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Abstract

I uncover a new force towards increasing dominance (the property whereby, in

dynamic games, the leader tends to increase her lead in expected terms). The new

e®ect results from the strategic choice of covariance in races. I assume that players

must choose not the amount of resources to spend but how to allocate those resources.

I show that the laggard has an incentive to chose a di®erent path from the leader. In

equilibrium, this results in the laggard choosing a less promising path, in e®ect trading

o® lower expected value for lower correlation with respect to the leader. This in turn

leads to increasing dominance. In order to make the point as clear as possible and

di®erentiate it from the forces previously characterized, I assume that no joint payo®

(or e±ciency) e®ect is present.
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1 Introduction

In a dynamic R&D race, does the leader tend to get farther ahead of the rival (increasing

dominance), or does the rival tend to catch up with the leader? This important question has

been studied by a number of authors. Gilbert and Newbery (1982) characterize conditions

under which monopoly dominance persists over time even though there are opportunities

for rival ¯rms to challenge the incumbent. Budd, Harris and Vickers (1993) identify some

the basic forces leading to increasing dominance (ID) in the context of a one-dimensional

dynamic model of R&D. Cabral and Riordan (1994) provide su±cient conditions for ID

is the context of dynamic competition with learning-by-doing. More recently, Athey and

Schmutzler (1999) derive general conditions for increasing dominance in a reduced-form

model of dynamic competition.1

One common feature of all of these models is that strategies are de¯ned by some measure

of e®ort in trying to move ahead of competitors. Moreover, the increasing dominance results

are all based on two parts. First, the fact (which may be assumed or derived from primitive

assumptions) that total payo®s are greater the greater the asymmetry between players|the

e±ciency e®ect. Second, the property of certain dynamic games that the system tends to

move in the direction where joint payo® are greater. In other words: suppose that total

payo®s are greater when the leader gets farther ahead in a race. Then, in equilibrium the

leader will tend to get farther ahead in the race.

In this paper, I uncover an additional force towards increasing dominance, one that is

based on the strategic choice of covariance. Suppose that players must choose not the amount

of resources to spend but how to allocate those resources.2 Speci¯cally, suppose that each

player has a ¯xed amount of resources to spend and must choose between alternative paths

of uncertain success. By choosing the same path, the players' success is perfectly correlated.

By choosing di®erent paths, success is independent across players. In this context, I show

that the laggard in a race has an incentive to chose a di®erent path from the leader. In

equilibrium, this results in the laggard choosing a less promising path, in e®ect trading o®

lower expected value for lower correlation with respect to the leader. This in turn leads to

increasing dominance.

In order to make the point as clear as possible, I assume that no joint payo® (or e±ciency)

e®ect is present. In this context, any force towards increasing dominance must originate in

something other than the joint payo® (or e±ciency) e®ect.

The paper is organized as follows. In the next section, I introduce a two-player, in¯nite

period game where players must choose in each period between two alternative paths. Section

3 presents the main results. Section 4 includes a discussion of the results and their robustness

to a number of generalizations.

1Other results related to increasing dominance include Flaherty (1980), Arthur (1989), Klepper (1996),

and Bagwell, Ramey and Spuelber (1997).
2Judd (1985), Batthacharya and Mookherjee (1986), Klette and deMeza (1986), and Hoernig (1999)

consider the choice of R&D e®ort and/or type of e®ort. However, they do not address the issue of correlation

across players.
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2 Model de¯nitions and assumptions

Consider an in¯nite-period game with two players. In each period, the state of the game

is summarized by an integer z 2 ZZ. Short run payo®s are summarized by the functions

pi(z); i = 1; 2. I assume that payo® functions are monotonic and symmetric, i.e. p1(z) is

increasing in z and p2(z) = p1(¡z) (and thus p2(z) is decreasing in z). By an abuse of

notation that simpli¯es the analysis, I denote by p(s) the payo® for a player who is \ahead"

is state z = s ¸ 0 (the \leader"); the payo® for the rival player (the \laggard") is therefore

p(¡s).

One useful way of thinking about the model is that two ¯rms attempt to move up a

quality ladder (or down a cost ladder) by exerting R&D e®ort. In each period, payo®s are

determined by the di®erence in quality levels, s = qi ¡ qj. Motion across states is therefore

determined by the ¯rms' success in moving up the ladder.

A crucial feature of the model is that players must choose between two alternative paths,

a and b; and, once a path is chosen, a ¯xed amount of e®ort is spent in following that path.

If we interpret the model as one of R&D competition, then this amounts to assuming that

the R&D budget is ¯xed and that the only choice is between di®erent research paths. Each

path allows players to move up the ladder one step with a positive probability, ® and ¯,

respectively, where both ® and ¯ are strictly between 0 and 1.

