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Abstract: A number of products that display positive network effects are used in variable quantities

by heterogeneous customers. Examples include corporate operating systems, infrastructure software, web

services and networking equipment. In many of these contexts, the magnitude of network effects are influ-

enced by gross consumption, rather than simply by user base. Moreover, the value an individual customer

derives on account of these network effects may be related to the extent of their individual consumption,

and therefore, the network effects may be heterogeneous across customers.

This paper presents a model of nonlinear pricing in the presence of such network effects, under incomplete

information, and with the threat of competitive entry. Both homogeneous and heterogeneous network effects

are modeled. Conditions under which a fulfilled-expectations contract exists and is unique are established.

While network effects generally raise prices, it is shown that accompanying changes in consumption depend

on the nature of the network effects — in some cases, it is optimal for the monopolist to induce no changes

in usage across customers, while in others cases, network effects raise the usage of all market participants.

Optimal pricing is shown to include quantity discounts that increase with usage, and may also involve a

nonlinear two-part tariff. These results highlight the impact of network effects on the standard trade-off

between price discrimination and value creation, and have important implications for pricing policy.

The threat of entry generally lowers profits for the monopolist, and increases customer surplus. When

network effects are homogeneous across customers, the resulting entry-deterring monopoly contract is a fixed

fee and results in the socially optimal outcome. However, when the magnitude of heterogeneous network

effects is relatively high, there are no changes in total surplus induced by the entry threat, and the price

changes merely cause a transfer of value from the seller to its customers. The presence of network effects,

and of a credible entry threat, are also shown to increase distributional efficiency by reducing the disparity

in relative value captured by different customer types. Regulatory and policy implications of these results

are discussed.
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1. Introduction

This paper presents a model in which products displays positive network effects, individual con-

sumption varies across heterogeneous customers, and the magnitude of network effects depend on

gross consumption. The principal goals of the paper are to characterize the optimal nonlinear pric-

ing schedules for different kinds of network effects, and under the potential threat of competitive

entry, and to study their consumption and welfare properties.

Standard theories of network effects typically assume that each customer purchases a maximum

of one unit of the product, that the value of the network effect is proportionate to the total size

of the product’s eventual user base, and that all customer benefit equally from the network effects

(Katz and Shapiro, 1985, Farrell and Saloner, 1985). However, there are a number of products

that display network effects (henceforth termed network goods) which are consumed in variable

quantities by different customers, and for which the magnitude of the network effects may depend

on the total quantity consumed across customers, rather than simply the total number of adopters.

In addition, the value each customer derives from the network good may depend on their individual

consumption, which in turn depends on the intrinsic value they place on the product. Extending the

standard theory to incorporate these observations may have important implications for companies

seeking to design optimal pricing policy for their network goods, as well as for the regulatory

analysis of industries with network effects.

The relevance of these observations can be illustrated through a few common examples of

products that display network effects. Consider, for instance, the purchase of PC operating systems

software by corporate customers. The (simplest) pricing problem faced by a seller in this market is

one of choosing a pricing schedule, where quantity is measured by number of user licenses, and each

corporate customer purchases a variable quantity of licenses. The network effects are caused largely

by the higher availability and quality of complementary goods (applications software, compatible

accessories) as the total number of OS installations increases. Consequently, the magnitude of

the network effects are proportionate to the total number of licenses sold (the gross consumption),

rather than simply the number of corporations who adopt the OS. Moreover, a corporation which

has a higher number of licenses benefits more from the increased quality and availability of the

complementary goods — in other words, the value realized from the network effects also depends on

individual consumption, and may therefore be heterogeneous across corporations2.

A similar argument can be made for back-end or enterprise software used in variable quantities

by different companies (Oracle’s database software and Siebel’s CRM software being two examples),

2In addition, there is a positive externality driven by value from interoperability, which is far more important
within an organization than across companies, and is therefore influenced more by individual consumption.
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or for networking equipment like routers and switches. In these cases, network effects are driven

by the ease with which one can find qualified support or administration engineers, trained employ-

ees, compatible software, or compatible equipment3. Network goods sold directly to individuals

consumers may also display the same properties. For example, electronic marketplaces like eBay

are widely recognized as displaying positive network effects, which stem from increased liquidity, as

well as a wider availability of robust systems supporting marketplace services (reputation, escrow,

payment, settlement, dispute resolution). The magnitude of the network effects increases not just

with the number of participants in the market, but with the extent to which each participant ac-

tually buys and sells; moreover, an individual who participates more realizes higher benefits from

them. Even for products used as canonical examples of network goods, such as telephone service,

usage varies across consumers, network effects dependent on total consumption as well as installed

base, users with higher consumption levels benefit more from the network effects, and pricing is

often nonlinear.

The ubiquity of variable consumption and heterogenous value from network goods underlines the

importance of developing a model that incorporates these properties. This paper provides such an

model, characterizing the optimal nonlinear pricing schedule for a monopolist selling a network good

which explicitly displays the properties highlighted in the examples above. Two cases are analyzed

successively. First, network effects whose magnitude depends on gross realized consumption (and

are homogeneous across customers) are studied. Subsequently, network effects whose magnitude is

heterogeneous across customers (by virtue of depending on both gross consumption and individual

consumption) are modeled. The changes in consumption induced by the network effects are shown

to vary significantly across the cases. There are also interesting variations in the manner in which

the value generated by the network effects is distributed across the different customers. Moreover,

while there are progressively steeper quantity discounts as individual consumption increases in both

cases, optimal pricing in the latter case may involve a two-part tariff.

In addition to pure monopoly pricing, this paper also analyzes pricing by an entry-deterring

monopolist. Many markets for technology goods feature dominant sellers with market power, and

there has been substantial recent interest in whether (and how) the potential threat of entry affects

their pricing choices. For instance, in the recent U.S. versus Microsoft case, both parties agreed

that Microsoft’s pricing was not consistent with monopoly profit maximization, and Schmalensee

(1999) argued that Microsoft underprices in order to reduce the desirability of entry by competing

firms into the market for operating systems. Fudenberg and Tirole (2000) develop a formal model

3While open networking standards do form the basis for most networking equipment, many vendors like Cisco
Systems use proprietary operating systems. Moreover, the ease of interoperability between equipment from competing
vendors varies widely.
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of limit pricing that supports this argument, in which installed base plays an entry-deterring role

analogous to that of excess capacity (Spence, 1977, Dixit, 1980).

This paper proposes and analyzes an alternate representation, in which to successfully deter

a threat of entry, the monopolist must provide each customer with surplus equal to at least the

maximum intrinsic value they could get from a competing product. This limits the price each

customer pays under the monopolist’s nonlinear pricing schedule to being no more than the network

value they get from the monopolist’s product. As a consequence, network value may play the role

of being the primary source of profits for a monopolist who prices to successfully deter entry. On

the face of it, this has promising welfare implications, since one would expect a threat of entry to

induce a substantial increase in consumption. Surprisingly, it is shown that there are sometimes

no consumption changes (despite price reductions), and that when there are, the consumption

increases are confined largely to a lower subset of types. However, entry deterrence is shown to

even out the relative distribution of surplus across different customer types.

This paper draws from and adds to two lines of research. The first is the literature on monopoly

pricing of technology products with positive network externalities. Related papers with monopoly

models include Rohlfs (1974), Oren, Smith and Wilson (1982), Economides (1996a), and Cabral,

Salant and Woroch (1999). Modeling network goods for which the network effects depend on gross

consumption (rather than the number of adopters) is new, as is the analysis of heterogeneity in the

value of the network effects across customers. The concept of fulfilled-expectations equilibrium is

extended to the case of customers purchasing variable quantities in a monopoly market. A related

area of research is the literature on monopoly with negative consumption externalities, specifically in

the context of congestion in queuing and service systems (Mendelson, 1985, Dewan and Mendelson,

1990, Mendelson and Whang, 1990, Westland, 1992).

The second line of research this paper adds to is the literature on single-dimensional price

screening. It contributes new results to the theory by characterizing how positive network effects of

different kinds affect optimal nonlinear pricing, and by establishing conditions under which optimal

nonlinear pricing schedules that satisfy fulfilled-expectations exist and are unique. It complements

recent work by Segal and Whinston (2001), and by Jullien (2001), that examine different problems

of optimal contracting in the presence of network externalities.

The rest of this paper is organized as follows. Section 2 specifies the basic model, defines the

solution concept, and characterizes the model’s description of entry deterrence. Section 3 presents

the analysis of the monopoly with homogeneous network effects, and Section 4 analyzes the case

of heterogeneous network effects. Both sections 3 and 4 examine pricing and consumption changes

induced by network effects, examine some welfare properties, establish how nonlinear pricing is
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affected by the threat of entry, and conclude with a simple example that illustrates the nature

of the optimal pricing schedule and surplus distribution. Section 5 discusses the results further,

discusses the model’s assumptions, and concludes with an outline of open research questions raised.

2. Model

2.1. Firm and customers

A monopolist sells a homogeneous product which may be used by consumers in varying quantities.

The variable costs of production are assumed to be zero (though Section 5.2 describes how the

model’s results are robust to relaxing this assumption). Customers are heterogeneous, indexed by

their type θ ∈ [θ, θ]. The monopolist does not observe the type of any customer, but knows F (θ),
the probability distribution of types in the customer population. F (θ) is assumed to be strictly

increasing and absolutely continuous, and therefore the corresponding density function f(θ) exists

and is strictly positive for all θ ∈ [θ, θ]. In addition, 1−F (θ)f(θ) , the reciprocal of the hazard rate, is

assumed to be non-increasing for all θ. Each customer knows their own type θ. The total number

of customers in the market is normalized to 1.

The preferences of a customer of type θ are represented by the linearly separable utility function

V (q, θ,Q, p) =W (q, θ, Q)− p, (2.1)

where q is the quantity of the product used by the customer (often referred to as individual con-

sumption), Q is the total quantity of the product used by all customers in the market (often referred

to as the gross consumption) and p is the total price paid by the customer. W (q, θ, Q) is often

referred to as the value function.

