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Abstract

This paper presents an estimator for a model of sample selection for count data.
The model is an extension of the standard sample selectivity treatment for the linear
regression model. To develop the model, we first review some received results on
unobserved heterogeneity in the Poisson regression model for count data. The model is
then extended to encompass an endogenous sample selection mechanism. Previous papers
have developed sequential, single equation, limited information estimation techniques.
This paper presents a full information maximum likelihood (FIML) estimator for the
model. Two techniques for computation of the sort of log-likelihood we analyze are
described, simulation and numerical quadrature. An application to a problem in credit
scoring is presented to illustrate the techniques.
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1. Introduction

The econometric issue of sample selection concerns the possible biases that arise
when a nonrandomly sampled set of observations from a population is used as if the
sample were random to make inferences about that population,. Current literature, with a
few exceptions noted below, has focused on, and finely tuned, the known results relating
to this issue in the framework of the linear regression model and analysis of a continuous
dependent variable, such as hours worked or wages. This paper will examine an extension
of the sample selection model to the Poisson regression model for discrete, count data,

" Address for correspondence, Department of Economics, Stern School of Business, New York University,
44 West 4™ St. New York, NY, 10012: wgreene@stern.nyu.edu.  Helpful comments of Rainer
Winkelmann and participants in department seminars at Amherst College, Washington University, and
the University of Umea are gratefully acknowledged.



2. Models for Selection and The Poisson Regression Model

2.1. Sample Selection in the Linear Regression Model

Models for sample selection have become a standard body of technique in
econometrics.” The hnear regression framework which forms the core of the technique is
formulated as follows:* A classical normal linear regression model is specified as

= B’x; + &, & ~ N[0,07].
The variables in the model are observed only when a threshold variable, z,, equals 1;

(1) z* =a'w,+u, u;~N[0,1],
z; =sgn(z;*).

When u;, the unobserved effect in the observation mechanism, is correlated with €, the
unobserved individual heterogeneity in the regression model, then E[yx, z~=1] 1s not
equal to B'x;, and the widely cited problems of “selection bias” in linear least squares
regression arise. Linear regression of y; on x; in the selected subpopulation with z; = 1
estimates not 3, but a hash of B and a nonlinear function of o and the moments of the
variables in w,. Interest then centers on more detailed formulations of the inconsistency
and on alternative, consistent estimation techniques.

Heckman’s (1979) estimator for the linear model is a two step procedure based on
the result that

(2) EI-_)J, I xh 2,:1] = B’xl + E[E,‘lZ;‘ = ]] e B'xi + GM,,

where M, = ¢(a'w,)/®(a’'w,), ¢(+) and D(s) are the pdf and cdf of the standard normal
distribution, 8 = po, and p = Corr(e,u).” The two steps are (1) probit estimation of & in
the model in (1) followed by computation of M, for all observations for which z, equals 1,
then (2) linear regression of y, on x; and M, to estimate (B,8) in (2) followed by an
adjustment of the estimated asymptotic covariance matrix for the estimates which
accounts for the use of the estimated regressor.

Although used somewhat less frequently, the technique of full information
maximum likelihood of (B,a,p,o) can also be employed based on the joint distribution of
observations (z, = O,w;) and (z=1,w,y.x,). (See Greene (1997b).) One noteworthy

* Most of the current literature is based on Heckman’s pioneering work (1979). Although a spate of
recent literature, e.g. Manski (1990) and Newey et al. (1990) has questioned the implications of the fully
parametrized nature of the model, the applied literature remains dominated by Heckman's and “Heckman-
like” (e.g., Lee (1983) formulations. Nonparametric and semiparametric approaches are outside the scope
of this paper.
* We will only sketch the model formulation. There are more detailed treatments in many standard
rcferences such as Heckman (1979) and Greene (1997a, Chapter 20).

* The use of the symbol %, rather than A, is more familiar in the literature, but this would conflict with
another standard notation that will appear in the discussion to follow.



1 and variance a.° When P(pje,) is Poisson with mean Afe), we can find the
unconditional distribution by integrating €, out of the conditional distribution. The now
standard result is P(y,) = E,P(ye;)) = a negative binomial variate. (The full derivation )
appears in several references, including Cameron and Trivedi (1986) and Greene (1997a,
pp. 939-940).) The resulting negative binomial has provided a mainstay in this literature.

