
A Heavy Traffic Approximation for Queues with
Restricted Customer-Server Matchings

(Working Paper #OM-2007-4, Stern School Business)

René A. Caldentey† Edward H. Kaplan‡

Abstract

We consider a queueing system with n customer classes and m servers. For each
class i there is only a subset S(i) of servers that are able to process customer’ i requests
and they do that using a first-come-first-serve discipline. For this system, we are pri-
marily interested in computing Pij , the steady-state fraction of class-i customers that
are served by server j. We also look at stability conditions and standard performance
measures like waiting times and queue lengths. Under the assumption that the sys-
tem is heavy loaded, we approximate Pij as well as the other performance measures.
Computational experiments are used to show the quality of our approximations.

1 Introduction

There are many real-world queuing systems that pose restrictions upon which customers can
be processed by which servers. Consider the following examples:

• households applying for public housing are allowed to specify those housing projects
in which they are willing to live; when a public housing unit becomes newly available,
of those households willing to live in the associated housing project, the one that has
been waiting the longest is offered the unit (Kaplan [17])

• prospective adoptive parents specify the characteristics of infants or older children
that are acceptable (e.g. age, gender, country of birth, special needs) while infants and
older children with such characteristics become available for adoption at different rates;
when a child becomes newly available for adoption, some mechanism for allocating this
child to one set of potentially many prospective adoptive parents must be invoked (e.g.
allocate to the longest waiting adoptive parent(s))

†Stern School of Business, New York University, New York, NY 10012, 212-998-0298, Fax: 212-995-4227,
rcaldent@stern.nyu.edu

‡Yale School of Management and Yale School of Medicine, Yale University, New Haven, CT 06520, 203-
432-6031, Fax: 203-432-9995, edward.kaplan@yale.edu

1

• travellers arriving at an airline counter could be processed by either a human server
(further distinguished by travel class) or a computer (for customers with electronic
tickets); depending upon how the queue is managed, customers with electronic tickets
could be processed by either human or virtual servers, but those with paper tickets
would require human assistance

• in a flexible manufacturing system, different job types require processing that can be
provided by a subset of the available machines, while machines might be differentiated
by the different job types they can process

• in call centers customers with different service requirements connect to the system
where a set of operators with different skills and experience provide the service.

All of these examples share the basic structure that there are different types of customers
and different types of servers, and that for any customer (server) type, only a subset of
servers (customers) can provide (receive) service.

Of interest are basic performance characteristics for such systems. While it is relatively easy
to decompose such systems if customer routing is exogenously determined (that is, if type
i customers are simply assigned to type j servers with fixed probability αij), the problem
becomes much more difficult when the routing is endogenously determined. In this paper, we
focus on determining approximations for such systems when customer queues are processed
according to FIFO within customer types, but newly available servers select among eligible
customers according to FCFS across customer classes. Worded differently, whenever a server
becomes free, that eligible customer who has been waiting the longest receives service. For
this system, we seek to determine the fraction of type i customers who receive service from
servers of type j, along with stability conditions and standard measures such as the mean
queue length and waiting time.

We detail our assumptions and formally describe our model in Section 2. In Section 3 we
review related literature that has addressed special cases of the system of interest. In Section
4, we consider a completely connected system where all servers can serve all customers;
observations gleaned from this system motivate the heavy traffic analysis presented in Section
5, which is the heart of our paper. Section 5 includes an approximation algorithm for
determining the steady-state customer flows, numerical comparisons to a simulated system,
and the derivation of expected queue lengths and waiting times. We conclude in Section 6.

2 Model Description

We consider a queueing system with n customer classes and m servers. Each customer class
forms a single queue, and a FIFO policy controls the output of each queue. In addition, each
server uses a FCFS discipline to serve the different classes of customers. That is, if server j
is free at a particular time, then from all the customers waiting for service that can be served
by server j, the customer who has been waiting the longest gets served. Figure 1 shows an
example with n = 3 and m = 4. In this situation, if server 1 is free, then the customer from
class 1 or 3 who has been waiting the longest will start service at server 1.

2

. . . .Type 1

. . . .Type 2

. . . .Type 3

1

2

3

4

Customers Servers

Figure 1: A simple example with 3 customer classes and 4 servers.

The data of the problem are:

1. Dimensions: The number of customer classes (n) and the number of servers (m). We
denote by C = {1, 2, . . . , n} the set of all customers classes and by S = {1, 2, . . . ,m}
the set of all servers.

2. Arrival Process: We assume that the arrival process of class-i customers (i ∈ C)
is Poisson with rate λi. The arrival processes for different classes are assumed to be
independent.

3. Service Process: The service time for server j (j ∈ S) is exponentially distributed
with mean µ−1

j , and is independent of the customer type served.

4. Matching Matrix: The (0,1)-matrix R = [Rij] defines the “matching” of customers
to servers. That is, a customer of class i can be served by server j if and only if Rij = 1.
For the example on Figure 1

R =




1 0 1 1
0 1 1 0
1 0 0 1




Based on R, we define S(i) = {j ∈ S | Rij = 1} and C(j) = {i ∈ C | Rij = 1}.
5. Customer Preferences: If a customer can be served by more than one server at a

given time, then the preference function A(i, j,S) determines which particular server
is chosen. Specifically, if a customer of class i faces the set S ⊆ S(i) of free servers,
then with probability A(i, j,S) the customer selects server j ∈ S. A few examples of
preference functions are:

Lexicographic Preference: Within the set of available servers, always select the
server with the smallest (or largest) index.

In this case A(i, j,S) = 1 if and only if j ≤ (≥)k for all k ∈ S.

3

Random Preference: Within the set of available servers, select the server at ran-
dom.

In this case A(i, j,S) = |S|−1.

Minimum Service Time Preference: Within the set of available servers, select
the server with smaller average service time (larger service rate).

In this case A(i, j,S) = 1 if and only if µj ≥ µk for all k ∈ S (in case of a tie an
additional criterion should be specified).

Without lost of generality we assume that the system is irreducible, that is, it cannot be
decomposed into a set of completely independent queueing systems. In mathematical terms,
irreducible means that there exists an integer k ≥ 1 such that the n× n matrix (R R′)k has
positive elements (primes (′) denote vector or matrix transpose).

For this particular queueing system, we are interested in computing the fraction of class-i
customers that will be served by server j. We denote this fraction by Pij, and we note
trivially that Pij = 0 if Rij = 0. Under our Markovian setting, the existence of Pij is
guaranteed for an ergodic system and we postpone this discussion to section §5.1. We also
care about standard queueing measures such as waiting times and queue lengths.

We conclude this section with an account of some notational and terminological conventions
used throughout the paper. Capital letters such as N , F , or P will be used to denote vectors
or matrices; in particular, vectors are understood to be column vectors and transposes are
denoted by primes. We use Xi to denote the ith component of vector X and Yij for the
element in row i and column j of matrix Y . Finally, if I is a set of indices and X is a vector
then X(I) stands for

∑
i∈I Xi, for example for C ⊆ C, λ(C) represents the cumulative arrival

rate of customers in C.