The value function when Q = 0 is denoted U(q, θ), and is referred to as the intrinsic value from

the network good for customer type θ. That is:

U(q, θ) =W (q, θ, 0) (2.2)

for all q, θ. At any positive Q, the expression [W (q, θ, Q) − U(q, θ)] is referred to as the network
value from the network good for customer type θ.

The value function W (q, θ, Q) is assumed to have the following properties:

1. W11(q, θ,Q) < 0, W2(q, θ,Q) > 0, W12(q, θ,Q) > 0.

2. W3(q, θ, Q) ≥ 0, W13(q, θ,Q) ≥ 0, W23(q, θ,Q) ≥ 0
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3.
d

dθ
(
−W11(q, θ, Q)

W1(q, θ, Q)
) < 0, W122(q, θ,Q) ≤ 0.

4. β(θ,Q) = argmax
q
W (q, θ, Q) is finite and unique for all θ. W1(q, θ,Q) > 0 for q < β(θ, Q),

and W1(q, θ, Q) < 0 for q > β(θ,Q).

Numbered subscripts to functions denote partial derivatives with respect to the corresponding

variable. The first set of properties — strict concavity in q, increasing value with type, and increasing

marginal value with type (the Spence-Mirrlees single-crossing condition) — are common assumptions

in models of nonlinear pricing. The second set of properties characterizes the nature of the network

effects — the gross value from the network effects is non-decreasing in gross consumption, and

the marginal value from an increase in gross consumption is (weakly) higher at a higher level of

individual consumption, and is (weakly) higher for higher types. The source of these network effects

are not modeled explicitly. The model therefore adopts what Economides (1996b) calls the ‘macro’

approach.

The third set of properties assume decreasing absolute risk aversion (which is frequently used to

characterize the relative curvature of the value functions of different customer types), and marginal

utility that is concave in type θ (which is a standard assumption to ensures that the optimal

contract separates customer types). In one case, a slightly stronger assumption than decreasing

absolute risk aversion — that the concavity of W with respect to q does not increase with type — is

necessary4.

The final set of properties simply state that there is a consumption level beyond which the

value from additional consumption decreases. It reflects the reality that customers consume a

finite quantity of any network good, even if the marginal price of additional consumption is zero

(under a site license, for instance). This is because value from usage is typically bounded by a

constraint on some related resource — attention or computing power being two common examples —

and the implicit presence of a substitute use for this resource. Analogously, sometimes the increased

consumption of the product may necessitate the purchase of additional necessary complementary

assets (more powerful computer hardware for increased software usage, for instance)5. The quantity

that maximizes intrinsic value is denoted α(θ) — that is, α(θ) = β(θ, 0).

Each customer of type θ is assumed to have reservation utility Û(θ) ≥ 0. The functions F (θ),
W (q, θ, Q), U(q, θ), and Û(θ) are common knowledge. Notation used most frequently (some of

which is defined formally later in the paper) is summarized in Table 2.1.

4If W1(q, θ, Q) > 0, then W112(q, θ, Q) ≥ 0 implies that d
dθ
(−W11(q,θ,Q)

W1(q,θ,Q)
) < 0.

5See Sundararajan (2002), Section 4, for more discussion and examples. Also Section 5.2 of the current paper
discusses relaxing this assumption in the presence of convex costs.

5



Symbol Explanation

θ Index of customer types. θ ∈ [θ, θ]

f(θ), F (θ) Density and distribution functions of the customer types θ.

W (q, θ,Q) Value that customer type θ gets from individual consumption q and gross
consumption Q.

U(q, θ) Intrinsic value that customer type θ gets from individual consumption
q. By definition, U(q, θ) =W (q, θ, 0).

β(θ,Q) Individual consumption that maximizes W (q, θ,Q).

α(θ) Individual consumption at which intrinsic value for type θ is maximized.
By definition, α(θ) = β(θ, 0).

q(t), τ(t) Generic representation of a pricing schedule (or a contract) as a con-
tinuum of quantity-price pairs, indexed by t. Under this contract, a
customer who buys a quantity q(t) is charged a price τ(t).

qF (θ, Q), τF (θ, Q) Q-feasible contract. These contracts satisfy incentive compatibility and
individual rationality for all θ, at an expected level of gross consumption
Q.

q(θ,Q), τ(θ, Q) Q-optimal contract, which is the profit-maximizing Q-feasible contract.

q∗(θ), τ∗(θ) Optimal fulfilled-expectations contract.

Q∗ Gross consumption under the optimal fulfilled-expectations contract.
Q∗ =

R
q∗(θ)f(θ)dθ.

s∗(θ) Surplus of customers of type θ under the optimal fulfilled-expectations
contract. s∗(θ) =W (q∗(θ), θ, Q∗)− τ∗(θ).

sF (θ) Relative surplus of customers of type θ under the optimal fulfilled-

expectations contract. sF (θ) =
s∗(θ)R

s∗(θ)f(θ)dθ
.

Table 2.1: Summary of key notation
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The monopolist chooses a pricing schedule (also called a contract) which specifies a price for

each level of individual consumption q. Since the monopolist cannot explicitly distinguish between

customer types prior to contracting, the entire menu of quantity-price pairs must be available to all

customers. Rather than explicitly considering all possible pricing functions, the revelation principle

ensures that we can restrict our analysis to direct mechanisms which specify the pricing schedule as

a menu of quantity-price pairs (q(t), τ(t)), where where t ∈ [θ, θ], which are incentive-compatible.

2.2. Sequence of events

The interaction between the monopolist and their customers is according to the following sequence:

1. The monopolist announces their pricing schedule as a menu of quantity-price pairs q(t), τ(t).

2. Customers observe q(t), τ(t), and form an expectation about what the gross consumption un-

der this pricing schedule will be. All customers have access to the same relevant information6,

and are assumed to form the same expectation QE, which is also known to the monopolist.

3. Based on their type θ and the expectation of gross consumptionQE , each customer determines

their optimal individual consumption q(t(θ)), where t(θ) = argmax
t
[W (q(t), θ, QE)− τ(t)]. If

the customer gets at least their reservation utility, that is, if:

W (q(t(θ)), θ,QE)− τ(t(θ)) ≥ Û(θ), (2.3)

then the customer chooses to consume q(t(θ)) and pay τ(t(θ)). If not, the customer does not

participate, and purchases zero quantity.

4. The monopolist gets a payoff of Z
θ∈Θ

τ(t(θ))f(θ)dθ, (2.4)

where Θ is the set of participating types. Each participating customer gets a payoff of

W (q(t(θ)), θ,QA)− τ(t(θ)), (2.5)

where QA is the actual realized gross consumption. Each customer that does not participate

gets a payoff of Û(θ).

6The customer’s unique knowledge of their own type does not affect their expectation of gross consumption, which
is completely determined by f(θ), the pricing schedule, and the functions U(q, θ), W (q, θ, Q), and Û(θ) (all of which
are common knowledge at this stage).
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2.3. Contracts

This subsection defines the different contracts that are used in subsequent analysis. To simplify

notation, the definition of the following contracts is based on the assumption of full participation

— that is, that all customers find it optimal to purchase under the contract, if it specifies a non-

negative allocation for their type. In sections 3 and 4, inducing full participation is always optimal

for the monopolist.

Q-feasible contracts: Given any expectation of gross consumption Q, a Q-feasible contract

is a menu of of quantity-price pairs (qF (t,Q), τF (t,Q)) which satisfies incentive-compatibility [IC]

and individual rationality [IR] :

[IC] : θ = argmax
t
W (qF (t,Q), θ, Q)− τF (t,Q) ∀θ (2.6)

[IR] : W (qF (θ,Q), θ,Q)− τF (θ,Q) ≥ Û(θ) ∀θ (2.7)

Q-optimal contracts: Given any expectation of gross consumption Q, an Q-optimal contract

(q(θ,Q), τ(θ, Q)) is a Q-feasible contract that solves the monopolist’s profit maximization problem:

max
qF (t,Q),τF (t,Q)

θZ
θ

τF (t, Q)f(t)dt, (2.8)

over all (qF (t,Q), τF (t,Q)) that satisfy [IC] and [IR].

Optimal fulfilled-expectations contracts: A optimal fulfilled-expectations contract is a

menu of price-quantity pairs q∗(θ), τ∗(θ) such that the contract q(θ, Q), τ(θ,Q) defined by

Q =

θZ
θ

q∗(θ)f(θ)dθ

q(θ, Q) = q∗(θ) (2.9)

τ(θ, Q) = τ ∗(θ)

is a Q-optimal contract.

Based on the definitions above, note that if any Q-optimal contract q(θ,Q), τ(θ, Q) satisfies

fulfilled-expectations [FE] for some Q:

[FE] : Q =

θZ
θ

q(θ,Q)f(θ)dθ, (2.10)
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then the contract q∗(θ) = q(θ,Q), τ∗(θ) = τ(θ,Q) is an optimal fulfilled-expectations contract.

The solution that the monopolist seeks is a optimal fulfilled-expectations contract. The con-

ditions for the existence and possible uniqueness of these contracts are described independently in

each subsection.

2.4. Entry deterrence and participation constraints

The monopolist in the model may face a threat of entry from an entrant7, whose product is

intrinsically a perfect substitute for the monopolist’s product. By virtue of being the incumbent,

the monopolist’s product generates positive network value for all customers. The entrant’s product,

on the other hand, is assumed to provide only its intrinsic value to the customers. The fixed cost

of entry is assumed to be zero.

The purpose of this subsection is to establish that the problem of pricing to deter entry under

the threat of costless entry is equivalent to a problem of pricing in the absence of the entry threat,

but instead with specific type-dependent individual rationality constraints.

