earnings in the business

(i.e. increasing k) and distributing them to shareholders (i.e. increasing a). The key

to understanding why this is so is to consider that, because of decreasing returns to

scale, there exists a scale of production (k+b) such that any further unit of physical

capital would be rented out at the rate r rather than being used in production.

Hence, once that scale is reached, equity and the asset a yield the same marginal

(riskless) return r. The two assets become perfect substitutes at the margin. The

analysis that follows gives formal support to this reasoning.

Let x(z) = c(z) −
e1+η
(z)

1+η
. This quantity is the aggregate of consumption and effort

that constitutes the argument of the utility function when the productivity shock

takes the value z. Using (9) along with the budget constraint (1), I can write x(z)

as

x(z) = α {f [α, (k + b), z]− r(k + b)}+ (a + αk) (1 + r)− (a′(z) + αk′(z)),

where

f [α, (k + b), z] = (αz)
ϕ

1+η−ϕ

[
ϕ

ϕ
1+η−ϕ − ϕ

1+η
1+η−ϕ

1 + η

]
(k + b)

γ(1+η)
1+η−ϕ .

Given the assumption of decreasing returns, the expression f [α, (k + b), z] −
r(k + b) is strictly concave in the scale of production (k + b) and admits a unique

maximum. Thus, for every α and for every realization of z, there will be a scale

such that any unit of capital beyond it, if employed in production, will yield a

return strictly lower than r. In turn, this implies that, as long as the set Z is

bounded, for every pair (α, z) there exists a threshold k(α, z) such that any unit

of equity beyond it will be rented out (earning the riskless return r), rather than
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being employed in production. In other words, any increase of equity beyond the

threshold will correspond to a decrease in b of the same magnitude. Notice that,

once the threshold k(α, z) is reached, the value achieved keeping on accumulating

equity (i.e. plowing back earnings) while decreasing b, can also be obtained by

holding k constant and distributing earnings so to increase a. This occurs because

the marginal returns of the assets a and k are the same. In subsection A.2 I illustrate

the argument in yet another way, by showing that for levels of equity greater than

k(α, z), the value function W exhibits linear indifference sets (with slope −α) in the

space (a, k).

In light of this discussion, I decide to introduce the following transformation

on the state space. I define h ≡ a + αk as the book value of the entrepreneur’s

accumulated wealth (total wealth, for simplicity), so that the state variables now

are (α, h, k, z−1). For every triple (α, h, z) there will be a level of equity k∗(α, h, z)

such that when k > k∗(α, h, z) the entrepreneur is indifferent between couples (a, k)

that satisfy the restriction a+αk = h, provided that a ≥ 0. The value function of the

problem, redefined on the new state space, will be linear in the k dimension for every

level of equity k such that k∗(α, h, z) ≤ k ≤ h
α
. Once the level of capital k∗(α, h, z)

is reached, the solution of the problem is not unique anymore. This occurs for the

reason outlined earlier in this section. For k ≥ k∗(α, h, z) the dividend distribution

policy is indeterminate.

4.2 The Complete Model.

Following the introduction of the new state variable h, the functional equation (P1)

is recast in the following terms:23

23In order to avoid introducing further notation, I denote the new value function with the letter
W .
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W (α,h, k, z−1) = (P5)

max
b<sk





(1− ρL)

∫

 max

c(z),e(z)

h′
(z)

,k′
(z)

u(c(z), e(z)) + βW (α, h′(z), k
′
(z), z)


 dG(z | z−1)+

+ρLmax
cL,h′L

[u(cL, 0) + βWL(h′L)]

}
,

s.t. c(z) = α
[
z(k + b)γeϕ

(z) − r(k + b)
]

+ h(1 + r)− h′(z) ∀ z, (10)

z(k + b)γeϕ
(z) − r(k + b) ≥ k′(z) − k(1 + r) ∀ z, (11)

k′(z) ≤
h′(z)

α
∀ z, (12)

cL = (h− αk) + h(1 + r)− h′L, (13)

h′(z), h
′
L ≥ 0 ∀ z.

The new budget constraints (10) and (13) are obtained by rearranging the origi-

nal constraints (1) and (3), respectively. The same holds for condition (11), which is

a re-elaboration of (2). Thus (11) imposes that dividends are non-negative. Finally,

condition (12) is implied by the constraint a′ > 0.24 To see that the program (P5)

is equivalent to the original problem (P1), notice that any choice of (h′(z), k
′
(z)) such

that (10)-(13) are satisfied corresponds to a feasible couple (a′(z), k
′
(z)) in the original

problem.

The transformation I have introduced has an economic interpretation. It is

equivalent to a redefinition of the assets available to the entrepreneur. The asset h

is a risk-free asset that yields a constant return r, while the asset k yields a per-

period return equal to the surplus of production z(k+b)γeϕ−r(k+b)
k

. The isomorphism

is not exact because the constraint a′(z) ≥ 0 implies that condition (12) must hold.

