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Abstract:  The normal-gamma stochastic frontier model was proposed in Greene 
(1990) and Beckers and Hammond (1987) as an extension of the normal-
exponential proposed in the original derivations of the stochastic frontier by 
Aigner, Lovell, and Schmidt (1977).  The normal-gamma model has the virtue of 
providing a richer and more flexible parameterization of the inefficiency 
distribution in the stochastic frontier model than either of the canonical forms, 
normal-half normal and normal-exponential.  However, several attempts to 
operationalize the normal-gamma model have met with very limited success, as 
the log likelihood is possesed of a significant degree of complexity.  This note 
will propose an alternative approach to estimation of this model based on the 
method of simulated maximum likelihood estimation as opposed to the received 
attempts which have approached the problem by direct maximization. 
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1.  Introduction 
 

The stochastic frontier model was proposed (nearly simultaneously by researchers 
on three continents) in 1977 by Aigner, Lovell and Schmidt (1977), Meeusen and van den 
Broeck (1977) and Battese and Corra (1977).  The original form of the model, 

 
y  =  ββββ′′′′x  +  v  -  u 

 
where ββββ′′′′x + v constitute a conventional regression model and u is a one side disturbance 
that  is distributed either as half normal or exponential, has stood the test of nearly 25 
years as the workhorse of the literature on frontier estimation.  Notwithstanding the 
original model's longevity and distinguished service record, researchers have proposed 
many variants of the model in attempts to generalize the distribution of the inefficiency 
distribution, f(u). 

The normal-gamma stochastic frontier model was proposed in Greene (1990), 
Beckers and Hammond (1987) and Stevenson (1990) as an extension of the normal-
exponential proposed in the original derivations of the stochastic frontier by Aigner, 
Lovell, and Schmidt (1977).  The normal-gamma model provides a richer and more 
flexible parameterization of the inefficiency distribution in the stochastic frontier model 
than either of the canonical forms, normal-half normal and normal-exponential.  
However, several attempts to operationalize the normal-gamma model have met with 
very limited success, as the log likelihood is possesed of a significant degree of 
complexity.  Greene (1990) attempted a direct, but crude maximization procedure which, 
as documented by Ritter and Simar (1997) was not sufficiently accurate to produce 
satisfactory estimates.  (Ritter and Simar concluded from their work that even an accurate 
estimator of this model would suffer from significant identification problems.)  Stevenson 
(1980) made note of the difficulties of estimation early on and proposed limiting attention 
to the Erlang from (noted below), which is a significant restriction of the model.  Beckers 
and Hammond (1987) derived a form of the log likelihood which showed some potential, 
but, in the end, remained exceedingly complicated and was never operationalized.  We 
note in passing at this point the work of Tsionas (2000), who made considerable progress 
on the model in a Bayesian framework, but provided estimates of the posterior 
distribution of u, rather than direct estimation of the parameters.  This note will confine 
attention to classical, parametric analysis of the model. 

We will propose an alternative approach to estimation of this model based on the 
method of simulated maximum likelihood estimation as opposed to the received attempts 
which have approached the problem by direct maximization.  The previous work on this 
model has approached the estimation problem by direct maximization of what turns out 
to be a very complicated log likelihood function.  As shown below, the log likelihood 
function for the normal-gamma model is actually the expectation of a random variable 
which can be simulated.  This suggests the method of simulated maximum likelihood as a 
method of estimation. 

In Section 2 below, we will briefly review the modeling framework for the 
stochastic frontier model leading to the normal-gamma model.  Section 3 will analyze the 
problem of maximizing the log likelihood function.  The simulated log likelihood 
function is derived, then two practical aspects of the estimation process are presented.  
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First, we note a useful method of producing the necessary random draws for the 
simulation - the model requires simulation of draws from a truncated distribution, which 
is, itself, a significant complication.  Second, we introduce a new tool which has proved 
very useful in the simulated likelihood maximization of models for discrete choice, the 
Halton draw.  Halton draws provide a method of dramatically speeding up the process of 
maximization by simulation.  A brief application of the technique is presented in Section 
4.  Some conclusions are drawn in Section 5. 
 