At a gross consumption level Q, the utility of a customer of type θ who purchases a quantity

q of the monopolist’s product for a payment p is (W (q, θ, Q)− p), and the utility of a customer of
type θ who purchases a quantity q of the entrant’s product for a payment p is (U(q, θ)− p). Given
a set of prices, and an expectation Q of gross consumption of the monopolist’s product, customers

choose the product and quantity that maximizes their utility. Customers indifferent between the

monopolist’s and the entrant’s products are assumed to choose the monopolist’s product.

A complete characterization of the entry game is not provided. Rather, the analysis focuses

on the characteristics of pricing schedules for the monopolist that successfully deter entry. Since

the fixed cost of entry is assumed to be zero, these are pricing schedules for the monopolist under

which any pricing schedule offered by the entrant results in zero profits for the entrant.

Recall that

α(θ) = argmax
q
U(q, θ), (2.11)

and that

β(θ, Q) = argmax
q
W (q, θ,Q). (2.12)

Suppose the entrant offered the constant pricing scheme p(q) = ε, where ε is small. Under this

pricing scheme, each customer would choose their intrinsic-value maximizing level of consumption

α(θ), and would realize surplus of (U(α(θ), θ)− ε). If customers of type θ expected surplus of less

7The analysis would not change if there were multiple identical entrants.

9



than (U(α(θ), θ)−ε) from the monopolist’s product, they would buy the entrant’s product, and the
entrant would receive non-zero profits. Therefore, in order to deter entry, the monopolist’s pricing

scheme must provide customers of type θ with a surplus of at least (U(α(θ), θ)− ε), for all ε > 0.

Clearly, this cannot be achieved unless the monopolist’s pricing scheme provides customers of type

θ with surplus of at least U(α(θ), θ). Since U(α(θ), θ) is the maximum surplus that a customer of

type θ can get from the entrant’s product under any pricing scheme, ensuring that customers get

this level of surplus is both necessary and sufficient for the monopolist to deter entry.

As a consequence, when the fixed cost of entry is zero, deterring entry simply imposes a lower

bound on the surplus each customer type must receive. Analytically, this is identical to the problem

of choosing a pricing scheme with type-dependent individual rationality constraints (Jullien, 2000).

In other words, setting Û(θ) = U(α(θ), θ) in equation (2.7) ensures that any Q-feasible contract

deters entry, and the definitions of all the other contracts in section 2.3 remain the same.

When faced with a threat of entry, the monopolist’s problem is therefore to choose the optimal

fulfilled-expectations contract, with Û(θ) = U(α(θ), θ). In the following sections, the monopolist’s

problem is solved both in the absence of an entry threat, as well as in its presence, for both

homogeneous and heterogeneous network effects.

2.5. Preliminary results

The purpose of this subsection is to present two preliminary results used in the subsequent analysis.

The first result characterizes the optimal contract offered by the monopolist in the absence of

network effects — that is, when W (q, θ,Q) = U(q, θ) for all Q. This is termed the base case, and is

used as a benchmark in sections 3 and 4. The second result describes the structure of Q-optimal

contracts, and demonstrates their uniqueness.

In the base case, since there are no network effects, fulfilled-expectations do not play a role.

Lemma 1. When W (q, θ, Q) = U(q, θ), the monopolist offers the contract q0(θ), τ 0(θ) which sat-

isfies the following conditions for all θ:

U1(q
0(θ), θ)

U12(q0(θ), θ)
=

1− F (θ)
f(θ)

; (2.13)

τ0(θ) = U(q0(θ), θ)−
θZ

θ

U2(q
0(x), x)dx (2.14)

This contract defined by (2.13) and (2.14) is unique. Moreover, for all θ such that q0(θ) > 0, it

satisfies q01(θ) > 0, τ
0
1(θ) > 0.
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The proof of this result is omitted. The reader is referred to chapter 2 of Salanié (1997) for a

simple exposition, or to Maskin and Riley (1984) for more details. A complete proof based on a

model formulation similar to that of this paper is also available in Sundararajan (2002).

Lemma 2. If Û(θ) = 0, for every expectation of consumptionQ, theQ-optimal contract q(θ, Q), τ(θ,Q)

is unique, and is defined by the following conditions:

W1(q(θ, Q), θ, Q)

W12(q(θ,Q), θ,Q)
=
1− F (θ)
f(θ)

, (2.15)

and

τ(θ, Q) =W (q(θ, Q), θ, Q)−
θZ

θ

W2(q(θ, Q), x,Q)dx. (2.16)

Unless otherwise specified, proofs of all results are available in Appendix A.

3. Homogeneous network effects

This section analyzes network effects that depend on just gross consumption, and discusses some

properties of consumption, pricing and welfare under the optimal fulfilled-expectations contract.

The value function W (q, θ,Q) is assumed to be linearly separable in intrinsic value and network

value, and to take the following form

W (q, θ,Q) = U(q, θ) +w(Q). (3.1)

From the definition of intrinsic value U(q, θ), (3.1) implies that w(0) = 0.

3.1. Pure monopoly pricing

In the absence of an entry threat (which is referred to as pure monopoly, to distinguish it from

the subsequent entry-deterring monopoly), the following proposition establishes that the unique

solution to the monopolist’s problem is very similar to that of the base case:

Proposition 1. If W (q, θ,Q) = U(q, θ) + w(Q), then the optimal fulfilled-expectations contract

takes the form:

q∗(θ) = q0(θ); (3.2)

τ∗(θ) = τ0(θ) +w(Q0), (3.3)
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Figure 3.1: Illustrates the optimal consumption of two types θ1 and θ2 (θ1 < θ2) with homogeneous
network effects under pure monopoly. First-order necessary conditions are met for each type at
the intersection of the U1(q, θ) and the U12(q, θ)

1−F (θ)
f(θ) curves. As a consequence, q∗(θ) = q0(θ).

where q0(θ) and τ0(θ) are specified in (2.13) and (2.14), and Q0 =
θR
θ

q0(θ)f(θ)dθ. A contract of

this form exists and is unique for any function w(Q).

Proposition 1 shows that when the network value function depends on just gross consumption,

the monopolist finds it optimal to induce levels of consumption from each customer type that

are identical to those in the absence of network effects, and to simply increase the total price

charged to every type by an amount equal to the network value. The intuition behind this result

is straightforward. For any common expectation Q of gross consumption, the value functions of all

customer types are shifted up by the same constant amount w(Q). Since there is no change in the

marginal properties of the utility functions, the monopolist’s optimal allocation q∗(θ) remains the

same for all types. This is illustrated in Figure 3.1.

It is evident from (3.3) that the monopolist captures all of the increase in surplus from the

network effects. In addition, customer surplus does not change for any customer type relative to

the base case. This outcome changes substantially when there is an entry threat, as established in

the following subsection.
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3.2. Entry-deterring monopoly pricing

This subsection specifies the optimal fulfilled-expectations contracts in the presence of an entry

threat that is successfully deterred. The main result establishes that the unique solution to the

monopolist’s problem in this case is to specify a quantity-independent (fixed-fee) pricing schedule:

Proposition 2. If W (q, θ,Q) = U(q, θ) + w(Q), then the optimal fulfilled-expectations contract

that deters entry takes the form:

q∗(θ) = α(θ); (3.4)

τ∗(θ) = w(Q∗), (3.5)

where Q∗ =
θR
θ

α(θ)f(θ)dθ. A contract of this form exists and is unique for any network value

function w(Q).

Proposition 2 establishes that when network effects depend on just gross consumption, the

optimal entry-deterring pricing scheme results in all customers choosing the level of consumption

that maximizes total surplus8. Intuitively, a contract that separates any subset of types (in order

to price-discriminate) would need to induce consumption levels that are strictly lower than α(θ)

for all but the highest type in this subset. This would result in a strict decrease in profits for

the monopolist, since they would have to share some portion of the network value w(Q∗) with

the customers in this subset in order to satisfy [IR] and ensure that customer surplus is at least

U(α(θ), θ). The accompanying reduction in Q∗ accentuates the reduction in monopoly profits

further. As a consequence, it is strictly profit-reducing to price-discriminate, and the monopolist

offers the fixed-fee that maximizes profits.

3.3. Example

An example is analyzed to illustrate the results of Propositions 1 and 2 further, and to examine

how network effects and the threat of entry changes the surplus distribution across customers.

In order to perform the latter analysis, define the customer surplus function as:

s∗(θ) =W (q∗(θ), θ,Q∗)− τ∗(θ). (3.6)

s∗(θ) is the surplus that customers of type θ get under the optimal fulfilled-expectations contract.

8Note that since W1(q, θ, Q) = 0 in this case, β(θ, Q) = α(θ).
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Base case

Optimal contract: q0(θ) = 2θ; τ0(θ) = 2θ − θ2

Pure monopoly

Q-optimal contract: q(θ,Q) = 2θ; τ(θ,Q) = 2θ − θ2 +wQ

Optimal fulfilled-expectations contract: q∗(θ) = 2θ; τ∗(θ) = 2θ − θ2 +w

Surplus functions: s∗(θ) = θ2; sF (θ) = 3θ
2

Entry-deterring monopoly

Q-optimal contract: q(θ,Q) = θ + 1; τ(θ,Q) = wQ

Optimal fulfilled-expectations contract: q∗(θ) = θ + 1; τ∗(θ) =
3w

2

Surplus functions: s∗(θ) =
(θ + 1)2

2
; sF (θ) =

3(θ + 1)2

7

Table 3.1: Optimal contracts and surplus expressions from the example with homogeneous network
effects

Also, define the surplus distribution function sF (θ) as:

sF (θ) =
s∗(θ)R

s∗(θ)f(θ)dθ
. (3.7)

sF (θ) measures how is the total customer surplus (that is, the total value not captured by the

monopolist) is distributed across the different customer types. It enables one to examine how

changes in network effects affect the relative levels of surplus that different customer types get.

The example uses a simple quadratic value function, and uniformly distributed customer types.

The value function is assumed to take the following form:

W (q, θ, Q) = (θ + 1)q − 1
2
q2 +wQ, (3.8)

and customer types are assumed to be uniformly distributed between 0 and 1, which implies that

f(θ) = 1 and F (θ) = θ.