If players were to choose paths based on expected value only, then the choice would

be trivial|a if ® > ¯ and b if ¯ > ®. However, selecting a particular path also implies

a particular correlation with respect to the rival player's motion. Speci¯cally, I assume

that, if both players choose the same path, then either both players move up one step or

neither one does. If players choose di®erent paths, however, then the probability of success is

independent across players. Finally, if players choose each of the paths with strictly positive

probability, then the players' motion is positively but imperfectly correlated. Formally:

Assumption 1 Success is perfectly correlated for a given period and path, independent

across periods and paths.

As an example, consider the case of two R&D labs working on superconductors. Suppose

the only choice that each lab has to make is the particular type of ceramics to use in

developing a better superconductor. Since in this case R&D is primarily a matter of ¯nding

out whether a particular material \works" or does not work, success is only a function of the

material chosen by the lab, not a function of the lab itself. Assumption 1 would then follow.

A Markov strategy for player i is a map xi(s), giving the probability of choosing path

a in state s. A pair of strategies xi(s), together with the (common) discount factor ±,

induce value functions vi(s). I treat value functions in terms of average period payo®, so

vi(s) = (1 ¡ ±)pi(s) + ±v+
i
, whare v+

i
is player i's expected continuation value. Moreover,

I restrict to symmetric equilibria. For simplicity, if with some abuse of notation, I denote

strategies and value functions by x(s) and v(s), respectively.
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The main result of the paper is that increasing dominance results even when there is

no joint payo® e®ect. For this purpose, I assume that total payo®s are constant, that is,

independent of the state. Speci¯cally, I assume that

Assumption 2 0 · p(s) · 1; p(s) + p(¡s) = 1.

Assumption 2 implies that, if increasing dominance occurs, it does not result from the

joint payo® e®ect. I also assume that a leader achieves her maximum payo® for a ¯nite lead

length:

Assumption 3 There exists an ¹s such that, for n > ¹s, p(s) = 1.

3 Main results

I now present the main results of the paper. Lemma 1 and Corollary 1 characterize the

equilibrium when the two paths are equally promising (® = ¯). I show that the race then

has the nature of a \matching pennies" game, the equilibrium being for players to choose

each path with probability 1

2
. If ® > ¯, however, then the leading player chooses the most

promising path with greater probability, which in turn implies ID|Proposition 1.

Lemma 1 Suppose that ® = ¯. Then, in equilibrium and for n > ¹s it must be that

x(s) =

8
><

>:

1 if x(¡s) > 1=2
0 if x(¡s) < 1=2

[0,1] if x(¡s) = 1=2

x(¡s) =

8
><

>:

0 if x(s) > 1=2
1 if x(s) < 1=2

[0,1] if x(s) = 1=2

Proof: Expected payo® in state s is given by

v(s) = (1¡ ±)p(s) + ±Áv(s¡ 1) + ±Áv(s + 1) + ±(1¡ 2Á)v(s);

where

Á ´ ®(1¡ ®)
µ

x(s)
³
1¡ x(¡s)

´
+
³
1¡ x(s)

´
x(¡s)

¶

:

First notice that it must be 0 < v(s) < 1 for all s. In fact, suppose the opposite is true

and that v(¡s0) = 0; v(¡s0 + 1) > 0. This is only possible if, in state s0, Á = 0, which

corresponds to the case when x(s0) and x(¡s0) are equal to each other and equal to 0 or 1.

But clearly this is not an equilibrium, for in state s0 the player receiving a payo® of zero

would increase his or her value by choosing a di®erent x(¡s0). This argument also implies

that, if s > ¹s, Á > 0.

Suppose that Á 6= 0. It follows that

v(s)¡
1

2
v(s¡ 1)¡

1

2
v(s+ 1) =

1¡ ±

2Á±

µ

p(s)¡ v(s)
¶

:
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If s > ¹s, 1 = p(s) > v(s). Consequently, v(s) is locally concave and v(¡s) = 1 ¡ v(s)

is locally convex. This implies that the leader's optimal x(s) is that which minimizes Á,

whereas the laggard's optimal x(¡s) is that which maximizes Á. The best responses in the

lemma then follow.

In words, Lemma 1 states that the leader's best response is to \imitate" the laggard,

whereas the laggard's best response is to \di®erentiate" from the leader. In fact, if the

leader wants to maximize the probability of selecting the same path as the laggard, then she

should take path a with probability 1 if the laggard selects a with probability greater than
1=2, as indicated by the Lemma. Likewise, if the laggard wants to minimize the probability

of selecting the same path as the leader, then he should take path b if the leader selects a

with probability greater than 1=2, as indicated by the Lemma.

