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Abstract 
 
 The nonlinear fixed effects models in econometrics has often been avoided for two reasons one 
practical, one methodological.  The practical obstacle relates to the difficulty of estimating nonlinear 
models with possibly thousands of coefficients.  In fact, in a large number of models of interest to 
practitioners, estimation of the fixed effects model is feasible even in panels with very large numbers of 
groups.  The more difficult, methodological question centers on the incidental parameters problem that 
raises questions about the statistical properties of the estimator.  There is very little empirical evidence on 
the behavior of the fixed effects estimator. In this note, we use Monte Carlo methods to examine the small 
sample bias in the binary probit and logit models, the ordered probit model, the tobit model, the Poisson 
regression model for count data and the exponential regression model for a nonnegative random variable.  
We find three results of note:  A widely accepted result that suggests that the probit estimator is actually 
relatively well behaved appears to be incorrect.  Perhaps to some surprise, the tobit model, unlike the 
others, appears largely to be unaffected by the incidental parameters problem, save for a surprising result 
related to the disturbance variance estimator.  Third, as apparently unexamined previously, the estimated 
asymptotic estimators for fixed effects estimators appear uniformly to be downward biased. 
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1.  Introduction 
 
 In the analysis of panel data with nonlinear models, researchers often choose among a 

number of unattractive alternatives.  Notwithstanding the myriad unsolved problems of state 

persistence (dynamics) which are not considered here, the choice often reduces to one between a 

random effects and a fixed effects specification.  The random effects model requires an 

unpalatable orthogonality assumption - consistency requires that the effects be uncorrelated with 

the included variables.  The fixed effects model relaxes this assumption but is widely recognized 

to suffer from the incidental parameters problem (see Neyman and Scott (1948) and Lancaster 

(2000) - it is inconsistent because the asymptotic variance of the estimator of the main parameters 

is a function of the small and assumed fixed group size.  Apparently, at least in some models that 

have been examined in detail, it is also biased in finite samples.  How serious these problems are 

in practical terms remains to be established - there is only a very small amount of received 

evidence.  A second problem is purely practical.  With current technology, with some exceptions 

noted below, the computation of the model with all its nuisance parameters, with appropriate 

standard errors, appears to be impractical.  But, in a large number of interesting cases, this 

difficulty is only apparent.  Using some well known algebraic results, computation of the 

unconditional fixed effects estimator is quite feasible even in extremely large models. 

 Much of the received wisdom on the fixed effects estimator is derived from known 

results for the linear model which do not carry over to nonlinear models.  (See Maddala (1987) 

and Baltagi (1995).)  The infeasibility of using the results for the linear model, e.g., in the probit 

model, has produced some pessimism about the feasibility of the estimator.  There now exists an 

extensive literature on semiparametric and GMM approaches for some of these panel data models 

with latent heterogeneity (e.g., Honore and Kyriazidou (2000).  Among the practical limitations 

of these estimators are that although they may provide estimators of the primary slope 

parameters, they generally do not provide estimators for the full set of model parameters and thus 
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preclude computation of marginal effects, probabilities or predictions for the dependent variable.  

(Indeed, some estimation techniques which estimate only the slope parameters and only “up to 

scale” provide essentially only information about signs of coefficients and statistical significance 

of variables in the model.).  In contrast, the fixed effects estimator is a full information estimator 

that, under its assumptions, provides results for all model parameters including the parameters of 

the heterogeneity.  Thus, in spite of its several shortcomings, the fixed effects estimator has some 

virtues which suggest that it is worth a detailed look at its properties.  This study will examine the 

behavior of the estimator in a large variety of nonlinear models. 

 While the results in the literature are unambiguous, they are qualitative in nature.  The 

one piece of quantitative empirical evidence is Heckman’s (1981) widely cited Monte Carlo study 

of the probit model in which he found that the small sample bias of the estimator appeared to be 

surprisingly small.  However, his study examined a very narrow range of specifications, focused 

only on the probit model and, (as is crucial for this note), did not, in fact, examine a fixed effects 

model.  Heckman analyzed the bias of the fixed effects estimator in a random effects model – his 

analysis included the orthogonality assumption noted earlier.  In spite of its wide citation, 