The contracts and surplus values that result from applying Propositions 1 and 2, and equations

(3.6) and (3.7) are summarized in Table 3.1. Under pure monopoly, consistent with Proposition 1,

consumption is unaffected by the network effects, and prices increase by an amount equal to the

network value. Under entry deterring monopoly, individual consumption increases for all customers,

and a fixed fee equal to the network value is charged to each customer.

Figure 3.2 (a) and (b) illustrate how q∗(θ) and τ∗(θ) vary with type. By substituting q∗(θ) into
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Figure 3.2: Illustrate the optimal fulfilled-expectation contracts and corresponding customer surplus
and relative surplus, in the example when network effects are homogeneous across types.

τ∗(θ), one can derive the explicit pricing function p(q) = q− q2

4 , which is strictly concave, which in

turn implies a progressively increasing quantity discount.

Under entry-deterring monopoly, prices increase for a subset of lower types. However, so does

customer surplus, as indicated in Figure 3.2 (c). Furthermore, Figure 3.2 (d) shows that when

there is a threat of entry, the relative distribution of surplus across different customer types is

less skewed in favor of higher-usage customers. This is despite the increase in total price for the

lower-usage customers, relative to the higher-usage customers.

These results are discussed further in Section 5.
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4. Heterogeneous network effects

This section models network effects that depend on both gross consumption and individual con-

sumption. Both pure monopoly and entry-deterring monopoly are analyzed. The value function

W (q, θ, Q) is assumed to be linearly separable in intrinsic value and network value, and to take the

following form

W (q, θ,Q) = U(q, θ) + qw(Q).

4.1. Pure monopoly pricing

In the absence of an entry threat, the following proposition establishes the main characteristics of

the optimal fulfilled-expectations contracts:

Proposition 3. (a) If W (q, θ, Q) = U(q, θ) + qw(Q), then any optimal fulfilled-expectations con-

tract satisfies the following conditions:

U1(q∗(θ), θ) +w(Q∗)
U12(q∗(θ), θ)

=
1− F (θ)
f(θ)

, (4.1)

and

τ∗(θ) = U(q∗(θ), θ) + q∗(θ)w(Q∗)−
θZ

θ

U2(q
∗(x), x)dx, (4.2)

where Q∗ =
θR
θ

q∗(θ)f(θ)dθ.

(b) If w(Q)has a finite upper bound w, then an optimal fulfilled-expectations contract always

exists. In addition, if w1(Q) < −U11(q, θ) for all Q and q, then (4.1) and (4.2) specify the unique

optimal fulfilled-expectations contract.

(c)For all θ, q∗(θ) > q0(θ), and τ∗(θ) > τ0(θ).

Sufficient conditions for the existence of an optimal fulfilled-expectations equilibrium are fairly

mild — all that is required is that the marginal benefit from the network effects w(Q) be bounded.

The condition for uniqueness requires that in general, marginal network value not grow too fast

relative to marginal intrinsic value. However, even if the solution is not unique, this is not unduly

troubling, since multiple possible equilibrium outcomes are not uncommon in models of network

goods. The monopolist simply needs to pick the optimal fulfilled-expectations contract that provides

the highest profits9. It is important to note that the results in part (c) of the proposition (and

those in Proposition 5) do not rely on uniqueness.

9Recall that customer expectations are formed after the contract is specified.
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Figure 4.1: Illustrates the optimal consumption of two types θ1 and θ2 (θ1 < θ2) with heterogeneous
network effects under pure monopoly. The marginal value curves W1(q, θ,Q) are higher than the
corresponding U1(q, θ) curves, by a constant amount w (Q). This results in a strict increase in
consumption for all types, relative to the base case.

The network effects shift the customer value functions up by qw(Q∗) for all types. Since this

shift is proportionate to individual consumption, it results in optimal quantities that are different

from those of the base case. Part (c) of the proposition establishes that this is a strict increase

for all types, and is illustrated in Figure 4.1, for two candidate types. Correspondingly, prices also

go up for all customers. Sections 4.3 and 4.4 discuss the changes in the division of total surplus

further.

4.2. Entry deterring monopoly pricing

The analysis of Proposition 3 is now extended to the case where a threat of entry is successfully

deterred. Some new notation is introduced (though mostly in the proof of Proposition 4, which is

in the appendix).

Let qm(θ, Q) denote the Q-optimal contract under pure monopoly. Applying Lemma 2, this

allocation is defined for each θ by the necessary conditions

U1(qm(θ,Q), θ) +w(Q)

U12(qm(θ, Q), θ)
=
1− F (θ)
f(θ)

, (4.3)

and is unique for a fixed value of Q. Also, from Proposition 3, we know that there is an optimal
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fulfilled-expectations equilibrium — that is, there is a value of gross consumption such that

Qm =

θZ
θ

qm(θ, Qm)f(θ)dθ. (4.4)

The following proposition establishes that the monopolist’s pricing scheme results in individual

consumption that is either of the form qm(θ, Q), or that maximizes intrinsic value for the customer:

Proposition 4. Suppose W (q, θ,Q) = U(q, θ) + qw(Q). Assume that the uniqueness condition

w1(Q) < −U11(q, θ) from Proposition 3 is met. Define:

Qα = Q : qm(θ,Q) = α(θ), and (4.5)

θ̂(Q) = θ : qm(θ, Q) = α(θ). (4.6)

(a) If Qα ≤ Qm, then the unique optimal fulfilled-expectations contract is:

q∗(θ) = qm(θ,Qm) (4.7)

τ∗(θ) = U(qm(θ), θ) + qm(θ)w(Qm)− U(α(θ), θ)− [
θZ

θ

(U2(q
∗(x), x)− U2(α(x), x))dx] (4.8)

(b) If Qα > Qm, then the unique optimal fulfilled-expectations contract is:

q∗(θ) = α(θ) (4.9)

τ∗(θ) = α(θ)w(Q∗) (4.10)

for θ ≤ θ̂(Q∗), and

q∗(θ) = qm(θ, Q∗) (4.11)

τ∗(θ) = U(q∗(θ), θ) + q∗(θ)w(Q∗)− U(α(θ), θ)− [
θZ

θ̂(Q)

(U2(q
∗(x), x)− U2(α(x), x))dx](4.12)

for θ ≥ θ̂(Q∗), where Q∗ is the unique solution to:

Q =

θ̂(Q)Z
θ

α(θ)f(θ)dθ +

θZ
θ̂(Q)

qm(θ,Q)f(θ)dθ. (4.13)
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Proposition 4 establishes that the same conditions that ensure uniqueness of the optimal fulfilled-

expectations contract in the absence of an entry threat are sufficient to ensure uniqueness under the

threat of entry. It also establishes that the optimal fulfilled-expectations contract that deters entry

can be elegantly characterized using a combination of Q-optimal contracts under pure monopoly,

and the contract that implements allocations of α(θ) for each type θ.

If qm(θ,Qm) > α(θ) for the lowest type θ, an immediate corollary of the proposition is that

the presence of the entry threat does not change the individual consumption of any of the types

(since qm(θ, Qm) > α(θ) implies that Qα < Qm). This is likely to happen when the marginal

network value w(Q) is high relative to marginal intrinsic value, or equivalently, if network effects

are substantial for all types,. This is illustrated further in section 4.4.

Under the conditions of part (b) of the proposition, there are substantial changes in individual

consumption (relative to pure monopoly). However, θ̂(Q∗) is always an interior point of [θ, θ]. This

implies that the larger increases in individual consumption (to the level α(θ) which maximizes

intrinsic value) will always be for a subset of ‘lower’ types, and that there will always be a subset

of higher types whose individual consumption is still of the form qm(θ,Q∗). It is easily shown

that under part (b) of the proposition, Q∗ > Qm, which implies that consumption increases for all

customer types (but more substantially for the lower subset).

4.3. Welfare analysis

This subsection characterizes how the monopolist and its customers share the surplus generated by

the network effects under pure monopoly, and also discusses surplus division under entry-deterring

monopoly.

Suppose q∗(θ), τ∗(θ) is an optimal fulfilled-expectations contract for some value functionW (q, θ,Q),

with realized gross consumption Q∗ =
θR
θ

q∗(θ)f(θ)dθ. Relative to the base case, the net change in

total surplus as a consequence of the network effects is therefore:

θZ
θ

[W (q∗(θ), θ,Q∗)]f(θ)dθ −
θZ

θ

U(q0(θ), θ)f(θ)dθ. (4.14)

The direct change in surplus from a customer of type θ as a consequence of the network effects is

defined as:

sn(θ) =W (q0(θ), θ, Q0)− U(q0(θ), θ), (4.15)

where Q0 =
θR
θ

q0(θ)f(θ)dθ. Similarly, define the indirect change in surplus from a customer of
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type θ as a consequence of the network effects as

sq(θ) =W (q∗(θ), θ, Q∗)−W (q0(θ), θ,Q0) (4.16)

sn(θ) measures the change in surplus as a consequence of having the increase in value from the

network effects, without accounting for any of the changes in consumption. sq(θ) measures the

changes in surplus that arise indirectly as a consequence of the changes in consumption (both

individual and gross) that the network effects induce. The total change in surplus across all types,

as specified in (4.14), can now be equivalently expressed as
θR
θ

[sn(θ) + sq(θ)]f(θ)dθ.

Proposition 5. Under pure monopoly, the monopolist always captures all of the direct increase

in surplus, and shares some of the indirect increase in surplus with the customers. That is:

θZ
θ

τ∗(θ)f(θ)dθ −
θZ

θ

τ0(θ)f(θ)dθ ≥
θZ

θ

sn(θ)f(θ)dθ, (4.17)

and
θZ

θ

τ∗(θ)f(θ)dθ −
θZ

θ

τ0(θ)f(θ)dθ <

θZ
θ

[sn(θ) + sq(θ)]f(θ)dθ, (4.18)

where sn(θ) and sq(θ) are as defined in (4.15) and (4.16).