3 Related Literature

In this section we present a brief summary of the relevant. It is not our intention to review
the vast literature on multi-class queueing systems. Rather, we concentrate on research that
addresses the same type of specialized servers that we use in this paper.

The queueing system that we study follows in the category of queueing models with lane
selection. It seems that lane selection was first introduced by Schwartz [20] in 1974 (see also
Roque [19]), and refers to multi-server multi-class queueing systems where each customer
class can be served only by a subset of the servers. Schwartz studies some examples of
lane selection in a Markovian setting (i.e., inter-arrival and service times are exponentially
distributed) using a restrictive structure, namely, n = m = 2 or 3 and Rij = 1 if and only if
j ≤ i. Expected waiting times and queue lengths are derived.

Static service (or scheduling) disciplines have been studied in a wide range of applications.
Green [11]-[12] considers two customer classes (general (G) and restricted (R)), and two types
of servers (general (G) and restricted (R)). There are n identical G servers and m identical
R servers. R customers can only be served by R servers while G customers can be served by
both types. Under a specific allocation rule (A(i, j,S): R customers prefer R servers over G

4

servers) the author uses an approximation to obtain a matrix-geometric distribution for the
system. Numerical results are exhibited for the expected queue lengths. The paper presents
a clever way to model this particular system using only two state variables. However, the
methodology does not extend easily to systems with arbitrary matching between servers
and customer classes like the one we are considering in this paper. In a different setting,
Kaplan [18] uses a deterministic fluid analysis to compute the waiting time when servers
select at random among all eligible waiting customers. Becker et al. [1] study a Markovian
system with C customer classes and S servers. Each arrival i is assigned to server j with
fixed probability αij. The paper studies how to set the {αij} in order to minimize the total
delay in the system. Glickman [10] and Filipiak [7] consider a similar static problem using
deterministic fluid models.

Dynamic scheduling rules have also received some attention in the literature. One of these
dynamic policies is the generalized Shortest Queue (e.g. Foley and Mc Donald [8], Houtum
[15], Foss [9]). In this system, customers must select a server upon arrival, and they do so by
joining the shortest queue. Harrison [14] and Bell and Williams [2] consider a system with
two servers and two customer classes (similar to Green [11]). Under heavy traffic conditions,
the authors derive a dynamic service discipline that minimizes a long-term average penalty
(holding cost function) associated with the queue length.

To the best of our knowledge, there is no paper addressing the issue of lane selection under
a FCFS discipline in a general multi-class multi-server setting, which is the central topic of
our paper. Here we analyze the stability of the system, and present necessary and sufficient
conditions for ergodicity. In addition, under heavy traffic conditions, we approximate the
fraction of class-i customers served by server j (the Pij’s) and standard queueing measures
(average queue length and waiting time). Finally, we provide numerical examples that
validate the quality of our results.

We now move to the analysis of our problem. In order to gain some intuition, we first look
at the particular case of a completely connected system.

4 The Completely Connected Case

Suppose we have a queueing system like the one described in section §2 with the following
particularity: Rij = 1 for all i ∈ C and j ∈ S. For obvious reasons, we call this system
completely connected. For example, Figure 2 illustrates the queue length process for a com-
pletely connected system with two customer classes and three servers. Each node represents
a state of the system. The first (and sometimes only) number inside each node is the total
number (N) of customers in the system. In those cases where N = 1 or N = 2, the other
number(s) represents the server(s) that is (are) working. For instance, node 2-13 describes
the state where 2 customers are in the system and are being served by servers 1 and 3. In
this example, class-1 customers have lexicographic preferences and class-2 customers have
random preferences. We can see from the figure that for N ≥ 3, the transitions behave
according to a simple birth-death process, while for N ≤ 2 the transitions are dictated by
the preference functions and become much more irregular. We define π(k,S) as the steady

5

state probability of being in state N = k with the set S of servers working. Clearly, if k ≥ m
then S = S.

0 543

2-23

2-13

2-12

1-3

1-2

1-1

21 3

1 λλ +

21 2

1 λλ +

21 2

1 λλ +

22

1 λ

22

1 λ

23

1 λ

23

1 λ

21 2

1 λλ +

22

1 λ

1µ

2µ

3µ

2µ

1µ

3µ

1µ

2µ

3µ

3µ

2µ

1µ 21 λλ +

21 λλ +

21 λλ +

21 λλ + 21 λλ +

321 µµµ ++ 321 µµµ ++

Figure 2: A completely connected system with |C| = 2 and |S| = 3. Class-1 arrivals have lexicographic
preferences while class-2 arrivals have random preferences over servers.

Proposition 1 Consider a completely connected system such that
∑m

k=1 µk >
∑n

i=1 λi. Then
the steady-state probabilities {π(k,S)} exist and

Pij =
m−1∑

k=0

∑

S:|S|=k

∑

j∈Sc

A(i, j,Sc) π(k,S)

︸ ︷︷ ︸
(a)

+
∞∑

k=m

(
µj

µ1 + µ2 + · · ·+ µm

)
π(k, S)

︸ ︷︷ ︸
(b)

.

We omit the proof of this result since it is a straightforward application of the PASTA
property of the Poisson process. More interesting, however, is the distinction between the
two major components (a) and (b) of the probability Pij. It is not hard to see that for low-
traffic systems component (a) dominates (b) and the opposite holds if the traffic intensity is
high. Thus, if we set ρS as the traffic intensity for the system

ρS =
λ1 + λ2 + · · ·+ λn

µ1 + µ2 + · · ·+ µm

then for ρS → 1− we get

Pij ≈ µj

µ1 + µ2 + · · ·+ µm

. (1)

The intuition behind this result is simple. If all servers are working continuously, then during
a time period of length T the total output of the system is approximately (µ1+µ2+· · ·+µm)T
and the total output of server j is approximately µjT . Thus, the fraction of the total output
produced by server j is equal to the right hand side in (1). We note that the solution in
(1) is independent of the allocation policy {A(i, j,S)}. The reason is that for a system with
high utilization, it is very unlikely that an arriving customer will find more than one server
idle.

6

On the other hand, if the traffic intensity is very low, ρS → 0+, we get π(0, ∅) ≈ 1 and thus

Pij ≈ A(i, j, S). (2)

In this case, the allocation rule {A(i, j, S)} plays a major role in the representation of Pij.

While the case of moderate traffic intensity (0 < ρS < 1) is the most general, closed-form
analysis of this situation seems prohibitive even for the very simple case of a completely
connected system. In addition, we believe that systems with high utilization require much
attention and control. For these reasons, and also to maintain tractability, we restrict our
study of the Pij’s to the extreme scenario ρS → 1−.

We note that for the other extreme case ρS → 0+ condition (2) will remain true for general
systems.

5 Heavy Traffic Analysis

In this section, we consider a general Markovian system with n customer classes, m servers,
and an arbitrary irreducible matching matrix R. We assume that the system operates under
heavy traffic conditions, that is, given ε ≥ 0 small the system utilization ρS satisfies

1 > ρS =
λ1 + λ2 + · · ·+ λn

µ1 + µ2 + · · ·+ µm

≥ 1− ε.