The intuition for this result is that a leader's current payo® is greater than her discounted

value, that is, \things can only get worse." To be more precise: the leader is worse o® in

equilibrium than she would be if the state were never to change. Moreover, in equilibrium

the system moves to left and to the right with probability 1=2 each. These facts imply that

the leader's value function is concave: she has less to gain from extending her lead than she

has to lose from being caught up by the laggard. She thus prefers to minimize the variance

of motion across states, which she does by maximizing the correlation with respect to the

laggard. Conversely, the laggard's current payo® is lower than his discounted value, that is,

\things can only get better." This implies, by a similar argument, that his value function is

convex: he has less to lose from letting his lag extend than he has to gain from catching up

with the leader. He thus prefers to maximize the variance of motion across states, which he

does by minimizing the correlation with respect to the leader.

An immediate implication of Lemma 1 is that, as mentioned above, the game has the

nature of a \matching pennies" game, the equilibrium of which is for players to equally mix

between the two possible paths:

Corollary 1 Suppose that ® = ¯. Then, in equilibrium and for s > ¹s, x(s) = x(¡s) = 1=2.

Lemma 1 and Corollary 1 characterize the equilibrium when the two paths are equally

promising (® = ¯). I now consider the case when one of the paths is more promising (® > ¯)

and show that increasing dominance results in equilibrium:

Proposition 1 (increasing dominance) There exists an ² such that, if ¯ < ® < ¯ + ²,

then in equilibrium and at state s > ¹s the gap between leader and follower increases in

expected value.

Proof: From the proof of Lemma 1, we conclude that, in equilibrium, players mix between

the two paths. In fact, value functions are strictly concave (leader) and convex (laggard),

so that, even if ® is changed by a small amount, the nature of the best response functions

remains as before: the leader preferring to \imitate" the laggard, the latter preferring to

di®erentiate from the former.
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Expected payo® at state s is given by

v(s) = (1¡ ±)p(s) + ±Á¡v(s¡ 1) + ±Á±v(s) + ±Á+v(s+ 1);

where

Á¡ ´ x(s)
³
1¡ x(¡s)

´
(1¡ ®)¯ +

³
1¡ x(s)

´
x(¡s)(1¡ ¯)®

Á+ ´ x(s)
³
1¡ x(¡s)

´
®(1¡ ¯) +

³
1¡ x(s)

´
x(¡s)¯(1¡ ®):

Á± ´ 1¡ Á¡ ¡ Á+

The fact that the leader mixes implies that the right-hand side of the value function is

invariant with respect to x(s). Substituting 1 and 0 for x(s), equating, and solving for

x(¡s), we get

x(¡s) =
(® + ¯ ¡ 2®¯)v(s)¡ ¯(1¡ ®)v(s¡ 1)¡ ®(1¡ ¯)v(s+ 1)

(® + ¯ ¡ 2®¯)
³
2v(s)¡ v(s¡ 1)¡ v(s+ 1)

´ :

Di®erentiating with respect to ® at ® = ¯ yields

@ x(¡s)

@ ®

¯
¯
¯
¯
¯
®=¯

= ¡
v(s+ 1)¡ v(s¡ 1)

4®(1¡ ®)
³
2v(s)¡ v(s¡ 1)¡ v(s+ 1)

´ :

Since p(s) · 1; n < ¹s (strict inequality for s < ¡¹s) and p(s) = 1; s > ¹s, v(s) is increas-

ing in s for s > ¹s. Moreover, by the same argument as in the proof of Lemma 1, v(s)

is concave for s > ¹s. It follows that the above derivative is negative, which in turn im-

plies that x(¡s) < 1=2 (recall that, for ® = ¯; x(s) = x(¡s) = 1=2). An analogous argument

implies that x(s) > 1=2. Since path a is better than b (in expected value), the result follows.

The above results are based on several assumptions regarding the value of ® and s. The

results are tight in the sense that one can ¯nd counterexamples when those assumptions fail.

Speci¯cally, if ® is much greater than ¯, it is no longer the case that players mix between the

two paths. In fact, for ® su±ciently greater than ¯, both players choose path a. Moreover,

if s is less than ¹s, one can ¯nd examples whereby the system moves toward zero in expected

value: it su±ces to assume that ± is close to zero and p(s) convex.

Alternative formulations of main result. The previous results are limited in that

they only apply for the case when the leader is \far" ahead of the laggard (that is, for s large

enough). However, imposing additional restrictions on the value of ±, I can prove similar

versions of the increasing dominance result which apply at every state. The following results

dispense with Assumption 3.