While proved for heterogeneous network effects, this result applies trivially to homogeneous net-

work effects, since under Proposition 1, there is no indirect increase in surplus, and the monopolist

captures all the direct surplus increase. Proposition 5 establishes that with heterogeneous network

effects, the monopolist continues to get all the direct increase in surplus from the network effects,

and that any increase in customer surplus are driven by increases in consumption.

Under entry-deterring monopoly, the division of direct and indirect increases in surplus is less

relevant — all customers of type θ get surplus at least equal to U(α(θ), θ), which implies that they

capture all of the intrinsic value that they create. Moreover, the customer types whose optimal

consumption is of the form qm(θ,Q∗) (that is, all customers under part (a), and the higher subset

under part (b) of Proposition 4) capture a fraction of the network value that they create. Since

U(α(θ), θ) > U(q∗(θ), θ) for q∗(θ) > α(θ), the monopolist needs to give up network value to the

customer if they raise consumption beyond α(θ). The negative terms in square brackets at the end

of equations (4.8) and (4.12) represent the surplus type θ gets beyond U(α(θ), θ), which implies

that these customers are capturing a fraction over and above this reservation level.
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Base case

Optimal contract: q0(θ) = 2θ; τ0(θ) = 2θ − θ2

Pure monopoly

Q-optimal contract: q(θ,Q) = 2θ+wQ, τ (θ,Q) = 2θ− θ2 +
wQ(2 +wQ)

2

Optimal fulfilled-expectations contract: q∗(θ) = 2θ +
w

1−w, τ
∗(θ) = 2θ − θ2 +

w(2−w)
2(1−w)2

Surplus functions: s∗(θ) = θ(θ +
w

1−w ), sF (θ) =
6θ(θ(1−w) +w)

2 +w

Table 4.1: Optimal contracts and surplus in the example with heterogeneous network effects, under
pure monopoly

4.4. Example

The example presented in Section 3.3 is extended to incorporate network effects that depend on

individual consumption as well as on gross consumption. The value function is assumed to take

the following form:

W (q, θ, Q) = (θ + 1)q − 1
2
q2 +wqQ, (4.19)

and as before, customer types are assumed to be uniformly distributed between 0 and 1. The

definitions of the surplus functions s∗(θ) and sF (θ) are in Section 3.3.

Since U11(q, θ) = −1, the uniqueness condition in Propositions 3 and 4 reduces to w < 1.

Tables 4.1 and 4.2 summarizes the solutions for the optimal contracts and surplus functions under

this condition. As expected from Proposition 3, both quantities and prices increase under pure

monopoly, relative to the base case. Figure 4.2 (a) and (b) illustrate the optimal contract for two

different values of marginal network value w. In addition, by substituting q∗(θ) into τ∗(θ), one can

obtain the explicit pricing function:

p(q) =
w2

4(1−w)2 +
2−w
2(1−w)q −

q2

4
. (4.20)

The optimal pricing function is therefore a nonlinear two-part tariff, with a fixed component

that increases with the marginal network value w, and a strictly concave variable portion — again,

implying a quantity discount that is progressively increasing. Moreover, differentiating (4.20) with

respect to q indicates that p1(q) =
2−w
2(1−w) − q

2 , which is strictly increasing in w for w < 1. As a

consequence, absolute prices at any level of consumption always increase with w.

As shown in Figure 4.2 (c), an increase in w increases customer surplus for all customer types.

What is particularly interesting is that as w increases, the relative distribution of surplus across
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Figure 4.2: Illustrates the optimal fulfilled-expectation contracts and corresponding customer sur-
plus and relative surplus for pure monopoly, in the example when network effects are heterogeneous
across types. In each figure, the dotted curve represents the base case (when network value is zero).

customer types is less convex. This is illustrated in Figure 4.2 (d), and indicates that at higher

levels of network effects, surplus is distributed more evenly across customers of different types. This

is a socially favorable result, because it suggests higher distributional equity of the value created,

across customers who differ in their usage levels.

Under entry-deterring monopoly, equating the expressions for Qα and Qm indicate that part

(a) of Proposition is applicable for w ≥ 1
2 , and part (b) applies for w ≤ 1

2 . This confirms that the

entry threat induces changes in total surplus (via an induced change in optimal consumption) for

lower levels of network effects, but not at higher levels.

As illustrated in Figure 4.3 (a), as w increases, optimal consumption is raised (relative to the

corresponding levels under pure monopoly) for an increasingly smaller fraction of customer types,

and when w ≥ 1
2 , consumption is unaltered for all types (though total prices reduce by a fixed
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Entry-deterring monopoly

Intermediate variables: Qα =
1

w
; Qm =

1

1−w ; θ̂(Q) = 1−wQ

When w ≥ 1
2

Optimal fulfilled-expectations contract: q∗(θ) = 2θ +
w

1−w, τ
∗(θ) =

1

2(1−w)2 − (1− θ)2

Surplus functions: s∗(θ) = θ(θ +
w

1−w ) +
1

2
, sF (θ) =

3((2θ2+1)(1−w)+2θw)
5−2w

When w ≤ 1
2

Optimal fulfilled-expectations contract: θ ≤ θ̂(Q∗): q∗(θ) = θ + 1, τ∗(θ) = wQ∗(1 + θ)

θ ≥ θ̂(Q∗): q∗(θ) = 2θ +wQ∗, τ∗(θ) = 2wQ∗ − (1− θ)2

Surplus functions: θ ≤ θ̂(Q∗): s∗(θ) =
(1 + θ)2

2
, sF (θ) =

3(1 + θ)2

7 + (wQ∗)3

θ ≥ θ̂(Q∗): s∗(θ) = (1+θ)2+(θ−(1−wQ∗))2
2 , sF (θ) =

3s∗(θ)
7+(wQ∗)3

Note: When w ≤ 1
2 , Q

∗ = 1−√1−3w2
w2

and θ̂(Q∗) = w−1+√1−3w2
w

Table 4.2: Optimal contracts and surplus expressions in the example with heterogeneous network
effects, under entry-deterring monopoly

amount across all types).

At fairly low values of w, total price may increase for a subset of lower types. This is because

the changes in consumption are substantial for these lower customer types, relative to the case of

pure monopoly. Average prices (per unit of consumption) always decrease with a threat of entry,

across all types. Clearly, customer surplus also increases, across all types.

Figure 4.3 (c) and (d) further highlight the socially desirable effect of a threat of entry that

was noted in section 3.3 — the flattening of the relative distribution of surplus across types. This

accentuates the increased distributional equity from increasing network effects that was illustrated

in Figure 4.2(d). The former effect is more pronounced when network effects are lower. This

is not surprising, since the latter effect is more pronounced when network effects are higher (and

as a consequence, there is already less inequity across customers to begin with). This result has

interesting policy implications, which are discussed further in Section 5.

5. Discussion

A number of new results relating to the pricing of network goods have been derived in Sections 3

and 4. This section discusses some of these results, examines some of the model’s assumptions, and
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tomer surplus for entry-deterring monopoly, in the example when network effects are heterogeneous.
In each figure, the dotted curves represent the corresponding values in the case of pure monopoly.

concludes with an outline of open questions raised by the analysis.

5.1. Discussion of results

Managers in technology industries with network effects face especially difficult pricing problems.

Their challenges include setting complex pricing schedules for variable quantity purchases, designing

optimal quantity discounts, taking into account heterogeneity in network value across different

customers, and also incorporating the reality that entry threats and ‘comparables’ from potential

competitors play an important role in limiting the amount customers can be charged. Network

effects pose an additional unique challenge, since there is the trade-off between designing prices

that increase value from higher gross consumption, and prices that enables the seller to capture as
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much of this value as possible.

This paper provide a set of theoretical results, based on a model which explicitly captures these

issues, and can therefore form a robust basis for designing pricing policy for products of this kind. In

addition, many empirical papers on network externalities (for instance, Gandal, 1995, Brynjolfsson

and Kemerer, 1996, Forman, 2001) have studied technology markets — databases, spreadsheets,

networking equipment — in which sellers with monopoly power routinely offer nonlinear pricing

schedules, sell variable quantities to customers, and price to deter entry. The results of this paper

could form a stronger theory base for future empirical work which aims to estimate the extent and

implications of network effects in such markets.

When network effects do not vary across customers, Proposition 1 establishes that an increase

in network effects induces no change in consumption, and that all surplus from the network effects

is appropriated by the monopolist. A threat of entry changes pricing substantially — a fixed fee

is offered to all customer types, and the outcome is socially optimal. While the specification of

network effects in section 3 is simple, it would apply to industries in which the primary network

value stems from a common fixed-cost reduction — for instance, the cost of finding the appropriate

hosting infrastructure, or qualified technical support. These results also indicate that if competing

products are anything but perfectly compatible, any oligopoly outcome will be socially inferior to

the entry-deterring monopoly outcome. In other words, from a regulatory perspective, ensuring a

credible threat of entry is more socially efficient than actually inducing entry.

When the value realized from network effects varies with individual consumption, Proposition

3 establishes a strict increase in individual consumption across all customer types. In any model of

nonlinear pricing, there is always a trade-off between value creation and price discrimination, and

the consumption of lower customer types is limited by the monopolist’ desire to capture as much

surplus as possible. The issue of value creation is accentuated further when there are network effects,

since increases in consumption from any subset of customer types increases the value created by all

customer types. The trade-off still exists, though, and while pricing is redesigned to induce usage

increases from both lower and higher customer types, the lower-usage customers still consume at a

socially inefficient level. However, the relative distribution of surplus improves for lower customer

types, implying that the network effects benefit lower-usage customers disproportionately, even

though the higher-usage customers contribute relatively more to their actual magnitude.

Furthermore, when network value depends on individual consumption as well as gross con-

sumption, the effects of an entry threat are less pronounced that those established by Proposition

2. In fact, as shown in Proposition 4(a), the threat of entry may have no effect on consumption or

surplus, and may merely result in a price change that redistributes surplus between the monopolist
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and its customers. Note that this occurs even when entry is not blockaded. This outcome is most

likely when, relative to marginal intrinsic value, marginal network value is fairly high across all

customers, as illustrated further by the example in Section 4.4.