In this situation, we expect queues to be large and servers to be working continuously. For
this system, we will study (i) the “assignment” of customers to servers (the Pij probabilities)
as well as (ii) waiting time and queue lengths for the different classes.

In the heavy-traffic regime, the fact that queues are (almost) never empty implies that the
values of the Pij’s remain somehow invariant to the values of the traffic intensity as long
as the servers are never (or almost never) idle; see §5.22 below. So stability considerations,
such as 1 > ρS, are not critical in our analysis of the Pij’s.

On the other hand, performance measures of the system like queue lengths and waiting time
are affected by stability considerations. Certainly, ρS < 1 is necessary to ensure ergodicity,
however, it is far from being sufficient for the general case. As long as we have a class i
of customers such that S(i) 6= S the study of stability requires more than just the analysis
of the aggregate traffic intensity (ρS). We deal with this issue of stability in the following
section.

5.1 Stability Considerations

For expository purposes, we present a necessary and sufficient condition for stability (in
the sense of positive Harris recurrence, Dai [5]) using a modified system. Specifically, we
consider a system where customers must select a server upon arrival, and they cannot change
this decision later as the service process evolves. We assume that customers select servers
in a Markovian fashion, i.e., there are fixed nonnegative quantities αij representing the

7

probability that a class-i customer selects server j ∈ S(i). We will refer to this modified
system as RQS (Random Queue Selection) and to our original system as SQT (Shortest
Queueing Time).

By definition, the SQT model is work conserving since no server j is idle if there is a
customer i ∈ C(j) waiting for service. On the other hand, the RQS model does not satisfy
this property because of the probabilistic assignment. For example, a customer can select a
nonempty queue even if there is an empty server that can serve him/her. In this respect,
the RQS model is inefficient on the usage of service capacity. This observation leads us to
argue that stability of the RQS model implies stability of the SQT model. Let us then look
at the stability of the RQS system.

By construction, the RQS model decouples the system into m independent M/M/1 queues.
The arrival rate for system j (j = 1, . . . , m) is equal to

∑
i∈C(j) αij λi and the service rate is

µj. The RQS model is stable if each of the m M/M/1 systems is stable which occurs if and
only if the arrival rate is strictly less than the service rate, i.e.,

∑

i∈C(j)

λi αij < µj for all j = 1, . . . , m. (3)

Given our previous discussion, we can argue that a sufficient condition for the stability of
the original system SQT is the existence of probabilities {αij} that satisfy (3). Using an LP
argument (specifically a Max-Flow formulation) as in Foley and McDonald [8] , it can be
shown that (3) is equivalent to the following condition

λ(B) =
∑

i∈B

λi <
∑

j∈S(B)

µj = µ(S(B)) for all B ⊆ S. (4)

Intuitively, this condition requires that for any subset B of customer classes the total arrival
rate λ(B) of this set has to be smaller than the total service capacity µ(S(B)) available to
serve the customers in B. Certainly, this condition (4) is necessary for stability, however,
given its equivalence to (3) it turns out to be also sufficient. In summary, we have the
following result.

Proposition 2 The queueing system (SQT) under consideration is stable if and only if
condition (4) is satisfied.

Proof: see the appendix at the end.

5.2 Computing the Matching Distribution Pij

We now turn to the analysis of the Pij’s. As we will see shortly, under heavy traffic conditions,
the problem of computing the Pij’s can be formulated as a matching problem in an infinite
dimensional bipartite random graph. This formulation is useful to understand the inherent
complexity of the problem which unfortunately we have not been able to solve in closed
form. Instead, we propose an approximation based on a simple perturbation idea.

8

5.2.1 Acyclic Systems and Bounds

Before looking at the general case, let us discuss briefly those cases where closed-form solu-
tions for the Pij’s are available and how we can in general get bounds for these quantities.

Suppose at time t = 0 we start with an empty system and let τ > 0 be the busy period. That
is, τ is the time it takes for the system to empty after serving at least one customer. Let
Na

i (τ) be the total number of class i customers arriving during the busy period and N s
j (τ)

be the total number of service completions by server j during the same period. We also set
Fij(τ) to be the total number of customers i that end up being served by sever j. Since at
τ the system is empty we must have that

∑

j∈S(i)

Fij(τ) = Na
i (τ) for all i = 1, . . . , n

∑

i∈C(j)

Fij(τ) = N s
j (τ) for all j = 1, . . . , m.

As the traffic intensity of the system ρS goes to one the busy period τ goes to infinity
w.p.1. In this regime, if the stability condition (4) is asymptotically satisfied then all servers
are working continuously and by the law of large numbers we have that Na

i (τ) ∼ λi τ ,
N s

j (τ) ∼ µj τ , and Fij(τ)/Na
i (τ) ∼ Pij. Thus, in the limit as ρS → 1− the previous system

asymptotically implies that
∑

j∈S(i)

Pij = 1 for all i = 1, . . . , n (5)

n∑

i∈C(j)

λi Pij = µj for all j = 1, . . . , m. (6)

In addition, we want the Pij to be non-negative, that is,

Pij ≥ 0 for all i = 1, . . . , n j = 1, . . . , m. (7)

We refer to (5),(6), and (7) as the heavy traffic balance equations. We note that (5) and (6)
imply ρS = 1 which is the heavy traffic condition that we will use for computing the Pij’s. At
this point the reader might be concerned about the stability of our queueing system under
this heavy traffic condition. However, this concern is irrelevant, as we will see on §5.2.2,
since our computation of the Pij’s is based on the requirement that servers are never idle
w.p.1. which clearly holds if the system (5)-(7) is feasible.

The feasibility of this system (5)-(7) is guaranteed if (4) is asymptotically satisfied as ρS →
1−. However, the solution is not necessarily unique. Uniqueness is achieved under some
restrictive condition on the matching matrix R. For example, Figure 3a shows a case where
the solution of (5)-(6) is unique as ρS → 1− (ε → 0+). For this example the Pij’s tend
to P11 = 1, P21 = P22 = 0.5, and P33 = 2 P32 = 0.666. Therefore, when there is limited
flexibility to assign customers to servers, the computation of the Pij’s becomes trivial in the
heavy traffic regime. We refer to systems that fall into this category as acyclic†. In order

†In a dynamic scheduling setting, Harrison [14] and Bell and Williams [2] studied a two-server acyclic
system.

9

to give a formal characterization of these acyclic systems, we view the sets of customers and
servers as nodes in an undirected bipartite graph where the incidence matrix is defined by the
matrix R (see Figure 3b). We say that the queueing system is acyclic if the corresponding
graph is acyclic. The definition of an acyclic system leads to the following result:

λ = 21

λ = 22

λ = 33

1

2

3

µ = 3+ε1

µ = 22

µ = 23

(a) Queueing System (b) Undirected Graph

Figure 3: (a): A simple example where (5)-(6) has a unique solution as ε → 0+. (b): Undirected graph
associated to the queueing system in (a).