The introduction of the bankruptcy event eliminates the indeterminacy of the

dividend distribution policy that I have outlined in the previous section. I recall

here that if the bankruptcy state occurs, the assets (k) invested in the firm become

worthless. The entrepreneur is left with her holdings of the risk-free asset a. This

24The function WL(h), that yields the continuation value for the entrepreneur following
bankruptcy, is unchanged. In fact after bankruptcy the equity is identically zero and thus h ≡ a.
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implies that investing in such asset is the only way for the entrepreneur to insure

against the adverse event. Thus, even when k and a yield the same marginal (risk-

less) return r, their marginal values to the entrepreneur will be different. She will

always prefer to distribute earnings in terms of dividends, rather than plowing them

back and increase the firm’s equity.

I am now ready to introduce three propositions that state basic properties of the

value function W .25

Proposition 1 There exists one and only one function W that solves the functional

equation (P5).

Proposition 2 The function W is jointly strictly concave in (h, k) for every (α, z).

Proposition 3 For every (α, h, z) there exist a value k∗(α, k, z) < h
α

such that

W (α, h, k, z) < W (α, h, k∗, z) for all k ∈ (
k∗, h

α

]
.

Strict concavity of the value function is again a consequence of the introduction

of the bankruptcy state. It implies that the policy correspondence k′∗(z) is always

single-valued and therefore the dividend distribution policy is never indeterminate.

Proposition 3 simply states that since the utility function satisfies the Inada con-

dition at the origin, it will always be the case that αk < h or, alternatively, that

the entrepreneur holds the riskless asset a in strictly positive quantity. Since for

c = 0 the marginal utility of consumption is infinite, the entrepreneur will never run

the risk of being surprised by the bankruptcy event with no wealth invested in the

riskless asset.

Figure 3 shows the evolution over time of the most relevant firm-related variables,

as predicted by the model. The time paths constitute the outcome of a simple

simulation exercise carried out using a parameterized version of the model.26 In

order to keep the computational burden low, I employ a very simple stochastic

structure. I assume that the random variable z is i.i.d. and can take either one of

two values. I set the entrepreneur’s initial endowment M and I run a large number

25Proofs of the propositions are reported in Appendix B.
26The algorithm that solves for the functions W and P is described in subsection C.1.
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of 40-period long simulations. In Figure 3 I plot first moments against time. The

remainder of this section is dedicated to the analysis of such dynamics.

4.2.1 Growth and Dividend Distribution Policy.

Consider the entrepreneur at time zero, endowed with a relatively low initial wealth

M . If there was no chance of failure (i.e. if there was no bankruptcy state) and she

could sell the riskless asset short, the entrepreneur would start by borrowing heavily

(i.e. by setting a < 0) to finance consumption and by plowing back all earnings in

order to increase equity and the scale of production. Consumption would be set in

such a way to equate marginal utility over time and across states. However, when the

probability of failure ρL is strictly positive, the entrepreneur will hold the asset a in

positive amount from the outset. Once again, this occurs because upon bankruptcy

the risk-free asset will be her only source of income. Since the marginal value of

reinvesting earnings decreases as the scale of production increases, the entrepreneur

will choose an increasing path for consumption. As the marginal value of increasing

the scale decreases, so will the marginal utility of current consumption. Given

the complementarity in production between effort and physical capital, managerial

effort will also increase over time. The dynamics of debt tracks closely the one of

equity, because as long as marginal returns on capital are high, the firm will borrow

the maximum allowed by the constraint, i.e. bt = skt.
27 Dividends will be also

increasing over time, since they have to finance an increasing level of consumption

and the growth in the holding of riskless asset. Such holding must increase, because

the entrepreneur equates marginal utility across states of nature.

Notice that the model predicts that older and larger companies grow at a slower

rate and pay more dividends. These findings are qualitatively consistent with the

empirical evidence mentioned in Section 2.28

27In the example represented in Figure 3, I have set s = 1. This is the reason why the paths for
equity and debt coincide.

28One might argue that the prediction that firms pay dividend from the outset is at odd with the
empirical evidence, in that the typical start-up company does not pay dividends at all. However,
it must be considered that in my setup dividends include also the entrepreneur’s compensation.
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4.2.2 Scale of Production and Production Efficiency.

A further prediction of the model is that the company is borrowing constrained at

every point in time. The reason why this is the case is that if the entrepreneur

reached a level of equity such that the firm was unconstrained, she could increase

her life-time utility by distributing part of that equity in forms of dividends. In fact

the only effect of doing so would be to enlarge the consumption possibility set in the

bankruptcy state. Analytically, this can be seen by writing the optimality condition

for k′ as follows:

(1− ρL)

(
1 +

∂b′

∂k′

) ∫
dv(x(z))

dx(z)

∂x (z)

∂(k′ + b′)
dG(z | z−1) = ρL

dv(cL)

dcL

. (14)

Necessary condition for (14) to hold is that ∂b′
∂k′ > −1. In turn, this implies that

the optimality condition for b′ must hold with strict inequality. That is:

∫
dv(x(z))

dx(z)

∂x (z)

∂(k′ + b′)
dG(z | z−1) > 0.

Finally, this means that the entrepreneur is borrowing constrained, or ∂b′
∂k′ = s.

