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1 Introduction

Many of the classic results in modern financial theory were originally derived in the context of

a complete financial market in the sense of Arrow-Debreu. Although this framework has yielded

rich results for a variety of problems in economics, the fact remains that financial markets are, in

fact, incomplete and their incompleteness has implications for many interesting economic issues,

in particular the problem of valuation of assets, real and financial. This paper addresses the issue

of valuation in incomplete markets and the resultant implications for financial decision making, in

general, and securitization, in particular.

The implications of incomplete markets for the valuation of assets can be appreciated by con-

sidering the following illustration. In standard financial theory, assets are generally valued on a

stand-alone basis. Their prices are derived from the capital market on the assumptions that the

cash flows from the real asset can be replicated in the financial market and that all agents are price-

takers with respect to financial claims. This raises the question whether the value of a particular

asset, say a real asset, owned by an agent such as a firm, can be enhanced by undertaking suitable

augmenting or offsetting transactions in the financial markets. It is well-known that in a complete

market, in which claims are traded on all future contingencies, it is not possible to improve the

valuation of the asset by such transactions (see for example, Diamond (1967), Radner (1972) and

Hart (1975)). The answer is not obvious if the market is incomplete, since we can not associate a

unique price with every state-contingent claim. We address this question in this paper.

The problem we pose is a fairly common one, since firms often have opportunities that are unique

to them, and generate future cash flows that cannot be replicated by existing market transactions.

However, firms are typically not large enough to influence the prices of the securities traded in

the market. The question is whether a firm with such a unique opportunity can engage in capital
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market transactions relating to some parts of its future cash flows to enhance its value. We separate

this question into two issues. First, what are the conditions that can be imposed on the price of

an asset in the context of an incomplete capital market to preclude arbitrage between the prices

of the traded claims? Second, given the arbitrage-bounds imposed by the market, how can a

price-taking firm “package” the cash flows from its unique investment opportunity so as to take

advantage of the incompleteness of the market? The answers to these questions would help isolate

the distinct advantage possessed by the firm from owning a particular asset, without abandoning

the standard assumptions of price-taking as well as the assumption of no arbitrage in competitive

capital markets.

In the analysis of financial markets from a pricing perspective, the base case is clearly one

that is complete and has no frictions or transaction costs. There are two points of departure:

the first is to introduce some friction, such as a trading cost, the other is to deal explicitly with

incompleteness. We explore the latter route. Our focus is on the additional value created by a

price-taking firm that takes advantage of the incompleteness of the market and caters to it. It is well

known from valuation theory that in an incomplete market, the value of a real asset cannot always

be uniquely computed from capital market prices, by arbitrage pricing arguments. Hence, it is often

concluded that firms that decide between alternative investments, such as in real assets, cannot

easily determine which choices maximize their value. Our research shows that incompleteness of the

market puts a premium on those assets that offer hedging possibilities, i.e., on assets that improve

the spanning across states. Hence, even though the values of the real assets in question cannot be

uniquely determined, this hedging dimension may restrict the bounds on their prices.

A number of typical problems of valuation in the context of incomplete markets can be analyzed

within our framework. We present below two such examples, and later, in §6, provide numerical

illustrations of each example in the context of our model.
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Example A: Securitization

The two aspects of securitization, pooling and tranching, can be explained by value creation

in incomplete markets, for instance, in the particular case of the market for collateralized debt

obligations (CDOs). The assumption here is that the market is incomplete in the sense that some

states associated with poor, mediocre, or good performance by the group of firms whose bonds are

being pooled, cannot be spanned by the available securities in the market. This creates an incentive

for an intermediary to purchase a portfolio (“pool”) of junk bonds and then issue claims against

the pool in various categories (“tranches”), e.g., a high-grade AAA tranche, which has a negligible,

virtually zero, probability of not meeting its promised payment; a medium-grade tranche, say

rated BBB+, which has a low but not negligible probability of such default; and an equity tranche,

which is viewed as risky.1 The question that arises here is what is the optimal pooling and tranching

strategy for the financial institution contracting the purchase of CDOs? In other words, what debt

instruments should be pooled and what tranches should be created to extract the maximum surplus

from the transactions?

Example B. Investment in Real Options

Consider an energy firm that has two alternative investment opportunities in oil exploration,

and can undertake only one of them. Suppose the payoffs from these opportunities depend on a

benchmark such as West Texas Intermediate (WTI) crude oil prices, and a spread due to the sulfur

content of the oil produced. The first project yields oil with low sulfur content, thus its cash flows

can be perfectly hedged by selling derivative contracts on oil on the benchmark WTI grade. The

second project might yield oil with high sulfur content and there are no matching securities. What

option should the firm select? In addition, suppose that the firm can use the oil to feed two existing
1Typically, there are more than three tranches in a CDO structure, but three would suffice to explain the essential

principles involved.
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refineries that it owns, and that are designed to handle crude with different grades of sulfur content.

Does the ownership of these refineries change the value of the investment in oil exploration? Are

there any synergies involved across the states of the economy by combining the cash flows of the

project with the existing cash flows?

The common features of these examples are: (1) There is an asset with a given set of payoffs in

different states. (2) Since the market is incomplete, the asset cannot be valued in a unique manner.

(3) Some of the asset’s payoffs are spanned by securities traded in the market. Hence, they can

be priced and sold by issuing the corresponding attainable claims in the market. (4) Other payoffs

are not spanned by traded securities. To the extent that these payoffs can be sold within the limits

of market prices, the value of the asset can be enhanced. (5) The valuation of the asset is greater

due to its spanning properties, thus leading to synergistic benefits across states rather than due

to conventional economies of scale/scope within the same states. Our research synthesizes these

common features to obtain results that are applicable in each of these settings.

This paper is organized as follows. Section 2 reviews the related literature on incomplete markets

and securitization. Section 3 presents the model setup and assumptions. Section 4 analyzes the

conditions for arbitrage-free trading in the securities market when there exists a ‘thin’ market for

cash flows that are not spanned by the existing securities. Section 5 determines the value of the

firm owning the real asset, and §6 concludes with a discussion of the implications of our analysis.

2 Literature Review

We draw upon two strands in the literature in our research. The first is the literature on valuation

of assets when markets are incomplete, i.e., when the set of available securities does not span the

state-space. The second is the literature on securitization, i.e., the issuance of securities in the
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capital market that are backed or collateralized by a portfolio of assets.