Proposition 3 If the queueing system is acyclic and stable then Pij is the unique nonneg-
ative solution of the system (5)-(6) in the heavy traffic regime.

The proof follows directly from our previous discussion and the fact that the graph associated
to an acyclic system is a simple spanning tree.

In the cases that (5)-(6) does not possess a unique solution, we can still use this linear
system to obtain upper and lower bounds. Let P = {P ≥ 0 : P satisfies (5) − (6)} be the
polyhedron of feasible solutions. Then, the linear programs minP∈P{Pij} and maxP∈P{Pij}
produce lower and upper bounds for the value of Pij, respectively. For example, consider
the queueing system in Figure 4. In this case (5)-(6) does not have a closed form solution.
The table on the right of the figure compares the values of the upper and lower bounds with
estimates obtained using simulations. In general, the quality of these bounds depends heavily

λ = 21

λ = 22

λ = 33

µ = 31

µ = 22

µ = 23

P11

P12

P21

P23

P32

P33

Upper Lower

Bounds

SimulationPij

1 0.5

0.5 0

1 0.5

0.5 0

0.667 0.333

0.667 0.333

0.75

0.75

0.25

0.25

0.5

0.5

Figure 4: For the queueing system on the right (5)-(6) does not have unique solution. The table on the
left shows the upper and lower bounds for Pij as well as the values obtained using simulation.

on the topology of the system (matrix R). In particular, it is not hard to find examples where
the bounds do not provide any information, i.e., the upper bound is 1 and the lower bound
is 0 for all Pij. However, in some cases they can provide some guidance about the behavior
of the Pij like in the example of Figure 4.

10

5.2.2 Matching Formulation

We now formulate the problem of computing the Pij as a matching problem in an infinite
dimension bipartite random graph. This formulation is not particularly useful for solving
the problem. However, it provides an intuitive mathematical representation of the problem
and reveals the symmetry between the arrival and service processes (under heavy traffic
conditions) that we will exploit later. The only assumption that we use in this exposition is
that servers are almost never idle w.p.1 which is essentially our heavy traffic condition.

Suppose that we start with a system in the following condition: (i) all servers are working
and (ii) if a particular customer c is in the queue then all the customers that have arrived
after c are also waiting on queue. Condition (ii) is not really needed but makes the exposition
easier, we only require condition (i) to hold. Take the customers on the queue plus all future
arrivals and order them according to their arrival time starting from the earliest arrival. We
denote this sequence by a = (a1, a2, . . .), where ak ∈ C is the type of the kth member in
the sequence. Under condition (ii) the {ak} are i.i.d. multinomial random variables such
that Pr(ak = i) = λi/λ(C). Similarly, let consider the sequence s = (s1, s2, . . .) of service
completions, where sk ∈ S is the server that will complete the kth service. The {sk} are also
i.i.d. multinomial random variable with p.m.f. Pr(sk = j) = µj/µ(S).

Under condition (i) every time a server gets free there is at least one member of the sequence
a that is waiting in line for service. If this is the case, the only information required to study
the Pij’s is the sequence of arrival (a), the sequence of service completions (s), and the
matrix R. In this setting, the assignment of customers to servers is equivalent to matching
the elements in the sequence of arrivals to the elements in the sequence of services. Let
us illustrate this matching with the following example. Figure 5b shows how the matching

λ = 21

λ = 22

λ = 33

µ = 31

µ = 22

µ = 23

(a)

1 1 3 2 1 2 1 2

3 2 3 3 3 1 1 2

Stream of Customers Arrivals

Stream of Sevice Completions

....

(b)

Figure 5: An example of the customer-server matching. Figure (a) shows the queueing system. Figure (b)
illustrates how the matching is done for an specific stream of arrivals and service completions.

between customers and servers is done (for the system in Figure 5a) once the streams a
and s are defined. We notice that the roles played by customers and servers are perfectly
symmetric, that is, we can interchange the streams of customers and service completions
and the resulting matching remains the same. In addition, in this heavy traffic regime the
absolute value of the service and arrival rates does not affect the matching what really
matters is the probability distributions of the sequences a and s which depend on their
relative value. We can formally define the matching as a mapping M : a → s such that
M(ak) = st if and only if the following two conditions are satisfy.

11

1. st ∈ S(ak).

2. For all k̃ < k such that st ∈ S(ak̃) it must be that M(ak̃) = st̃ with t̃ < t.

Given this matching M, the value of Pij is given by

Pij = lim
K→∞

∑K
k=1 11(ak = i) 11(M(ak) = j)

∑K
k=1 11(ak = i)

,

where 11(X) is the indicator function of event X. Computing this limit above is a task that we
have not been able to do. The major difficulty is the path-dependent nature of the mapping
M. That is, to verify the value of 11(M(ak) = j) the whole history (a1, . . . , ak) and the full
sequence s are essentially needed and we have not been able to summarize in a tractable
way this information. For this reason we approach the problem using an approximation that
ends up producing good results.

5.2.3 Approximations

The approximation that we propose is based on a property of the completely connected
systems as ρS → 1−. In this simplify scenario, we have that the fraction of customers i that
select server j is simply

Pij =
µj

µ1 + µ2 + · · ·+ µm

,

as ρS → 1−. That is, Pij is the proportion of the total service capacity that is offered by
server j. Since this result holds under heavy traffic condition, from the rest of this section
§5.2.3 we will consider only the asymptotic regime of a stable system, that is, the system
(5)-(7) admits a feasible solution.

The behavior of Pij for a completely connected system leads us to the following observation:

Observation: In the absence of any type of interference from the other classes of customers,
the fraction of customers i assigned to server j ∈ S(i) would be given by

µj Rij∑
k∈S(i) µk

(8)

under heavy traffic conditions.

Of courses, servers in S(i) are not exclusively assigned to class-i customers and (8) is only
a crude approximation for the true values of the Pij’s. Moreover, there is not guarantee
that the they satisfy at least the balance conditions (5)-(6). What is important about (8)
is that it reflects a natural tendency to allocate customers to servers. The key idea of our
approximation is to construct an assignment that is feasible (satisfies (5)-(6)) and at the
same time uses as much as possible the allocation proposed by (8). The discussion of this
approximation is made in terms of the flows Fij = λi Pij rather than the probabilities Pij.

Consider a completely connected system and let FC
ij be the average flow of customers i

assigned to server j, that is,

FC
ij =

λi µj

µ1 + . . . + µm

.

12

Note that by construction, the FC
ij flows balance the arrival rate (input) and the service rate

(output) meaning that
∑

i F
C
ij = µj. However, the FC flows are only an “ideal” assignment

since some of the arcs (i, j) do not exist in our original system. Associated to this “ideal
flow” FC we define three quantities: (i) F 0 the feasible part of FC , (ii) E0

i the residual flow
of customers i, and (iii) D0

j the residual flow at server j by:

F 0
ij = FC

ij Rij, E0
i = λi −

m∑

j=1

F 0
ij, and D0

j = −(µj −
n∑

i=1

F 0
ij). (9)

We interpret this quantities as follows. Suppose that we start with a perfectly connected
system. In this case, we have that Fij = FC

ij . Suppose then that suddenly we block all
the flows (i, j) for which Rij = 0 (i.e., Fij = 0). In this case, we have that instantaneously
the rate of customers i that get blocked is E0

i and the amount of idle capacity at server
j is equal to −D0

j . From this observation and our assumption ρS = 1, it is clear that∑n
i=1 E0

i +
∑m

j=1 D0
j = 0. We introduce two auxiliary matrices Lij and Mij given by

Lij =
λi Rij∑
k∈C(j) λk

Mij =
µj Rij∑
k∈S(i) µk

.