Heckman’s results are of limited usefulness for the case in which the researcher contemplates the 

fixed effects estimator precisely because the assumptions of the random effects model are 

inappropriate. Moreover, our results below are sharply at odds with Heckman’s (even in his 

specification).  We begin in Section 2 with a general specification for nonlinear models with fixed 

effects.  Section 3 considers computation of the estimator (mechanical details for the practitioner 

are presented in the appendix).  Section 4 contains a Monte Carlo study of the behavior of the 

estimator.  We first consider the familiar question of asymptotic bias.  We also examine the 

estimated standard errors produced by the estimator   

We note at this point the main statistical conclusions of this paper.  First, save for some 

documented cases, such as the Poisson model in which there actually is no incidental parameters 

problem, the skepticism about the estimator is appropriate.  Save for the tobit model, we find that 
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the estimator is uniformly biased away from zero, and substantially so even when T is fairly 

large.  Second, Heckman’s encouraging results for the probit model appear to be incorrect.  Third, 

the slope estimators in the tobit model do not appear to be affected by the incidental parameters 

problem.  This is an unexpected result, but it must be tempered by a finding that the variance 

estimator is so affected.  The variance estimator in the tobit model is a crucial parameter for 

inference and analysis purposes.  On the other hand, the bias in the variance estimator appears to 

fall fairly quickly with increasing T.  Finally, we find that in all cases in which the expected 

biases in the slope estimators emerges, it is away from zero, but at the same time, the estimated 

standard errors apear to be biased toward zero.  Thus, in practical terms, the problem of incidental 

parameters is compounded.  Some conclusions are drawn in Section 5. 

2.  Models with Fixed Effects 
 

We consider a nonlinear model defined by the density for an observed random variable, 
yit,  

 
f(yit | xi1,xi2,...,xi,Ti) =  g(yit, β′xit  +  αi, θ) 

 
where θ is a vector of ancillary parameters such as a disturbance standard deviation, an 

overdispersion parameter in the Poisson model or the threshold parameters in an ordered probit 

model.  We have narrowed our focus to linear index function models.  For the present, we will 

rule out dynamic effects; yi,t-1 does not appear on the right hand side of the equation.  [See, e.g., 

Arellano and Bond (1991), Arellano and Bover (1995), Ahn and Schmidt (1995), Orme (1999), 

Heckman and MaCurdy (1980)].  This, and multiple equation models, such as VAR's are left for 

later extensions.  (See Holtz-Eakin (1988) and Holtz-Eakin, Newey and Rosen (1988, 1989).)  

Lastly, note that only the current data appear directly in the density for the current yit.  The 

likelihood function for a sample of N observations is 

L  =  1 1 ,),( 'iN T
i t it iit

g y= = + α∏ ∏ ). xβ θ

The likelihood equations, 
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generally do not have explicit solutions for the parameter estimates in terms of the data and must, 

therefore, be solved iteratively.  In principle, maximization can proceed simply by creating and 

including a complete set of dummy variables in the model.  But, at some point, this approach 

becomes unusable with current technology.  What makes this impractical is a nondiagonal second 

derivatives matrix (or some approximation to it) with possibly thousands of rows and columns.  

But, that consideration is misleading, a proposition we will return to presently. 

 The practical issues notwithstanding, there are some theoretical problems with the fixed 

effects model.  The first is the proliferation of parameters already noted.  The second is the 

'incidental parameters problem.'   If β and θ were known, then, the solution for αi would be based 

on only the Ti observations for group i.  This implies that the asymptotic variance for ai is O[1/Ti] 

and, since Ti is fixed, ai is inconsistent.  (Note, unlike other familiar cases, such as ‘simultaneous 

equations bias,’ the estimator is not inconsistent because it estimates some other parameter; it is 

inconsistent because its variance does not converge to zero as the sample size, N, increases.  It is 

consistent in Ti. )  The estimator of β will be a function of the estimator of αi, ai,ML.  Therefore 

bML, MLE of β is a function of a random variable which does not converge to a constant as          

N → ∞, so neither does bML.  There may be a small sample bias as well.  The example is 

unrealistic, but in a binary logit model with a single regressor that is a dummy variable and a 

panel in which Ti = 2 for all groups, Hsiao (1996) shows that the small sample bias is +100%.  

Abrevaya (1997) shows that Hsiao’s result extends to more general binomial logit models as long 

as Ti continues to equal two; our Monte Carlo results below are consistent with this result.  No 

general results exist for the small sample bias if T exceeds 2 or for other models. The 

conventional wisdom is based on Heckman's (1981) Monte Carlo study of a probit model in 

which the bias of the slope estimator in a fixed effects model was toward zero (in contrast to 

Hsiao) and on the order of 10% when Ti = 8 and N = 100.  On this basis, it is often noted that in 
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samples at least this large, the small sample bias is probably not too severe.  Indeed, for many 

microeconometric applications, Ti is considerably larger than this, so for practical purposes, there 

is good cause for optimism.  We will reconsider these effects in the Monte Carlo investigation in 

Section 4. 

3.  Computation of the Fixed Effects Estimator 
 
 In the linear case, regression using group mean deviations sweeps out the fixed effects.  

The slope estimator is not a function of the fixed effects which implies that it (unlike the 

estimator of the fixed effect) is consistent.  There are a few analogous cases of nonlinear models 

that have been identified in the literature.  Among them are the binomial logit model, 

g(yit, β′xit + αi)  =  Λ[(2yit  - 1)(β′xit + αi)] 
 
where Λ(z) = exp(z)/[1+exp(z)]. (See Chamberlain (1980) for the result and Greene (2000, 

Chapter 19) for discussion and practical details.)  In this case, Σtyit is a minimal sufficient statistic 

for αi, and estimation in terms of the conditional density provides a consistent estimator of β.  