2.1 Valuation in Incomplete Markets

The Arrow-Debreu framework was originally developed to study the equilibrium valuation of claims

in a complete market. Over time, the framework has been modified and developed significantly

for analyzing general equilibrium in incomplete markets.2 Despite some progress in this area, the

problem of endogenous asset formation in an incomplete market, such as through making investment

decisions in real assets or introducing new securities, and the valuation of such assets, in particular,

has not been solved satisfactorily so far. To be precise, for a firm making such decisions, the main

issue is how to value an asset, real or financial, that is outside the span of securities that can be

priced exactly.

In an Arrow-Debreu economy, when markets are complete, beliefs and attitudes towards risk do

not affect the valuation of new assets, given the pricing of state-contingent claims in the existing

equilibrium. Therefore, the competitive firm’s investment decisions under the objective of value

maximization are independent of such attitudes and the standard Fisher separation theorem of

valuation of real assets versus their financing holds. However, when markets are incomplete, as

pointed out by Radner (1982), we do not have a clear-cut natural way of comparing net revenues at

different dates and states. Typically, each investor in a firm has a different attitude to a proposed

investment and the unanimity implied by the separation theorem in complete markets no longer

holds. In such a situation, the objective of the firm itself is unclear. Various objectives of the firm

have been proposed under such a situation such that the actions of the firm are consonant with the

value of the firm. A particular objective proposed by Grossman and Hart (1979) (similar to the
2Most of the theory is accessible via the surveys by Radner (1982) and Magill and Shafer (1991) and the more

detailed book by Magill and Quinzii (2002).
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objective studied in Diamond (1967) and Dreze (1974)) is related to our paper. They suggest that

each firm’s objective function be a weighted sum of the shareholders’ private value. If shareholders

have to be unanimous about the plan, this objective reduces to maximization of the value of shares.

In this context, Radner (1982, p. 981) adds that the market-value maximization hypothesis would

require the producer to predict the effect of a choice in production plan on the price equilibrium.

Thus, the producer would no longer be a price-taker. Therefore, one would need a theory of general

equilibrium in monopolistic competition to determine the optimal plan.

Since the theory of equilibrium under incomplete markets does not yield unambiguous results,

research in financial economics has focused on the less restrictive notion of “no arbitrage” to analyze

problems of valuation. Harrison and Kreps (1979) is credited with showing that a no arbitrage price

process under a suitable change of measure can be set equal to the conditional expectation of the

future payoffs. It can also be used as the basis for approximate analysis of equilibrium, as argued by

Ross (1976a) and John (1981). The idea of no arbitrage is more primitive than that of equilibrium

in the financial markets or even valuation, since the existence of arbitrage opportunities implies that

that the economy is not in equilibrium. In fact, the no arbitrage condition helps in searching for

equilibrium under incomplete markets (see, for example, Geanokoplos and Polemarchakis (1986)).

Despite this, the fact remains that when an asset’s payoffs are not spanned by the existing claims in

the market, or more particularly, the returns of an asset are not perfectly correlated with marketed

assets, it is difficult to value the asset using no-arbitrage pricing.

Three different approaches have been adopted for pricing contingent claims in incomplete mar-

kets: through bounds based on no-arbitrage, preference-based approaches that impose restrictions

on the utility functions of consumers, and approximate arbitrage-based arguments. Under the

arbitrage-based approach of Harrison and Kreps (1979), when the market is incomplete, the pric-

ing kernel is not unique - there are several pricing kernels that price marketed securities correctly.

6



Since the traded assets do not span the entire state space, there is a multiplicity of stochastic dis-

count factors, under any of which the expected value of future cash flows equals the present price

of a traded asset. Hence, for securities than cannot be spanned by the existing market, there is no

unique price. However, a lower and an upper bound on the value of the security can be obtained

by determining the maximum and minimum prices under the set of pricing kernels—the security

cannot be sold above its upper bound, nor can it be purchased below the lower bound price, without

presenting an arbitrage opportunity.3

In contrast to the above approach, it is possible to restrict investor preferences or return dis-

tributions to get exact prices such as in the capital asset pricing model (CAPM) model. Another

example of this approach is the literature on option pricing using such preference restrictions.4

These approaches give bounds that are obviously tighter than the no arbitrage bounds, but are less

general, given the nature of the preferences assumed.

Some researchers have criticized both the preference-based and arbitrage-based approaches to

pricing. The preference-based approach, which uses subjective probabilities and the preferences of

the individual decision-maker, is criticized as being too specific and subject to misspecification error.

The arbitrage-based approach, on the other hand, which uses the risk neutral pricing measure, is

criticized for yielding price bounds that are too wide - those that rule out arbitrage opportunities,

but do not rule out “approximate” arbitrage opportunities. Thus, these bounds are considered

too weak to be economically interesting. Recent research has focused on sharpening the price

bounds in an incomplete market, either by imposing economic restrictions in the arbitrage pricing

theory based on the reward-to-risk or Sharpe ratio, or by combining the arbitrage-based and the
3A variant of this approach is to place restrictions using the principle of stochastic dominance, as proposed in the

context of options by Merton (1973), and widely used in setting bounds on the prices of derivative instruments.
4See, for example, Perrakis and Ryan (1984), Levy (1985), Ritchken (1985), Ritchken and Kuo (1989) and Mathur

and Ritchken (1999).
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preference-based approaches.

The arbitrage-based approach, first formally proposed by Harrison and Kreps (1979), is used as

the starting point of the analysis in the approximate arbitrage based approach. Shanken (1992) de-

fines an investment opportunity with a high, but finite Sharpe ratio as an “approximate arbitrage.”

Hansen and Jagannathan (1991) show that a bound on the maximum Sharpe ratio is equivalent to

a bound on the variance of the pricing kernel. Building on this result, Cochrane and Saa-Requejo

(2000) derive sharper bounds on the prices of derivative instruments by ruling out the existence

of investment opportunities with high Sharpe ratios, which they call “good deals”. Many other

restrictions on the set of pricing kernels have been studied in the literature. For example, Snow

(1992) derives restrictions on the q-th moment of the pricing kernel; and Stutzer (1993) presents

an alternative restriction on the entropy of the pricing kernel by restricting the maximum expected

utility attained by a CARA agent.

Bernardo and Ledoit (1999, 2000) argue that bounds on the maximum value of the Sharpe

ratio are insufficient to rule out approximate arbitrage when returns are not Gaussian because

even though such bounds rule out high state prices, they do not rule out low state prices. Thus,

Bernardo and Ledoit alternatively define approximate arbitrage as a zero-cost investment oppor-

tunity with a high ratio of expected gains to expected losses, where the expectations are taken

under a benchmark investor’s risk-adjusted pricing measure. By using duality theory they show

that a restriction on the maximum gain-loss ratio is equivalent to a restriction on the ratio of state

price densities (P/Q) across any two states, and therefore, rules out both high and low state prices,

where, P denotes the risk neutral price density, and Q denotes the risk-adjusted price density of a

benchmark investor. Thus, Bernardo and Ledoit give an alternative method to show that restrict-

ing approximate arbitrage restricts the set of admissible pricing kernels, and thus, gives sharper

price bounds than those obtained by a pure arbitrage-based approach.