Lij represents the fraction of load imposed by class-i customers to server j while Mij rep-
resents the fraction of capacity offered by server j to class-i customers. Notice that Mij is
equal to the allocation described in (8). According to our observation matrix M define a
natural way to allocate customers to servers. Similarly, matrix L defines a natural way to
allocate service capacity to customers. This observation follows from the symmetry between
service and arrival processes.

We are now ready to explain our proposed solution. The approach is to construct a sequence
of systems such that system k is characterized by three quantities (i) an (n × m) matrix
of flow rates F k = [F k

ij], (ii) an n-vector of residual input rates Ek = (Ek
i), and (iii) a m-

vector of residual output rates Dk = (Dk
j). In the limit as k → ∞, F k

ij will converge to our
proposed solution. For the sake of clarity we will complement the analytical derivation with
the following simple 4 × 3 example in figure 6. Given this system, we first assume that we
have a perfectly connected system and compute FC

ij . Then, since not all the arcs are present
we compute the residual vectors E0

i and D0
j . We set our initial condition to be (F 0

ij, E
0
i , D

0
j).

Figure 7 shows the resulting flows.

Given this initial situation, our proposed solution is constructed as follows:

Ek+1 = LDk (10)

Dk+1 = M ′ Ek (11)

F k+1
ij = F k

ij + Mij Ek−1
i − Lij Dk

j k ≥ 1. (12)

Intuitively, what this solution does at every stage is to allocate the “unassigned customers”
(Ek) to the servers using the allocation rule induced by matrix L. Similarly, the idle “capac-
ity” (Dk) is distributed among the customers using matrix M ′. This successive allocation
of customers to servers and servers to customers generates a sequence of flows resulting in

13

������������	���
λ1 = 4

1

2

3

1

2

3

λ2 = 2

λ3 = 1

µ1 = 3

µ2 = 4

µ3 = 2

4
λ4 = 2

2.36

1.64

0.27

1.52

0.21

0.85

0.15

0.36

1.64

Figure 6: A 4×3 example. The number on the arcs are the values of the flows Fij obtained using simulation.

1

2

3

4

1

2

3

1.5

1.14

0.76

1.6

0.57

0.8

0.28

0.76

1.6

E = 1.781
0

E = 02
0

E = 0.343
0

E = 0.444
0

D = -0.341
0

D = -1.782
0

D = -0.443
0

Figure 7: The number on the arcs are the values of the flows F 0
ij .

condition (12). The other two conditions (10) and (11) characterize the way the successive
residual input and residual output vectors are generated. At least two things need to be
proven to ensure that the sequence of flows generated by (12) is a good candidate for an
approximations. One is the convergence of the sequence and the other is its consistency with
(5)-(6).

We start proving convergence. For this purpose, we redefine (10)-(12) using an equivalent
representation which is easy to work with. Let N0 = E0 + LD0, F̃ 0

ij = F 0
ij − Lij D0

j , and
A = L M ′ then the following conditions are equivalent to the system (10)-(12).

Nk+1 = A Nk (13)

F k+1
ij = F̃ 0

ij + Mij

k∑

n=0

Nn
i − Lij

k∑

n=0

(M ′ Nn)j. (14)

Two properties of A are useful. From the definition of L and M it easy to see that A = LM ′

14

is a (n × n) stochastic matrix such that
∑n

i=1 Aij = 1 for all j = 1, . . . , n. Then, from the
Perron-Frobenius theory we have that Ak converges to a stochastic matrix A∞ such that the
elements in a given row are all equal, i.e., A∞

ij = A∞
ik for all i, j, k = 1, . . . , n. In addition,

the following preliminary result is needed.

Lemma 1 For an irreducible system, there is a n-dimensional vector W such that

W = N0 + AW. (15)

Proof: We need to prove that N0 ∈≺ I − A Â, where ≺ I − A Â is the linear space
generated by the matrix I − A . Since the system is irreducible matrix A can be view as
the transition matrix for a single recurrent Markov chain then dim(≺ I − A Â) = n − 1,
i.e., the linear space generated by I − A has dimension n − 1. We define the linear space
Z = {X ∈ <n :

∑n
i=1 Xi = 0}. We notice that dim(Z) = n− 1 and N0 ∈ Z by construction.

Finally, since A is a transition matrix ≺ I − AÂ⊆ Z. But both ≺ I − AÂ and Z have the
same dimension, we conclude that ≺I − AÂ= Z and N0 ∈≺I − AÂ.

We are now ready to prove the convergence of F k
ij.

Proposition 4 The sequence {F k
ij}k≥0, defined in (14), converges for every pair (i, j).

Proof: By lemma (1) above we know that there exists a vector W such that W = N0+AW .
If we iterate this identity k times we get

W = N0 + AN0 + A2 N0 + · · ·+ Ak N0 + Ak+1 W =⇒
k∑

n=0

An N0 = W − Ak+1 W.

Therefore, we can rewrite (14) as follows.

F k+1
ij = F̃ 0

ij + Mij

(
W − Ak+1 W

)
i
− Lij

(
M ′(W − Ak+1 W)

)
j
.

We have already argued that limk→∞ Ak exits and we have called this limit A∞. Thus, letting
V = W − A∞W we get

Fij ≡ F∞
ij = F̃ 0

ij + Mij Vi − Lij (M ′ V)j (16)

which completes the proof.

The second condition that we need to check is the consistency of Fij with (5)-(6).

Proposition 5 In the heavy traffic regime ρS = 1 the limit flows Fij in (16) satisfy the
following conditions:

n∑

i=1

Fij = µj

m∑

j=1

Fij = λi.

Proof: See the appendix at the end.

15

5.2.4 An Alternative Characterization of the Equilibrium Flows

Another approach to determining the flows Fij proceeds by noting the form of the solution
in equation (16). Let

Xj ≡ (M ′ V)j. (17)

Then the flows may be written as

Fij = F̃ 0
ij + MijVi − LijXj (18)

where F̃ 0
ij, Mij and Lij are known, but Vi and Xj are treated as unknown quantities. In

other words, we proceed by representing the equilibrium flows in the form given by equation
(18). However, the flows must satisfy the balance requirements of Proposition 5, thus one
can select Vi and Xj to solve the equations

n∑

i=1

(F̃ 0
ij + MijVi − LijXj) = µj and

m∑

j=1

(F̃ 0
ij + MijVi − LijXj) = λi. (19)

There is one extra degree of freedom since in the heavy traffic regime
∑

j µj =
∑

i λi, so we
need an additional equation to determine m + n parameters (the Vi’s and Xj’s) from the
flow balance equations. For example, adding

n∑

i=1

Vi = 0 (20)

to (19) is a convenient choice. It is easy to establish that once the parameters Vi and Xj

have been determined as suggested, the equilibrium flows that result from equation (18) are
identical to those that result from (16).

