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1 Introduction

In this paper I consider a market where a fixed number of firms each offer

a product of distinct quality. Production has constant returns to scale, al-

though the firms may have different unit costs. Both the product qualities

and unit costs of the firms are fixed exogenously, and they compete through

setting prices simultaneously. Consumers have multiplicative utility func-

tions that are increasing in quality, but they differ in their willingness to

pay for quality. In such a standard setup of a quality-differentiated industry,

the central question I investigate is the following: When is a firm producing

a higher quality product more (less) profitable at equilibrium? Or equiv-

alently, under what cost-quality conditions in the industry will offering a

higher-quality product imply a competitive (dis)advantage? I consider both

profit and profit margin as alternative indicators of profitability. Profit mar-

gin is essentially a firm’s choice variable due to its one-to-one relationship

to price. Profit margin is of independent interest also because it reflects the

profit made from each unit sold.

In the familiar setting described above, at equilibrium a higher-quality

product must be offered at a higher price (otherwise those products of lower

qualities would not be purchased by any consumer), and products of higher

qualities appeal to consumer segments with higher willingness to pay. If all

firms were to produce at the same level of unit costs, therefore, a firm selling

a higher quality product would naturally have a competitive advantage and

enjoy greater profitability. However, the picture becomes much less clear

when the firms have heterogeneous unit costs, because the profitability of

each firm depends on not only its own cost-quality profile but also those

of the other firms. A major contribution of this paper is to develop two

measures that each index a firm’s productive competency, and identify the

corresponding sufficient conditions for producing a higher quality product to

be more (or less) profitable.

The first measure is a firm’s absolute cost efficiency, defined as the ratio
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between its quality level and unit cost. It is an absolute measure in that it is

determined purely with each firm’s own inherent characteristics. I show that

a firm obtains both higher profit and profit margin if it can produce a higher

quality product with an equal or higher absolute cost efficiency. This implies

that, if the absolute cost efficiency is non-decreasing in quality, profitability

is monotone increasing in quality. However, this measure can not predict the

firms’ profitability when the absolute cost efficiency is decreasing.

To address the deficiency of the previous measure, I develop a second

metric which I call the relative cost efficiency of a firm. Unlike absolute cost

efficiency, a firm’s relative cost efficiency takes into account the costs and

product qualities of both the firm itself and its immediate competitor(s).

I show that, when the relative cost efficiency increases (decreases) in the

quality levels of the firms, selling a higher-quality product is more (less)

profitable. The cost trajectories that yield monotone increasing profitability

can be concave, convex, or inversed-S-shaped (i.e., first concave and then

convex as quality increases,) and the cost trajectories that yield monotone

decreasing profitability can be convex or S-shaped (i.e., first convex and then

concave as quality increases.)

The above results are obtained based on the assumption that the distrib-

ution of consumer types has a logconcave density. This paper also considers

the special case of a uniform consumer distribution, and arrives at further

results. The lower and upper bounds on each firm’s profit margin are estab-

lished. When the cost trajectory is (locally) concave over some quality range,

the profit of a firm whose product quality is in the interior of this range can

not exceed that of (at least) one of the two firms at the boundary of this

quality range.

In the extant literature, two papers related to the present paper are

Shaked and Sutton (1982) and Gal-Or (1985). In a duopolistic setting,

Shaked and Sutton (1982) focus on demonstrating the existence of and also

characterizing the (sub-game) perfect equilibria in qualities and prices. One
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result of theirs is that the firm choosing a higher quality level makes a higher

profit. Gal-Or (1985) focuses on the impacts of entry on the degree of product

differentiation and the average quality in the industry. Her model is one of

Cournot competition, where a number of firms compete by choosing qualities

and quantities to produce simultaneously. She derives a similar result that

a firm choosing a higher quality level also obtains a higher profit. There are

two major differences between these two papers and the current paper. First,

their models assume specific forms of unit cost functions. (Unit cost is zero

in Shaked and Sutton (1982) and a quadratic function of quality in Gal-Or

(1985).) Mine does not. Instead, I seek more general sufficient and necessary

conditions for offering a higher-quality product to be more (less) profitable.

Second, quality choices are endogenous in both Shaked and Sutton (1982)

and Gal-Or (1985), but are exogenously given in this paper. Even though

equilibrium quality location is not a central concern of this model, the results

obtained here readily apply once the firms have chosen their quality levels.

My modeling framework is also similar to those of Mussa and Rosen

(1978), Gabszewicz and Thisse (1979, 1980), Shaked and Sutton (1983), and

Itoh (1983). However, these early classics on vertical differentiation address

issues other than ranking the profitability of firms selling products of different

qualities. Furthermore, most of these articles also adopt specific forms of cost

functions. Assuming a strictly convex unit cost function of quality, Mussa

and Rosen (1978) study how a monopolist should price its product line to

discriminate against consumers with heterogeneous willingness to pay. The

unit costs of producing at different quality levels are assumed to be zero

in Gabszewicz and Thisse (1979, 1980). Gabszewicz and Thisse (1980) and

Shaked and Sutton (1983) point out an interesting "finiteness" property of

industries characterized with vertical differentiation (in contrast to horizontal

differentiation): under certain conditions on the cost function the market

can only sustain a limited number of firms at a Nash price equilibrium,

even in the absence of any fixed costs of entry. In a monopolistic setting
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reminiscent of Mussa and Rosen (1978), Itoh (1983) analyzes how prices of

existing products, and consequently consumer welfare, may be affected by

introduction of a new product (or finer product differentiation.) Champsaur

and Rochet (1989) extend the Mussa-Rosen model to a duopoly where the

firms offer non-overlapping, continuous spectrums of qualities.

Prices instead of quantities are the firms’ decision variables in the papers

just mentioned, except for Gal-Or (1985). Other Cournot-type models of

vertical differentiation include Gal-Or (1983), Moorthy (1985), and more

recently, De Fraja (1996) and Johnson and Myatt (2003). The article by

Johnson and Myatt (2003) examine when a multiproduct monopolist may

expand or contract its product line in response to entry. Since the present

paper deals with competition between single-product, price-setting firms, this

stream of papers are not discussed in full detail here.

A model is presented in Section 2. Section 3 contains the core of this

paper. Assuming logconcavity of the consumer distribution, Section 3 first

develops the notion of relative cost efficiency and the associated sufficient

conditions for a higher-quality product to earn a higher (lower) profit margin.