Thus, under my assumptions it turns out to be optimal for the entrepreneur

to keep the scale of production at an inefficient level. This result would not hold

if the entrepreneur had the opportunity to transfer her risk to the firm’s outside

financiers. Obviously this is not a new finding. It just restates that when the access

of entrepreneurs to risk-sharing opportunities is limited, the penalty inflicted by the

bankruptcy code to defaulting entrepreneurs becomes an important determinant of

firm size. The greater the punishment inflicted to the entrepreneurs, the higher will

be their need to insure against their businesses’ failure, and thus the lower the scale

of production.

4.2.3 The Market Value of Equity.

Given the transformation I have operated on the state space, I also redefine the

price function. Now the function P (α, h, k, z−1) solves the functional equation
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P (α, h, k, z−1) =

(1− ρL)

∫ [
z (k + b∗)γ e∗

ϕ

(z) − r(k + b∗) +
1

1 + r
P (α, h′∗(z), k

′∗
(z), z)

]
dG (z | z−1) .

(15)

Notice that, in the new definition, P (α, h, k, z−1) is equal to the expected dis-

counted value of the surplus generated in production. Here I define the surplus as

the difference between the value of production and the opportunity cost of the phys-

ical capital employed as input. Having obtained the value P , it is easy to recover the

market value of equity, given by the expected discounted sum of dividends and de-

fined by equation (5). Figure 4 shows an example of the price function as computed

by my computer code, on the space (α, k). Notice in particular that the surplus

increases with the equity stake held by the entrepreneur. This occurs because, by

(9), the effort level is strictly increasing in α.

5 The IPO Decision.

This section is dedicated to the analysis of the entrepreneur’s decision problem

when the company is private. In particular, I illustrate the determinants of the IPO

decision and I provide economic intuition that will help the reader appreciate the

results reported in Section 6.

The properties that I am going to characterize hold for the general model, but

they are more transparent in the case of a simplified environment that allows for

closed form expressions for the value functions. It is to such environment that

I turn now. Assume that the entrepreneur lives for two period only, indexed by

t = 1, 2. Further, let z ≡ 1 and b ≡ 0 (i.e. assume that total factor productivity is

constant and that the firm cannot borrow). In period 2, conditional on survival, an

entrepreneur holding a stake α ∈ [0, 1] faces the following simple problem:

max
c,e

u(c, e),

s.t c = α [k + zkγeϕ] + a(1 + r).
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The value of this program is given by v[y + a(1 + r)], where

y ≡ αk+

(
ϕ

ϕ
1+η−ϕ − ϕ

1+η
1+η−ϕ

1+η

)
α

1+η
1+η−ϕ k

γ(1+η)
1+η−ϕ . Instead, conditional on bankruptcy,

the entrepreneur’s value is just v[a(1 + r)]. As a consequence, the value of going

public at the beginning of period 2 is given by

Vipo(a, k) = max
α,kipo

(1− ρL)v[yipo + aipo(1 + r)] + ρLv[aipo(1 + r)],

s.t. yipo = αkipo +

(
ϕ

ϕ
1+η−ϕ − ϕ

1+η
1+η−ϕ

1 + η

)
α

1+η
1+η−ϕ k

γ(1+η)
1+η−ϕ

ipo ,

aipo = [a + k −N ] + (1− d)(1− α)P (α, kipo)− kipo,

P (α, kipo) = kipo + (αϕ)
ϕ

1+η−ϕ k
γ(1+η)
1+η−ϕ

ipo .

It is interesting to notice that the value of going public does not depend on

the equity of the private company (k), but rather on h ≡ a + k, the book value

of the entrepreneur’s accumulated wealth. The reason is that at the IPO stage the

entrepreneur is free to change the composition of her portfolio, and the market value

of the firm depends on the post-IPO level of book equity.

A first conclusion is that, for every α ∈ [0, 1], the optimal choice of equity kipo(α)

is bounded. To see that this is the case, notice that because of the complementarity

of effort and capital in production, the term yipo is clearly monotone in kipo. For low

levels of kipo, the same holds for aipo. Eventually, however, for high enough levels

of kipo, the term aipo becomes decreasing in kipo. This occurs because for given α,

the function P is strictly concave in the capital input. As a result, for every α there

will be a value for kipo such that aipo = 0. Since the utility function satisfies Inada

conditions at the origin, it will never be optimal for the entrepreneur to increase the

equity up to such level.

A second, important conclusion, is that the entrepreneur will never choose to

dispose of all of her equity stake. That is, she will never set α = 0. In fact, for α = 0,

the value of the company is given by the book value of assets (i.e. P (0, kipo) = kipo).

If the entrepreneur chose to liquidate completely her position, it would follow that

yipo = 0 and aipo = [a+ k]−N − dkipo. In turn, this implies that the choice of going

public and setting α = 0 is strictly dominated by the decision to keep the company
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private.