Three other commonly used models that have this property are the Poisson and negative binomial 

regressions for count data (see Hausman, Hall, and Griliches (1984)) and the exponential 

regression model for a continuous nonnegative variable, 

g(yit, β′xit + αi)  =  (1/λit)exp(-yit/λit), λit  =  exp(β′xit + αi), yit ≥ 0. 
 
(See Munkin and Trivedi (2000).)  In all these cases, the conditional log likelihood, 
 

( )( )1 2 , 1 1 21
log log , ,...,  , , ,...i

i

N T
c i i i T t it ii

L f y y y y==
= Σ∑ x xi  

 
is a function of β that is free of the fixed effects.  There are other similar models, such as the 

gamma regression model, however these are too few and specialized to serve as standard 

modeling platform.  In the majority of cases of interest to practitioners, including those based on 

transformations of normally distributed variables such as the probit and tobit models, this method 

will be unusable. 

 6



 Heckman and MaCurdy (1980) suggested a 'zig-zag' sort of approach to maximization of 

the log likelihood function, dummy variable coefficients and all.  Consider the probit model.  For 

known set of fixed effect coefficients, α = (α1,...,αN)′, estimation of β is straightforward.  The log 

likelihood conditioned on these values (denoted ai), would be 

log L|a1,...,aN  =   1 1 log [(2 1 ' )i
it iit

N T
i t y a= = Φ − )( +∑ ∑ xβ

 
This can be treated as a cross section estimation problem since with known α, there is no 

connection between observations even within a group.  With given estimate of β (denoted b) the 

conditional log likelihood function for each αi, 

log Li|b =  [ ]1
log (2 1)( )iT

it it it
y z α

=
Φ − +∑  

 
where zit  =  b′xit is now a known function.  Maximizing this function is straightforward (if 

tedious, since it must be done for each i).  Heckman and MaCurdy suggested iterating back and 

forth between these two estimators until convergence is achieved.  We note three problems with 

this approach:  First, there is no guarantee that this back and forth procedure will converge to the 

true maximum of the log likelihood function because the Hessian is not block diagonal.  Whether 

either estimator is even consistent in the dimension of N (that is, of β) even if T is large, depends 

on the initial estimator being consistent, and it is unclear how one should obtain that consistent 

initial estimator.  Second, in any group in which the dependent variable is all ones or all zeros, 

there is no maximum likelihood estimator for αi - the likelihood equation for log Li has no 

solution if there is no within group variation in yit.  This feature of the model carries over to the 

tobit and binomial logit models, as the authors noted and to Chamberlain’s conditional logit 

model and the Hausman et al. estimator of the Poisson model.  In the Poisson and negative 

binomial models cases, any group which has yit = 0 for all t contributes a zero to the log 

likelihood function so its group specific effect is not identified.  Third, irrespective of its 

probability limit, the estimated standard errors for the estimator of β will be too small, again 
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because the Hessian is not block diagonal.  The estimator at the β step does not obtain the correct 

submatrix of the information matrix. 

 Maximization of the log likelihood function can, in fact, be done by ‘brute force,’ even in 

the presence of possibly thousands of nuisance parameters.  The strategy, which uses some well 

known results from matrix algebra is described in the appendix.  Using these results, it is possible 

to compute directly both the maximizers of the log likelihood and the appropriate submatrix of 

the inverse of the analytic second derivatives for estimating asymptotic standard errors.  The 

statistical behavior of the estimator is a separate issue, but it turns out that the practical 

complications are actually surmountable in many cases of interest to researchers. 

 
4.  Sampling Properties of the Fixed Effects Estimator 

 
 The literature contains few specific pieces of evidence on the behavior of this estimator.  

Andersen (1973) and Hsiao (1996) showed that in the binomial logit model with only the 

individual constants and a dummy variable on the right hand side with coefficient equal to 1.0, 

the unconditional maximum likelihood estimator of that coefficient will  exhibit a persistent bias 

of +100% regardless of N.  Heckman’s analysis of the fixed effects probit estimator is 

summarized in Table 1.  For the static case of interest here, his general results for the probit 

model with N = 100 and T = 8 suggest, in contrast to the evidence for the logit model, a slight 

downward bias in the slope estimator.  The striking feature of his results is how small the bias 

seems to be even with T as small as 8.  

We have been unable to replicate any of Heckman’s results.  Both his and our own results 

are shown in Table 1.  Some of the difference can be explained by different random number 

generators.  But, this would only explain a small part of the strikingly different outcomes of the 

experiments and not the direction.  In contrast to Heckman, using his specification, we find that 

the probit estimator, like the logit estimator, is substantially biased away from zero when T = 8.  