It then proceeds to show that the absolute cost efficiency of a firm is also

a useful measure for its profitability. Section 4 looks at the special case

of a uniform consumer distribution and derives more detailed results. In

particular, the uniform distribution assumption makes it possible to derive

sufficient conditions for the equilibrium profits to be monotone in quality.

Section 6 concludes.

2 Model

There are K firms in this market. Production has constant returns to scale

for all firms, and the quality and cost levels of each firm are exogenously

given. Specifically, firm k produces a good of quality vk at a constant unit cost

ck > 0, and there are no fixed costs of production. The firms compete through
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setting prices simultaneously. I assume that the quality levels of the firms are

all distinct, to avoid trivialities due to the basic Bertrand argument. Without

loss of generality I index the firms so that 0 < v1 < v2 < ... < vK . Each firm

is thus represented by a point (vk, ck) in the quality-cost space. Connecting

each pair of adjacent points (vk−1, ck−1) and (vk, ck) with a straight line would

lead to the "cost trajectory" of this oligopoly. Define

dk =
ck − ck−1
vk − vk−1

, for k = 1, ..., K, (1)

where v0 = c0 = 0. Here v0 is a "virtual" product that costs nothing to

produce. Each dk represents the "slope" of the cost trajectory between vk−1
and vk. Since no restrictions are imposed on the firms’ costs (other than

ck > 0), dk need not be monotonic in k. Therefore, there may be "zigzags"

in the cost trajectory of the oligopoly.

Throughout this paper, a cost trajectory is said to be concave (convex)

if d1 ≥ d2 ≥ ... ≥ dK (d1 ≤ d2 ≤ ... ≤ dK), is S-shaped if it is first convex

and then concave (d1 ≤ ... ≤ dk ≥ ... ≥ dK for some 1 < k < K), and

is inversed-S-shaped if it is first concave and then convex as quality rises

(d1 ≥ ... ≥ dk ≤ ... ≤ dK for some 1 < k < K). A cost trajectory is said

to be locally concave (convex) over a contiguous range of qualities vi, ..., vj if

di ≥ ... ≥ dj+1 (di ≤ ... ≤ dj+1).

Each consumer has a unit demand, i.e., she either purchases precisely

one unit from the products offered or does not purchase. Assume that a con-

sumer’s utility is multiplicatively separable in product quality and her own

type characteristic. Without further loss of generality I adopt the familiar

Mussa-Rosen utility function. A multiplicatively separable utility function

can be transformed into the Mussa-Rosen form through rescaling (cf. Itoh

(1983) and Johnson and Myatt (2003)). Each consumer has a constant mar-

ginal willingness to pay for quality, and a consumer of type θ obtains net

utility θv − p from a product of quality v priced at p. I first derive the

core results of this paper assuming that θ has a logconcave density on [0, 1],
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and then examine the case when θ is uniformly distributed for purposes of

illustration and deriving further results.

Denote the price of firm k as pk. Connecting each pair of adjacent points

(vk−1, pk−1) and (vk, pk) in the quality-price space with a straight line, one

would obtain the "price trajectory" of this oligopoly. Let

θk =
pk − pk−1
vk − vk−1

, for k = 1, ...,K, (2)

where v0 = p0 = 0, i.e., the zero-quality product is a free product with zero

utility for all consumers. Selecting v0 thus amounts to not purchasing at all.

Here θk is the "slope" of the price trajectory between firms k − 1 and
k. A consumer of type θk obtains the same level of net utility from buying

vk−1 and vk, and is therefore indifferent between these two quality levels. A

familiar implication of the Mussa-Rosen utility function is that consumers

between θk and θk+1 (with θK+1 = 1) will prefer product k, while consumers

below θ1 will make no purchase. Therefore, if the firms set prices so that θk
is non-decreasing in k, the demand and profit of firm k are

Dk = F (θk+1)− F (θk) (3)

and

πk = (pk − ck)(F (θk+1)− F (θk)) (4)

respectively. The firms set prices simultaneously to maximize their own prof-

its.

3 The Consumer Distribution has a Logcon-

cave Density

Suppose that the density of consumer types is f(θ) on [0, 1], with
R 1
0
f(θ)dθ =

1. Let F (θ) =
R θ
0
f(x)dx.
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Assumption 1. f(θ) is logconcave and differentiable on (0, 1).

Many frequently used distributions have logconcave densities, e.g., the

exponential, normal, uniform, and Weibull distributions, among others. By

a result due to Caplin and Nalebuff (1991), under Assumption 1 a Nash

equilibrium exists in the pricing game described in the Model section. Caplin

and Nalebuff (1991) consider a more general setting of imperfect competition

that encompasses vertical differentiation, and show that a log-concave density

of consumer types ensures the existence of price equilibrium.

Apparently, the firms in the present model have no incentive to price

below cost. This paper focuses on the situation where all K firms in the

oligopoly are active at equilibrium, in the sense that each firm attracts strictly

positive demand at a price at or above its unit cost.

The first-order condition (FOC) of firm k (k < K) is

F (θk+1)− F (θk) = (pk − ck)

·
f (θk+1)

vk+1 − vk
+

f (θk)

vk − vk−1

¸
, (5)

where v0 = 0, and the FOC of firm K is

1− F (θK) = (pK − cK)
f (θK)

vK − vK−1
. (6)

Firm k’s FOC equates the marginal benefit to the marginal cost of a unit

increase in its price pk. The LHS of the kth equation above is the demand of

firm k, and represents the profit increase from the consumers who continue to

purchase from firm k after the unit increase in its price. On the other hand,

a unit increase in pk (k < K) also lowers θk+1 by 1/(vk+1 − vk) and raises

θk by 1/(vk− vk−1), thus causing firm k’s initial consumers in the number of

f(θk+1)/(vk+1− vk) and f(θk)/(vk− vk−1) to switch to firms k+1 and k− 1,
respectively. Likewise, a unit increase in pK will cause f(θK)/(vK − vK−1)
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of firm K’s consumers to switch to firm K − 1. The RHS thus stands for
firm k’s profit loss due to lost consumers after the unit price increase. At

equilibrium firm k obtains positive demand as long as pk > ck. Since this

paper assumes that each firm obtains positive sales, at equilibrium θk must be

strictly increasing in k. That is, the equilibrium price trajectory is piecewise

linear, increasing and convex.