8



In contrast to the above approaches, we show that the bounds can be substantially sharpened

using no-arbitrage arguments when there are several contingent claims to be priced simultaneously.

In some sense, our approach is between the large and the small in the following sense: the preference

based approach uses the utility function of a single person (small) whereas the competitive no

arbitrage approach assumes an efficient market and several players (large). Our approach is that of

a single seller who works within the no arbitrage prices but sells to multiple buyers. However, an

important assumption of our analysis is related to the previous literature, namely, the price-taking

assumption of the individual seller of claims.

The problem of valuing a new asset that is introduced into an incomplete market goes beyond

the valuation of assets using prices that prevail before the introduction of the new asset. Even in a

complete market, such an action might cause the prices of other assets to change. The assumption

made by us and others is that the firm is a price-taker. This may not necessarily be appropriate

if the firm’s output is a non-negligible proportion of the entire output in the economy.5 A variant

of this assumption is discussed by Grossman and Stiglitz (1980). They examine unanimity of

shareholders with regard to a production plan when there is spanning but not complete markets.6

The set of production plans of a firm is said to be spanned when any of its plans can be written

as a linear combination of the production plans of other firms. They show that when markets are

incomplete, spanning, in general, does not imply unanimity amongst shareholders when the shares

of the firm can be retraded. They show that unanimity can be obtained when firms behave as

perfect competitors in the production of commodities that form a basis for the spanned space, an

assumption labeled as “competitivity.” Another strand of literature on incomplete markets deals

with the role of financial markets in using options and “supershares” to augment existing markets
5See Hart (1979a), Hart (1979b) and Grossman and Hart (1979) for a discussion.
6Unanimity has been studied extensively in the mean-variance setting. See, for example, Merton and Subrah-

manyam (1974).
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to achieve the allocational efficiency of a complete market.7

Our paper also considers the limits to the monopolistic power of an entrepreneur by restricting

the entrepreneur to act within the set of observed prices. This approach is similar to using the

concept of “viability” as in Harrison and Kreps (1979) and Kreps (1981). A pricing kernel over a set

of attainable consumption vectors is said to be viable for a class of conceivable agents if there is one

agent that prefers a consumption bundle from the given set to all others at the given prices. Harrison

and Kreps show that viability is equivalent to there being an extension of the pricing kernel to the

entire set of consumption bundles, i.e., beyond the attainable set. In our setting, the valuation

of the asset is undertaken within the set of price kernels that price existing securities correctly.

Thus, the owner of the asset behaves monopolistically, but within the restrictions imposed by the

no arbitrage criterion. On the other hand, the magnitude of trading possibilities created by the

asset is assumed to be insignificant so that the pricing kernels do not change. The approach is also

similar to the relative pricing as described by Cochrane and Saa-Requejo (2000), “we are interested

only in the value of a specific payoff, we take as given the prices of other assets without questioning

their fundamental economic determinants, and we want to make as few economic assumptions as

possible. (p. 80)”

2.2 Securitization

Research on securitization has focused on the rationale for the widespread use of pooling and

tranching in the asset-backed securities market. This rationale is explained through three types

of market imperfections: transaction costs, market incompleteness, and information asymmetry.
7Supershares are tranches of the portfolio of all securities in the market. See Ross (1976) and John (1981) for an

analysis of how options on a single portfolio of all the primitive securities can achieve such a fully efficient market.

Hakansson (1978) provides an argument that supershares issued by an entity invested in the market portfolio may

improve the allocational efficiency of the existing market structure.
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Specific examples of securitization include the literature on “supershares” (i.e., tranches of the

portfolio of all securities in the market), primes and scores (i.e., income and capital gains portions

of a stock), and “bull” and “bear” bonds.8

Allen and Gale (1991) examine the incentive of a firm to issue a new security when there are

transaction costs. Their study is motivated by the observation that the first firm to innovate finan-

cially faces a higher cost than imitators. They consider a two-period model with entrepreneurs and

investors. Each entrepreneur owns a risky asset that produces a random return in the second period.

Asset returns are assumed to have symmetric distributions. In the first period, the entrepreneur

issues claims against the returns from the asset. If a firm decides to innovate a new security (which

is simply a partition of its asset returns), the ex-post values of the firm that decides to innovate

and the firms that decide not to innovate will be equal. Thus, there is no value to innovating if the

prices remain the same after innovation and when there is a cost incurred for introducing the new

securities. On the other hand, if the prices change due to the innovation, then there is a mixed

strategy symmetric equilibrium in which each firm computes the value differential from innovating

versus not innovating and acts accordingly. Even if one firm decides to innovate, the prices might

change to make the innovation worthwhile to the firm. If it decides not to innovate, there is still

a probability that one other firm might innovate. Thus, the strategy mixes across these outcomes

and trades off the cost of issuing the security against the benefit from innovating. Allen and Gale

conclude that competition is necessarily ‘imperfect’ if there is to be any incentive to innovate (this

relates back to the observation in Radner (1982)). Our paper shows that this need not be the case

even if prices do not change due to the innovation but when there is a single firm. The firm can
8See Hakansson (1978), and Jarrow and O’Hara (1989) for details. For example, Hakansson (1978) argues that

options or supershares on the market portfolio improve the allocational efficiency of an existing market structure,

even if the market portfolio itself is not efficient.
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partition its asset returns so that they are sold in the most profitable manner. However, the most

profitable manner is constrained by the no-arbitrage condition. We also assume that only the firm

can issue these securities and that they have to be backed by the asset returns to be credible.9 We

only assume that the sum total of the payoffs from the securities issued should be less than or equal

to the random return in the second period.

Several other researchers examine the rationale for pooling and tranching using information

asymmetry between issuers and investors. Pooling is considered beneficial to both an uninformed

issuer and an uninformed investor. The benefit to an uninformed issuer is that it reduces the

issuer’s incentive to gather information (Glaeser and Kallal 1997). The benefit to uninformed

investors is that pooling reduces their adverse selection problem when competing with informed

investors (DeMarzo 2001). In this context, Subrahmanyam (1991) shows that security index baskets

are more liquid than the underlying stocks.