Depending on the parameterization, the optimal choice of kipo may or may not be

monotone in the equity stake α. Again because of complementarity in production

between effort and physical capital, the cross derivative
∂2yipo

∂kipo∂α
is always strictly

positive. This implies that yipo is supermodular and thus maximization of its value

would require kipo to be increasing in α. On the other hand, simple inspection

reveals that the cross derivative
∂2aipo

∂kipo∂α
is positive for low values of αipo, and negative

for high values. The intuition behind this result is simple. Notice that
∂aipo

∂α
=

−(1− d)P + (1− d)(1−α)∂P
∂α

. For given market value P , an increase in the stake α

raises the resources that the entrepreneurs commits to the company. On the other

hand, it also raises the value of the firm P and thus IPO proceeds. In absolute

value, both of these marginal effects are increasing in kipo. It turns out that the first

prevails for low levels of α, while the second prevails for high levels. I conclude that

the schedule kipo(α) is definitely increasing for low level of the stake. At higher levels,

the slope will still be positive if the term [a + k − N ] is large enough. Otherwise,

there will be a level for α above which the schedule is decreasing.

Let’s now go back to the general version of the model. Once I introduce the

transformation h = a + αk, the value of going public is determined by

Vipo(h, k, z−1) = max
α,hipo,kipo

W (α, hipo, kipo, z−1), (P6)

s.t. hipo + (1− α)kipo − h + N =

= (1− d)(1− α) [kipo + P (α, hipo, kipo, z−1)] ,

0 < kipo ≤ hipo

α
,

α ∈ [0, 1].

Given the transformation on the state space I have introduced in the last section,

the value of staying private Vpr(h, k, z−1) is now given by
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Vpr(h, k, z−1) = max
b≤sk





(1− ρL)

∫

 max

c(z),e(z)

h′
(z)

,k′
(z)

u(c(z), e(z)) + βV (h′(z), k
′
(z), z)


 dG(z | z−1)+

+ρL max
cL,h′L

[u(cL, 0) + βWL(h′L)]

}
,

(P7)

s.t. c(z) =
[
z(k + b)γeϕ

(z) − r(k + b)
]

+ h(1 + r)− h′(z) ∀ z,

z(k + b)γeϕ
(z) − r(k + b) ≥ k′(z) ∀ z,

k′(z) ≤ h′(z) ∀ z,

h′(z), k
′
(z) > 0 ∀ z,

cL = [h− αk](1 + r)− h′L.

Then, the value of the entrepreneur when the company is private solves the

functional equation given by programs (P6), (P7), and (P8):

V (h, k, z−1) = max {Vpr(h, k, z−1), Vipo(h, k, z−1)} . (P8)

While useful in order to easily understand results that apply to the general model,

the simplified scenario considered earlier in this section does not help to understand

what actually triggers the IPO or, alternatively, why the incentives to go public

change over time. As it will become clear in the next section, the timing of the IPO

depends crucially on the stochastic process governing the dynamics of the variable

z. The opportunity of going public can be thought of as an option. The problem of

the entrepreneur is to figure out the best time to exercise it. As long as the firm is

privately held, the entrepreneur compares the value of going public with the value

of waiting at least one more period. both of these values depend crucially on the

evolution of z. Assume, for example, that z exhibits persistence. This implies that

when total factor productivity is low, it will be expected to remain relatively low in

the following periods. In such a scenario, the entrepreneur will be able to raise only

a limited amount of cash by going public and, importantly, will not have access to

further offerings in the future. Therefore the option to exercise is likely to be out

of the money. However, when z is relatively high, prospects for the near future will
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look good and the firm will be able to raise much more, for the same fixed cost. In

the latter scenario, the value of exercising the option would be much greater.

6 IPO and Firm Dynamics.

In this section I study the effects of the IPO event on the dynamics of firm equity,

sales, capital expenditures, productivity, and managerial effort. In particular, I show

that the model is able to generate predictions that are qualitatively in line with the

empirical evidence discussed in Section 2. Given the complexity of the environment,

it is not possible to provide an analytical characterization. Therefore, I resort to

numerical methods. I parameterize the model and compute approximations to the

optimal decision rules. Then, I conduct a simulation exercise, as explained in detail

below.29

I assume that the random variable z takes value in the finite set {zi}5
i=1, with

zj > zi for j > i. The probability distribution for z is given by the transition

matrix represented in Table 2.30 In the first period, z can take one of three values

(zi, i = 1, 2, 3). That is, the firm starts out with a low-mean distribution for the

productivity shock. In case either z1 or z2 occur, the distribution of z will be

unchanged in the following period. Instead, if z3 occurs, the firm enjoys what I

call a sudden technological breakthrough, as a consequence of which, starting from

the next period, it will face a distribution with an higher mean. In every period of

this new stage of the firm’s existence, z will assume one of two values (z4, z5) with

constant probability. In the discussion that follows, I will refer to the company as

private or public, according to whether the IPO has already occurred or not, and as

start-up or mature, according to the distribution of the variable z. At any time t,

the firm is a start-up if zt ∈ {z1, z2}, while it is mature if zt ∈ {z3, z4, z5}.
I conduct the following simple exercise. I set a value for M , the initial en-

trepreneur’s endowment, and I run a very large number of 50-period long simula-

29It turns out that approximating numerically the solution to the functional equation given by
(P6), (P7), and (P8) is a very challenging exercise. In Appendix C I discuss the technical issues
in detail.