Define

G(x, y|α, β) ≡ F (x)− F (y)

αf(x) + βf(y)
, for 0 < y < x < 1 and α, β > 0,

and

H(y|β) ≡ 1− F (y)

βf(y)
, for 0 < y < 1 and β > 0.

Lemma 1 Under Assumption 1, (1) G(x, y|α, β) is increasing in x and de-

creasing in y, for 0 < y < x < 1; and (2) H(y|β) is non-increasing in y, for

0 < y < 1.

Proof: Under Assumption 1, f(x) > 0 and f 0(x)/f(x) is nonincreasing on

(0, 1). A strictly positive density on the interior of its support implies that

F (x) is strictly increasing on [0, 1].

(1) It is straightforward to verify that

∂

∂x
G(x, y|α, β) > 0

⇐⇒ f(x) [αf(x) + βf(y)]− αf 0(x) [F (x)− F (y)] > 0

⇐⇒ f 0(x)
f(x)

<
αf(x) + βf(y)

α [F (x)− F (y)]

and that
αf(x) + βf(y)

α [F (x)− F (y)]
>

f(x)

F (x)
.

Therefore, to show G(x, y|α, β) is increasing in x, we only need to show
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f 0(x)/f(x) ≤ f(x)/F (x), which holds because

f(x)

F (x)
=

R x
0
f 0(z)dzR x

0
f(z)dz

=

R x
0
[f 0(z)/f(z)] f(z)dzR x

0
f(z)dz

≥ f 0(x)
f(x)

.

We can also verify that

∂

∂y
G(x, y|α, β) < 0

⇐⇒ −f(y) [αf(x) + βf(y)]− βf 0(y) [F (x)− F (y)] < 0

⇐⇒ f 0(y)
f(y)

> − αf(x) + βf(y)

β [F (x)− F (y)]

and that

− αf(x) + βf(y)

β [F (x)− F (y)]
<

−f(y)
F (x)− F (y)

<
−f(y)
1− F (y)

.

Therefore, G(x, y|α, β) is decreasing in y if f 0(y)/f(y) ≥ −f(y)/(1 −
F (y)), which follows from

−f(y)
1− F (y)

≤ f(1)− f(y)

1− F (y)
=

R 1
y
f 0(z)dzR 1

y
f(z)dz

=

R 1
y
[f 0(z)/f(z)] f(z)dzR 1

y
f(z)dz

≤ f 0(y)
f(y)

.

(2)We can verify thatH
0
(y|β) ≤ 0 if and only if−f2(y)−f 0(y)[1−F (y)] ≤

0, or equivalently f 0(y)/f(y) ≥ −f(y)/(1−F (y)), which holds as just shown

above. Q.E.D.

Let mk = pk − ck and

rk =
1

vk − vk−1
.

Here 1/rk measures the degree of product differentiation between firm k and

its immediate downstream rival, firm k − 1.
Rewriting (5) and (6) in terms of profit margins mk and rk will greatly
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ease the subsequent analysis. For firms k < K,

F ((mk+1 −mk)rk+1 + dk+1)− F ((mk −mk−1)rk + dk) (7)

= mk[f((mk+1 −mk)rk+1 + dk+1)rk+1 + f((mk −mk−1)rk + dk)rk]

where m0 = v0 = 0, and for firm K,

1− F ((mK −mK−1)rK + dK) = mKf((mK −mK−1)rK + dK)rK . (8)

Proposition 2 identifies a sufficient condition for the firms’ profit margins

to be monotone increasing in the qualities of their products.

Proposition 2 Under Assumption 1, suppose

m0
1 ≤ G (d3, d2|r3, r2) ≤ ... ≤ G (dK, dK−1|rK, rK−1) ≤ H (dK|rK) ,

where m0
1 is the unique solution to m

0
1 = G(d2, d1+m0

1r1|r2, r1). Then m1 ≤
... ≤ mK.

Proof: First, we show the uniqueness of m0
1. Let W (m1) = m1. Clearly,

W (m1) is strictly increasing. From Lemma 1, G(d2, d1+m1r1|r2, r1) is strictly
decreasing inm1. The remaining argument to establish the uniqueness of m0

1

splits into three cases. Case (1): when d2 > d1. At m1 = 0, W (m1) = 0

and G(d2, d1 + m1r1|r2, r1) > 0. At m1 = (d2 − d1)v1, W (m1) > 0 and

G(d2, d1 + m1r1|r2, r1) = 0. Therefore m0
1 > 0 must be unique. Case (2):

when d2 < d1. At m1 = 0, W (m1) = 0 and G(d2, d1 +m1r1|r2, r1) < 0. At

m1 = (d2 − d1)v1, W (m1) < 0 and G(d2, d1 + m1r1|r2, r1) = 0. Therefore

m0
1 < 0 must be unique. Case (3): when d2 = d1. In this case, at m1 > 0,

W (m1) > 0 but G(d2, d1 + m1r1|r2, r1) < 0. At m1 < 0, W (m1) < 0 but

G(d2, d1 +m1r1|r2, r1) > 0. Therefore m0
1 = 0.

The rest of the proof is by induction and has two steps.
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Step 1. We wish to showm1 ≤ m2 under the condition of the Proposition.

Suppose m1 > m2. Then from (7) we have

m1 = G (d2 + (m2 −m1)r2, d1 +m1r1|r2, r1)
< G (d2, d1 +m1r1|r2, r1) , (by Lemma 1)

which implies

m1 < m0
1.

If d2 ≤ d1, the last inequality implies m1 < 0. A contradiction to m1 > 0

for firm 1 to be active at equilibrium, and thus m1 ≤ m2 must hold.

If d2 > d1, setting k = 2 in (7) gives

m2 = G (d3 + (m3 −m2)r3, d2 + (m2 −m1)r2|r3, r2)
> G (d3 + (m3 −m2)r3, d2|r3, r2) . (by Lemma 1)

Therefore, we have

G (d3 + (m3 −m2)r3, d2|r3, r2)
< m2 < m1 < m0

1

= G(d2, d1 +m0
1r1|r2, r1) (by construction)

≤ G (d3, d2|r3, r2) , (by assumption)

or,

G (d3 + (m3 −m2)r3, d2|r3, r2) < G (d3, d2|r3, r2) .
By Lemma 1, the last inequality implies m3 < m2. Similarly, we can show

that when m1 > m2, mk < mk−1 for all successively higher k. That is,

mK < ... < m1 < m0
1.
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However, mK < mK−1 and (8) jointly imply

mK = H(dK + (mK −mK−1)rK |rK)
≥ H(dK |rK). (by Lemma 1)

We thus have

H(dK |rK) < m0
1.