Proposition 2 Suppose that p(s) is strictly concave for n > 0. There exist ²; ¹± > 0 such

that, if ¯ < ® < ¯ + ², and ± < ¹±, then the gap between leader and follower increases in

expected value.
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Proof: If ± is close to zero, then the payo® function provides a ¯rst-order approximation

to the value function. Concavity of p(s) therefore implies concavity of v(s). The rest of the

proof proceeds as as in Lemma 1.

Proposition 3 Suppose that p(s) > 1

2
i® n > 0. There exist ²; ¹± > 0 such that, if ¯ < ® <

¯ + ², and ± > ¹±, then the gap between leader and follower increases in expected value.

Proof: Recall that v(s) = (1 ¡ ±)p(s) + ±
³
Á¡v(n¡ 1) + Á±v(s) + Á+v(n + 1)

´
. Together

with v(s) + v(¡s) = 1, this implies that lim±!1 v(s) =
1

2
. Since p(s) > 1

2
i® n > 0, it follows

that for ± large enough, p(s) > v(s). The proof then proceeds as in Lemma 1.

4 Discussion

Although my model implies increasing dominance, the reasons for the result are in stark

contrast to standard increasing dominance results. In the latter, total payo®s are increasing

when increasing dominance takes place. Typically, this results from a convex payo® function,

that is, a function with the properties that the leader has more to gain from extending her

lead than the laggard has to lose from falling farther behind. By contrast, my model features

constant total payo®s, so that the above e®ect is absent. Instead, the crucial feature of the

equilibrium is that the leader has less to gain from moving farther ahead than she has to lose

from being caught up by the laggard, whereas the laggard has more to gain from moving

closer to the leader than he has to lose from falling farther behind. This implies that the

leader prefers low variance of motion in the state space, or, equivalently, high correlation

with respect to the laggard; whereas the laggard prefers the opposite, that is, low correlation

with respect to the leader.

In the standard increasing dominance results, convexity of the payo® function trans-

lates into equilibrium strategies whereby the leader makes a greater e®ort than the laggard.

By contrast, my model features constant total e®ort, so that the previous e®ect is absent.

Instead, convexity of the laggard's value function translates into an equilibrium strategy

whereby the laggard trades o® a lower expected value for a lower correlation with respect to

the leader.

The results in the previous sections are based on a strong set of assumptions. These

assumptions are in some cases necessary. In other cases, however, they are only made for

simplicity and could be generalized. In what follows, I discuss the importance of each of the

assumptions.

The assumption that there are only two possible R&D paths is not necessary. The result

can be generalized to the case when ¯rms have L available paths, whereby choosing li implies

moving up one step with probability ¸i. When ¸i = ¹̧; 8i, the equilibrium is for both ¯rms
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to choose each path i with probability 1=L. Moreover, if ¸i > ¸i+i and ¸i 2 [¹̧ ¡ ²; ¹̧ + ²],

then, for ¸i > ¸, the leader follows path i with probability greater than 1=L and the laggard

with probability lower than 1=L. This in turn results in increasing dominance.

The assumptions that (a) the motion technologies only allow for one-step moves and (b)

total payo® is constant are important for the proof of Propositions 1{3. In Cabral (1999),

I consider the case of more complex motion technologies and payo® functions. I am able to

(conditionally) characterize the Nash equilibrium but unable to prove existence or uniqueness

of equilibria.

The assumption that the outcome of R&D is perfectly correlated across players when

they follow the same path is made for simplicity and not at all crucial. What matters is that

(1) correlation is greater when players follow the same path than when they follow separate

paths; and (2) correlation is the same for each path.3

I have assumed that the set of available paths is common knowledge and that choices

are always simultaneous (that is, each player does not observe the other player's choice until

making his or her own choice). Departing from these assumptions would lead to a very

di®erent game structure; it is not clear whether ID would still hold.4

Finally, the assumption that there are only two players is quite important. In competitive

sailing|a sport that, in many respects, is similar to the game in this paper|there is also

a crucial di®erence between two boats (match racing) and more than two boats (normal

racing). In match racing, the optimal strategy for the leading boat is quite clear: to cover

the laggard (which implies a high level of correlation). In normal racing, by contrast, the

optimal strategy is signi¯cantly more complicated. I suspect the same would be true in R&D

races with more than two players.

3In particular, it cannot be the case that correlation is greater when both players follow path b than when

both players follow path a. If that were the case, the opposite of ID might take place.
4I conjecture that, if the leader (respectively, the laggard) gets to observe its rival's choice before making

its own choice, then this implies an added e®ect towards ID (respectively, a counterveiling e®ect).
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