Consistent with expectations, the bias is far less than the 100% that appears to appear when T = 2.  
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The table contains three sets of results.  The first are Heckman’s reported values.  The second and 

third sets of results are our computations for the same study.  Heckman based his conclusions on 

25 replications.  To control the possibility that some of the variation is due to small sample 

effects, we have redone the analysis using 100 replications.  The results in the second and third 

row of each cell are strongly consistent with the familiar results for the logit model and with our 

additional results in the next section.  The bias in the fixed effects estimator appears to be quite 

large, and, in contrast to Heckman’s results, is away from zero in all cases.  The proportional bias 

does not appear to be a function of the parameter value. 

Table 1.  Heckman’s Monte Carlo Study of the Fixed Effects Probit Estimator 
Experimental Design: 
Yit  =  σττi  +  βzit  +  εit, i = 1,…,100, t = 1,…,8. 
τi  ~  N[0,1] 
zit  =  0.1t + 0.5zi,t-1  +  Uit,  Uit ~ U[-0.5,0.5], zi0  =  5  +  10.0Ui0 
εit  ~  N[0,1] 
yit  =  1[Yit  >  0] 
(Note, initialization of zit is given in Nerlove (1971).) 
 β=1.0 β=-0.1 β=-1.0 

στ
2 = 3 

0.90a 

1.286b 

1.240c 

-0.10 
-0.1314 
-0.1100 

-0.94 
-1.247 
-1.224 

στ
2 = 1 

0.91 
1.285 
1.242 

-0.09 
-0.1157 
-0.1127 

-0.95 
-1.198 
-1.200 

στ
2= 0.5 

0.93 
1.213 
1.225 

-0.10 
-0.1138 
-0.1230 

-0.96 
-1.199 
-1.185 

aReported in Heckman (1981), page 191. 
bMean of 25 replications 
cMean of 100 replications 

 
 For our purposes, there is an important shortcoming in the design of the foregoing 

experiment.  The underlying model is not a fixed effects model; it is a random effects model.  The 

signature feature of the fixed effects model is correlation between the effects and the included 

variables, and by construction, there is none between τi and zit in the model above.  As such, the 

foregoing does not give evidence on the point for which it is usually cited, that is, the small 

sample bias of the unconditional fixed effects estimator of the fixed effects model.  More to the 
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point, if the researcher knows that the effects are not correlated with the included variables, then a 

random effects approach should be preferable, and the issue at hand becomes whether the normal 

distribution typically assumed is a valid assumption and what are the implications if it is not.  

Current technology provides a variety of useful approaches for random effects and random 

parameters models when it can be assumed that the effects and the included variables are 

orthogonal. 

In this note, we will examine the behavior of the estimator in somewhat greater detail.  

We have as yet no evidence that Hsiao’s result carries over to other models.  In particular, we will 

examine two aspects of the fixed effects estimator: 

•   The small sample bias. 

•  Since the estimator is biased, it follows that the estimated asymptotic covariance 

matrix is as well.  We will examine the extent to which the analytical estimator of the 

sampling variance agrees with the empirical, sampling variance of the estimator. 

 We will examine six index function models, the binomial logit, binomial probit, ordered 

probit, tobit, Poisson regression and exponential regression.  These include binary, multinomial, 

censored/continuous, count, and nonnegative dependent variables.  In the logit and Poisson cases, 

there exist sufficient statistics for the fixed effects parameters, so we can compare the sampling 

distributions of the two estimators.  (In the Poisson case, the full fixed effects estimator is, in fact, 

consistent.  We will return to this point below.) The experiment is designed as follows:  All 

models are based on the same index function: 

 wit  =  αi  +  βxit  +  δdit, β = δ = 1, 
where 
 xit  ~  N[0,12] 
 
 dit  =  1[xit  +  hit  >  0]  where  hit  ~  N[0,12] 
 
 2 =  , ~ [0,1 ]i i i iT x a a Nα +  
 
Thus, in all cases, we estimate the two coefficients on xit and dit, where both coefficients equal 

1.0, and the fixed effects (which are not used or presented below).  The correlations between the 
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variables are approximately 0.7 between xit and dit , 0.4 between αi and xit and 0.2 between αi and 

dit.  The data generating processes examined are 

 Probit: yit  =  1[wit  +  εit  >  0],   
 
 Ordered Probit: yit  =  1[wit  +  εit  >  0] + 1[wit  +  εit  >  3],   
 
 Logit: yit  =  1[wit  +  vit  >  0], vit  =  log[uit/(1-uit)],  
 
 Tobit yit  =  1[cit > 0] × cit, cit  =  wit + εit,  
 
 Poisson:  yit  =  j ∋ F(j|λit) < uit < F(j+1|λit), F(z|λit) = Poisson CDF, λit  =  exp(0.2wit), 
 
 Exponential:  yit  =   λitlog uit, λit  =  exp(0.2wit), 
 
where εit ~ N[0,12] denotes a draw from the standard normal population and uit ~ U[0,1] denotes a 

draw from the standard uniform population.  Models are fit with T = (2, 3, 5, 8, 10, 20) and with 

N = (100, 500, 1000).  (Note that this includes Heckman’s experiment.)  Each model 

specification, group size, and number of groups is fit 200 times with random draws for εit or uit.  