2.  The Stochastic Frontier Model 
 
 The motivation for and mechanical details of estimation of the stochastic frontier 
model have appeared at many places in the literature, so it is not necessary to reiterate 
them here.  For further details, the reader is referred, for example, to one of the many 
surveys on the subject, such as Kumbhakar and Lovell (2000). In this section, we will 
recall the aspects of the model that appear in the results below.   

For convenience, we suppress the observation subscripts that denote an observed 
sample of N observations, i = 1,...N.  The stochastic frontier model is 
 
 y   =  ββββ′′′′x  +  ε 
 
 ε   =  v  -  u 
 
 v   ~  N[0,σv

2] 
 
 u   ≥  0, with continuous density, f(u | θθθθ), where θθθθ is a vector of parameters. 
 
The objective of estimation is ββββ, θθθθ,σv

2 then u.  As a practical matter, the firm specific 
inefficiency, u is the ultimate objective of the estimation.  As has been widely 
documented, however, this is not feasible.  Jondrow, Materov, Lovell, and Schmidt 
(1982) suggested the feasible alternative 
 
  E[u|ε]   =  g(ε, θθθθ) 
 
which can be estimated using the estimated parameters and the observed data.  
[Properties of this estimator have been explored, e.g., by Horrace and Schmidt (1996).] 
 The received literature has relied on two specific formulations of the inefficiency 
distribution, 
 
 half normal:  u  =  |U|, U ~ N[0,σu

2], 
and 
 exponential f(u)  =  θexp(-θu), θ > 0. 
 
As noted, the parameters of the distributions are of secondary importance in the 
estimation process.  What is actually of greatest interest is the inefficiency component of 
the underlying model and estimation of values that will enable the comparison of 
individuals in the sample.  The Jondrow, et al. formulas for the two models suggested are 
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 E[u|ε]   =  σλ/(1 + λ2) [φ(ελ/σ) / {1-Φ(ελ/σ)}  -  ελ/σ]. 
  
where 
 ε =  y  -  ββββ′′′′x, 

 λ =  σu / σv, 

 σ =  22
vu σ+σ , 

 
 φ(t) and Φ(t)  =  standard normal density and distribution functions, respectively, 
 
for the normal-half normal model and 
 
 E[u|ε]   =  z  +  σvφ(q/σv) / Φ(q/σv) 

 q   =  ε - θσv
2. 

 
for the normal-exponential model.   

The appeal of these two distributions is their known and quite straightforward 
closed form.  See, e.g., the original paper by Aigner et al. (1977) or the survey by 
Kumbhakar and Lovell (2000).  Many extensions have been proposed which layer deeper 
parameterizations on the mean and variance components of the half normal random 
variable, such as replacing the zero mean in the half normal distribution with a 
regression, 
 
 E[U|z]  =  δδδδ′′′′z. 
 
or adding heteroscedasticity in the variances, as in 
 
 σv

2  =  exp( αααα′′′′h). 
 
[Recent extensive surveys which discuss these are Coelli et al (1997) or Kumbhakar and 
Lovell (2000).]  However, even with these extensions, the normal-half normal has 
remained the workhorse of the literature.  
 
3.  The Normal-Gamma Stochastic Frontier Model 
 
 The normal-gamma frontier model provides an extension to the normal-
exponential model; 
 

f(u)  =  θP/Γ(P) exp(-θu) uP-1. 
 
This distribution provides a more flexible parameterization of the distribution.  Figure  1 
below illustrates a case in which the exponential and gamma variates both have mean 1, 
and the shape paremeter of the gamma density is P = 1.5.  In the exponential model, θ = 
1, while in the gamma model, θ = 1.5.  The value of P larger than 1 allows the mass of 
the distribution to move away from zero - values of P less than one produce densities that 



 

resemble the exponential distribution.  As can be seen, the prior assumption of a value of 
P (e.g., 1) amounts to a substantive assumption about the distribution of inefficiencies in  
the population. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          F
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igure 1.  Illustrative Densities for Gamma and Exponential Models 
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3.1.  Log Likelihood for the Normal - Gamma Stochastic Frontier Model 
 