A shortcoming for our purposes is that the negative binomial model does not lend
itself to the sorts of extensions that will allow for a model of sample selection. In the same
fashion as other similar applications (e.g., Winkelmann (1997), Crepon and Duguet
(1997)), we reSpeCIfy the model with lognormal instead of log-gamma heterogeity. That
is, € ~ N[0,6°]; fle) = (1/0)d(e/o).” The exact distribution of y: after integrating out the
heterogeneity will now be unknown, but that, in itself, is not an obstacle.

The conditional probability distribution is

P@ile) = exp[-A{e)JAde)" / y.
The unconditional probability distribution is
P(y) =l P(yle;) 2no®) " exp[-% (e/5)*] de..

Let v,=e/(6+2),0 =042, and A(v)) = exp(B'x, + Ov;). With the change of variable,
Py = —— [® A e i
) g Lo [eXP(=A)IAM) "/ ! is

The integral has no closed form but can be closely approximated by using Hermite
quadrature for the integration

P*(y) = %ziilwh{exp[—é(v;,)lﬂ,-(vh)y e !} ~ P(y).

For our applications, we have found that a 20 point integration provides a sufficiently
accurate approximation.® The approximation to the log-likelihood is, then,

log-L* = Z,;logP*(y;) ~ log-L.

Optimization and computation of the BHHH estimator of the asymptotic covariance
matrix for the estimates will use the approximation to the first derivatives vector,

® For an innovative alternative approach for panel data modelling, see Nagin and Land (1993).

" Yet another approach is suggested by Gourieroux and Visser (1997).
® Tables of the weights, w; and nodes, v;, for the Hermite quadrature can be found in Abramovitz and
Stegun (1971).



Var[yix] = Elyix] {1 +xEDix]}.

The lognormal model has a similar characteristic. Conditioned on €, yi[x.€ is Poisson.
Let Ade) = exp(B'x+e) = E[y| x.&]. Then, using properties of the lognormal
distribution,

Elyix] = EJEly|xie]] = A* = exp(B'xi+ 67/2).

Since Var[y|x,e] = E[yi x,&i, it follows from a bit of algebra that
Var[yix] = Var[ED| x,&]] + E[Var[y| x,&]] = L*{1 + [exp(c?)-1]A*} = A*(1 + oA*)

Likewise, if the dispersion of the heterogeneity distribution (o) goes to zero, we revert to
the Poisson model.

The conditional mean functions in the heterogeneity models are E[y;|x,] = exp(B'x,)
for the negative binomial model and exp(B’x+ 146°) for the lognormal model. In both
cases, the marginal effects are

6;‘ = 6E[}’;‘|X;‘]fax; = E[y,-[x,] x B

Estimation of the effects can be done at the sample means. Standard errors for the effects
can easily be obtained with the delta method. We do note, because of the particular form
of the conditional mean function, rather different estimates for the marginal effects are
likely to be obtained in a small sample if they are computed, instead, by evaluating the
effects, themselves, at each observations, then averaging the sample values.

2.4. Sample Selectivity in the Poisson Model: 2 Step Approaches

We now build a selection model upon the heterogeneity model. Consistent with
standard applications, suppose that the primary model and observation mechanism are

P(yle) = Poisson[Afe)] = exp[-Afe)]A(e)" / yi!

z¥=a'w,+u, u;~N[0,1]
z; =sgn(z;*)

[8;‘,“;‘] - NZ[(OsO)s(GZ: PC, 1)]
(yi,x;) observed iffz;=1.

Thus, the modelling framework is the same as Heckman’s as specified in Section 2.1.
What remains is to construct an appropriate estimation technique.

Greene (1994,1997b) suggests a direct analog to Heckman’s, two step
procedure: '’

" The technique was applied in Freund, et al. (1997).



0_0
H = Eie;z X X Irt\

A
V. is the estimated asymptotic covariance matrix of the probit estimates, a, and G is the
sum of cross products of x,” and

w® = SE[yix)/oa = Elyix] [q . $@) ]w,_
D(a)

D(a, +6)
(@)
Expand the function O«0) in a linear Taylor series around the point 6 = po = 0 (or, p =0,
since o is positive by construction). The result is Q;(6) ~ 8M, where M, = ¢(a,)/®(a,) as
defined earlier. Thus, Greene’s (1994) formulation could be viewed as this approximation
to Terza’s model.”® This suggests another two step approach: First, as usual, estimate the

Let 0(6) = 103[ ] . In Terza’s formulation, E[y|x;] = exp[B,x; + 0(0)].