The conditioning data, xit, dit and αi are held constant. The full set of parameters, including the 

dummy variable coefficients, are estimated using the results in the appendix. For each of the 

specifications listed, properties of the sampling distribution are estimated using the 200 

observations on β and δ.   

4.1. Small Sample Bias 
 
 Table 2 lists the means of the empirical sampling distribution for the six different 

estimators for the samples of 1,000 individuals.  Thus, the influence of N should be minimized - 

these are large samples in this dimension.  At this point, we are only interested in the mean of the 

sampling distribution as a function of T, so we use only the results based on the largest (N) 

samples.  Note that in two cases, the conditional logit and conditional Poisson, the true bias is 

zero, as the estimator is not a function of the fixed effects.  The bias of the fixed effects estimator 

in the binary and ordered choice models is large and persistent.  Even at T = 20, we find fairly 

large biases.  With T = 2, the Anderson/Hsiao result is clearly evident.  Increasing the sample size 
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from 100 to 1,000 did little to remove this effect, but the increase in group size from 2 to 20 has a 

very large effect.  We conclude that this is a persistent bias that can, indeed, be attributed to the 

“small T problem.” 

One quite striking effect in the tables is that it appears that the tobit fixed effects 

estimator is not biased at all.  The result is all the more noteworthy in that in each data set, 

roughly 40 - 50% of the observations are censored.  If none of the observations were censored, 

this would be a linear regression model, and the resultant OLS estimator would be the consistent 

LSDV estimator (by virtue of the Frisch-Waugh theorem).  But, with roughly 40% of the 

observations censored, this is a quite unexpected result.   However, the average of the 200 

estimates of σ - the true value is also 1.0 - given in each cell for the tobit model shows that the 

incidental parameters problem shows up in a different place here.  The estimated standard 

deviation is biased downward, though with a bias that does diminish substantially as T increases. 

This result is not inocuous.  Consider estimating the marginal effects in the tobit model with these 

results.  In general in the tobit model, for any variable in the model, δk = ∂E[yi|xi]/∂xik = 

βk×Φ(β′xi/σ) where Φ(z) is the cdf of the standard normal distribution.  This is frequently 

computed at the sample means of the data.  Based on our experimental design, the overall means 

of the variables would be zero for αi and xi and 0.5 for di.  Therefore, the scale factor estimated, 

using the true values of the slope parameters as they are (apparently) estimated consistently, 

would be Φ(0.5/σ̂ ).  The ratio of this value computed at the average estimate of σ to the value 

computed at σ = 1 is given in the third row of each cell in the table, where it can be seen that for 

small T, there is a substantive upward bias in the marginal effects.  On the other hand, at T = 8 

(Heckman’s case), the tobit model appears to be essentially consistently estimated in spite of the 

incidental parameters issue. 

The exponential and Poisson models displays no bias whatsoever.  These models can be 

orthogonalized in the fashion derived by Lancaster (1997) so this is to be expected.  This is a  
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useful practical result.  In all these models, it is useful to have a full set of parameters for 

prediction and for analysis of marginal effects.  The payoff to orthogonalizing the likelihood or 

basing estimation on the sufficient staitsitics in these cases is small in practical terms, and comes 

at the cost of losing the estimated fixed effects, themselves, needed for this second round of 

calculations.  The brute force computation for these models is actually straightforward using the 

results in the appendix. 

Table 2. Means of Empirical Sampling Distributions, N = 1000 Individuals Based on 200 
Replications.  Table entry is β,δ. 

 T=2 T=3 T=5 T=8 T=10 T=20 
    β         δ    β         δ    β         δ    β         δ    β         δ    β         δ 

Logit 2.020,  2.027 1.698,  1.668 1.379,  1.323 1.217,  1.156 1.161,  1.135 1.069,  1.062 

Logit-Ca 0.994, 1.048 1.003,  0.999 0.996,  1.017 1.005,  0.988 1.002,  0.999 1.000,  1.004 

Probit 2.083,  1.938 1.821,  1.777 1.589,  1.407 1.328,  1.243 1.247,  1.169 1.108,  1.068 

Poisson 0.826,  0.761 0.978,  0.960 0.998,  0.995 0.991,  1.014 0.997,  1.006 1.003,  0.998 

Poisson-Cb 0.987,  1.018 0.995,  0.997 0.993,  1.015 1.002,  0.996 0.995,  1.015 1.000,  0.998 