A contradiction to the condition of the Proposition. This proves m1 ≤ m2,

completing Step 1.

Step 2. Suppose mk−1 ≤ mk (k < K) holds, and we wish to show mk ≤
mk+1 under the condition of the Proposition. This step is very analogous to

Step 1, and is relegated to the Appendix. Q.E.D.

To see the rationale behind Proposition 2, it is helpful to examine the

economic interpretation of each term in its condition first. The k’th term (1 <

k < K) in the condition of Proposition 2 is [F (dk+1)−F (dk)]/[f(dk+1)rk+1+
f(dk)rk]. Even though this ratio may take negative values (when dk+1 < dk),

for now I only focus on the case when it is positive. The numerator of this

ratio is firm k’s market size if all firms were to price at their unit costs, and

represents the profit increase resulting from a unit price increase by firm k.

The denominator is the number of firm k’s consumers that would be lost to

its competitors due to a unit increase in pk. The magnitude of this ratio

is thus a measure of firm k’s profitability. Note that this term incorporates

both demand- and supply-side factors. In particular, since on the supply side

it takes into account the unit costs and quality levels of both firm k and its

immediate competitors (namely, firms k − 1 and k + 1), this term is called

firm k’s relative cost efficiency. The corresponding terms for firms 1 and K

have similar meanings, with the only difference being that these two firms

each have only one direct competitor.

Proposition 2 may thus be interpreted as follows: When the relative cost

13



efficiency is increasing in product quality, so are the equilibrium profit mar-

gins of the firms. Such an interpretation becomes much more concrete for

the special case in which consumer types are uniformly distributed.

Corollary 3 Suppose consumer types are uniformly distributed on [0, 1]. If

d2 − d1
2r1 + r2

≤ d3 − d2
r3 + r2

≤ ... ≤ dK − dK−1
rK + rK−1

≤ 1− dK
rK

,

then m1 ≤ m2 ≤ ... ≤ mK.

The kth term (1 < k < K) in the condition of the Corollary is the

change in the slope of the cost trajectory at firm k (dk+1 − dk) multiplied

by a parameter reflecting the degree of product differentiation between firms

k − 1, k, and k + 1 (1/(rk+1 + rk)). After some algebra, this term can be

rewritten as

dk+1 − dk
rk+1 + rk

=
1

vk+1 − vk−1
[(vk − vk−1)ck+1 + (vk+1 − vk)ck−1]− ck.

The first term in this expression is the quality-weighted average cost of firms

k − 1 and k + 1. Therefore, (dk+1 − dk)/(rk+1 + rk) represents the quality-

weighted cost advantage of firm k relative to the two firms with which it

directly competes. Similarly, (d2 − d1)/(2r1 + r2) reflects firm 1’s quality-

weighted cost advantage relative to firm 2, and (1−dK)/rK reflects firm K’s

cost-quality position relative to firm K − 1.
The condition in Proposition 2 is sufficient, but not necessary for a higher

quality product to generate a higher profit margin. For example, a concave

cost trajectory may demonstrate decreasing relative cost efficiency (thus vi-

olating the condition in Proposition 2) but always ensures increasing profit

margins (by Proposition 7 below). It is worthwhile pointing out that the

condition in Proposition 2 may be satisfied by concave, convex, or inversed-

S-shaped cost trajectories.
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Proposition 4 Under Assumption 1, suppose

m0
1 ≥ G (d3, d2|r3, r2) ≥ ... ≥ G (dK, dK−1|rK, rK−1) ≥ H (dK|rK) ,

where m0
1 is the unique solution to m

0
1 = G(d2, d1+m0

1r1|r2, r1). Then m1 ≥
... ≥ mK.

Its proof closely parallels that of the previous Proposition, and is omitted.

According to Proposition 4, the profit margins are monotone decreasing in

product quality if each firm offering a successively higher quality product has

a lower relative cost efficiency. Note that the condition in Proposition 4 may

be satisfied by convex or S-shaped cost trajectories.

Adding the K FOCs in (7) and (8) gives

1− F (m1r1 + d1) = m1f (m1r1 + d1) r1

+
KX
2

(mk +mk−1)f ((mk −mk−1)rk + dk) rk. (9)

When the firms obtain equal profit margin, i.e., m1 = ... = mK = m∗, (9)

becomes

1− F (m∗r1 + d1) = m∗
Ã
f (m∗r1 + d1) r1 + 2

KX
2

f (dk) rk

!
. (10)

By Lemma 1, m∗ is unique. Here m∗ is the mean profit margin in the

industry. Not surprisingly, m∗ decreases when the products are less differen-

tiated (i.e., the rk’s are larger) or when the number of firms K increases.

Proposition 5 Under Assumption 1, a necessary and sufficient condition
for m1 = ... = mK = m∗ is

m0
1 = G (d3, d2|r3, r2) = ... = G (dK, dK−1|rK , rK−1) = H (dK |rK) ,

where m0
1 is the unique solution to m0

1 = G(d2, d1 +m0
1r1|r2, r1).
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Proof: (1)Sufficiency. Since the condition of the Proposition satisfies

those in both Propositions 2 and 4, we have m1 ≤ ... ≤ mK and m1 ≥ ... ≥
mK , and hence m1 = ... = mK = m∗.

(2)Necessity. Suppose m1 = ... = mK = m∗. Then the system of FOCs

in (7) and (8) reduces to

m∗ = G(d2, d1 +m∗r1|r2, r1),

m∗ = G(dk+1, dk|rk+1, rk), for 1 < k < K,

and

m∗ = H(dK |rK).
The desired set of conditions then follows by noting that m∗ = m0

1.

Q.E.D.

When the firms obtain equal profit margin, the cost trajectory of the

oligopoly must be increasing and convex. It is readily verified that, when

m1 = ... = mK = m∗, the equilibrium demands of the firms are D1 =

F (d2)− F (m∗r1 + d1), Dk = F (dk+1)− F (dk) (for 1 < k < K), and DK =

1− F (dK).