However, DeMarzo (2001) also shows that an informed issuer (or intermediary) does not prefer

pure pooling because it destroys the asset-specific information of the informed issuer. Instead,

an informed intermediary prefers pooling and tranching to either pure pooling or separate asset

sales because pooling and tranching enable the intermediary to design low-risk debt securities that

minimize the information asymmetry between the intermediary and uninformed investors. DeMarzo

calls this the ‘risk diversification effect’ of pooling and tranching. Pooling and tranching are also

beneficial to uninformed investors. For example, Gorton and Pennachi (1990) show that uninformed

investors prefer to split cash flows into a risk-less debt and an equity claim.10

9Ross (1976b) writes, “Furthermore, in general, it is less costly to market a derived asset generated by a primitive

than to issue a new primitive, and there is reason to believe that options will be created until the gains are outweighed

by the set-up costs (p. 76) .
10There is a vast literature on the role of information asymmetry in securitization. See DeMarzo (2001), DeMarzo

and Duffie (1999), and Leland and Pyle (1977) for examples.
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Our paper discusses the rationale for securitization from market incompleteness assuming that

there are no frictions, such as transaction costs, or information asymmetry. However, the results

from our paper are consistent with the results based on information asymmetry. We show that

purely from an arbitrage perspective, pooling and tranching are beneficial to the issuer since they

enable the issuer to construct tranches that maximize the value of unspanned assets in an incomplete

market. We further discuss the issuer’s problem of optimal construction of tranches given that there

are investors with different preferences in the market. In this regard, our results also relate to the

value of options for increasing market efficiency as described in Ross (1976b).

3 Model Setup

We consider a discrete-time Arrow-Debreu economy in which time is indexed as 0 and 1.11 The set of

possible states of nature at time 1 is Ω = {ω1, ω2, . . . , ωK}. All agents have the same informational

structure: The true state of nature is unknown at t = 0 and is revealed at t = 1. Moreover, the K

states are a complete enumeration of all possible events of interest, i.e., the subjective probability

of any decision maker is positive for each of these states and adds up to one over all the states.

There is a set of claims traded in the financial market that can be bought or sold by all agents.

The financial market is assumed to be arbitrage-free and frictionless, i.e., there are no transaction

costs associated with the sale, purchase or creation of securities. All agents are price-takers in the

financial market. To keep the analysis uncluttered, we assume that there is no discounting of cash

flows, i.e., the risk-free rate of interest is 0.

In this economy, we introduce a firm (decision maker) that owns an asset, say a real asset, which

is unique to it and provides an income of X(ωk) in each state k at time t = 1. We assume that
11The model described below can be extended to a multi-period setting with some added complexity in the notation.

However, the basic principles and results derived would still obtain.

13



the firm is small relative to the size of the economy. Thus, the equilibrium prices of financial assets

currently traded in the market are unaffected by the introduction of the firm. The firm, therefore,

behaves as a price-taker in the financial market. It can undertake the following transactions: (i)

buy and sell claims issued against X, (ii) buy or sell securities in the financial market. Claims

issued against X should be fully backed by X; in other words, their sum should not exceed the

value of X in any state of nature.12

We are primarily interested in how the firm can enhance its value by combining X with the

securities traded in the financial market. There are three possible cases of interest: (1) when the

market is complete and there are no transaction costs, (2) when the market is complete but there

are transaction costs or deadweight costs, such as due to bankruptcy, and (3) when the market is

incomplete. In the first case, the value of proprietary claims X is unique and cannot be enhanced

by transactions in the financial market (see Lemma 3 in §5). In the second case, Allen and Gale

(1991) show that the value of the firm cannot be enhanced by offering new securities against X

when there are transaction costs of issuing these new securities and prices are unaffected by the

issuance of new securities. On the other hand, it is easy to show that when there are deadweight

costs such as those associated with bankruptcy, the firm might prefer to insure against loss in

certain states of nature. Certainly, risk averse owners might prefer to trade their future cash flows

for a time zero profit or even at a small loss. These results establish that interaction between the

cash flows from real and financial assets is certainly possible when there are inefficiencies in the

securities market. In contrast, our paper focuses on the third case, when the financial market is

frictionless but incomplete.

We make the following additional assumption with respect to claims that are not presently
12We do not allow for issue of claims that would permit default in some states, since that would involve complex

questions relating to bankruptcy and renegotiation, which are outside the purview of this paper.
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traded: There are buyers willing to buy and/or sell contingent claims Yi, i = 1, . . . , I in the market

at prices pi.13 These claims could be made up of packages of other securities and state contingent

claims. We refer to them as being traded in a ‘thin’ market. Thus, even though the market is

incomplete, there is demand from individuals who are willing to buy unspanned claims at arbitrage-

free prices. Allen and Gale (1991) present an example that demonstrates the existence of demand for

such claims in an incomplete market. They show that when the market is incomplete, individuals

can have different reservation prices for contingent claims that are not spanned by the existing

securities (also see Ross 1976b). This suggests that there are two classes of securities in the market:

(a) those that are presently traded, and (b) those that can potentially be traded. It should be

emphasized that even though securities in the latter group are not presently traded, we model their

bid and ask prices to be consistent with the arbitrage bounds implied by the former group.

In §4, we determine necessary and sufficient conditions to prevent arbitrage in an incomplete

market when there are prices associated with claims that can potentially be traded. This charac-

terization is essential to determine the distinctive advantage of the subject firm in our model. In

§5, we compute the optimal packaging of X such that the value of the firm is maximized.

4 No-Arbitrage Condition in an Incomplete Market

We begin by defining our notation and restating some standard results from the literature in our

context. Proofs of these results can be found in the literature, well-synthesized by Pliska (1997).

As stated in §3, the securities market is assumed to be arbitrage free. Therefore, there exists a

set, Θ, of risk neutral probability measures over Ω such that all traded claims are uniquely priced.
13We presume that arbitrageurs will take advantage of different bid and ask prices for the same claim across

investors. Thus, after these transactions are exhausted, no claim Yi has different bid and ask prices.
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It is well known that the set Θ is spanned by a finite set of independent linear pricing measures.14

Denote the collection of pricing measures that span Θ as {qj , j = 1, . . . , J}. In particular, if the set

Θ is a singleton then the market is complete, else it is incomplete.

Consider a claim Z in this market that pays Z(ωk) in state k, k = 1, . . . ,K. If the expecta-

tion of Z under q, Eq[Z], is independent of q for all q ∈ Θ (that is, Z is spanned by securities

that are traded in the market), then Z is said to be an attainable claim, else it is said to be an

unattainable claim. We shall use the notation E[Z] for the expected value of attainable claims.