30The number in the cell (i, j) represents the probability (conditional on survival) of moving
from state i to state j.
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j = 1 j = 2 j = 3 j = 4 j = 5
i = 5 .5 .5
i = 4 .5 .5
i = 3 .5 .5
i = 2 .4525 .4525 .095
i = 1 .4525 .4525 .095

Table 2: Transition Probabilities

tions. Figure 5 shows a sample of the paths for equity generated by the program.

For every single path, the occurrence of the IPO is signalled by the sudden increase

in the equity level. It is possible to appreciate that the model delivers heterogeneity

in the date of the IPO and in the size at the moment of the IPO.

Beginning at time t = 0, in every period the entrepreneur increases the firm’s

equity by reinvesting part of the earnings. In the particular example, her target is a

stationary level around 10. However, when the technological breakthrough hits (i.e.

when the shock to the technology assumes the value z3), the entrepreneur decides

to go public. In my example, the equity rises by at least 4 times and the stake

held by the entrepreneur falls from 1 to 0.5. The economic intuition behind this

dynamics is fairly simple. Early in time, when the firm is a start-up, the borrowing

constraint precludes the entrepreneur from reaching the efficient size. An infusion

of capital such as the one made possible by an IPO would definitely allow the firm

to at least partially bridge the gap between actual and efficient size. However, the

IPO is not the optimal move at that stage. The reason is that by going public the

entrepreneur would forgo the opportunity to do so in the future, should her firm’s

prospects improve (i.e. should the firm become mature). The optimal policy for

the entrepreneur is to wait for the technological breakthrough. In fact, consider the

implications of going public when z ∈ {z1, z2}. Should the transition to maturity

occur, the only way to increase the scale of operations would be through a lengthy

process of earnings re-investment.

Let’s now consider the consequences of the IPO for sales, capital expenditures,

operating performance, and managerial effort. Table 3 reports the average levels of

such variables around the IPO date, as computed by my computer code. Period 0 is
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Periods
-2 -1 0 +1 +2 +3

ROA .315 .373 .204 .183 .179 .189
Sales .871 1.241 6.266 6.702 6.704 7.078
Capital Expenditures .434 .456 26.68 5.88 .769 .002
Effort .704 .772 .822 .836 .836 .847

Table 3: Dynamics around the IPO date

the one in which the IPO takes place. Period −1 is the one in which the technological

breakthrough hits. In period −1 the level of the shock to the technology (z3) is

higher than in the previous periods, thus production (sales) expand. Since the level

of physical capital employed in production is set in advance at a level that is lower

than the ex-post efficient one, the return on asset (which equals average productivity

in this setting) increases too. This situation has a real world counterpart in the case

of a firm that enjoys a sudden productivity enhancement but cannot upgrade its

organization instantaneously. Since the entrepreneur knows that the level of total

factor productivity z will be permanently higher in the future, she decides to go

public. At the date of the IPO, equity increases and the entrepreneur’s stake falls.

While the increase in equity has a positive effect on effort, the decrease in the stake

tends to depress it. In the case of this simulation exercise, the net effect is positive.

Thus the IPO brings about a sudden increase in both output and effort. Given

decreasing returns to scale, the return on assets declines sharply in period 0.

Comparing the results of this simple exercise with the evidence considered in

Section 2, one realizes that the model is able to generate predictions that are (qual-

itatively) in line with the data. However, my model lacks persistence. The data

shows that performance worsens further in the periods following the IPO and sales

and capital expenditures keep on growing. The version I have simulated fails to

replicate this pattern because I have made the simplifying assumption that the

proceedings of the IPO translate immediately into physical capital in place. If I

assumed that it takes time to put physical capital in the condition to be productive,

my model would predict that scale of production and effort would keep on increasing

for a few periods after the IPO, and the measures of performance would decrease
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further (because of decreasing returns to scale).

Several scholars have argued that the decrease in the management’s stake, which

results in a weakening of the incentive system, might be responsible for the post-IPO

decline in performance. Consistently with this argument, my assumptions imply

that, ceteris paribus, managerial effort falls as the entrepreneur’s stake decreases.

However, the simple exercise just considered shows that effort can actually increase

in the aftermath of the IPO. This is due to the fact that the effort choice depends

not only on the manager’s equity stake, but also on the size of equity and on the

level of total factor productivity z. In the case of my model, the IPO is triggered by

a permanent increase in z and brings about an increase in the scale of operations.

These factors imply changes in effort that go in opposite directions. In the example

considered, the net effect is an increase in managerial effort.

7 Conclusion.

This paper operates a synthesis between the I&O literature on firm dynamics and the

Corporate Finance literature on IPOs. It does so, by embedding the IPO decision

in an otherwise standard dynamic optimizing model of firm behavior. My analysis

suggests that the post-IPO firm dynamics as documented by Jain and Kini [20] and

Mikkelson, Partch, and Shah [26], might not constitute a puzzle, after all. For vari-

ables such as profitability, capital expenditures, and sales, the post-IPO dynamics

predicted by the model is consistent with the available empirical evidence. Operat-

ing performance peaks in the fiscal year preceding the IPO and declines thereafter.