The examples studied in sections 3.3 and 4.4 highlight the effect of network effects and entry

deterrence on the relative distribution of surplus across participating customers. Regulatory agen-

cies often consider implementing policy that affects not just total surplus, but the equity of surplus

distribution across customers. For instance, the attention received by the issue of the ‘digital di-

vide’ illustrates this potential objective clearly. Towards this end, this paper establishes that even

if creating a credible threat of entry does not increase total surplus, it will reduce the inequity in

surplus division across the different customers who generate the surplus through their consumption.

In addition, there will always be accompanying transfer of surplus to all customers. While the

outcome never maximizes total surplus, it is still likely that it is more efficient than an oligopoly

with incompatible products.

5.2. Discussion of assumptions

The sequence of events specified in section 2.3 assumes that all customers have identical expectations

of gross consumption. Under the assumption of rational participants, this is not restrictive —

everyone has access to all the information needed to compute the expected consumption, and once

the monopolist has specified prices, there is no residual uncertainty about demand. Clearly, in

equilibrium, all customers must have the same expectation (the correct one).

However, compared to standard models of nonlinear pricing, this paper places a higher compu-

tational burden on customers. Each customer has to know F (θ), compute the optimal consumption

(not just for themselves, but for all customer types), and them calculate the gross consumption. It

may be likely that customers of network goods cannot actually compute the true gross consumption

immediately, due to a lack of information, or due to bounds on information processing capability.

There may be a multi-period adjustment process, in which customers iteratively make a series of

guesses which converge to the fulfilled-expectations equilibrium outcome. Alternately, customers

may learn the distribution of types from the pricing schedule. Formalizing these notions remains

(early-stage) work in progress.

The assumption that W (q, θ, Q) has a finite maximum q for all θ and Q is non-standard.

However, given that marginal costs are zero in the model, it is necessary in order to get a bounded

solution. It is also a reflection of reality — that customers do stop using zero marginal price products

at a finite level, typically due to the presence of resource constraints, and substitute uses for shared

resources, as discussed in Section 2.1.
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In addition, slightly modified versions of all of the results in this paper continue to hold under

the assumption of unbounded value functions and positive convex costs. Consider, for instance,

a (standard) specification in which customer utility is W̃ (q, θ, Q), W̃1(q, θ,Q) > 0 for all q (and

W̃ (q, θ, Q) has the other curvature properties attributed to the customer value function in this

paper). In addition, suppose the provision of quantity q to each customer has a positive cost c(q),

where c1(q) > 0, c11(q) > 0. If one defined the total surplus function as:

W (q, θ,Q) = W̃ (q, θ,Q)− c(q),

then W (q, θ, Q) would have the same properties as it does in this model. More importantly, all

the expressions for q∗(θ) derived in the model would continue to be valid, and so would all the

expressions for τ∗(θ), if it is treated as the optimal markup rather than the optimal price. In other

words, the optimal contracts would be q∗(θ), (τ∗(θ)+ c(q∗(θ))), with the same expressions for q∗(θ)

and τ∗(θ) as derived in sections 3 and 4. Therefore, this paper’s results are also applicable for

technology products that display positive network effects, but which have non-zero marginal costs

(networking equipment or handheld computers, for instance)

Some of the paper’s results have specified conditions on the marginal network value that are

necessary to guarantee uniqueness. However, none of the properties of the contracts derived in

Propositions 1 through 3 depend on uniqueness, and neither do the results of Proposition 5. If

there are multiple optimal fulfilled-expectations equilibria, all the monopolist needs to do is choose

the one with the highest profits. Proposition 4 relies on uniqueness, though a slightly modified

version holds if one assumes that the monopolist always chooses the highest-profit contract.

5.3. Concluding remarks

The value from network effects in this model vary across types due to the customers’ varying

individual consumption needs. As formulated, the model does not yet admit differing network

value across different types at the same level of individual consumption. A model that incorporates

this is work-in-progress. Early results suggest that for sufficiently heterogeneous marginal network

value, network effects may harm low-usage customers. Related work-in-progress involves a setup

where network value is of the form wF (Q) + qwV (Q). A more general characterization might be

to model the network good as a multiproduct bundle, and characterize customers using a two-

dimensional type vector, drawing on Armstrong (1996) and Rochet and Chone (1998). Admitting

this extension is current work-in-progress.

Industries in which products display network effects are often natural monopolies, especially

when competing products are incompatible and marginal costs are near-zero. Moreover, entry-
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deterrence appears to play a significant role in practice (as illustrated by the Microsoft antitrust

case). The analysis of entry-deterring monopoly is therefore likely to be very important for these

industries. In light of the results obtained in this paper, a natural (and open) question that arises

is how non-zero entry costs affects outcomes. Clearly, monopoly profits will increase, and entry

deterrence will still be an optimal strategy — however, it is likely that profits will increase by less

than the entry cost.

Finally, the analysis of entry deterrence suggests the feasibility of solving a general model of

nonlinear pricing for competing network goods. If customers expect the competing products to have

different levels of gross consumption, they would view them as vertically differentiated products, as

in Stole (1995), which would admit pricing other than the zero-markup contracts in Mandy (1992).

Similar issues have been analyzed in a model of coalition formation by Economides and Flyer

(1998). Price reductions that increase network effects would become ‘quality’ investments, and

the issue of how competitive intensity is affected by these investments becomes relevant, especially

since Section 4.2 suggests that in a general model, the equilibrium profits of the smaller network are

likely to be zero. Recent results from Rochet and Stole (2001) indicate the feasibility of modeling

mixed-strategy equilibria, and I hope to address some of these questions in the near future.
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A. Appendix: Proofs

Proof of Lemma 2

Given a expectation of gross consumption Q, any Q-feasible contract qF (t,Q), τF (t,Q) satisfies

[IC] if:

θ = arg max
t∈[θ,θ]

W (qF (t, Q), θ, Q)− τF (t,Q), (A.1)

for all θ. The necessary and sufficient conditions for (A.1) are:

[W1(q
F (θ,Q), θ,Q)]qF1 (θ,Q)− τF1 (θ,Q) = 0 ∀θ; (A.2)

[W11(q
F (θ,Q), θ,Q)](qF1 (θ,Q))

2 + [W1(q
F (θ, Q), θ,Q)]qF11(θ, Q)− τF11(θ,Q) ≤ 0 ∀θ. (A.3)

Differentiating (A.2) with respect to θ and substituting (A.3) yields modified sufficient conditions:

[W12(q
F (θ, Q), θ,Q)]qF1 (θ, Q) ≥ 0 ∀θ. (A.4)

By assumption, W12(q, θ, Q) is strictly positive, which means that (A.2) and (A.4) reduce to:

τF1 (θ, Q) = [W1(q
F (θ,Q), θ,Q)]qF1 (θ,Q), (A.5)

qF1 (θ, Q) ≥ 0, (A.6)

for all θ.

Now, under the contract qF (t,Q), τF (t,Q), the surplus of type θ is

s(θ) =W (qF (θ, Q), θ,Q)− τF (θ, Q). (A.7)

Differentiating (A.7) with respect to θ, and substituting (A.5) yields:

s1(θ) =W2(q
F (θ, Q), θ,Q). (A.8)

Since reservation utility Û(θ) = 0 for all types, if IR is satisfied for the lowest type θ, it is satisfied

for all others. Therefore, s(θ) = 0, and

s(θ) =

θZ
x=θ

W2(q
F (x,Q), x,Q)dx. (A.9)
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Combining (A.7), and (A.9), the objective function whose maximizer is the optimal contract

q(θ, Q), τ(θ,Q) can be written as:

θZ
θ=θ

[W (qF (θ, Q), θ,Q)− {
θZ

x=θ

W2(q
F (x,Q), x,Q)dx}]f(θ)dθ. (A.10)

Integrating the second part of (A.10) by parts and rearranging yields:

q(θ,Q) = arg max
qF (θ,Q)

θZ
θ=θ

[W (qF (θ, Q), θ, Q)−W2(q
F (θ,Q), θ,Q)

1− F (θ)
f(θ)

]f(θ)dθ, (A.11)

subject to q(θ,Q) ≥ 0, and that

τ(θ, Q) =W (q(θ,Q), θ,Q)−
θZ

x=θ

W2(q(x,Q), x,Q)dx. (A.12)

If the unconstrained problem has a unique solution for which q(θ,Q) ≥ 0, then this is the solution
to the constrained problem as well.

Define

H(θ) =
1− F (θ)
f(θ)

(A.13)

First-order conditions for the unconstrained problem are therefore:

W1(q(θ, Q), θ, Q) = [W12(q(θ,Q), θ,Q)]H(θ) ∀θ, (A.14)

and are sufficient if the point-wise profit function:

π(q, θ,Q) =W (q, θ,Q)− [W2(q, θ, Q)]H(θ) (A.15)

is strictly concave in q. Differentiating (A.15) with respect to q twice yields:

π11(q, θ, Q) =W11(q, θ,Q)− [W112(q, θ, Q)]H(θ), (A.16)

which verifies that π(q, θ,Q) is strictly concave, since W11 < 0, and W112 ≥ 0. This ensures

that for the unconstrained problem, first-order conditions (A.14) yield the unique solution. These

conditions can be rearranged as:

W1(q(θ, Q), θ, Q)

W12(q(θ,Q), θ,Q)
=
1− F (θ)
f(θ)

. (A.17)
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Now, differentiating both sides of (A.14) with respect to θ yields:

[W11(q(θ,Q), θ,Q)]q1(θ, Q) + [W12(q(θ,Q), θ,Q)] =

[W112(q(θ, Q), θ,Q)]H(θ)q1(θ,Q) + [W122(q(θ,Q), θ,Q)]H(θ) + [W12(q(θ, Q), θ, Q)]H1(θ)

which implies that:

q1(θ,Q) =
[W12(q(θ, Q), θ,Q)][1−H1(θ)]− [W122(q(θ, Q), θ,Q)]H(θ)

[W112(q(θ,Q), θ, Q)]H(θ)−W11(q(θ, Q), θ,Q)
. (A.18)

Since π(q, θ,Q) has been shown to be strictly concave in q, the denominator of (A.18) is strictly

positive. Also, the reciprocal of the hazard rate is non-increasing in θ, which implies that H1(θ) ≤
0. Therefore, so long as W122(q, θ) is non-positive, the numerator of (A.18) is strictly positive.