 The log likelihood function for the normal-gamma model is derived in Greene 
(1990) and in a different form in Beckers and Hammond (1987).  We will proceed 
directly to the end result here.  For the normal-exponential (NE) model, 
 

log  LNE = N{logθ  +  ½ θ2}  + � =
N
i 1

{θεi  +  logΦ[-(εi/σv  +  θσv)]} 
 
where   iii y x'ββββ−=ε εi.  The  log likelihood for the normal-gamma (NG) model is that for 
the normal-exponential model plus the term which has complicated the analysis to date; 
 

log LNG =  log LNE +  N[(P-1)logθ - logΓ(P)] +  � =
N
i 1

logh(P-1,εi) 

 h(r,εi) =  

dz

v
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Note if P = 1, then h(r,εi)  = 1 and logh(r,εi)  = 0 which returns the log likelihood for the 
exponential model 
 



 7

3.2.  The Simulated Log Likelihood 

In principle, the parameters of the model are estimated by maximizing the log 
likelihood function.  The 'problem' that has hetetofore complicated the matter is 
computing h(P-1,εi).   Stevenson simplified the problem by suggesting the Erlang form, 
that is the cases with integer P.  This does produce a simpler model, but drastically 
restricts the model.  Beckers and Hammond reformulated the function in terms of  a 
series of Pochammer symbols. (The Pochammer symbol is ax = Γ(a+x)/Γ(a).  Accurate 
computation when x is small relative to a requires special routines.)  While the Beckers 
and Hammond (1987) formulation did provide a complete (if not closed) functional form 
for the integral, it was not operationalized   Greene's original application of the model 
used a very crude approximation to the integral based on Simpson's rule and the areas of 
trapezoids.  Simar showed in two later papers that this approach was insufficiently 
accurate.  Simar's results might have implied a full implementation, however he did not 
do the analysis from that viewpoint, so a method of proceeding for the practitioner 
remains to be developed.  The purpose of this note is to suggest such a procedure. 

We base an alternative approach on the result that, as can be seen by inspection, 
h(r,εi) is the expectation of a random variable; 
 

h(r,εi) =  E[zr | z ≥ 0]  where z ~ N[µi, σv
2] and µi  =  -εi - θσv

2. 

 
In words, h(r,εi) is the expected value of zr where z  has a truncated at zero normal  
distribution with underlying mean µi and variance σv

2.  We propose to estimate h(r,εi) by 
using the mean of a sample of draws from this distribution.  For given values of (i.e., 
conditioned on) εi and µi (i.e., yi, xi, ββββ, σv, θ, r), by the Lindberg-Levy variant of the 
central limit theorem [see Greene(2000)], h(r,εi)  would be consistently estimated by 
 

       r
iq

Q
q z

Q
i ∑=

∧
=1

1h   

where ziq is a random draw from the truncated normal distribution with mean parameter 
µi and variance parameter σv.  (The truncated normal distribution has finite moments of 
all orders, so this is an application of the most narrow version of the central limit 
theorem.)  We propose, then, to maximize the simulated log likelihood function 

log  LNG,S  =  log L(exponential) + N[(P-1)logθ - logΓ(P)] +  ∑ =
N
i 1

log 
∧
h (P-1,εi) 

 
(Properties of this method of maximum likelihood estimation are discussed elsewhere, 
such as in the November, 1994 symposium in the Review of Economics and Statistics. 
The techniques has been widely used in estimation of multinomial probit models (see the 
aforementioned symposium) and in estimation of discrete choice models with random 
parameters (see Train (Revelt and 1999) for example). 
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3.3.  Constructing the Simulated Log Likelihood Function 
 
 We now consider two practical issues, generating the random draws from the 
truncated distribution and the prior problem of producing the primitive draws for the 
simulation. 
 Computing the simulated log likelihood function will require Q draws from the 
truncated normal distribution for each observation.  In principle, these can be drawn by 
the simple rejection method.  Draws are taken from an untruncated distribution and 
rejected until a draw from  the desired region is obtained.  The problems with this 
approach (notwithstanding its raw inelegance) are that it can require huge numbers of 
draws if the desired region is near the tail of the underlying distribution, and, most 
importantly for maximm simulated estimation likelihood, has the result that different 
draws will be used for different computations of the log likelihood function.  As such, the 
simulated log likelihood will no longer continuous be a continuous function of the 
parameters.  The iterations will never converge.  An alternative method used, e.g., in 
Gewekem Keane, and Runkle (1994) is a superior approach:  This method requires only a 
single draw; the procedure is carried out as follows:  Let  
 

T  = the truncation point. 