Such decline is accompanied by an increase in capital expenditures and sales. The

model’s predictions are also consistent with a series of empirical regularities on the

process of firm growth, pointed out by the Industrial Organization literature. In

particular, firm growth decreases with age and size.

The robustness of my results can be assessed by enriching the model along several

dimensions. In particular, I think of the opportunity of allowing the entrepreneur

to modify her stake in the company’s equity after the IPO and to conduct seasoned

offerings. I conjecture that if the company was allowed to undergo multiple offerings,

the solution to the problem would be of the (S,s) type. That is, the company would
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refrain from a further offering until the expected productivity growth, as reflected

in the post-offering market value, was large enough to offset the fixed cost of the

offering.
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A Computations.

A.1 The Continuation Value in Case of Bankruptcy.

The value function WL (a), which represents the expected discounted lifetime utility

when asset holdings are given by a, solves the following functional equation:

WL (a) = max
c,a

′
u (c, 0) + βWL

(
a
′
)

,

s.t. c = a (1 + r)− a
′
,

a
′ ≥ 0.

Rearranging the Euler equation for the problem, I obtain that the sequence of

consumption levels has to satisfies the following first-order difference equation:

ct+1 = [β (1 + r)]−
1
ξ ct. (16)

I now use the budget constraint in order to determine the initial condition for

equation (16). The budget constraint at time t writes as follows:

ct = at (1 + r)− at+1.

Simply dividing by (1 + r)t and summing over t, I obtain the following expression:

T∑
t=1

ct

(1 + r)t = a0 (1 + r)− aT+1

(1 + r)T

Finally, imposing that the sequence for hT+1 be bounded and taking the limit

for T → +∞ , I obtain
∞∑

t=1

ct

(1 + r)t = a0 (1 + r) .

Using (16) I can express c0 as a function of a0 only:

c0 = a0 (1 + r)
[
1− β

1
ξ (1 + r)

1−ξ
ξ

]
.

Then, the value function is given by

WL (a) =
1

1− ξ

{
a (1 + r)

[
1− β

1
ξ (1 + r)

1−ξ
ξ

]}1−ξ 1

1− β
1+ξ

ξ
(1+r)

− 1

(1− β) (1− ξ)
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A.2 The Model Without Bankruptcy State.

In the case in which the value function is differentiable, I can compute the envelope

conditions as follows:

∂W

∂k
= α

∫
u
′
(x)

[
(1 + r) +

∂F (·)
∂ (k + b)

(
1 +

∂b (k, z−1)

∂k

)]
dG (z | z−1) ,

∂W

∂a
= (1 + r)

∫
u
′
(x)

∂x

∂ (k + b)
dG (z | z−1) .

When the borrowing constraint does not bind, we have that ∂b
∂k

= −1 and thus

the slope of the indifference sets is given by

∂W/∂k

∂W/∂a
= α.

B Proofs and Lemmas.

Before proving the results stated in the main body of the paper, I proceed to intro-

duce further notation and state technical assumptions that I have decided to spare

the reader so far. I assume that e ∈ E, z ∈ Z , and b ∈ B, where E , Z, and B

are compact and convex subsets of <+. Further, I impose that h ≤ h < ∞31 and

that (h, k) ∈ S, where S =
{
(h, k) ∈ <2

+ : h < h, k ≤ h
α

}
. Finally, I assume that the

distribution function G
(
z
′ | z)

has the Feller property.

Now let’s consider the functional operator T as defined by

(TW ) (α, h, k, z, b) = max
e,h′ ,k′

u (c, e) + βW
(
α, h

′
, k

′
, z

)
,

c = α [z (k + b)γ eϕ − r (k + b)] + h (1 + r)− h
′
,

z (k + b)γ eϕ − r (k + b) ≥ k
′ − k (1 + r) ,

k′ ≤ h′

α
,

h
′
, k

′
> 0.

Lemma 1 The operator T is a contraction mapping.

31This assumption is without loss of generality, because my hypothesis β < 1
1+r implies that the

distribution of h is bounded.
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Proof. The feasibility correspondence for the problem is given byΓ : Z×S×B → E×S

, where Γ (h, k, z, b) =
{
(e, h, k) ∈ E× S: z (k + b)γ eϕ − r (k + b) ≥ k

′ − k (1 + r) ,

c ≥ e1+η

1+η

}
. It is easy (but tedious) to show that Γ is nonempty, compact valued and

continuous. Let A denote the graph of Γ. Then the function F : A → <+ defined by

u(α [z (k + b)γ eϕ − r (k + b)] + h (1 + r) − h
′
, e) is bounded and continuous. Since

β < 1, it is straightforward to verify that T satisfies Blackwell’s necessary conditions

for a contraction. ¥

Lemma 2 The operator T maps concave functions into concave functions.