Consequently, it has been established that

q1(θ,Q) > 0, (A.19)

which implies that the unique unconstrained solution q(θ, Q) always satisfies the constraint, and

completes the proof.

Before proceeding further, a couple of definitions and intermediate results are needed:

Definition 1. A feasible fulfilled-expectations contract is a menu of price-quantity pairs qFE(θ), τFE(θ)

such that the contract qF (t,Q), τF (t, Q) defined by

Q =

θZ
θ

qFE(θ)f(θ)dθ

qF (t, Q) = qFE(t)

τF (t, Q) = τFE(t)

is a Q-feasible contract.

Note that if any Q-feasible contract qF (t,Q), τF (t,Q) satisfies fulfilled-expectations at some Q:

Q =

θZ
θ

qF (t, Q)f(t)dt, (A.20)

then the contract qFE(θ) = qF (θ,Q), τFE(θ) = τF (θ, Q) is a feasible fulfilled-expectations contract.
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Definition 2. The gross consumption function is defined as:

Γ(Q) =

θZ
θ

q(θ,Q)f(θ)dθ, (A.21)

where q(θ, Q) is part of the unique Q-optimal contract associated with an expected gross consump-

tion Q.

Two immediate consequences of this definition are:

Lemma 3. (a) For any Q-optimal contract q(θ,Q), τ(θ,Q), if Γ(Q) = Q, then the contract defined

by

q∗(θ) = q(θ, Q); (A.22)

τ∗(θ) = τ(θ, Q) (A.23)

is an optimal fulfilled-expectations contract.

(b) Γ(0) > 0.

Proof. Part (a) follows directly from the definition of Γ(Q) and of an optimal fulfilled-

expectations contract, and part (b) from the fact that U(q, θ) > 0 for q > 0.

The next lemma, which establishes the strict monotonicity of U1(q,θ)
U12(q,θ)

, follows from decreasing

absolute risk aversion:

Lemma 4. If d
dθ (

−U11(q,θ)
U1(q,θ)

) < 0, then d
dq (

U1(q,θ)
U12(q,θ)

) < 0.

Proof.
d

dθ
(
−U11(q, θ)
U1(q, θ)

) =
−U112(q, θ)U1(q, θ) + U11(q, θ)U12(q, θ)

(U1(q, θ))2
, (A.24)

and
d

dq
(
U1(q, θ)

U12(q, θ)
) =

U11(q, θ)U12(q, θ)− U112(q, θ)U1(q, θ)
(U12(q, θ))2

. (A.25)

The denominators of the RHS (A.24) and (A.25) are both strictly positive, and the numerators are

identical. The result follows.

Proof of Proposition 1

Suppose q∗(θ), τ∗(θ) is an optimal fulfilled-expectations contract. From the definition of an

optimal fulfilled-expectations contract, the contract defined by:

Q∗ =

θZ
θ

q∗(θ)f(θ)dθ (A.26a)

q(θ, Q∗) = q∗(θ) (A.26b)

τ(θ, Q∗) = τ∗(θ) (A.26c)
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must be a Q-optimal contract. Since w(Q) does not depend directly on θ or q, from Lemma 2,

q∗(θ,Q∗), τ∗(θ, Q∗) must satisfy:

U1(q∗(θ), θ, Q∗)
U12(q∗(θ), θ)

=
1− F (θ)
f(θ)

, (A.27)

and

τ∗(θ,Q) = U(q∗(θ), θ) +w(Q∗)−
θZ

x=θ

U2(q
∗(x), x)dx (A.28)

It follows from (A.26b), (A.26c), (A.27) and (A.28) that q∗(θ), τ∗(θ) satisfies:

U1(q
∗(θ), θ)

U12(q∗(θ), θ)
=
1− F (θ)
f(θ)

, (A.29)

and

τ∗(θ) = U(q∗(θ), θ) +w(Q∗)−
θZ

x=θ

[U2(q
∗(x), x)]dx. (A.30)

Comparing (A.29) with (2.13) yields

q∗(θ) = q0(θ), (A.31)

since Lemma 4 has established that U1(q,θ)
U12(q,θ)

is strictly monotonic in q. Therefore, Q∗ = Q0.

Consequently, comparing (A.30) with (2.14) yields:

τ∗(θ) = τ0(θ) +w(Q0). (A.32)

Now, from Lemma 2, it is clear that

q(θ,Q) = q0(θ) (A.33)

for all Q and θ. Therefore, Γ(Q) = Q0 for all Q. Clearly, Γ(Q) always has a unique fixed point Q0,

which completes the proof.

Proof of Proposition 2

Consider any expectation of gross consumptionQ, and anyQ-feasible contract qF (θ,Q), τF (θ,Q).

[IR] implies that:

U(qF (θ,Q), θ) +w(Q)− τF (θ,Q) ≥ U(α(θ), θ). (A.34)

Since U(qF (θ,Q), θ) ≤ U(α(θ), θ), this implies that

τF (θ, Q) ≤ w(Q) (A.35)

for all θ. Consequently, a pricing scheme that provides the monopolist with a total price of w(Q)

from each type has equal or higher profits than any Q-feasible contract. Now, if payments from

each type are constant across types, incentive-compatibility requires that a customer of type θ be
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allocated α(θ). Since marginal costs are zero, this means that

q(θ,Q) = α(θ); (A.36)

τ(θ,Q) = w(Q) (A.37)

is Q-optimal. Defining

Q∗ =
θZ

θ

α(θ)f(θ)dθ, (A.38)

this implies that Γ(Q) = Q∗ for all Q, which in turn implies that there is a unique optimal fulfilled-
expectations contract, and the result follows.

Proof of Proposition 3

(a) Suppose q∗(θ), τ∗(θ) is an optimal fulfilled-expectations contract. By definition, the contract
defined by:

Q∗ =

θZ
θ

q∗(θ)f(θ)dθ (A.39a)

q(θ, Q∗) = q∗(θ) (A.39b)

τ(θ, Q∗) = τ∗(θ) (A.39c)

must be a Q-optimal contract. Applying Lemma 2 for W (q, θ,Q) = U(q, θ) + qw(Q) yields:

U1(q
∗(θ), θ,Q∗) +w(Q∗)
U12(q∗(θ), θ)

=
1− F (θ)
f(θ)

, (A.40)

and

τ∗(θ, Q) = U(q∗(θ), θ) + q∗(θ)w(Q∗)−
θZ

x=θ

U2(q
∗(x), x)dx (A.41)

Consequently, q∗(θ), τ(θ) satisfies:

U1(q∗(θ), θ) +w(Q∗)
U12(q∗(θ), θ)

=
1− F (θ)
f(θ)

, (A.42)

and

τ∗(θ) = U(q∗(θ), θ) +w(Q∗)−
θZ

x=θ

[U2(q
∗(x), x)]dx. (A.43)

(b) From Lemma 2, for any Q, individual consumption in the unique Q-optimal contract satis-

fies:
U1(q(θ, Q), θ) +w(Q)

U12(q(θ,Q), θ)
=
1− F (θ)
f(θ)

(A.44)
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Existence: If w(Q) is bounded, this implies that W1(q(θ,Q), θ, Q) is bounded for all θ, which

in turn implies that q(θ,Q) is bounded for all θ, since U11(q, θ) < 0. Therefore Γ(Q) is bounded.

Since Γ(0) > 0 (from Lemma 3), this implies that a fixed point for Γ(Q) exists.

Uniqueness: Differentiating both sides of (A.44) with respect to Q and rearranging yields:

q2(θ,Q) =
w1(Q)

U112(q(θ, Q), θ)
1−F (θ)
f(θ) −U11(q(θ,Q), θ)

. (A.45)

Since U112(q(θ, Q), θ) ≥ 0, this implies that

q2(θ, Q) ≤ w1(Q)

−U11(q(θ, Q), θ) . (A.46)

From the conditions of the proposition for uniqueness, we know that w1(Q) < −U11(q, θ), which
when combined with (A.46) implies that

q2(θ, Q) < 1 (A.47)

Now, differentiating both sides of (A.21) with respect to Q yields

Γ1(Q) =

θZ
θ

q2(θ,Q)f(θ)dθ, (A.48)

which when combined with (A.47), implies that Γ1(Q) < 1 for all Q. This in turn implies that

Γ(Q) is a contraction, and since Γ(0) > 0 from Lemma 3, it has a unique and strictly positive fixed

point.

(c) When w(Q) > 0, (4.1) implies that

U1(q
∗(θ), θ)

U12(q∗(θ), θ)
<
1− F (θ)
f(θ)

(A.49)

From Lemma 1, we know that
U1(q

0(θ), θ)

U12(q0(θ), θ)
=
1− F (θ)
f(θ)

(A.50)

and therefore
U1(q

0(θ), θ)

U12(q0(θ), θ)
>
U1(q

∗(θ), θ)
U12(q∗(θ), θ)

(A.51)

From Lemma 4, we know that U1(q,θ)
U12(q,θ)

is strictly decreasing in q for all θ, which when combined

with (A.51) proves that q0(θ) < q∗(θ) for all θ.