µ = the mean of untruncated distribution 

σ = the standard deviation of untruncated distribution  

 PL =  Φ[(T  -  µ) / σ] 

 F = a draw from the standard continuous uniform distribution U[0,1] 

and 
 z   =  µ + σΦ-1[PL  +  F×(1 - PL)] 
Then,  
 z =  the draw from the desired truncated distribution. 
 
For implementing Geweke's method to compute h(r,ε), we have the following: 
 
 T = 0, 

 εi =  yi  -  ββββ′′′′xi, 

µi  =  - εi  -  θσv
2, 

 σ =  σv,    

 PL =  Φ[ (εi  +  θσv
2 )/σv ]  =  Φ(-µi/σ). 
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Collecting all terms, we have the simulated log likelihood function: 

   Log  L =  N{logθ  +  ½ σv
2θ2}  + ∑ =

N
i 1

{θεi  +  logΦ(µi/σv)} +  N[(P-1)logθ -logΓ(P)] 

+  ∑ =
N
i 1

log
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The simulated log likelihood function is a smooth continuous function of the parameters, 
[ββββ′′′′, σv, θ, P].  Derivatives are fairly simple as well.  (They are presented in the 
Appendix.).  Conventional maximization methods such as DFP or BFGS can be used for 
the optimization.  We have used the BHHH (outer product of gradients) estimator to 
compute the asymptotic covariance matrix of the simulated maximum likelihood 
estimator. 

    For maximizing the simulated log likelihood we emphasize that the simulation 
is over Fiq  draws from the standard uniform distribution.  Use Q points for the 
simulation.  In order to achieve continuity, it is necessary to use the same set of draws, 
[Fi1,Fi2,...,FiQ], for every computation.  Every sum over q = 1,...,Q uses the same set of 
random draws. (Each observation has its own unchanging vector of draws.)  How this is 
done by researchers who employ this method varies from one application to another.  
Ruud and McFadden (1994) and Bhat (1999) recommend maintaining a fixed, indexed  
reservoir of  random draws.  For our simulations, we have, instead, controlled the draws 
by associating with each individual observation in the sample a unique seed for the 
random number generator, and restarting the generator at that value for each observation 
as needed.  In connection to the point noted in the next section, we note that this method 
is slightly more time consuming than the fixed pool approach.  But, it requires no 
additional computer memory while the fixed pool method will be profligate with memory 
when analyzing a large sample and using a large number of draws for the simulation. 
 
3.4.  Efficient Computation of the Simulated Log Likelihood Function 
 
 For implementation, there remains the practitional consideration of how best to 
obtain the underlying random draws, Fiq, from the U[0,1] distribution that drive the 
simulation.  We consider two issues, how many draws to obtain and how to create them.  
On the first point, the literature varies.  The glib advice, "the more the better," is not 
helpful when time becomes a consideration and, in fact, the marginal benefit of additional 
draws eventually becomes nil.  Again, researchers differ, but received studies seem to 
suggest that several hundred to over 1,000 are needed.  [See Bhat (1999), for example.] 
The second consideration concerns how to obtain the draws.  For most practitioners, the 
conventional approach amounts to relying on a random number buried within, say, 
Gauss, under the assumption that the draws it produces are truly random by the standards 
of received tests of randomness.   A recently emerging literature [see, e.g., Bhat (1999) or 
Revelt and Train (1999), based on work in numerical analysis, suggests that this view of 
the process neglects some potentially large gains in computational efficiency.  An 
alternative approach based on Halton draws (derived below) promises to improve the 
computations of simulated likelihoods such as ours. 
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 The Halton sequence of draws is based on an 'intelligent' set of values for the 
simulation.  The process is motivated by the idea that true randomness is not really the 
objective in producing the simulation.  Coverage of the range of the variation with a 
sequence of draws that is uncorrelated with the variables in the model is the objective - 
the simulation is intended, after all, to estimate an integral, that is, an expectation. 
Numerical analysts have found that a small number of Halton draws is as effective as or 
more so than a large number of pseudorandom draws using a random number generator. 

Halton sequences are generated as follows: Let s be a prime number larger than 2.  
Expand the sequence of integers  g = 1,... in terms of the base s as 

 
 isibg I

i∑= =0   
 
where by construction, 0 ≤ bi ≤ s - 1  and sI ≤ g < sI+1.  Then, the Halton sequence of 
values that corresponds to this series is 
 

1
0)( −−

=∑= iI
i sibgH  

 
Halton values are contained in the unit interval.  They are not random draws, but they are 
well spaced in the interval.  A simple Box-Jenkins identification of  the Halton sequence 
from base s shows large autocorrelation at lag ks.  For example, Table 1 below shows the 
autocorrelations and partial autocorrelations for a Halton sequence for base 7. 
 