probit model by maximum likelihood, then compute M; as before. The second step
consists of nonlinear least squares, where now the conditional mean function is E°(y/|x,) =
exp(B,x; + 6M,). As before, it is necessary to adjust the estimated asymptotic covariance
matrix of the estimator of (8,0). The end result is a minor modification of Terza’s results:

x) = aﬁﬂmh,]fa(g] = Eo[y,-ix.-]( L]
and w! = SE'vix)/6a = E'y|x]{8M(-a;- M)}

with other calculations the same as before.'®
Marginal effects in the selection model can be obtained from the conditional mean
given earlier. By simple differentiation, we obtain

OE[yix,,w, z=1)/6x, = E[y|x,w;z=1] x B

aED’JX!,Wf z:=l]/aw: = E[}’,‘|X,,w; Z;:l] X Qo X (C;‘ - a;-)_

When x; and w, have variables in common, the effects are added in the marginal
effect, with the first part constituting the direct effect on the conditional mean and the
second part constituting the indirect effect on the probability of selection into the sample.

'* Since the conditional mean is an approximation, it remains to be shown that the nonlinear least squares
estimator based on the approximation is consistent for the same parameters as is that based on the true
function. Kmenta’s (1967) approximation to the CES production function is an early application that has
the same characteristics.

*“ The computations will be straightforward with most current econometrics computer packages. A short
LIMDEP program to do them is given in the appendix. Gauss code for this model would be likewise brief



When z; = 0, only (z,w,) are observed. The contribution to the likelihood function
18
Prob[z, = Olw, ] = E[1 - Prob[u,> -a'w,w,g;]] = E;[Prob[u, < -a'w|w.g]].

This provides the probability needed to construct the likelihood function.

Prob[z;=0|w,g] = 1-D[y'w; + 1€/(+/2 0)]

50 Prob[z=0lw,] = exp(-V?) O[-(y'w + 1v)]dv.

1 IO:J
Jr %
As before, quadrature or simulation is used to evaluate the integral.

Maximum likelihood estimates of [B, v, 8, 1] are obtained by maximizing

log-L = Z.-o logProb[z=0|w] + Z.-; logP[y;,z=1|x,w].

The log-likelihood and its derivatives are obtained as follows: For observation 7, if z, = 0,

log-Li|z=0 = logjl_; fw exp(-V)®[-(y'w; + ™v)]dv = log7,

Lhy

Jr

6]0g-L,-|z,=0/8[g] = [g]

E;?log~L,-Lz,:0/a(g = ~(1/T) f o exp(—vl) o[-(y'w + 1v)] [v:,] dv,

and

IfZi = ],

X
i s O(y'wrtv)dv]

1
log-Ljz=1 = log[ﬁ _[:o exp(-v%) !
y.!

1

= 103[% [ exp(-v")H(B'x; + BV)D(y'W; + tv) dv]

=log P,
and
8logP,-/6@} = (]/P,-)[% fw exp(—vz)[aﬂ(bl)fa[g 1Oy w+1v) dv], b, =B'x; + Ov.
B _ [B 3¢ . P &
ut, OH(b))/6 p = H(b;)0logH(b,)/0 g =H(b)(y: - (V) ol

The same logic and construction gives
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P(yix,we;)) = Poisson with A, = exp(B'x; +€;) @

(a'wi +(p,fo-)5f)
1-p

Estimation of (B,a.,p,o) is based on the likelihood function for the observed data, which is
log-L = Z,log P(yix;,w;) = Z,;log E; P(y{x,,wg,)

Once again, the techniques are the same.

3. An Application

Greene (1992) examines a model of sample selection in the setting of a credit
application model. The variable of primary interest in that study is the probability of
default on a credit card loan in the first year of activity."” The conditioning variable for the
sample selection is acceptance of the individual’s application for the credit card. (The
model is largely similar to that in Boyes, Hoffman, and Low (1989). Thus, the default
model is constructed to describe the probability that an individual would default on a loan
if they were given a credit card (if they were given a loan), but is based on data for
individuals to whom credit cards (loans) were already granted. Thus, there is a reasonable
question as to the possibility of sample selectivity of the sort discussed earlier.