While we have shown that our limit flows satisfy the heavy traffic balance equations (5) and
(6), we have not been able to prove that the resulting flows are non-negative (as they must be
for a feasible system). However, in the next section we present numerical evidence indicating
that our limit flows are not only feasible; they provide very close matches to simulated flows
in heavy traffic.

5.2.5 Computational Experiments

This section reports computational experiments that show the quality of our proposed solu-
tion. Three major elements are important when designing the experiments:

1. The dimension of the problem in terms of n and m.

2. Traffic intensity ρS. Given that our methodology is appropriate only for heavy loaded
system, we will consider instances satisfying ρS ≥ 0.9.

3. Density of the matching matrix R. We define the density

ν(R) =

∑n
i=1

∑m
j=1 Rij

n m
,

i.e., the fraction of nonzero entries. Notice that by changing the density of a system
we are implicitly changing the routine structure.

16

Table 1: Values of φ for a system with dimensions n = 3 and m = 5.

ρS ν(R) = 0.6 ν(R) = 0.73 ν(R) = 0.87 ν(R) = 0.93

1.00 0.0006 0.0097 0.0016 0.0011
0.99 0.0046 0.0105 0.0016 0.0011
0.96 0.0152 0.0162 0.0022 0.0022
0.93 0.0267 0.0159 0.0027 0.0029
0.90 0.0404 0.0222 0.0033 0.0045

We also require a measure that defines the quality of the approximation. Suppose that P S
ij is

the solution of the simulation and P ∗
ij is the solution obtained using (16), i.e., P ∗

ij = Fij/λi.
Then, we define the measure φ as follows

φ =

∑n
i=1

∑m
j=1 |P S

ij − P ∗
ij|

nm ν(R)
.

That is, φ computes the average absolute difference between P S
ij and P ∗

ij. The following
tables present the results for three different set of dimensions.

Table 2: Values of φ for a system with dimensions n = 7 and m = 5.

ρS ν(R) = 0.54 ν(R) = 0.66 ν(R) = 0.86 ν(R) = 0.94

1.00 0.0024 0.0076 0.0031 0.0023
0.99 0.0037 0.0071 0.0034 0.0023
0.96 0.0079 0.0083 0.0056 0.0034
0.93 0.0087 0.0135 0.0079 0.0043
0.90 0.0106 0.0172 0.0093 0.0055

Table 3: Values of φ for a system with dimensions n = 10 and m = 7.

ρS ν(R) = 0.47 ν(R) = 0.63 ν(R) = 0.8 ν(R) = 0.96

1.06 0.0075 0.0035 0.0018 0.0016
1.00 0.0063 0.0041 0.0021 0.0018
0.99 0.0067 0.0042 0.0019 0.0018
0.96 0.0086 0.0047 0.0028 0.0026
0.93 0.0112 0.0063 0.0039 0.0040
0.90 0.0157 0.0086 0.0049 0.0054

17

As a general comment, we can see that the solution proposed by (16) is quite accurate. In
general the average error is below 0.01, that is, the proposed solution is able to predict the
values of Pij with an absolute error less than 1%. Moreover, we notice that we are comparing
the quality of (16) using the solution of the simulation which is not certain to be 100% exact.
Another observation is related to the performance of the proposed solution with the traffic
intensity ρS. As we might expect the performance deteriorates as ρS decreases, although
slightly in the range ρS ≥ 0.9. In conclusion, we have provided a closed-form representation
of the Pij that seems to match almost identically the results of the simulation. This solution
performs very well in the range ρS ≥ 0.9 improving as ρS increases.

5.3 Performance Measures

We compute average queue length and waiting time under the assumption that the system
is heavy loaded ρS → 1− and stable in the limit, i.e., conditions (5)-(6) admit a nonnegative
feasible solution for ρS → 1−. Following closely the work by Borokov [4] and Iglehart and
Whitt [16], we heuristically derive the steady-state distribution of the total queue length in
the system (the total number of customers of all classes in the system) and an estimate of
the average waiting for each class.

The setting in Iglehart and Whitt [16] is very similar to ours. There are n customers classes
and m different servers. Every customer joins the same queue and every server can serve
any customer. A FCFS service discipline is used. The main difference in our case is that a
particular server can serve only a subset of the customers’ classes. It should be clear that
in our systems queue lengths and waiting time are larger than in the Iglehart and Whitt
model. However, these differences become negligible in the heavy traffic regime. In order to
see this, let us first introduce some notation.

• Let {Ai
k, k ≥ 1} be the sequence of inter-arrival time for class-i customers (i =

1, . . . , n).

• Let {Sj
k, k ≥ 1} be the sequence of service time for server j (j = 1, . . . , m).

• For simplicity we assume that the system starts empty.

Given this primitive data the queue length and waiting processes are fully determined.

In order to prove our result we will slightly modify the service process in order to transform
our system into one that looks like the Iglehart and Whitt system. For this purpose consider
the sequence of departure epochs of server j described in Figure 8. The diagram on top
describes the sequence of services and idle period for server j in our system. The idle period
of server j can be divided in two categories:

Type 1 idle periods are those that start when server j finishes a service and (i) there are no
more customers on queue that can be served by server j but (ii) there are customers
of other classes on queue. We denote this sequence of idle periods by {Îj

k, k ≥ 1}.

18

S
1

j
S

2

j
S

3

j
S

4

j
S

5

j
S

6

j

Idle

I
1

j

Idle

I
2

j

S
1

j
S

3

j
S

4

j
S

5

j
S

6

j

Idle

I
2

j
~ ~ ~ ~ ~S

2

j~
~

^ ~

Figure 8: Sequence of busy and idle period for server j.

Type 2 idle periods are those that start when server j finishes a service and there are no
more customers on queue of any type. We denote this sequence of idle periods by
{Ĩj

k, k ≥ 1}.

In the Iglehart and Whitt model Type 1 idle periods do not happen since all servers are
able to serve all classes. Type 2 idle periods are obviously common to both systems. Let us
define

Kj def
= {k ≥ 1 s.t. Sj

k immediately preceds a type 1 idle period for server j}.

In the example of Figure 8 we have that 2 ∈ Kj but 4 6∈ Kj. In order to avoid type 1 idle
periods for server j we modify the service time Sj

k for all k ∈ Kj and define a new sequence
of service time {S̃j

k, k ≥ 1} as follows.