 Table 1.  Autocorrelations and Partial Autocorrelations for the Halton 7 Sequence 

+---+----------------------------------------------------------------+
|Lag| Autocorrelation || Partial Autocorrelation |
+---+----------------------------------------------------------------+
| 1 | .263*| |*** || .263*| |*** |
| 2 |-.229*| ***| ||-.320*| **** | |
| 3 |-.476*| *****| ||-.374*| **** | |
| 4 |-.478*| *****| ||-.438*| ***** | |
| 5 |-.235*| ***| ||-.486*| ***** | |
| 6 | .253*| |*** ||-.305*| *** | |
| 7 | .983*| |*********** || .962*| |***********|
| 8 | .249*| |*** ||-.801*| ********* | |
| 9 |-.242*| ***| ||-.107*| * | |
|10 |-.488*| *****| ||-.019 | * | |
|11 |-.489*| *****| || .001 | |* |
|12 |-.246*| ***| || .013 | |* |
|13 | .242*| |*** || .024 | |* |
|14 | .972*| |*********** || .176*| |** |
|15 | .239*| |*** ||-.333*| **** | |
|16 |-.250*| ***| ||-.104*| * | |
|17 |-.495*| *****| ||-.045*| * | |
|18 |-.495*| *****| ||-.035*| * | |
|19 |-.252*| ***| ||-.034*| * | |
|20 | .236*| |*** ||-.040*| * | |
|21 | .965*| |*********** || .063*| |* |
|22 | .234*| |*** ||-.177*| ** | |
|23 |-.253*| ***| ||-.097*| * | |
|24 |-.497*| *****| ||-.062*| * | |
|25 |-.497*| *****| ||-.056*| * | |
+--------------------------------------------------------------------+



 

Figures 2 and 3 below compare two sequences of 1000 pseudorandom values to the first 
1000 values from Halton base 7 and Halton base 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              Figure 2.  1000 Pairs of Pseudorandom U[0,1] Draws 
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4.  An Application 
 
 To illustrate the technique, we have applied the preceding to Christensen and 
Greene's (1976) electricity data.  We used the 1970 sample that contains 158 firms and 
holding companies.  The regression function is a simple Cobb-Douglas cost function with 
a quadradic term in log output; 
 

log(C/Pf) =  β1 + β2log(Pl/Pf) + β3log(Pk/Pf) + β4logY +  β5 log2Y + v + u 
 
where C is total cost of generation, Y is output, and Pf, Pk and Pl are the unit prices of 
fuel, capital and labor, respectively.  (Translation of the original model to a cost function 
requires only a trivial change of sign of some terms in the log likelihood and its  
derivatives.)  Table 2 presents the estimation results.  The random draws approach is 
based on Q = 500.  The Halton results are based on Q = 50. 
 
Table 2.  Estimated Stochastic Frontier Functions 
 Exponential Gamma- U[0,1] Gamma-Halton 
Parameter Est. Std.Err. Est. Std.Err. Est. Std.Err. 

β1 -7.0345 0.207 -7.0338 0.2094 -7.0337 0.1308
β2 0.1449 0.0421 0.1450 0.0421 0.1449 0.0419
β3 0.1391 0.0390 0.1390 0.0389 0.1384 0.0387
β4 0.4413 0.0302 0.4416 0.0304 0.4431 0.0310
β5 0.0286 0.00208 0.0286 0.00210 0.0285 0.00213
θ 11.012 2.697 10.832 3.0040 10.164 3.701
σv 0.1030 0.0127 0.1033 0.0131 0.1038 0.0133
P 1.0000 0.0000 0.9620 0.3517 0.8422 0.5265

Log Likelihood 95.05542 93.06719 93.11514 
Estimated Standard Deviations of the Underlying Variables 

v 0.10296 0.10325 0.10383 
u 0.09083 0.09055 0.9028 

 
 The estimated indefficiencies from the three sets of estimates are very similar, as 
the last two rows of Table 2 would suggest.  Also, the estimate of P in the gamma models 
is not particularly large and, moreover, is less than one which if anything exaggerates the 
effect of packing the observations close to the origin as the exponential model does.  
Table 3 lists the descriptive statistics and correlations of the Jondrow et al. estimator of 
E[u|ε] for the three models.  The JLMS efficiency measure has the simple form 
 
 E[u|ε]  =  h(P,εi) / h(P-1,εi). 
 
for the normal-gamma model.