Tobit 
     σ 
     scale 

0.981,  0.822 
0.6444 
1.13 

0.985,  0.991 
0.7675 
1.07 

0.997,  1.010 
0.8642 
1.04 

1.000,  1.008 
0.9136 
1.02 

1.001,  1.004 
0.9282 
1.01 

1.008,  1.001 
0.9637 
1.02 

Exponential 0.999,  0.962 0.998,  0.998 0.991,  0.993 0.998,  1.008 0.994,  1.012 0.997,  1.001 

Ord. Probit 2.328,  2.605 1.592,  1.806 1.305,  1.415 1.166,  1.220 1.131,  1.158 1.058,  1.068 
aEstimates obtained using the conditional likelihood function – fixed effects not estimated. 
bEstimates obtained using Hausman et al’s conditional estimator – fixed effects not estimated. 
 

4.2.  Estimates of the Asymptotic Standard Errors 
 
 In all the cases examined, a central issue is the extra variation induced in the parameter 

estimators by the presence of the inconsistent fixed effect estimators.  Since the estimator, itself, 

is inconsistent, one should expect distortions in estimators of the asymptotic covariance matrix.  

Table 3 lists, for each model, the estimated asymptotic standard errors computed using the 

estimated second derivatives matrix and the empirical standard deviation based on the 200 

replications in the simulation, using the N=100, T = 8 (Heckman’s) group of estimators.  The 

analytic estimator is obtained by averaging the 200 estimated asymptotic covariance matrices, 

then computing the square roots of the diagonal elements of the average matrix.  The empirical 

estimator is the standard deviation of the 200 estimates obtained in the simulation.  The latter 

should give a generally accurate assessment of the variation of the estimator while the former is, 
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itself, an estimator which is affected by the incidental parameters problem.  There is clearly some 

downward bias in all the estimated standard errors.  The implication is that as a general result, test 

statistics such as the Wald statistics (t ratios) will tend to be too large when based on the analytic 

estimator of the asymptotic variance – estimates are biased upward and apparently, standard 

errors are slightly biased downward.   The two loglinear models seem to be unaffected by any of 

this; the empirical standard deviations and the analytic standard errors are essentially the same, 

again, as is to be expected.. 

Table 4.  Estimated Standard Errors and Sample Standard Deviations of  
   Sample Estimates 

 
 Analytical Empirical 
Model β δ β δ 
Probit 0.2234 0.3008 0.2606 0.3254 
Logit 0.2324 0.3697 0.2627 0.4312 
Tobit 0.0692 0.1296 0.0800 0.1386 
Ordered Probit 0.1281 0.2088 0.1487 0.2392 
Poisson 0.2550 0.5290 0.2216 0.5228 
Exponential 0.6765 1.2710 0.6483 1.3436 
 

5.  Conclusions 
 
 The computational difficulties and the inconsistency caused by the small Ti problem have 

made the fixed effects model unattractive and seem to have been a major deterrent.  For example, 

after a lengthy discussion of a fixed effects logit model, Baltagi (1995)  notes that "... the probit 

model does not lend itself to a fixed effects treatment."  In fact, the fixed effects probit model is 

one of the simplest applications considered.1  Moreover, modern data sets, particularly in finance, 

have quite large group sizes, often themselves larger than the N in samples other researchers have 

used for fitting equally complex models.  The practical issues may well be moot, but the 

methodological question of the incidental parameters problem remains.  Still, there is a 

                                                           
1Citing Greene (1993), Baltagi (1995) also remarks that the fixed effects logit model as proposed by 
Chamberlain (1980) is computationally impractical with T > 10.  This (Greene) is also incorrect.  Using a 
result from Krailo and Pike (1984), it turns out that Chamberlain's binomial logit model is quite practical 
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compelling virtue of the fixed effects model as compared to the random effects model.  The 

assumption of zero correlation between latent heterogeneity and included, observed 

characteristics that is necessary in the random effects model is particularly restrictive.   

 The Monte Carlo results obtained here suggest a number of conclusions: 

•  As widely believed, the fixed effects estimator shows a large finite sample bias in discrete 

choice models when T is very small.  The bias is persistent, but it does drop off rapidly as T 

increases to 3 and more.  Heckman’s widely cited result for the probit model appears to be 

incorrect, however.  The discrepancy does not appear to be a function of the mechanism used 

to generate the exogenous variables.  Heckman used Nerlove’s (1971) dynamic model whereas 

we used essentially a random cross section.  Results were similar for the two cases. 

•  The estimator shows essentially no bias in the slope estimators of the tobit model.  But, the 

small sample bias appears to show up in the estimate of the disturbance variance. 

•  All the estimators save for the Poisson and exponential appear to underestimate the correct 

asymptotic variance. Thus, inference based on the conventional standard errors could be 

problematic.  

Finally, at several points in the preceding, it was noted that one purpose for pursuing this 

estimator is that for better or worse, it does provide estimates of the fixed effects parameters.  