For use below, note that all attainable claims are uniquely priced regardless of whether the market

is incomplete. For any unattainable claim Z, let V −(Z) = max{E[S] : S ≤ Z, S is attainable},

and let S−(Z) = arg max{E[S] : S ≤ Z, S is attainable}. Likewise, let V +(Z) = min{E[S] : S ≥

Z, S is attainable}, and let S+(Z) = arg min{E[S] : S ≥ Z, S is attainable}. V −(Z) and V +(Z) are

well-defined and finite. Also, V −(Z) and V +(Z) may alternatively be defined as infq∈Θ Eq[Z(ωk)]

and supq∈Θ Eq[Z(ωk)], respectively.

We establish the following lemma needed in the sequel. It simplifies the computation of V +(Z)

and V −(Z) by recognizing that Θ is the interior of a simplex, and that the values of V +(Z) and

V −(Z) are each realized at an extreme point of this simplex. Since qj ’s span Θ, they represent the

extreme points of the simplex. Thus, V +(Z) and V −(Z) can be computed simply by taking the

maximum and the minimum, respectively, of the expected values of Z under qj ’s. This Lemma is

closely related, but not identical to results in the literature. We state and prove it in the specific

form stated below. All proofs are in the Appendix unless otherwise stated.

14A linear pricing measure is a probability measure that can take a value equal to zero in some state, whereas a

risk neutral probability measure is strictly positive in all states. Thus, the set Θ is the interior of the convex set

spanned by the set of independent linear pricing measures. The maximum dimension of this set equals the dimension

of the solution set to a feasible finite-dimensional linear program, and thus, is finite.
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Lemma 1. V +(Z) = maxj∈J Eqj [Z]. V −(Z) = minj∈J Eqj [Z].

The no arbitrage condition for a single contingent claim Z in an incomplete market is stated as

follows: Let the price of Z at time t = 0 be p. Then this contingent claim presents no arbitrage if

V −(Z) ≤ p ≤ V +(Z). Notice that for attainable claims, V −(Z) = V +(Z) = E[Z]. For our analysis

in §5, we need to extend this definition to encompass arbitrage-free trading with multiple claims in

thin markets, viz., when several unattainable claims are priced in the market simultaneously. We

do this in two steps: Lemma 2 extends the no-arbitrage condition for a single contingent claim to

multiple contingent claims by defining a necessary and sufficient condition for no-arbitrage in an

incomplete market. Theorem 1 gives a verification technique to check the condition in Lemma 2.

Lemma 2. To prevent arbitrage in the trading of the Yi’s, it is necessary and sufficient that for

all α ∈ <I , V −(
∑

αiYi) ≤
∑

αipi ≤ V +(
∑

αiYi).

In words, the lemma states that the price of every portfolio that can be constructed using the

available claims should lie between the respective upper and lower bounds to prevent arbitrage.

Example 1A: Consider an incomplete market with K = 5, Ω = {ω1, ω2, ω3, ω4, ω5}, and Θ =

{(x, 0.25 − x, 0.5, y, 0.25 − y) : 0 ≤ x ≤ 0.25, 0 ≤ y ≤ 0.25}. Suppose that there exist agents

who are willing to purchase the contingent claims Y1 = (1, 0, 0, 0, 0) and Y2 = (0, 1, 0, 0, 0). We

have V −(Y1) = 0, V +(Y1) = 0.25, V −(Y2) = 0 and V +(Y2) = 0.25. Thus, according to the standard

condition for arbitrage-free trading, the prices of Y1 and Y2 must each lie between 0 and 0.25 to avoid

an arbitrage. This is because (1,1,0,0,0) is an attainable claim that has value = x+0.25−x = 0.25.

It is also the cheapest attainable claim that is larger than Y1 or Y2. However, these conditions alone

are not sufficient, taken individually, to prevent arbitrage. For example, if the agents are willing to

purchase Y1 and Y2 for p1 = 0.15 and p2 = 0.2, respectively, then it is possible to obtain a sure profit

by purchasing the attainable claim (1, 1, 0, 0, 0) for 0.25, splitting it into the unattainable claims Y1

and Y2, and selling to the respective individuals for a net profit of 0.10. Lemma 2 precludes such
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prices by stating that the no-arbitrage condition must hold not only for Y1 and Y2 individually, but

also for portfolios, i.e.,all linear combinations of Y1 and Y2.

The no-arbitrage condition in Lemma 2 is hard to verify because it must hold for every portfolio

that can be created by varying α. Theorem 1 makes verification easier by converting the portfolio

pricing problem into a pricing problem for the individual Yi’s. It states that the no-arbitrage

condition holds if and only if the claims Yi are priced correctly under at least one pricing measure.

Theorem 1. The no-arbitrage condition of Lemma 2 holds if and only if there exists q ∈ Θ such

that

(i) for each claim i that investors are willing to buy at price pi,

∑
k

q(ωk)Yi(ωk) ≥ pi, (1)

(ii) for each claim i that investors are willing to sell at price pi,

∑
k

q(ωk)Yi(ωk) ≤ pi, (2)

(iii) for each claim i that investors are willing to both buy and sell at price pi,

∑
k

q(ωk)Yi(ωk) = pi. (3)

Given the set of contingent claims Yi with prices pi, in order to verify whether these prices satisfy

the condition of Theorem 1, we can proceed as follows: first we exhaust any obvious arbitrage

opportunities that present themselves when some investors are willing to buy the same claim at a

higher price compared to what others are willing to sell the claim at. Next, we partition the set of

claims that can be bought, sold, or both bought and sold as S1, S2 and S3, respectively. We can

determine whether the prices pi satisfy Theorem 1 by solving the following problem:

P1 : ∃ πj , j = 1, . . . , J such that
∑

j

πj = 1, πj ≥ 0 ∀j and
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∑
k

∑
j πjQj(ωk)Yi(ωk) ≥ pi ∀i ∈ S1

(≤, =) (i ∈ S2, i ∈ S3)

The existence of πj ’s can be established using linear programming.

Theorem 1 gives sharper bounds on the prices of unattainable claims than those obtained by

valuing each claim individually using Lemma 1 because these prices must not only lie between the

values given by the functions V −(·) and V +(·) but also satisfy the additional constraints in Theorem

1. For example, suppose we wish to obtain price bounds for claim YI given prices pi, i = 1, . . . , I−1

for claims Yi, i = 1, . . . , I − 1. We can obtain these price bounds simply by adding the constraints

from problem P1 for claims i = 1, . . . , I − 1 to the pricing problem in Lemma 1. We illustrate the

computation of these bounds in §6.