Proof. It is easy to verify that the concavity of the production function implies

that the correspondence Γ is convex. Further, the function F : A → <+ defined

by u(α [z (k + b)γ eϕ − r (k + b)] + h (1 + r) − h
′
, e) is concave. In fact F is the

composition of concave functions. Then the result follows from the application of

the usual argument as in the proof of Theorem 4.8 in Stokey and Lucas [30]. ¥

Notice however that the function F is not strictly concave. In fact there exist

θ ∈ (0, 1) and couples (k1, b1), (k2, b2) such that u {α[z(kθ + bθ)
γeϕ − r(kθ + bθ)

+h(1 + r)− h
′
, e]

}
= (1− θ) u

{
α

[
z (k1 + b1)

γ eϕ − r (k1 + b1) + h (1 + r)− h
′
, e

]}

+θu
{
α

[
z (k2 + b2)

γ eϕ − r (k2 + b2) + h (1 + r)− h
′
, e

]}
, with kθ = (1− θ) k2 + θk2

and bθ = (1− θ) b2 + θb2.

Now consider the operator T̃ :
(
T̃W

)
(α, h, k) = max

e,h′
u (c, e) + βWL

(
h
′
)

,

c = (h− αk) (1 + r)− h
′
,

h
′
> 0.

Lemma 3 The operator T̃ is a contraction mapping.

Proof. The feasibility correspondence for the problem is given by Γ̃ : S → S,

where Γ̃ (α, h, k) =
{(

h
′
, k

′) ∈ S: (h− αk) (1 + r)− h
′
> 0, h

′ ≥ 0
}
. Obviously Γ̃

is nonempty, compact valued and continuous. Let Ã denote the graph of Γ̃. Then

the function F̃ : Ã → <+ defined by u
(
(h− αk) (1 + r)− h

′
, 0

)
is bounded and

continuous. It is straightforward to verify that T̃ satisfies Blackwell’s necessary

conditions for a contraction. ¥
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Lemma 4 The operator T̃ maps concave functions into strictly concave functions.

Proof. The concavity of the production function implies that the correspondence Γ̃ is

convex. Further, the function F̃ : Ã → <+ defined by u
(
(h− αk) (1 + r)− h

′
, 0

)
is

strictly concave. Then the result follows from the application of the usual argument

as in the proof of Theorem 4.8 in Stokey and Lucas [30]. ¥

Proposition 1.

Proof. The functional operator defined by the functional equation (P5) can be

rewritten as follows:

(T (W,WL)) (α, h, k, z−1) = max
b<sk

{
(1− ρL)

∫
(TW ) (α, h, k, z, b)dG (z | z−1)

+ρL

(
T̃WL

)
(α, h, k)

}
.

Since T satisfies monotonicity and T (W + a,WL + a) = T (W,WL) + a ∈ <, in

force of Lemmata 1 and 3 I can apply Theorem 9.7 in Stokey and Lucas [30] to the

composition of operators T,T, and T̃ . ¥

Proposition 2.

Proof. Since the operator T maps concave functions into concave functions, and

given Lemmata 3 and 4, the composition of the operators T, T , and T̃ satisfies the

assumptions of Theorem 9.8 in Stokey and Lucas [30]. ¥

Proposition 3.

Proof. By concavity, the value function W is differentiable almost everywhere. Strict

concavity implies that the right (left) partial derivative with respect to k changes

sign at most once. Thus it is sufficient to prove that the sequence of right (left)

partial derivatives goes to −∞ as k goes to h
α
. In turn, this is insured by the fact

that the sequence is decreasing and that lim
k→ h

α

v
′
(cL) = −∞. ¥
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C The Algorithm.

The solution algorithm proceeds by backward induction. I begin by computing an

approximation to the value function that solves the post-IPO decision problem (P5).

Once obtained the policy functions for the post-IPO decision problem, it is easy to

compute the an approximation to the price function by iterating on the contraction

(15). I then proceed to compute the value of going public, by solving the problem

(P5). Finally I turn to the pre-IPO decision problem (P8).32

C.1 The Post-IPO Decision Problem.

I compute an approximation of the value function W (α, h, k, z) by implementing

the standard method known as Value Function Iteration. I begin by defining grids

for the state variables (αi, hi, ks, zm). I then formulate a starting guess, defining

the value of W (·) for every point (αi, hj, ks, zm). For every couple (αi, zm) I ap-

proximate the function over the space S(αi) =
{

(h, k) ∈ <2
+ : h < h, k ≤ h

αi

}
by

computing the coefficients of the bi-dimensional shape-preserving spline developed

by Costantini and Fontanella [10] [11]. For every (αi, zm) and (h, k) ∈ S(αi) I de-

note the approximated value given by the spline as W̃im(h, k). The next task is to

compute the revised guess for W (αi, hj, ks, zm). In order to do so, for every point

(αi, hi, ks, zm) I define a grid over the space for debt. The bounds of such grid are

given by the optimal debt levels in the cases in which the productivity shock z is at

the bounds. Then, for grid point every point (αi, hi, ks, zm) and debt level bn I solve

the following maximization problem:

32The programs that implement the algorithm are written in Fortran 90 and make use of routines
from the IMSL Scientific Library.
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W (αi, hj, ks, zm, bn) =(1− ρL)
∑

q

pmq

[
max
e,h′,k′

u(c, e) + βW̃iq(h
′, k′)

]
+

+ ρL

[
max

h′L
u(cL, 0) + βWL(h′L)

]
,

c = αi [zq(ks + bmn)γeϕ − r(ks + bmn)] + hi(1 + r)− h′,

zq(ks + bmn)γeϕ − r(ks + bmn) ≥ k′,

cL = (hj − αiks)(1 + r)− h′L.