In passing, it is noted that an important predictor of whether a credit card
application will be accepted is the number of “major derogatory reports,” (MDRs) in an
individual’s credit reporting files at agencies such as TRW. An MDR is a sixty day
delinquency in payment to a major credit account, such as one of the major bank cards or
a major department store. At any point in time, most people have zero MDRs in their
files. Observed values usually range from zero to three or four, but are sometimes much
higher; the largest value in our sample was 14. In this study, we view MDRs, which is
clearly a candidate for a count data model, as the behavioral variable of interest. The data
analyzed in Greene (1992) are a sample of 13,777 observations on applications and
account activity for a major credit card vendor. Of the 13,777 applications represented in
the sample, approximately 76% (a choice based sample) were accepted. The default
behavior and expenditure patterns in the first twelve months of holding were observed for
the cardholders in the sample. Thus, whether or not the individual has the credit card in
question is the sample selection rule. To illustrate the techniques described above, we
used a random subsample of 1,319 observations from the full sample, including 1,023
cardholders. The variables used in the study are described in Tables 1-3.'* A histogram of
the outcome variable for the subgroups is listed in Table 3. The relationship between
MDRs and application acceptance is strongly suggested by the data in Table 3. In fact, we
do have observations on all variables for both cardholders and noncardholders. The
sociodemographic data were obtained from the credit card applications, themselves. The

'7 The identity of the vendor is, at their request, not revealed. Since the behavioral variable in this study
pertains to the general finances of the individual. the credit card, itself, is immaterial.
'® The data set can be downloaded from http://www.stern.nyu.edu/~wgreene/poisson.selection.dat.
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4, Conclusions

This paper has presented an estimator of a model for count data which extends the
lognormal heterogeneity model which has appeared elsewhere in the literature. The
lognormal model has proved useful in several settings, such as those in Section 2.6.
Winkelmann (1996) suggests some others, and, given recent developments, further
extensions such as to the random effects model for panel data (Greene (1997b)) are
equally straightforward. The pessimism expressed in Cameron and Trivedi’s recent survey
(1996, pp. 305-306) is clearly unwarranted.

It is difficult to draw general conclusions from the single application. The different
formulations of the model discussed here do present three consistent estimators of the
parameters of the model, so large differences would be surprising. The fact that the
selection itself is producing relatively little movement in the estimates may be an artifact of
this data set, since our dependent variable is a crucial determinant of the selection variable.
A more appropriate specification might depart from a probit model such as

z* = a'wi Yy, uw, u;N[O,1]
z; = sgn(z;*)
[e,u] ~ N2[(0,0),(c%, po, 1)]

But, is it 1s not possible to proceed from here to an internally consistent selection model in
which z; is the mechanism that determines whether y; is observed. On the other hand, with
a full set of observations on all variables, such as we do have here, estimating the
heterogeneity model

P(yile)) = Poisson[A(e;)] = exp[-A{e)]rde)” / yi!

and this binary choice model jointly would be straightforward. The likelihood function
would be built up from the joint probabilities

P(Z,,y,-|x,-,w,-) = ES P(zr:jlthhax)})(y:'1xngf):j= 031

using exactly the methods we considered earlier.

FIML estimation of the selection model is quite simple. Its advantages over the
two step procedures would stem from the asymptotic efficiency of a joint estimator, which
is inherent, and from the approximation in Greene’s estimator. It it could be argued that
the nonlinear least squares estimators are more robust to misspecification, as they require
only the sepcification of the conditional mean function. But, the extent of this advantage
seems speculative.
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Table 3. Counts of MDRs for All
Observations and Cardholders

MDRs All Card
Holders
0 1060 915
1 137 S0
2 50 13
3 24 4
4 17 1
5 11 0
6 5 0
7 6 0
8 0 0
9 2 0
10 1 0
11 4 0
12 1 0
13 0 0
14 1 0
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Table 6. Estimated Poisson Model Ignoring Selectivity: Cardholders Only.
Log likelihood function

Variable
Constant
AGE
INCOME
EXP INC
AVGEXP
MAJOR

Table 7. Estimated Probit Model for Sample Inclusion (Cardholder Status)

Variable
Constant
AGE
INCOME
MAJOR
OWNRENT
DEPNDNT
INC_PER
SELFEMPL
OPEN
CURADD
ACTIVE

Variable
Constant
Age
Income

Exp. Inc.
Avg. Exp.