S̃j
k =

{
Sj

k if k 6∈ Kj

Sj
k + Îj

k̂
if k ∈ Kj,

where Îj

k̂
is the type 1 idle period that immediately follows after Sj

k, k ∈ Kj. Figure 8 shows

how to construct the modified sequence of service time {S̃j
k, k ≥ 1}. The sequences {Ai

k}
and {S̃j

k} define a new queueing system that satisfied the condition that no server is idle as
long as there are customers in queue. Hence with this artificial construction, we are able to
apply the results of Iglehart and Whitt. The only obstacle that we have is the fact that the
sequences {S̃j} are not i.i.d. This problem is, however, irrelevant in the heavy traffic regime
under consideration since the steady-state probability of Type 1 idle periods goes to zero as
ρS → 1−. Thus, let Q̃(t) be the aggregate queueing process (total number of customers in
queue plus on service for all classes) for the modified system. For a large number h > 0 (the
scaling factor), we define the scaled drift and queueing process as

θh =
√

h(ρS − 1)µ(S) and Q̃h(t) =
Q̃(ht)√

h
, respectively.

Suppose that the traffic intensity ρS → 1− in such a way that limh→∞ θh = θ < 0. Then,
it follows from Iglehart and Whitt [16] and our previous discussion that Q̃h(t) ⇒ |ξ(t)| if

19

ρS → 1−, where ξ is a Brownian motion with drift θ and variance σ2 = λ(C) + µ(S)† (where
⇒ stands for weak convergence on the space of cádlág functions, see Billingslley [3]).

Let Q(t) be the aggregate queueing processes for the original system. Then, given our
construction of the modified queue process Q̃(t) it follows that

Q̃(t)−m ≤ Q(t) ≤ Q̃(t).

Therefore, under a heavy traffic scaling we have that

Q̃h(t)− m√
h
≤ Qh(t) ≤ Q̃h(t). (21)

This condition together with the convergence of Q̃h(t) imply that Qh(t) ⇒ |ξ(t)|, a (θ, σ)-
Brownian motion. Moreover, it is well-known that such one-sided RBM have a negative
exponential distribution with mean σ2/2|θ| (e.g., Harrison [13], section §5.6). From this
result we can approximate the expected total number of customers in the system by

Q∞ = lim
t→∞E[Q(t)] ≈ λ(C) + µ(S)

2(µ(S)− λ(C))
=

1 + ρS

2(1− ρS)
.

In addition, in the heavy traffic regime we expect the steady-state aggregate queue length
to have an homogeneous composition in terms of customers classes. That is, if Qi(t) is the
queue length process of class i (so that Q(t) =

∑n
i=1 Qi(t)) then we expect that

Q∞
i =

(
λi

λ(C)

)
E[Q(∞)] =

λi(1 + ρS)

2λ(C)(1− ρS)
for all i = 1, . . . , n. (22)

This equality, however, is not guaranteed because in our system there is over-taking. How-
ever, in the heavy traffic regime queues are large and over-taking is only affecting those
customers in queue that are closed to the server. Hence, the big majority of the customers
in the queue at any moment of time have not experienced any over-taking service and we
expect (22) to hold for ρS → 1−. Finally, from (22) and Little’s law we can estimate the
expected waiting time W∞

i for class i as follow.

W∞
i =

E[Qi(∞)]

λi

=
1 + ρS

2λ(C)(1− ρS)
for all i = 1, . . . , n. (23)

Notice that the expected waiting time is constant for every i. This result should be intuitively
obvious given the service discipline under consideration. In fact, servers are serving always
the oldest‡ customers, thus in essence every customer should spend on average the same
amount of time in the system except for over-taking considerations, which are negligible in
the heavy traffic regime.

†The process |ξ| is known in the queueing literature as a one-sided regulated Brownian motion or RBM
process (e.g. Harrison[13]).

‡In terms of arrival time.

20

6 Conclusions

In this paper we have presented a performance analysis for a multi-class multi-server queueing
system with restricted customer-server matchings. These types of systems are common in
situations where each class of users can be served only by a specific subset of the available
severs. Our analysis of a general n-classes m-servers operation under a First-Come-First-
Serve service discipline seems to be novel for this type of system.

Under a Markovian formulation, we first derive stability conditions. These conditions are
simple and intuitive and they require that the aggregate arrival rate for any subset B of
users’ classes has to be strictly less than the service capacity available to serve B, i.e.,
λ(B) < µ(S(B)) for all B.

The central topic of this work, however, has been the characterization of in steady state
probability that a class-i arrival is served by server j (Pij). Our interest on these proba-
bilities relates to the underlying assignment occurring in these systems. Depending on the
application, a match between a class-i arrival and server j has some specific implications on
the operation of the system in terms of benefits and/or costs. For example as policy makers
working in the adoption department our goal would be to ensure that infants are adopted by
the “right” families or as a manufacturer we would be interested that every job is assigned
to the “right” machine. Therefore, in order to address the optimization of the overall system
we first need to understand how to compute the Pij’s.

Under heavy traffic conditions, we formalize the mathematical problem as an infinite dimen-
sional matching problem. Unfortunately, we have not been able to solve this problem in
closed form. However, borrowing some ideas from the special case of a completely connected
system we have approximated the value of the Pij with a high degree of precision; on av-
erage the error of our computations is below 1% when compared to simulations. Moreover,
a simple solution is available which requires the solution of a single n × n system of linear
equations (see equation (16).

We conclude the analysis by computing estimates for the steady state average waiting time
and queue length for each class under heavy traffic conditions. As we should expect the aver-
age waiting times for all classes coincide, reflecting the fact that any over-taking phenomena
are negligible in the heavy traffic limit because of the asymptotic growth of the waiting time
with respect to the service time.

We believe our work provides a simple characterization of a multi-class multi-server system
with reestricted customer-service matchings under heavy traffic conditions. It has, however,
left without answer some important issues that we consider are part of future research. For
instance, it would be interesting to generalize our results for moderate traffic intensity under
a specific allocation rule (A(i, j,S)). Similarly, the problem of optimizing the operation of
the system was not addressed in this work. Specifically given a set of customer classes C, a
set of servers S, and a payoff matrix rij (i ∈ C and j ∈ S) find the optimal configuration
in terms of the matching matrix R that maximizes

∑
Pij rij. Finally, the quality of our

approximations in (16) make us wonder whether this solution is indeed exact or not. At this
point we have not been able to provide any proof in either direction leaving this issue as an

21

open problem.

References

[1] Becker, K.J., D.P. Gaver, K.D. Glazebrook, P.A. Jacobs, S. Lawphongpanich. 2000.
Allocation of Tasks to Specialized Processors: A Planning Approach. Eur. J. Ops. Res.
126, 80-88.

[2] Bell, S.L., R.J. Williams. 2001. Dynamic Scheduling of a System with Two Parallel
Servers in Heavy Traffic with Resource Pooling: Asymptotic Optimality of a Threshold
Policy. Ann. Appl. Prob. 11 , 608-649.

[3] Billingsley, P. 1999. Convergence of Probability Measures. Wiley Inter-Science.

[4] Borokov, A.A. 1965. Some Limit Theorems in the Theory of Mass Service, II. Theor.
Prob. Appl. 10, 375-400.

[5] Dai, J. G. 1995. On positive Harris recurrence of multiclass queueing networks: a unified
approach via fluid limit models. Annals of Applied Probability 5, 49-77.