Then I proceed by feeding a one-dimensional shape-preserving spline over the

debt dimension. In this way, for every b, I can obtain an approximation of the value

of the above problem. Let W̃i,j,s,m(b) denote such value. Finally, I am able to solve

for W (αi, hj, ks, zm) by computing:

W (αi, hj, ks, zm) = max
b

W̃i,j,s,m(b).

At this point I have all the elements to compute the revised value for W̃iq(h, k)

and repeat the procedure until convergence to the fixed point of the functional

equation.

Using a spline to approximate the value function over the all space S(αi) carries

two great advantages. First, the resulting policy functions are continuous.33Second,

I am able to obtain an accurate approximation to the solution by working with

very few grid points over the dimensions (hi, ks). In turn, this notably increases the

speed of my code. In general, one has to be very cautious in using polynomials to

approximate discrete function outside the grid. A number of problems can emerge.

In this particular case I am comforted by the facts that the maximization problem

is concave and the spline that I use is shape-preserving.34As we will see shortly,

my solution strategy will have to be different in approaching the pre-IPO decision

problem.

33Here the term continuous is to be considered in a ’computational’ sense. What I mean is that
the grid I use is as fine as the numerical precision of the processor in use.

34The bi-dimensional spline introduced by Costantini and Fontanella [10] [11] is shape-preserving
in the sense that the sign of first and second derivatives are preserved outside the grid. Please
refer to the cited paper for an exact characterization of this property.
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In order to compute an approximation to the price function P (·), I proceed in an

analogous way. I begin by defining an initial guess for every grid point (αi, hj, ks, zm).

Then, for every couple (αi, zm), I approximate the function over the space S (αi)

by computing the coefficients of the bi-dimensional spline. For every (αi, zm) and

(h, k) ∈ S(αi), I denote the approximated value given by the spline as P̃im(h, k).

Then I use the optimal decision rules of the entrepreneur’s problem to compute the

revised guess P (αi, hj, ks, zm) according to

P (αi, hj, ks, zm) =
∑

q

pmq

[
zq(ks + b∗)γe∗

ϕ − r(ks + b∗) +
1

1 + r
P̃iq(a

′∗, k′∗)
]

.

I keep on repeating the same steps until convergence of P (αi, hj, ks, zm).

C.2 The IPO Stage.

The value of going public by retaining a stake αi, denoted by Vipo(αi, hj, ks, zm), is

given by the following problem:

max
kipo

W̃im(hipo, kipo),

(1− αi)kipo + hipo − h + N = (1− d)(1− αi)
[
kipo + P̃im(hipo, kipo)

]
,

0 ≤ kipo ≤ hipo

αi

,

hipo ≥ 0.

Then the value of going public when the state variables are (hi, ks, zm) is obtained

by solving the following:

Vipo(hi, ks, zm) = max
i
{V (αi, hj, ks, zm)} .

C.3 The Pre-IPO Decision Problem.

In order to compute an approximation to the value function V (h, k, z), I proceed

once again by iterating on the Bellman equation. However, in this case I decide not

to approximate the function outside of the grid. The Bellman equation is still a
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contraction, implying that the solution of the functional equation is unique. How-

ever, in general the solution will not be concave. Since I cannot control how the

non-concavity will affect the procedure, I decide to solve the pre-IPO decision prob-

lem by discretizing the state space along all dimensions. I begin by formulating a

starting guess, defining the value of V (·) at every point (hj, ks, zm). The next task

is to compute the revised guess for W (αi, hj, ks, zm). In order to do so, for every

point (αi, hi, ks, zm) I define a grid over the space for debt.. The bounds of such grid

are given by the optimal debt levels in the cases in which the productivity shock z

is at the bounds of its domain.. Then, for every point (αi, hi, ks, zm) and debt level

bn I solve the following maximization problem:

Vpr(hi, ks, zm, bn) = (1− ρL)
∑

pmq max
u,v∈Ωs,mn,q

{u(c, e) + βV (hv, ku, zq)}+

+ ρL

[
max

w
u(cL, 0) + βWL(hw)

]
,

c = [zq(ks + bmn)γeϕ − r(ks + bmn)] + hi(1 + r)− hv,

cL = (hi − ks)(1 + r)− hw.

where Ωs,n,q = {u, v : zq (ks + bn)γ e1−γ − r (ks + bn) ≥ ku, hv > ku}.
As for the post-IPO decision problem, I proceed by feeding a one-dimensional

shape-preserving spline over the debt dimension. In this way I can obtain the value

of the above problem for every b. Let Ṽ pr
jsm (b)denote such value. Then I can solve

for V pr (hj, ks, zm)by computing

Vpr(hj, ks, zm) = max
b

Ṽ pr
jsm (b) .

The revised guess for the value function is computed by applying the max oper-

ator:

V (hj, ks, zm) = max
{
V IPO (hi, ks, zm) , V pr (hj, ks, zm)

}
.
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Figure 3: Dynamics of a Public Company.
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