How good these estimators might be is an unanswered question, since, in the end, each is a 

function of only T observations.  Superficially, one might argue that some information is better 

than none.  On the other hand, for purposes of analyzing marginal effects, as suggested in the 

appendix, the average of these estimators might be useful and, depending on the assumptions 

underlying the generation of the effects, might well be a consistent (in 1/N) estimator of a useful 

quantity.  This does not imply, however, that one should simply ignore the issue and fit the 

                                                                                                                                                                             
with Ti up to as high as 100.   See, also, Maddala (1987).  The Monte Carlo study done here involves fitting 
Chamberlain’s model with T = 20. 
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original model with one constant.  The fixed effects linear regression model can provide 

sufficient guidance on how that would affect the resulting estimates. 
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Appendix: Computation of the Fixed Effects Estimator in Nonlinear Models 
 
 Many of the models we have studied involve an ancillary parameter vector, θ.  No 

generality is gained by treating θ separately from β, so at this point, we will simply group them in 

the single parameter vector γ = [β′,θ′]′.   

Denote the gradient of the log likelihood by 
 

gγ  =  
γ∂

∂ Llog   =   
1 1

log ( , , , )iN T it it i
i t

g y α
= =

∂
∂∑ ∑ xγ
γ

 (a Kγ×1 vector) 
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i

L
α∂
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1

log ( , , x , )iT it it i
t

i

g y α
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∂∑ γ

 (a scalar) 

 
gα  =  [gα1, ... , gαN]′ (an N×1 vector) 

 
g  =  [gγ′, gα′]′ (a (Kγ+N)×1 vector). 

 
The full (Kγ+N)× (Kγ+N) Hessian is 
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Newton's method of maximizing the log likelihood produces the iteration 
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where subscript 'k' indicates the updated value and 'k-1' indicates a computation at the current 

value.  Let Hγγ denote the upper left Kγ×Kγ submatrix of H-1 and define the N×N matrix Hαα and 

Kγ×N Hγα likewise.  Isolating , then, we have the iteration γ̂

 
γ̂ k  =  γ̂ k-1  -  [Hγγ gγ  +  Hγα gα]k-1  =  γ̂ k-1  +  ∆γ 

 
Using the partitioned inverse formula [e.g., Greene (2003, equation A-74)], we have 
 

Hγγ  =  [Hγγ  -  Hγα
-1
ααH Hαγ]-1. 

 
Since Hαα is diagonal, 
 

Hγγ  =  
1

1 '1
−
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Thus, the upper left part of the inverse of the Hessian can be computed by summation of vectors 

and matrices of order Kγ.  Once again using the partitioned inverse formula,  

 
Hγα  =  -Hγγ Hγα -1

ααH  

 
Combining terms, we find that 
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Turning now to the update for α, we use the same results for the partitioned matrices.  Thus, 
 

∆α  =  - [Hαα gα  +  Hαγ gγ]k-1. 
 
Using Greene's (A-74) once again, we have 
 

Hαα  =   (I + H-1
ααH αγHγγHγα

-1
ααH ) 

 
Hαγ  =  -Hαα Hαγ

-1
γγH   =  - H-1

ααH αγHγγ 
 
Therefore,  
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 ∆α =  - H (I + H-1
αα αγHγγHγα
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ααH αγHγγHγα
-1
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  =  - H (g-1
αα α  +  Hαγ∆γ). 

 
Since Hαα is diagonal, 
 

∆αI  =  - ( )γ∆'1
ii

ii
g

h γα + h . 

Neither update vector requires storage or inversion of a (Kγ+N)×(Kγ+N) matrix; each is  a 

function of sums of scalars and Kγ×1 vectors of first derivatives and mixed second derivatives.2  

The practical implication is that calculation of fixed effects models is a computation only of order 

Kγ.  Storage requirements for α and ∆α are linear in N, not quadratic.  Even for huge panels of 

tens of thousands of units, this is well within the capacity of even modest desktop computers of 

the current vintage.   

 The estimator of the asymptotic covariance matrix for the MLE of γ is -Hγγ, the upper left 

submatrix of -H-1.  Since this is a sum of Kγ ×Kγ matrices, the asymptotic covariance matrix for the 

estimated coefficient vector is easily obtained in spite of the size of the problem.  The asymptotic 

covariance matrix of a is 
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while 
 Asy.Cov[c,a′]  =  Asy.Var[c] Hγα

-1
ααH  

so 

                                                           
2 The iteration for the slope estimator is suggested in the context of a binary choice model in Chamberlain 
(1980, page 227).  A formal derivation of ∆γ and ∆α was given to the author by George Jakubson of Cornell 
University in an undated memo, "Fixed Effects (Maximum Likelihood) in Nonlinear Models."  A similar 
result appears in Prentice and Gloeckler (1978).    
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 Asy.Cov[c,ai]  =  Asy.Var[c]× i

iih
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h
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 To illustrate the preceding, consider the binomial probit (and logit) model(s). With trivial 

modification, the results will extend to many other models, as shown below.)3  For a binomial 

probit model with dependent variable zit,  

 
 g(zit, β′xit + αi)  =  Φ[(2zit  - 1)(β′xit + αi)]  =   Φ(qit rit)  =   Φ(ait) 
and 
 log L  =  1 1log [ ' )]iN T

iti t q it iα= = Φ ( +xβ∑ ∑ . 
 