It is of interest to relate Theorem 1 to the usual condition for no arbitrage price bounds when

there is a single contingent claim-price pair (Y, p) that can be both bought and sold. In that case,

Theorem 1 requires the existence of a risk neutral pricing measure q′ such that Eq′ [Y ] ≥ p as well as

Eq′ [−Y ] ≥ −p. Thus, Eq′ [Y ] = p. This is equivalent to the usual condition because Eq′ [Y ] = p ⇒

infq∈Θ Eq[Y ] ≤ p ≤ supq∈Θ Eq[Y ]. Notice that the existence of such a probability measure does

not imply that the contingent claim is uniquely priced because its price could be different under

different risk neutral pricing measures, say p′′ = Eq′′ [Y ] and infq∈Θ Eq[Y ] ≤ p′′ ≤ supq∈Θ Eq[Y ].

Thus, the results in this section can be viewed as an extension to the usual arbitrage pricing

theory: the prices in the thin market stay not only within the bounds imposed by the current prices

for individual attainable claims in the market, but also within the bounds implied by the prices

of other claims in the thin market. Moreover, when operating within the constraints that some

contingent claims Y can only be bought (or sold), the prices of such claims must satisfy a one-sided

constraint. On the other hand, the new idea here is that even though prices of the contingent

claims Yi’s are not unique, they must be correct simultaneously to prevent arbitrage.
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Example 1B: We now continue with the previous example and examine the pricing bounds for

all combinations of securities. According to Theorem 1, to avoid arbitrage with prices p1 = 0.15

and p2 = 0.2, it is necessary that for some x and y, the expectations of Y1 and Y2 under q =

(x, 0.25− x, 0.5, y, 0.25− y) are larger than p1 and p2. That is, x× 1 ≥ 0.15, (0.25− x)× 1 ≥ 0.2.

This is impossible. Further, the range of prices that satisfy the conditions of Theorem 1 is given by:

x× 1 ≥ p1, (0.25− x)× 1 ≥ p2, that is, p1 + p2 ≤ 0.25. Thus, given p2 ∈ [0, 0.25], price bounds for

Y1 are (0, 0.25− p2). These bounds are sharper than those obtained from Lemma 1 and obviously

prevents the arbitrage discussed earlier.

Example 2 shows how the condition of Theorem 1 can be checked using the linear program P1

in a more complicated situation.

Example 2: Consider an incomplete market with K = 4, Ω = {ω1, ω2, ω3, ω4}, and Θ = {(x +

3y, x− y, 0.5− 2x, 0.5− 2y)} where

0 ≤ x + 3y ≤ 1

0 ≤ x− y ≤ 1

0 ≤ 0.5− 2x ≤ 1

0 ≤ 0.5− 2y ≤ 1.

Figure 1(a) shows the feasible set of values of x and y obtained by solving the above constraints.

This set is given by triangle ABC with vertices (1/4, 1/4), (0, 0) and (1/4,−1/12). There is a

one-to-one correspondence between these extreme points and the independent pricing measures

that span Θ. Thus, Θ is spanned by the pricing measures q1 = (1, 0, 0, 0), q2 = (0, 0, 1/2, 1/2)

and q3 = (0, 1/3, 0, 2/3). Figure 1(b) shows the set of admissible pricing kernels (triangle A′B′C′)

corresponding to the feasible values of x and y.

Suppose that there exist individuals willing to purchase the contingent claims Y1 = (1, 0, 0, 0)

and Y2 = (0, 1, 0, 0) at prices p1 and p2, respectively. By imposing the arbitrage bounds on these
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claims one at a time, we have

V −(Y1) = 0 ≤ p1 ≤ V +(Y1) = 1,

V −(Y2) = 0 ≤ p2 ≤ V +(Y2) = 1/3.

Similar to Example 1, these bounds are not sufficient to prevent arbitrage. For example, p1 =

1, p2 = 0.2 satisfy these bounds but result in an arbitrage. To see this, buy the claim (1, 1, 1, 1) at

price 1, sell Y1 and Y2 at a total price of 1.2, and throw away the balance of (0,0,1,1).

The necessary and sufficient conditions on p1 and p2 to prevent arbitrage are obtained as in

P1 by adding the constraints x + 3y ≥ p1 and x − y ≥ p2 to set Θ. Notice that in the region

ABC, x − y takes a minimum value of 0 on the line segment AB and a maximum value of 1/3 at

C. Thus, 0 ≤ p2 ≤ 1/3. Now, if p2 is fixed at a value in this range, then, adding the constraint

x − y ≥ p2 from Theorem 1, we find that the feasible set of pricing measures shrinks from ABC

to the triangle DEC (see Figure 1(a)) with vertices D= (1/4, 1/4 − p2), E= (3/4p2,−1/4p2) and

C= (1/4,−1/12). Accordingly, the value of p1 that satisfies the no-arbitrage condition along with

p2 takes a minimum on the segment CE, and a maximum at D. Thus, 0 ≤ p1 ≤ 1−3p2. If p1 is also

fixed at a value within this range, then, adding the constraint x+3y ≥ p1, we find that the feasible

set of pricing measures further shrinks to the triangle DFG, where F= (3/4p2+1/4p1, 1/4p1−1/4p2)

and G= (1/4, 1/3p1− 1/12). Figure 1(b) shows the pricing kernels corresponding to triangles DEC

and DFG.

Thus, if the usual bounds are used, the upper bound on the sum of p1 and p2 equals 4/3, whereas

the arbitrage-free upper bound obtained from the conditions 0 ≤ p2 ≤ 1/3 and 0 ≤ p1 ≤ 1− 3p2 is

1.
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5 Valuation of X

This section considers the problem of determining a matching portfolio of securities Y which, when

combined with X, maximizes the value of the firm. We first establish that an enhancement in the

value of the firm is feasible only in an incomplete market.

Lemma 3. If the market is complete, that is, the set Θ contains q as its singleton element, then

the value of X can be enhanced by augmenting it with some contingent claim Y if and only if the

time 0 value of the combined time 1 cash flows from X and Y is not separable in X and Y .

The situation is different when the securities market is incomplete. For example,

Lemma 4. If Θ is not a singleton set then the sum of the minimum value of the asset, X, and the

minimum value of the contingent claim, Y , can be enhanced by combining them.

Proof: The minimum value of the asset is given by minq E[X]. Similarly, the minimum value of

the contingent claim is given by minq E[Y ]. The result follows by noting that

min
q

E[X + Y ] ≥ min
q

E[X] + min
q

E[Y ]

2

Remark: Notice that the above inequality can be strict only if Θ is not a singleton set. Thus,

indirectly it also provides a proof that when cash flows are additive and the set Θ is a singleton,

no contingent claim can enhance the value of the asset.