Major
M;
6

p
a

r

-407.9441
Coefficient Estimates Marginal Effects
Coefficient t-ratio Coefficient t-ratio
-3.615542 -8.574
.1880018E-01 .154 .2425830E-02 1.592
.1341672 .470 .1731189E-01 1.741
1.985568 .570 .2562023 1,262
.4826625E-04 122 .6227904E-05 .108
.2416640 .800 .3118245E-01 .768

Single Equation ML FIML Estimated with Poisson Model
Coefficient t-ratio Coefficient t-ratio
0.542 2.95 0.305 2.191
-0.00886 =1.72 -0.0039 -1.26
0.092 173 0.0523 1.62
8.212 2.06 0.114 1.65
0.349 3.46 0.199 2.33
-0.131 1.90 -0.0726 -1.62
-0.015 -0.21 -0.144 -0.39
-0.201 =1.23 -0.121 -1.24
-0.286 -11.67 0.165 3.08
-0.0004 -0.58 -0.0004 -1.03
-0.230 -10.75 -0.136 -3.06
Table 8. Estimates of Selection Models
Greene, NLSQ Terza NLSQ FIML
Coefficient t-ratio Coefficient t-ratio Coefficient t-ratio
-5.345 -7.22 -4.068 -6.83 -4.700 -8.16
0.0128 1.16 0.0142 1.34 0.0170 1.45
0.191 3.20 0.136 2.32 0.161 2.02
1.775 1.88 1.734 161 1.718 Q.75
-0.0000268 -0.09 -0.0000362 -.09 0.0000179 -0.09
1.376 2,33 0.811 1.65 0.333 1.03
1.969 6.72
3.365 0.11
0.966 7.29
1.268 6.09
165.319 168.262 177.183
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Appendix. LIMDEP Computations for the Sample Selection Estimators

/* Computation of estimators and appropriate asymptotic covariance
matrices for Terza and Greene nonlinear least squares estimators.
The routine is general - different applications change only the
namelist definitions and the variable names given to Y and Z.

i3
? Define lists of variables used in the computations.
Namelist ; W=one,age,income,major,ownrent,depndt,inc per,selfempl,

accounts, cur_add,active

; X=one,age,income,exp inc,avgexp,majors$
? LHS variables in regression and probit model.
Create ; Y = Majordrg

; Z = Cardhldr $
? Probit estimates. Mills ratio is kept for Greene estimator.
Probit ; Lhs = Z ; Rhs=W ; Hold(IMR=Mi)$
? Retain estimators for later.
Matrix ; Alpha = b ; Valpha = VARB §
? Uncorrected estimates, for starting wvalues
Poisson ; Lhs = Y ; Rhs = X §
Matrix ; BPois = b $
? Heckman form of mean corrected Poisson
Poisson ; Lhs = Y ; Rhs = X ; Selection $
? FIML estimator is internal:
Poisson ; Lhs = Y ; Rhs = ¥ ; Selection ; MLE §
? 2 Step estimators - covariance matrices must be constructed.
? Use selected subsample

Reject i 2 = 0%

? AT appears in conditional mean function, uses first step estimates
Create ; Ai=Alpha'W$

? Nonlinear Least Squares

Calc ; K =Col(X) § ? Number of variables in X.

NLSQ Pl g

Fen = exp(bl'x) * Phi(ai+t) / Phi(ai)
Labels = K b, t

~ s

i Start. = Bgois,O $
? (For Greene's estimator, change Fcn to exp(bl'x+t*mi)
Matrix ; Beta = Part(b,1,K) &
Calc ; Theta= b(kreg) $ (Kreg=#parameters, left by NLSQ)
Create ; bi=beta'x
; ey=exp (bi)*phi (ai+theta)/phi(ai) ? conditional mean function
; gi=n01 (ai+theta) /phi (ai+theta) ? ey*gi=dey/dtheta
; ui=y-ey ? residual
; pj=gi-mi ? dey/dalpha'z
; wb=ey*ey ? invS = <D'[wb]D>
; wh=ey*ey*ui*ui '8 = D'[wh]D
; Wp=ey*ey*pj$ TG = D' [wplZ
? (For Greene's estimator, the only changes needed are
? ey to exp(bi + theta*mi)
? gi to gi=mi and pj to
? pj to -theta * mi * (ai+mi).

? Asymptotic covariance matrix, in two parts.
Namelist ; D=x,gi$
Matrix ; V= <D'[wb]D> * D'[wh]D * <D'[wb]D>
+ <D'[wb]D> * D'[wplZ * Valpha * 2Z'[wp]D * <D'[wb]D>
; Stat (B,V) §
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