Next, I proceed to show that the ratio between a firm’s quality level and its

unit cost (vk/ck) is also a useful measure for its profitability. The ratio vk/ck
is called firm k’s absolute cost efficiency in quality provision. Proposition 6

below says that a firm capable of producing a higher quality product at a

higher absolute cost efficiency earns a higher profit.

Proposition 6 If ci/vi ≥ cj/vj for 1 ≤ i < j ≤ K, then mi < mj and

πi < πj.

Proof: Suppose (p1, ..., pK) is the unique price equilibrium. This means,

when the remainingK−1 firms price at (p1, ..., pj−1, pj+1, ..., pK), firm j’s best

choice is pj. Recall that when all K firms are active, the equilibrium price
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trajectory is a piecewise linear, increasing, and convex function of quality,

i.e., θk < θk+1, for k < K. This implies (pj − pi)/(vj − vi) > pi/vi.

Note that the condition of the Proposition is equivalent to ci/vi ≥ (cj −
ci)/(vj−vi). Since pi/vi > ci/vi, we have (pj−pi)/(vj−vi) > (cj−ci)/(vj−vi),
or equivalently mi < mj. Note that firm j has the option to lower its price

to p0j = cj +mi. Because

p0j − pi

vj − vi
=

cj − ci
vj − vi

≤ ci
vi

<
pi
vi
,

at price p0j firm j would take over the entire demand of firms i, ..., j− 1 (plus
possibly the demand of some other firms). Therefore, at price p0j firm j’s

profit would clearly exceed firm i’s equilibrium profit πi. However p0j is a

price firm j does not choose. Therefore we must have πi < πj. Q.E.D.

The two firms compared in Proposition 6 need not be directly compet-

ing. The key argument in the proof above is the following. Because the

equilibrium price trajectory is increasing and convex, under the condition of

the Proposition, firm j (the firm offering a higher quality) always obtains a

higher profit margin than firm i, i.e., mj > mi. If firm j chose to price at

cj +mi it could have attracted away the entire demand of firm i and thus

made a profit exceeding firm i’s equilibrium profit. However firm j does not

choose such a price. Therefore, firm j’s equilibrium profit must be higher

than that of firm i.

Proposition 7 Suppose c1/v1 ≥ c2/v2 ≥ ... ≥ cK/vK. Then m1 < ... < mK

and π1 < ... < πK.

Proposition 7 is an immediate corollary of Proposition 6. Since the proof

of Proposition 6 does not depend on the logconcavity assumption (Assump-

tion 1), these two Propositions hold for more general classes of consumer dis-

tributions. Since c1/v1 ≥ c2/v2 ≥ ... ≥ cK/vK is equivalent to v1/c1 ≤ v2/c2

≤ ... ≤ vK/cK , Proposition 7 says that when the absolute cost efficiency
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does not decrease as quality rises, firms selling higher quality products al-

ways make strictly greater profits. A cost trajectory that demonstrates non-

decreasing absolute cost efficiency may embody arbitrary curvatures, except

that it can not be strictly convex (where the absolute cost efficiency is de-

creasing). In particular, a concave cost trajectory (d1 ≥ d2... ≥ dK) always

has non-decreasing absolute cost efficiency.

4 The Consumer Distribution is Uniform: a

Special Case

This Section examines the uniform consumer distribution as a special case

of distributions with logconcave densities.

Assumption 2. Consumer types are uniformly distributed on [0, 1].

Henceforward, Assumption 2 replaces Assumption 1. Under Assumption

2, the first order conditions in (5) and (6) reduce to

θk+1 − θk = (pk − ck)(rk+1 + rk), for k ≤ K − 1, (11)

1− θK = (pK − cK)rK , for k = K, (12)

and (7) and (8) now become: For k < K,

(mk+1 −mk)rk+1 = (mk −mk−1)rk +mk(rk+1 + rk)− (dk+1 − dk), (13)

0 = (mK −mK−1)rK +mKrK − (1− dK). (14)

As seen in Section 3, Propositions 2, 4 and 5 have their apparent coun-

terparts in the setting of a uniform distribution (cf. Corollary 3), which have
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more intuitive economic interpretations. Here I only deal with a necessary

condition of monotone profit margins, which involves a set of bounds of each

firm’s profit margin.

Proposition 8 Under Assumption 2, suppose m1 S m2 S ... S mK at

equilibrium. Then for 1 ≤ k ≤ K,

dk+1 − d1

2
Pk

1 ri + rk+1
S mk S

1− dk

rk + 2
PK

k+1 ri
.

Proof: The proof is done only for the case in which m1 ≤ ... ≤ mK , the

other case being analogous.

Adding the FOCs of firms 1, ..., k in (13) and (14) gives

(mk+1 −mk)rk+1 = m1r1 +
kX
1

mi(ri+1 + ri)− (dk+1 − d1) ≥ 0,

from which the lower bound ofmk follows. Adding the FOCs of firms k, ...,K

in (13) and (14) and slightly rearranging, we have

K−1X
k

mi(ri+1 + ri) +mKrK = 1− dk − (mk −mk−1)rk ≤ 1− dk.

The upper bound of mk then follows from this inequality. Q.E.D.

So far, I have primarily focused on profit margins as a measure of firms’

per-unit profitability. Next, I will turn to profits, and identify sufficient

conditions under which a firm offering a higher quality product makes a

higher (lower) profit.

The first step is to translate the first-order conditions into expressions of

firms’ profits, instead of profit margins. From (11) and (12), at equilibrium

firm k’s demand and profit are Dk = mk(rk+1 + rk) and πk = m2
k(rk+1 + rk),
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respectively, where rK+1 = 0. Therefore,

mk =

r
πk

rk+1 + rk
, where rK+1 = 0. (15)

With (15), the system of FOCs in (13) and (14) can be rewritten in terms

of πk:

rk+1

r
πk+1

rk+2 + rk+1
= 2

p
(rk+1 + rk)πk − rk

r
πk−1

rk + rk−1
− (dk+1 − dk), (16)

for firms k ≤ K − 1, where π0 = 0 and r0 = 0, and

0 = 2
√
rKπK − rK

r
πK−1

rK + rK−1
− (1− dK), for firm K. (17)

Equations (16)-(17) allow direct manipulation of firms’ profits, and are

the basis for deriving the next Proposition.