5.1 Determining the Optimal Portfolio

We now consider the problem of maximizing the value of X given that a set of buyers is willing to

purchase claims Yi at prices pi. The prices pi obey the conditions defined in Theorem 1, else there

would be an arbitrage in the existing market.
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The problem is formulated as the following linear program:

P2 : max z +
∑

i

αipi (4)

subject to

X̄(ωk) +
∑

i

αiYi(ωk) ≤ X(ωk) k = 1, . . . ,K (5)∑
k

qj(ωk)X̄(ωk)− z ≥ 0 j = 1, . . . , J (6)

z, X̄ unsigned, α ≥ 0. (7)

This linear program maximizes the profit obtained by splitting X in such a way that claims αiYi

are sold to respective buyers at prices αipi and the remaining portion, X̄, is sold in the market at

the most conservative price. Here, X̄ and
∑

i αiYi denote the components into which X is split, z

denotes the price of X̄, and
∑

i αipi is the price of
∑

i αiYi. Constraint (5) ensures that the sum of

X̄ and
∑

i αiYi is smaller than X. It enforces the requirement that claims issued against X should

be backed by X. Constraint (6) computes the price z of X̄. Since z is the most conservative price,

it must be less than or equal to V −(X̄). By Lemma 1, this implies that z must be less than or

equal to the expectation of X̄ under each of the pricing measures qj . Constraint (6) ensures this

condition. By the definition of V −(X̄), this implies that there exists an attainable claim S−(X̄)

which is less than or equal to X̄ under all states of nature and has price z. Thus it is possible to

realize the value z by selling X̄. The objective function of P2 seeks to maximize the sum of the

proceeds from X̄ and the parts of X sold to the buyers in the thin market, viz.,
∑

i αipi.

The following theorem gives the optimal solution to this linear program, and thus, the maximum

value of X.

Theorem 2. Let ΘA ⊂ Θ be the non-empty set of pricing measures that satisfy conditions (i)-(iii)

in Theorem 1 for claims Y1, . . . , YI in the thin market at prices p1, . . . , pI , respectively. Also let
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{qAl, l = 1, . . . , L} denote the set of independent pricing measures that span ΘA. Then the optimal

solution to P2 is given by minq∈ΘA
Eq[X], or equivalently, by minl EqAl

[X].

According to Theorem 2, the value of X is enhanced by undertaking transactions in the thin

market because ΘA ⊂ Θ so that minq∈ΘA
Eq[X] ≥ minq∈Θ Eq[X] = V −(X). Further, Theorem 2

does not result in an unbounded solution even though the formulation P1 does not have an upper

bound on α. This is so because the prices pi satisfy the no-arbitrage condition in Theorem 1.

Let XA = arg max{E[W ] : W ≤ X, W is attainable}. The structure of the optimal claims

issued against X can be obtained as follows.

Optimal value of X = min
q∈ΘA

Eq[X]

= min
q∈ΘA

{Eq[X −XA] + Eq[XA]}

= min
q∈ΘA

{Eq[X −XA]}+ V −(X).

The second equality follows because XA is attainable. Thus, we find that the value of the firm is

maximized when the attainable portion of X, XA, is stripped away and sold at E[XA](= V −(X)),

and the value of the remaining cash flows, X −XA is maximized using Yi’s. Notice that XA need

not be unique because the optimal value does not depend on the choice of XA.15

5.2 Application to Securitization

Consider the problem of securitization in an incomplete market. Let there be J originators, Xj

denote the cash flows per unit of the debt obligations of originator j, and cj denote the price

at which originator j seeks to sell its cash flows to the intermediary. We define pooling as the

set of transactions by which a financial intermediary purchases a set of cash flows from one or
15To see this, let X ′

A be an alternative attainable claim such that X ′
A ≤ X and E[X ′

A] = V −(X). Then

minq∈ΘA Eq[X] = minq∈ΘA{Eq[X −X ′
A] + Eq[X

′
A]} = minq∈ΘA{Eq[X −X ′

A]}+ V −(X) = minq∈ΘA{Eq[X −XA] +

Eq[XA −X ′
A]}+ V −(X) = minq∈ΘA{Eq[X −XA]}+ V −(X).
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more originators, and sells attainable securities backed by the combined cash flows in the financial

market. Let X =
∑

j βjXj denote one unit of the pooled asset, where the vector β = (β1, . . . , βJ)

denotes the proportion in which the debt obligations of the originators are combined together in

the pool. Note that
∑

j βj = 1 and βj ≥ 0 for all j. Also note that the value of pooling is, by

definition, equal to V −(X)−
∑

j βjcj .

We define tranching as the creation of securities backed by the pooled asset to be sold in the thin

market, i.e., to buyers of Y1, . . . , YI . Let αi denote the number of units of claim Yi tranched from

one unit of the pooled asset X, and let α = (α1, . . . , αI). Applying Theorem 2, the incremental

value of tranching is given by minq∈ΘA
Eq[X].

We now specify the pooling and tranching strategy as (α, β). The financial intermediary’s

problem is to determine α and β such that the profit per unit of the pooled asset is maximized.

This problem is formulated as the following linear program:

P3 : max z +
∑

i

αipi −
∑

j

βjcj (8)

subject to

X̄(ωk) +
∑

i

αiYi(ωk) ≤
∑

j

βjXj(ωk) k = 1, . . . ,K (9)

∑
k

qj(ωk)X̄(ωk)− z ≥ 0 j = 1, . . . , J (10)∑
j

βj = 1 (11)

z, X̄ unsigned, α ≥ 0, β ≥ 0. (12)

Notice that this problem is similar to problem P2 defined in §5.1. In P2, the asset X is given

and we seek to maximize its value by splitting it into various tranches. In comparison, in P3, we

seek to both construct the optimal pooled asset and split it into tranches. Constraints (9)-(10) are

analogous to constraints (5)-(6) in P2, and constraint (11) is added to ensure that β corresponds

to a single unit of the pooled asset.
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Let ΘA be as defined in Theorem 2 and ΘB ⊂ Θ be the set of pricing measures satisfying

Theorem 1 for claims Xj priced at cj . Theorems 1 and 2 yield the following conditions characterizing

when there is value in pooling by itself (without tranching) and when there is value in pooling

followed by tranching.

Corollary 1. (i) If ΘB is empty, i.e., if for every q ∈ Θ, there exists j such that cj < Eq[Xj ], then

there is value in pooling by itself.

(ii) If ΘB is non-empty and ΘA
⋂

ΘB = ∅, then there is no value in pooling, but there is value

in pooling and tranching.

(iii) If ΘA
⋂

ΘB 6= ∅, then there is value in neither pooling nor tranching.

Here, if ΘB is empty, then by Theorem 1, some combination of claims Xj can be assembled

to provide risk-free profit. Thus, there is value in pooling by itself (Case (i)). This value can be

obtained by solving the linear program P3 setting α = 0. Note that ΘB could be empty even when

the prices of the claims Xj are within the bounds obtained by evaluating them individually. When

ΘB is not empty, then there is no combination possible under which an arbitrage can be created.