Define the following first and second derivatives of log g(zit, β′xit + αi): 
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Φ

,  ∆it  =  -ait λit  -  λit
2,  -1 < ∆it < 0.   

The derivatives of the log likelihood for the probit model are 
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For convenience, let ∆i = hii and 
 
 ix   =  hγi / hii  =  

1 1
  /  i iT T

it it itt t= =
∆ ∆∑ ∑x  

 
Note that ix  is a weighted within group mean of the regressor vectors. 

 The update vectors and computation of the slope and group effect estimates follows the 

template given earlier.  After a bit of manipulation, we find the asymptotic covariance matrix for 

the slope parameters is 

 Asy.Var[bMLE]  =  [-Hγγ]-1-  =  - ( )( ){ } 1( )

1 1

N T i
it it i it ii t

−

= =
 ∆ − − ∑ ∑ x x x x  

                                                           
3 We assume in the following that none of the groups have yit always equal to 1 or 0.  In practice, one 
would have to determine this as part of the estimation effort.  It should be noted for the practitioner that this 
condition is not trivially obvious during estimation.  The usual criteria for convergence, such as small ∆α 
will appear to be met even in the presence of degenerate groups while the associated αi is still finite. 
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The resemblance to the 'within' moment matrix from the analysis of variance context is notable 

and convenient.  Inserting the parts and collecting terms produces 

∆γ  = ( )( ){ } 1

1 1
iN T

it it i it ii t

−

= =
 ∆ − − ∑ ∑ x x x x  × ( ){ }( )
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Denote the matrix in the preceding as  
 
 V =  -[Hγγ]-1  =  Asy.Var[bMLE]. 
 
Then, 

 Asy.Cov[ai,aj] =  
( ) ( ) +     =     +  i j

i i

i j i j s− = − =′
∆ ∆

1 1x Vx ij  

and 
 Asy.Cov[bMLE,ai] =  -V ix . 
 
Each of these involves a moderate amount of computation, but can easily be obtained with 

existing software and, most important for our purposes, involves computations that are linear in N 

and K.  We note as well that the preceding extends directly to any other simple index function 

model, such as the binomial logit model [change derivatives λit to (1- Λit) and ∆it to -Λit(1 - Λit) 

where Λit is the logit CDF] and the Poisson regression model [replace λit with (yit - mit) and ∆it 

with -mit where mit = exp(β′xit + αi)].  Extension to models that involve ancillary parameters, such 

as the tobit model, are a bit more complicated, but not excessively so. 

 The preceding provides the estimator and asymptotic variances for all estimated 

parameters in the model.  For inference purposes, note that the unconditional log likelihood 

function is computed.  Thus, a test for homogeneity is straightforward using the likelihood ratio 

test.  Finally, one would normally want to compute marginal effects for the estimated probit 

model.  The conditional mean in the model is 

 
 E[zit | xit]  =  Φ(β′xit + αi) 
 
so the slopes in the model are 
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In many applications, marginal effects are computed at the means of the data.  The heterogeneity 

in the fixed effects presents a new complication.  One might compute the function at the means of 

the data and the sample mean of the fixed effects estimators.  Thus, the estimator would be 
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In order to compute the appropriate asymptotic standard errors for these estimates, we need the 

asymptotic covariance matrix for the estimated parameters.  The asymptotic covariance matrix for 

the slope estimator is already in hand, so what remains is Asy.Cov[b, a ] and Asy.Var[ a ].  For 

the former,  

 AsyCov[b, a ] =  
1

1 N
iiN =

−
= −∑ Vx Vx  

while, by simple summation, we obtain 
 

 Asy.Var[ a ] =  2  
1 1

1 1   +  N N N
iji i j

i

s
N = = =

 −
 ∆ 
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These would be assembled in a (K+1)×(K+1) matrix, say V*.  The  asymptotic covariance matrix 

for the estimated marginal effects would be 

 
 Asy.Var[δ]  =  GV*G′ 
 
where the K and one columns of G are contained in 

G =  ) ) | ′ ′ ′ ′α − + α − + α x I x x   x(β (β β (β β  )φ +

 These results extend to any simple index function model including several discrete choice 

and limited dependent variable models.  Likewise, the derivation for the marginal effects is 

actually generic, and extends to any model in which the conditional mean function is of the form 

m(β′xit + αi). 
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