 

 
Table 3.  Descriptive Statistics for JLMS Estimated Inefficiencies 
 Mean Std. Deviation Minimum Maximum 
Exponential 0.090813 0.067581 0.022991 0.443508 
Random U[0,1] 0.083121 0.067682 0.020464 0.438584 
Halton 0.088334 0.068167 0.019775 0.430003 
                                                                 Correlations 
 Exponential RandomU[0,1] Halton 
Exponential 1.00000      
Random U[0,1] .99801   1.00000     
Halton .98431      .98283   1.00000 
 
 Finally, in order to suggest what the overall results look like, Figure 4 below 
presents a kernel density estimator of the underlying density of the inefficiencies.  While 
it is suggestive, unfortunately, the figure illustrates one of the shortcomings of the JLMS 
computation.  As we can see from the results above, the estimated distribution of u for 
these data resemples the exponential, with mode at zero.  But, the estimates computed 
using the residuals, have v mixed in them  As the kernel density estimator suggests, this 
suggests a helpful, but obviously distorted picture.  This may call the JLMS estimator 
into question, but that is beyond the scope of this paper. 
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 Figure 4.  Kernel Density Estimator of the Inefficiency Distribution       
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5.  Conclusions 
 
 The preceding has proposed a method of estimating the normal-gamma frontier 
model.  The operational aspects of the proposed method are fairly straightforward, and 
implementation should be relatively simple.  The estimator used here was built into 
LIMDEP (2000, forthcoming release) but could easily be programmed in Gauss or in a 
low level language if the analyst prefers.   Experience with the estimator is limited, but 
the results do suggest a useful extension of the stochastic frontier model.  If it is 
established that the estimator actually does work well in practice, then familiar extensions 
might be added to it.  For example - and this could be added to the exponential model 
though we have not seen it - the location parameter can be parameterized to include 
heterogeneity, in the form θi = )'(exp izδδδδ  for example. 
 Whether Simar's observations about the (non)identifiability of the normal-gamma 
model prove general is an empirical question.  His result was a matter of degree, not a 
definitive result.  That is, he found that identification of the model would be 'difficult,' 
not impossible.  As such, as might be expected, further research is called for. 
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Appendix:  Derivatives of the Simulated Log Likelihood 
 
 The ith term in the log likelihood for the normal-gamma model is 

log Li =  logθ  +  ½ σv
2θ2  + θεi  +  logΦ(µi/σv) + (P-1)logθ -logΓ(P) 

  +  log
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It is convenient to gather the terms and collect a few to rewrite this as 
 
 log Li  =  Plogθ - logΓ(P) - θσWi - θ2σ2/2 + logΦ(Wi) 

  +  log ( )( )
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where Wi =  µi/σ and we have dropped the subscript on σv to simplify the notation.  We 
have now written the function in terms of P, θ, σ and Wi which is a function of θ and σ as 
well as ββββ.  It will also be convenient to define a symbol for the bracketed term in the 
summation, so we further compress the function to 
 

log Li  =  Plogθ - logΓ(P) - θσvWi - θ2σv
2/2 + logΦ(Wi) + log











 −

=∑
1

1 ][1 PQ
q iqC

Q
 

To avoid some notational clutter, let 
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Recall that Wi = µi/σ  = -εi/σ - θσ.  With these preliminaries, then,  
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To complete the derivation, we require the derivatives of  
 

( )( )iiq WC iqiqi FFW −= Φ−+Φσ+σ − )1(1  
 
Let aiq = Fiq + (1-Fiq)Φ(-Wi) so Ciq  =  σ[Wi + Φ-1(aiq)].  Then, 
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Then, inserting derivatives of Wi where needed, we have 
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∂ iqC

  =  -σ[1 + Eiq](-σ) 
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 = [Wi + Φ-1(aiq)] + σ[1 + Eiq]( εi / σ2 - θ) 
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