[6] —,G. Weiss. 1996. Stability and Instability of Fluid Models for Re-Entrant Lines. Math.
Ops. Res. 21 , 115-134.

[7] Filipiak, J. 1984. Dynamic Routing in a Queueing System with a Multiple Service
Facility. Ops. Res. 32, 1163-1180.

[8] Foley, R.D., McDonald D.R. (2001). Join the Shortest Queue: Stability and Exact
Asymptotics. Ann. Appl. Prob., 11, 569-607.

[9] Foss, S. 1998. On Stability of a Partially Accessible Multi-Station Queue with State-
Dependent Routing. Queueing Sys. 29, 55-73.

[10] Glickman, T. 1975. Resource Allocation to Minimize Delay in a Dual-Purpose Service
Facility. Ops. Res. Quart. 26, 305-315.

[11] Green, L. 1985. A Queueing System with General-Use and Limited-Use Servers. Ops.
Res. 33, 168-185.

[12] —. 1986. Correction to ”A Queueing System with General-Use and Limited-Use
Servers”. Ops. Res. 34, 184.

[13] Harrison, J.M. 1990. Brownian Motion and Stochastic Flow Systems. Krieger.

[14] —. 1998. Heavy Traffic Analysis of a System with Parallel Servers: Asymptotic Opti-
mality of Discrete-Review Policies. Ann. Appl. Prob. 8, 822-848.

[15] Houtum, G.J., I.J.B.F. Adan, J. Wessels, W,H,M. Zijm. 2001. Performance Analysis of
Parallel Identical Machines with a Generalized Shortest Queue Arrival Mechanism. OR
Spektrum 23, 411-427.

22

[16] Iglehart, D.L., W. Whitt. 1970. Multiple Channel Queues in Heavy Traffic. Adv. Appl.
Prob. 2, 150-177.

[17] Kaplan, E.H. 1984. Managing the Demand for Public Housing. ORC Technical Report
#183, MIT.

[18] Kaplan, E.H. 1988. A Public Housing Queue with Reneging and Task-Specific Servers.
Decision Sci. 19, 383-391.

[19] Roque, D. 1980. A Note on “Queueing Models with Lane Selection. Ops. Res. 28, 419-
420.

[20] Schwartz, B.L. 1974. Queueing Models with Lane Selection: A New Class of Problems.
Ops. Res. 22, 331-339.

Appendix

Proof of Proposition 2: We prove the result showing that the corresponding fluid limit
version of the system is stable so that we can invoke Theorem 4.2 in Dai [5]. The prove
shows that in the fluid limit the aggregate queue length process Q(t) =

∑n
i=1 Qi(t) has the

following property:

If Q(t) > 0 then Q̇(t) =
dQ(t)

dt
≤ −γ a.e. for some γ > 0. (24)

This Lyapunov form of the aggregate queue length is sufficient for the stability of the fluid
model since this condition implies that Q(t) = 0 for all t > Q(0)/γ (e.g., Lemma 2.2 in Dai
and Weiss [6]). The proof of (24) depends essentially in the work-conserving nature of our
service discipline. In this sense, this proof can be apply to other work-conserving disciplines.
Let t > 0 be a fixed time and suppose that Q(t) > 0, we will consider two cases:

Case 1: Suppose that Qi(t) > 0 for all i = 1, . . . , n. In this case, the work-conserving nature
of our service discipline imply that all servers are working and therefore

Q̇(t) = λ(C)− µ(S) < 0,

where the inequality holds because of (4). Thus, (24) is satisfied in this case.

Case 2: Suppose that Q(t) > 0 but there is a proper subset I ⊂ C of customer classes such
that Qi(t) = 0 for all i ∈ I. Let us define B = C − I to be the set of customers classes
with positive queue at time t. Given the work-conserving policy under consideration all the
server in S(B) ⊆ S are working at their full service rate. However, it is not clear at which
rate are working the severs in S − S(B). Figure 9 shows pictorially the situation at time
t. Let µ(t) be total service at which the whole system is working at time t. Clearly in this
case µ(t) ≥ µ(S(B)). In addition, servers in the set S − S(B) are working exclusively for
customers in the set I. Again, two possibilities arise with respect to the service rate of the
servers in I.

23

� � � � � �
i� � � � � �
i

� � � �� 	 � � � �
Figure 9: At time t, customers classes are divided in two groups: positive queue (B) and empty queue (I).

(a) Suppose the servers in S − S(B) have enough capacity to server the new arrivals in I.
Then, since the queue for I is 0, the server in I will be able to keep the queues in I at
the zero level. Thus, the cumulative service rate of the servers in I at time t is exactly
λ(I) in this case. In this situation we have that

Q̇(t) = λ(B)− µ(S(B)) < 0.

Again, the last inequality follows directly from (4).

(b) Suppose the servers in S−S(B) do not have enough capacity to server the new arrivals
in I. Then, at time t+ there is a queue growing for some classes in I since the servers
in S(B) are giving priority to customers in B. Let I ′ ⊆ I be the set of customer classes
for which a positive queue develops at time t+. In this situation, we can redefine the
set B of classes with positive queue as B ← B ∪ I ′ and the set of classes with empty
queue as I ← I − I ′. In this manner, we instantaneously (at t+) generate new sets B
and I such that the situation in Case 2a above is satisfied.

In conclusion, almost everywhere in t > 0 the set of empty queues I and the set of positive
queues B satisfies case Case 2a above, i.e., the servers in S − S(B) have enough capacity
to serve customers in I. From this observation and the results in Case 1 and Case 2a, we
conclude that the cumulative queueing process Q(t) satisfies condition (24). Moreover, γ is
bounded below by

min
B⊆C

{µ(S(B))− λ(B)},

which is guaranteed by (4) to be positive.

Proof of Proposition 5: The prove follows directly from (16) and the recursion in (13)-
(14). In fact, from (16) we have that

n∑

i=1

Fij =
n∑

i=1

F̃ 0
ij +

n∑

i=1

MijVi − (M ′V)j

n∑

i=1

Lij

=
n∑

i=1

F̃ 0
ij − (M ′V)j

(
1−

n∑

i=1

Lij

)

=
n∑

i=1

F̃ 0
ij since

n∑

i=1

Lij = 1

= µj,

24

the last equality follows directly from the definition of F̃ 0
ij = F 0

ij − LijD
0
j . To prove the

second part of the proposition we notice that by the construction of the flows in (13)-(14)
we have

Nk
i +

M∑

j=1

F k
ij = λi.

The proof follows directly using induction. In fact, it is straightforward to check the previous
condition for k = 0. In addition, from (13)-(14) we have that

Nk+1
i +

M∑

j=1

F k
ij = (ANk)i +

M∑

j=1

F k
ij + Nk

i

m∑

j=1

Mij −
m∑

j=1

Lij(M
′Nk)j

= (ANk)i +
M∑

j=1

F k
ij + Nk

i − (A Nk)i since
m∑

j=1

Mij = 1 and A = LM ′

= λi.

The last equality follows from the induction step.

25