Proof of Proposition 4

This proof uses three intermediate results (Lemmas 5, 6 and 7) which are stated and proved in

the body of the proof. Some new notation is also introduced, which follows Jullien (2000), since

Proposition 3 of that paper is used to establish Lemma 7.
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For any expectation of gross consumption Q, define:

l(γ, θ, Q) = argmax
q
U(q, θ) + qw(Q)− U2(q, θ)γ − F (θ)

f(θ)
. (A.52)

It follows immediately that

l(1, θ, Q) = qm(θ, Q), (A.53)

and that l(0, θ,Q) ≥ β(θ,Q) for all θ, which implies that l(0, θ,Q) > α(θ) for all θ.

Next, the unique incentive-compatible contract that implements Û(θ) — that is, the unique

contract under which the surplus of type θ is Û(θ) — can be shown to be:

q̂(θ) = α(θ); (A.54)

τ̂(θ) = α(θ)w(Q). (A.55)

Therefore, the set Θ = {θ : l(1, θ,Q) ≤ q̂(θ) ≤ l(0, θ,Q)} reduces to:

Θ = {θ : qm(θ,Q) ≤ α(θ)}. (A.56)

Also, define

γ̂(θ,Q) = γ : q̂(θ) = argmax
q
U(q, θ) + qw(Q)− U2(q, θ)γ − F (θ)

f(θ)
(A.57)

Since q̂(θ) = α(θ), and U1(α(θ), θ) = 0, first-order conditions for (A.57) yield:

γ̂(θ, Q) = F (θ) +
f(θ)w(Q)

U12(α(θ), θ)
(A.58)

Finally, define:

H(γ, θ) =
γ − F (θ)
f(θ)

The following intermediate results can now be stated and proved.

Lemma 5. If 1−F (θ)f(θ) is non-increasing for all θ, then H2(γ, θ) ≤ 0 for all θ, γ such that H(γ, θ) ≥ 0.

Proof. Assume the converse — that for some γ, γ−F (θ)
f(θ) is increasing in some interval [θ1, θ2].

This implies that
γ − F (θ1)
f(θ1)

<
γ − F (θ2)
f(θ2)

. (A.59)

Since F (θ1) < F (θ2), this implies that f(θ1) > f(θ2), which in turn implies that

1− γ

f(θ1)
<
1− γ

f(θ2)
(A.60)

Adding (A.59) and (A.60) yields 1−F (θ1)
f(θ1)

< 1−F (θ2)
f(θ2)

, which contradicts the fact that 1−F (θ)
f(θ) is

non-increasing, and the result follows.

Lemma 6. If ∂
∂θ (

U11(α(θ),θ)
U12(α(θ),θ)

) ≤ 0, then l2(γ̂(θ,Q), θ, Q) ≤ q̂1(θ)
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Proof. By the definition of γ̂(θ,Q) in (A.57), and of l(γ, θ,Q) in (A.52), we know that

l(γ̂(θ, Q), θ, Q) = q̂(θ) = α(θ). (A.61)

From the first order conditions for (A.52), we know that

U1(l(γ, θ,Q), θ) +w(Q) = U12(l(γ, θ,Q), θ)
γ − F (θ)
f(θ)

. (A.62)

Differentiating both sides of (A.62) with respect to θ and rearranging yields:

l2(γ, θ,Q) =
U12(l(γ, θ,Q), θ)(1−H2(γ, θ))− U122(l(γ, θ,Q), θ)H(γ, θ)

U112(l(γ, θ, Q), θ)H(γ, θ)− U11(l(γ, θ,Q), θ) . (A.63)

Substituting in γ̂(θ, Q) and using (A.61) yields:

l2(γ̂(θ, Q), θ,Q) =
U12(α(θ), θ)(1−H2(γ̂(θ,Q), θ))− U122(α(θ),Q), θ)H(γ̂(θ, Q), θ)

U112(α(θ), θ)H(γ̂(θ, Q), θ)− U11(α(θ), θ) . (A.64)

Since q̂(θ) = α(θ), and U1(α(θ), θ) = 0 by definition, it follows that:

q̂1(θ) =
U12(α(θ), θ)

−U11(α(θ), θ) . (A.65)

Comparing equations (A.64) and (A.65), and using the fact that U11(q, θ)U12(q, θ)H2(γ, θ) ≥ 0, it
follows that l2(γ̂(θ,Q), θ, Q) ≤ q̂1(θ) if:

U12((α(θ), θ))U112(α(θ), θ)− U11(α(θ), θ)U122(α(θ), θ) ≤ 0, (A.66)

which is precisely the condition implied by ∂
∂θ (

U11(q,θ)
U12(q,θ)

) ≤ 0. The result follows.
It was shown in Section 2.5 that the problem of finding an optimal contract which deters entry

was equivalent to finding an optimal contract with type-dependent participation constraints. The

following result therefore holds, based on Jullien (2000):

Lemma 7. The Q-optimal contract which deters entry satisfies:

(a) If θ ∈ Θ,

q(θ, Q) = α(θ); (A.67)

τ(θ) = α(θ)w(Q).

(b) If θ /∈ Θ, then:

q(θ, Q) = qm(θ,Q); (A.68)

τ(θ) = U(qm(θ,Q), θ) + qm(θ,Q)w(Q)− U(α(θ), θ)− [
θZ

θ̂(Q)

(U2(q
m(x,Q), x)− U2(α(x), x))dx],
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where Θ = {θ : qm(θ, Q) ≤ α(θ)}, and θ̂(Q) = θ : qm(θ, Q) = α(θ).

In addition, if Θ is empty, then for all θ:

q(θ, Q) = qm(θ,Q), (A.69)

τ(θ) = U(qm(θ, Q), θ) + qm(θ,Q)w(Q)− U(α(θ), θ)− [
θZ

θ

(U2(q
m(x,Q), x)− U2(α(x), x))dx].

Proof. Lemma 6 ensures that the problem of finding a Q-optimal contract satisfies all the con-

ditions for Proposition 3 of Jullien (2000) to apply. The expressions for q(θ,Q) follow immediately.

The expressions for τ(θ,Q) follow by imposing incentive-compatibility and profit maximization by

the monopolist.

Now, recall the definitions of Qm,Qα from the statement of Proposition 4, and Γ(Q) from

Definition 2:

Qm = Q : Q =

θZ
θ

qm(θ,Q)f(θ)dθ (A.70)

Qα = Q : qm(θ,Q) = α(θ), (A.71)

Γ(Q) =

θZ
θ

qm(θ,Q)f(θ)dθ (A.72)

Clearly, Qm is a fixed point of Γ(Q). Also define Γ̂(Q) as

Γ̂(Q) =

θ̂(Q)Z
θ

α(θ)f(θ)dθ +

θZ
θ̂(Q)

qm(θ,Q)f(θ)dθ, if θ̂(Q) exists; (A.73)

Γ̂(Q) = Γ(Q) otherwise. (A.74)

Now, from (A.45). we know that

qm2 (θ, Q) =
w1(Q)

U112(qm(θ,Q), θ)
1−F (θ)
f(θ) − U11(qm(θ,Q), θ)

. (A.75)

The RHS of (A.75) is strictly positive since w1(Q) > 0, U112(q, θ) ≥ 0, and U11(q, θ) < 0. Therefore,
qm2 (θ,Q) > 0 for all Q. As a consequence, if Q

α < Qm, then qm(θ, Qα) < qm(θ, Qm), which in turn

implies that qm(θ,Qm) > α(θ). The set Θ is therefore empty, and this establishes part (a), based

on Lemma 7.
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Now, differentiating both sides of (A.73) and (A.74) with respect to Q yields:

Γ̂1(Q) =

θZ
θ̂(Q)

qm1 (θ, Q)f(θ)dθ, if θ̂(Q) exists; (A.76)

Γ̂1(Q) = Γ1(Q) otherwise. (A.77)

Since qm2 (θ,Q) > 0, this implies that Γ̂1(Q) ≤ Γ1(Q), and the inequality is strict if θ̂(Q) > θ.

Consequently, under the conditions for uniqueness in Proposition 3, both Γ(Q) and Γ̂(Q) have

unique strictly positive fixed points.

If Q ≥ Qα, Γ̂(Q) = Γ(Q). As a consequence, if Qα > Qm, this means that the fixed point of

Γ̂(Q) has to lie in (Qm,Qα), because we know that Γ̂(Q) > Γ(Q) for Q < Qα, which means it

cannot have a fixed point at Qm, which in turn implies that if it has a fixed point greater than Qα,

this violates the uniqueness of the fixed point of Γ(Q) that was established in Proposition 3.

Using the fact that the unique optimal fulfilled-expectation equilibrium has gross consumption

that is the fixed point of Γ̂(Q), part (b) of the result follows. This completes the proof.

Proof of Proposition 5

Consider the contract:

qFE(θ) = q0(θ) (A.78a)

τFE(θ) = τ0(θ) + q0(θ)w(Q0) (A.78b)

It is straightforward to establish that this is a feasible fulfilled-expectations contract. Under this

contract, the monopolist’s profits would be

Π =

θZ
θ

τ0(θ)f(θ)dθ +

θZ
θ

q0(θ)w(Q0)f(θ)dθ (A.79)

Using the definition of sn(θ) from (4.15), this implies that

Π =

θZ
θ

τ0(θ)f(θ)dθ +

θZ
θ

sn(θ)f(θ)dθ (A.80)

Profits under the optimal fulfilled expectations contract must be at least as high as Π. Based on

(A.80), this yields:
θZ

θ

τ∗(θ)f(θ)dθ ≥
θZ

θ

τ0(θ)f(θ)dθ +

θZ
θ

sn(θ)f(θ)dθ,

which proves the first part. Now denote the surplus of type θ under the optimal fulfilled-expectations
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contract as s∗(θ), and the surplus of type θ under the base case contract as s0(θ). We know that

s∗(θ) =
θZ

x=θ

[U2(q
∗(x), x)]dx,

and

s0(θ) =

θZ
x=θ

[U2(q
0(x), x)]dx.

Since q∗(θ) > q0(θ), and U12(q, θ) > 0, this implies that s∗(θ) > s0(θ) for all θ. Therefore, the

monopolist does not appropriate all the surplus generated by the network effects, and the second

part of the result follows.
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