Let

t1 ≡ 2
√
r2 + r1 − r2√

r3 + r2
,

tk ≡ 2
√
rk+1 + rk − rk√

rk + rk−1
− rk+1√

rk+2 + rk+1
,

for 1 < k < K, where rK+1 = 0, and

tK ≡ 2√rK − rK√
rK + rK−1

.

Lemma 9

√
rk+1 + rk >

rk√
rk + rk−1

, for 2 ≤ k ≤ K − 1,

√
rk+1 + rk >

rk+1√
rk+2 + rk+1

, for 1 ≤ k ≤ K − 1.
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Proof: See Appendix A2.

An immediate implication of Lemma 9 is that tk > 0, 1 ≤ k < K. That

tK > 0 is obvious. Just like rk, each tk measures the degree of differentiation

between firm k’s product vk and those of its neighboring firms, except that

tk takes into account the qualities of up to two (instead of one) firms below

and above vk.

As the next Proposition shows, when (dk+1 − dk)/tk (with dK+1 = 1) is

monotone in k, so is equilibrium profit πk.

Proposition 10 Under Assumption 2, if

d2 − d1
t1

S ... S dK − dK−1
tK−1

S 1− dK
tK

,

then π1 S ... S πK.

Proof: See Appendix A3.

Even though its composition is too complex to allow a direct interpre-

tation, each term in the condition of the Proposition ((dk+1 − dk)/tk) may

still be viewed as a measure of firm k’s relative cost efficiency, because it

takes into consideration the costs and qualities of both firm k itself and its

adjacent competing firms. When a firm can produce a higher quality product

more efficiently according to this measure, it also obtains greater profit at

equilibrium.

Under Assumption 2, (9) may also be rewritten (with (15)) as

1− d1 = r1

r
π1

r2 + r1
+

K−1X
1

p
πk(rk+1 + rk) +

√
πKrK . (18)

If all K firms earn the same level of profit, π∗ say, then (18) leads to

√
π∗ =

1− d1
M

, (19)
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where

M =
r1√

r2 + r1
+

K−1X
1

√
rk+1 + rk +

√
rK.

A necessary and sufficient condition for the firms to attain the same level

of profit is that their relative cost efficiencies ((dk+1 − dk)/tk) are equal.

Proposition 11 Under Assumption 2, the K firms obtain equal profit at

equilibrium if and only if

dk+1 − dk =
√
π∗ · tk, for 1 ≤ k ≤ K.

Proof: (Necessity) Suppose that all K firms have the same profit. Then

as shown above, this common profit level π∗ is as given in (19). Setting

πk = π∗ in (16)-(17) and slightly rearranging yield the desired conditions.

(Sufficiency) Suppose the condition of the Proposition holds. The previ-

ous Proposition immediately lead to π1 = ... = πK. The common profit level

π∗ then follows from (19). Q.E.D.

Proposition 12 Suppose di ≥ di+1 ≥ ... ≥ dj, for 1 ≤ i < j ≤ K. Then

either πk < πi−1 or πk < πj, for i ≤ k ≤ j − 1.
Proof: The proof critically relies on the following claim.

Claim 1: Suppose dk ≥ dk+1, for 1 < k < K. Then either πk < πk−1 or

πk < πk+1.

Proof of Claim 1: Suppose πk ≥ πk−1 and πk ≥ πk+1. We then have

rk+1

r
πk

rk+2 + rk+1
≥ rk+1

r
πk+1

rk+2 + rk+1

= 2
p
(rk+1 + rk)πk − rk

r
πk−1

rk + rk−1
− (dk+1 − dk)

≥ 2
p
(rk+1 + rk)πk − rk

r
πk

rk + rk−1
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where the equality is due to (16). This implies

2
√
rk+1 + rk ≤ rk√

rk + rk−1
+

rk+1√
rk+2 + rk+1

,

which contradicts Lemma 9. Therefore either πk < πk−1 or πk < πk+1 must

hold. This completes the proof of Claim 1.

When j = i+ 1, the Proposition reduces to Claim 1.

When j > i+1, suppose there exists some i ≤ k ≤ j−1 so that πk ≥ πi−1
and πk ≥ πj. By Claim 1, either πk < πk−1 or πk < πk+1 holds. If πk < πk−1,

then πk−1 < πk−2 must hold due to the Claim. Repeatedly applying Claim

1 leads to πk < πk−1 < ... < πi−1, contradicting πk ≥ πi−1. Similarly, if

πk < πk+1, one can show that πk < πk+1 < ... < πj. Again, this contradicts

πk ≥ πj. Therefore either πk < πi−1 or πk < πj must hold for i ≤ k ≤ j − 1.
This completes the proof. Q.E.D.

According to Proposition 12, if the cost trajectory is locally concave over

a contiguous range of products vi, ..., vj−1, then each firm within this quality

range earns strictly less profit than (at least) one of the two firms at the

boundary of this quality range (namely, firms i − 1 and j.) Two special

cases of Proposition 12 are as follows. First, if the cost trajectory is kinked

upwards at firm k (i.e., dk ≥ dk+1), then firm k’s profit is exceeded by that of

firm k− 1 or k+1 (cf. Claim 1 in the above proof.) Second, when i = 1 and
j = K (i.e., when d1 ≥ ... ≥ dK), Proposition 12 predicts that π1 < ... < πK

since π0 = 0. As one may recall, this point was also implied by Proposition

7.

The next Lemma gives a set of lower and upper bounds on the consumer

types who are indifferent between each pair of adjacent qualities at equilib-

rium.
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Lemma 13 At equilibrium, the indifferent consumers θk (1 ≤ k ≤ K) sat-

isfy
1

2
(d1 + dk) ≡ lk < θk < uk ≡ 1

2K−k+1
+

KX
i=k

1

2i−k+1
di.

Proof: See Appendix A4.

Lemma 13 then implies the following bounds on the equilibrium profit

margins.

Proposition 14 At equilibrium,

max

µ
0,

dk+1 − dk
2(rk+1 + rk)

¶
< mk <

uk+1 − lk
rk

,

where rK+1 = 0 and uK+1 = 1.

Proof: The proof uses the fact that at equilibriummk(rk+1+rk) = θk+1−
θk, where rK+1 = 0 and θK+1 = 1 (from (11), (12)). The upper bound of mk

then follows directly from Lemma 13. Part I of the proof of Lemma 13 (see

Appendix A4) also shows that θk+1 − θk > (1/2)(dk+1 − dk). This leads to

the lower bound of mk. Q.E.D.

From Proposition 14 one can readily derive the corresponding bounds on

firms’ profits, since πk = m2
k(rk+1 + rk).

5 Concluding Remarks

The analysis in this paper has heavily utilized the structure of the FOCs.

Each firm’s FOC describes the equilibrium relationship between its own

strategic choice (price, or equivalently profit margin) and those of its imme-

diate competitor(s), reflecting the nature of localized competition in vertical

differentiation. In Section 3, such a structure of the FOCs together with a

logconcave density of consumer types makes it possible to compare the profit

margins between each pair of firms offering adjacent quality levels. In Section
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4, the system of FOCs and a uniform consumer distribution enable compar-

ison of the profits of two directly competing firms. A key technique of this

analysis is to make a connection between the slopes of the cost trajectory

and those of the equilibrium price trajectory.

When firms produce goods of distinct qualities at potentially different

unit costs, this paper has identified two useful measures of a firm’s prof-

itability, namely its absolute and relative cost efficiencies, and the associated

sufficient conditions for selling a higher-quality product to be more (or less)

profitable. Perhaps the most interesting results obtained are the following.

First, the monotonicity of the relative cost efficiency implies that of profit

margins (Propositions 2, 4, 5). Second, when consumer types are uniformly

distributed, this paper has also provided sufficient conditions for the equi-

librium profits to be monotone in quality as well as bounds on each firm’s

profitability.

6 Appendix

A1. Step 2 in the proof of Proposition 2.
Suppose mk−1 ≤ mk (k < K) holds, and we wish to show mk ≤ mk+1

under the condition of the Proposition.

Suppose mk > mk+1 instead. From (7), we have

mk = G (dk+1 + (mk+1 −mk)rk+1, dk + (mk −mk−1)rk|rk+1, rk)
< G (dk+1, dk|rk+1, rk) . (by Lemma 1) (20)

If dk ≥ dk+1, (20) is already a contradiction to mk > 0, and thus mk ≤
mk+1 must hold. Otherwise, replacing k with k + 1 in (7) gives

mk+1 = G (dk+2 + (mk+2 −mk+1)rk+2, dk+1 + (mk+1 −mk)rk+1|rk+2, rk+1)
> G (dk+2 + (mk+2 −mk+1)rk+2, dk+1|rk+2, rk+1) . (by Lemma 1)
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We then have

G (dk+2 + (mk+2 −mk+1)rk+2, dk+1|rk+2, rk+1)
< mk+1 < mk

< G (dk+1, dk|rk+1, rk)
≤ G (dk+2, dk+1|rk+2, rk+1) ,

where the last inequality follows from the condition of the Proposition.

Therefore,

G (dk+2 + (mk+2 −mk+1)rk+2, dk+1|rk+2, rk+1) < G (dk+2, dk+1|rk+2, rk+1) ,

which implies mk+1 > mk+2 by Lemma 1. Similarly, we can show that when

mk > mk+1,

mK < ... < mk < G (dk+1, dk|rk+1, rk) .
Again, mK < mK−1 and (8) jointly imply

mK = H(dK + (mK −mK−1)rK |rK) ≥ H(dK |rK).

We thus have

H(dK|rK) < G (dk+1, dk|rk+1, rk) .
A contradiction to the condition of the Proposition. This shows that when

mk−1 ≤ mk (k < K), mk > mk+1 can never hold, and therefore, we must

have mk ≤ mk+1 under the condition of the Proposition.

This completes Step 2 of the proof of Proposition 2.

A2. Proof of Lemma 9.
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Proof : When 2 ≤ k ≤ K − 1, the first statement follows from
√
rk+1 + rk − rk√

rk + rk−1

=
1√

vk − vk−1

µr
vk+1 − vk−1
vk+1 − vk

−
r

vk−1 − vk−2
vk − vk−2

¶
> 0,

because the first (second) term in the bracket is strictly greater (less) than

1.

The second statement of the lemma can be shown similarly. Q.E.D.

A3. Proof of Proposition 10.
Proof. We prove the Proposition only for the case in which

d2 − d1
t1

≤ ... ≤ dK − dK−1
tK−1

≤ 1− dK
tK

.

The other case is analogous. The proof is by induction.

Step 1. We wish to show π1 ≤ π2 under the above condition.

Suppose π1 > π2. Then (16) gives

√
π1 <

d2 − d1
t1

. (21)

If d2 ≤ d1, (21) is already a contradiction, and thus π1 ≤ π2 must hold.

Otherwise, we aim to show πK < ... < π2 < π1 when π1 > π2. Suppose

π3 ≥ π2. Then from (16) we have

r3

r
π2

r4 + r3
≤ r3

r
π3

r4 + r3

= 2
p
(r3 + r2)π2 − r2

r
π1

r2 + r1
− (d3 − d2)

< 2
p
(r3 + r2)π2 − r2

r
π2

r2 + r1
− (d3 − d2),
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which leads to √
π2 >

d3 − d2
t2

.

This and (21) jointly imply

d3 − d2
t2

<
d2 − d1

t1
,

contradicting the condition of the Proposition. Therefore we must have π3 <

π2.

Similarly, when π1 > π2, we can show πk < πk−1 for successively higher

k. That is, under the supposition that π1 > π2,

√
πK < ... <

√
π1 <

d2 − d1
t1

.

Note that πK < πK−1 and (17) jointly imply

1− dK < (2
√
rK − rK

s
1

rK + rK−1
)
√
πK

or equivalently
√
πK >

1− dK
tK

.

We thus have
1− dK
tK

<
d2 − d1

t1
.

A contradiction to the condition of the Proposition. Therefore π1 > π2 can

not hold. This establishes π1 ≤ π2, completing step 1.

Step 2. Suppose πk−1 ≤ πk (k < K) holds, and we wish to show πk ≤ πk+1

under the condition of the Proposition.
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Suppose πk > πk+1. Then from (16) we have

rk+1

r
πk

rk+2 + rk+1
> rk+1

r
πk+1

rk+2 + rk+1

= 2
p
(rk+1 + rk)πk − rk

r
πk−1

rk + rk−1
− (dk+1 − dk)

≥ 2
p
(rk+1 + rk)πk − rk

r
πk

rk + rk−1
− (dk+1 − dk),

which gives
√
πk <

dk+1 − dk
tk

. (22)

If d2 ≤ d1, (22) is already a contradiction, and thus πk ≤ πk+1 must hold.

Otherwise, we aim to show that πK < ... < πk when πk > πk+1. If

πk+2 ≥ πk+1, then it follows from the FOC of firm k + 1 (replacing k with

k + 1 in (16)) that

rk+2

r
πk+1

rk+3 + rk+2
≤ rk+2

r
πk+2

rk+3 + rk+2

= 2
p
(rk+2 + rk+1)πk+1 − rk+1

r
πk

rk+1 + rk
− (dk+2 − dk+1)

< 2
p
(rk+2 + rk+1)πk+1 − rk+1

r
πk+1

rk+1 + rk
− (dk+2 − dk+1),

or √
πk+1 >

dk+2 − dk+1
tk+1

.

This and (22) above jointly imply

dk+2 − dk+1
tk+1

<
dk+1 − dk

tk
.

A contradiction to the condition of the Proposition. Therefore when πk >

πk+1 we must have πk+2 < πk+1.
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Similarly we can show that when πk > πk+1,

√
πK < ... <

√
πk <

dk+1 − dk
tk

.

However, πK < πK−1 and (17) jointly imply

√
πK >

1− dK
tK

.

Therefore,
1− dK
tK

<
dk+1 − dk

tk
.

A contradiction to the condition of the Proposition. Therefore πk > πk+1

can not hold.

We have shown that πk−1 ≤ πk (k < K) implies πk ≤ πk+1 in Step 2.

This completes the proof of the Proposition. Q.E.D.

A4. Proof of Lemma 13.
Proof : The proof is divided into two parts. In Part I (II), we establish

the lower (upper) bounds on mk.

Part I: Lower bounds. For 1 ≤ k ≤ K − 1, at equilibrium we have

θk+1 − θk = (pk − ck)

µ
1

vk+1 − vk
+

1

vk − vk−1

¶
(from (11))

or equivalently

(pk+1 − ck)− (pk − ck)

vk+1 − vk
−(pk − ck) + (ck − pk−1)

vk − vk−1
= (pk−ck)

µ
1

vk+1 − vk
+

1

vk − vk−1

¶
.

Rearranging terms, we have

(pk − ck)

µ
1

vk+1 − vk
+

1

vk − vk−1

¶
=
1

2

µ
pk+1 − ck
vk+1 − vk

− ck − pk−1
vk − vk−1

¶
.
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Therefore,

θk+1 − θk =
1

2

µ
pk+1 − ck
vk+1 − vk

− ck − pk−1
vk − vk−1

¶
>

1

2

µ
ck+1 − ck
vk+1 − vk

− ck − ck−1
vk − vk−1

¶
(since pi > ci)

=
1

2
(dk+1 − dk),

or

θk+1 > θk +
1

2
(dk+1 − dk),

Since θ1 > l1 ≡ d1 holds trivially (due to p1 > c1), the lower bounds of

the remaining θk’s are then derived by induction for successively higher k:

θk > lk ≡ 1
2
(d1 + dk), for 2 ≤ k ≤ K.

Part II: Upper bounds. From (12), we have

1− θK = (pK − cK)
1

vK − vK−1

= [(pK − pK−1) + (pK−1 − cK)]
1

vK − vK−1

> θK +
cK−1 − cK
vK − vK−1

(since pK−1 > cK−1)

= θK − dK.

Therefore,

θK < uK ≡ 1
2
(1 + dK).
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Similarly, for 1 ≤ k ≤ K − 1, we have (from (11))

θk+1 − θk = (pk − ck)

µ
1

vk+1 − vk
+

1

vk − vk−1

¶
> (pk − pk−1 + pk−1 − ck)

1

vk − vk−1
> θk − dk,

from which the upper bounds of the remaining θk’s are established recursively

for successively lower k:

θk <
1

2
(dk + θk+1) < uk ≡ 1

2
(dk + uk+1),

where uk may be rewritten as

uk ≡ 1

2K−k+1
+

KX
i=k

1

2i−k+1
di.

This completes the proof of the Lemma. Q.E.D.

7 References

Caplin, Andrew and Barry Nalebuff, "Aggregation and Imperfect Competi-

tion: on the Existence of Equilibrium," Econometrica, 59, (1991), 25-59.

Champsaur, Paul and Jean-Charles Rochet, "Multiproduct Duopolists,"

Econometrica, 57, (1989), 533-557.

De Fraja, Giovanni, "Product Line Competition in Vertically Differenti-

ated Markets," International Journal of Industrial Organization, 14, (1996),

389-414.

Gabszewicz, Jean Jaskold and Jacques-Francois Thisse, "Price Compe-

tition, Quality and Income Disparities," Journal of Economic Theory, 20,

(1979), 340-359.

32



Gabszewicz, Jean Jaskold and Jacques-Francois Thisse, "Entry (and Exit)

in a Differentiated Industry," Journal of Economic Theory, 22, (1980), 327-

338.

Gal-Or, Esther, "Quality and Quantity Competition," Bell Journal of

Economics, 14, (1983), 590-600.

Gal-Or, Esther, "Differentiated Industries without Entry Barriers" Jour-

nal of Economic Theory, 37, (1985), 310-339.

Itoh, Motoshige, "Monopoly, Product Differentiation and Economic Wel-

fare," Journal of Economic Theory, 31, (1983), 88-104.

Johnson, Justin and David Myatt, "Multiproduct Quality Competition:

Fighting Brands and Product Line Pruning," American Economic Review,

93, (2003), 748-774.

Moorthy, Sridhar, "Cournot Competition in a Differentiated Oligopoly,"

Journal of Economic Theory, 36, (1985), 86-109.

Mussa, Michael and Sherwin Rosen, "Monopoly and Product Quality,"

Journal of Economic Theory, 18, (1978), 301-317.

Shaked, Avner and John Sutton, "Relaxing Price Competition through

Product Differentiation," Review of Economic Studies, 49, (1982), 3-13.

Shaked, Avner and John Sutton, "Natural Oligopolies," Econometrica,

51, (1983), 1469-1483.

33