But if ΘB has no element in common with ΘA, then once again Theorem 1 can be applied to show

that there must be an arbitrage among X1, . . . , XJ and Y1, . . . , YI (Case (ii)). The optimal pooling

and tranching strategy can again be obtained by solving P3. Let X be the weighted combination of

X1, . . . , XJ that gives the optimal pooled asset. From Theorem 2, the profit per unit of the pooled

asset is given by minq∈ΘA
Eq[X]−

∑
j βjcj . In Case (iii), the maximum value of X, minq∈ΘA

Eq[X],

is smaller than the price paid to assemble the pool for all pooling strategies β. Thus, there is no

arbitrage opportunity.
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6 Numerical Examples

This section presents numerical illustrations of Examples A and B in §1.

6.1 Securitization

Consider a single-period economy with state-space, Ω = Ω1×Ω2, where Ω1 = {1, 2, 3} and Ω2 = {a,

b, c} are information sets. At time t = 0, the market can contract only on the information set Ω1.

The set Ω2 is verifiable at time t = 1 but not contractable at t = 0.

Let there be three securities traded in this economy, S1 with unit payoffs in states {1a, 1b, 1c}

and 0 in the remaining states, S2 with unit payoffs in states {2a, 2b, 2c} and 0 in the remaining

states, and S3 with unit payoffs in states {3a, 3b, 3c} and 0 in the remaining states. Let the prices

of these securities be 0.34, 0.36 and 0.30, respectively. These securities determine the set of pricing

kernels, Θ, feasible for the economy under no-arbitrage trading. Thus, we have

q1a + q1b + q1c = 0.34,

q2a + q2b + q2c = 0.36,

q3a + q3b + q3c = 0.30.

Consider two firms, j = 1, 2, in this economy with debt obligations, X1 and X2. The payoffs

per unit of these obligations at time t = 1 are as shown in Table 1. The bounds on the prices of

each unit of X1 and X2 are obtained by using Lemma 1 as follows:

V −(X1) = 0, V +(X1) = 2 · 0.34 + 2 · 0.36 + 2 · 0.30 = 2.00,

V −(X2) = 0, V +(X2) = 1 · 0.34 + 4 · 0.36 + 1 · 0.30 = 2.08.

Suppose that firm 2 is willing to sell one unit of its debt obligations for c2 = 0.15. Then,

sharpened arbitrage bounds for the value of one unit of the debt obligations of firm 1 can be
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Firm 1

a b c

1 0 1 2

2 0 2 0

3 0 1 2

Firm 2

a b c

1 1 0 0

2 1 0 4

3 1 0 0

Table 1: Debt obligations of firms 1 and 2 at t=1

obtained as follows:

max(or min) q1b + 2q1c + 2q2b + q3b + 2q3c

such that

q1a + q1b + q1c = 0.34,

q2a + q2b + q2c = 0.36,

q3a + q3b + q3c = 0.30,

q1a + q2a + 4q2c + q3a ≤ 0.15 (from Theorem 1),∑
k∈Ω

qk = 1,

qk ≥ 0, for all k ∈ Ω.

Thus,

V −(X1|c2) = 1.06, V +(X1|c2) = 2.00. (13)

We now illustrate the application of Corollary 1 to pooling and tranching.

Benefits of Pooling. Suppose that firm 1 is willing to sell one unit of its debt obligations for

c1 = 0.80. Since this price lies outside the bounds in (13), by Theorem 1, ΘB, is empty. Therefore,

by Corollary 1, there is value in pooling the payoffs of the two firms. A naive pooling strategy is

to pool the debt obligations in the ratio 1:1. This strategy yields a profit of 0.025 per unit of the
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pooled asset. However, this strategy is not optimal. The optimal pooling strategy is obtained by

solving the linear program P3 setting α = 0. We find that the optimal strategy involves pooling

X1 and X2 in the ratio 1:2. The price of the pooled asset, X = X1/3+2X2/3, has a lower bound of

V −(X) = 0.68. Thus, it is possible for a financial intermediary to construct one unit of the pooled

asset X at a cost of 11/30 (= (0.80 + 0.30)/3), and sell its attainable portion in the market for

V −(X). (The attainable portion of X consists of 0.5S1 + S2 + 0.5S3.) Thus, pooling results in a

net per unit profit of 94/300 (= 0.68− 11/30).

If c2 = 0.15, pooling has value as long as c1 < V −(X1|c2) = 1.06. When c1 becomes larger than

1.06, then ΘB is not empty so that, by Corollary 1, pooling by itself has no value.

Benefits of Pooling and Tranching. Now suppose that there exist customers in the financial

market willing to purchase risky claims at prices within the arbitrage bounds. Let there be four

classes of investors, i = 1..4, willing to purchase the four claims Yi shown in Table 2 at prices pi

equal to 0.20, 0.50, 0.30 and 0.40, respectively. It can be verified that these prices are consistent

according to Theorem 1 to prevent arbitrage.

It is possible for the financial intermediary to tranche the remaining portion of the pooled

obligations (after selling the attainable portion) to these investors at the best available price.

Thus, we now solve the linear program P3 to find the optimal pooling and tranching strategy.

Here, αi, i = 1..4, represent the number of units of Yi sold to investor class i, αi, i = 5..7, represent

the number of units of traded securities (attainable claims) tranched out to achieve V −(X), and
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β1, β2 represent the proportion in which the obligations of the two firms are pooled together.16

max 0.2α1 + 0.5α2 + 0.3α3 + 0.4α4 + 0.34α5 + 0.36α6 + 0.3α7 − 0.80β1 − 0.15β2

such that

α5 ≤ β2 state 1a

α5 ≤ β1 state 1b

α2 + α3 + α5 ≤ 2β1 state 1c

α6 ≤ β2 state 2a

α1 + α3 + α6 ≤ 2β1 state 2b

α1 + α2 + α3 + 3α4 + α6 ≤ 4β2 state 2c

α7 ≤ β2 state 3a

α7 ≤ β1 state 3b

α2 + 2α4 + α7 ≤ 2β1 state 3c

β1 + β2 = 1

α1, . . . , α4 ≥ 0, α5, . . . , α7 unsigned, β1, β2 ≥ 0.

If β = (5/9, 4/9) is used for pooling, then two candidate feasible solutions to the LP are

α = (2/3, 2/3, 0, 0, 4/9, 4/9, 4/9) and α = (0, 0, 2/3, 2/9, 4/9, 4/9, 4/9). The former solution turns

out to be optimal. The total per unit profit to the financial intermediary after pooling and tranching
16The linear programs P1,P2,P3 were formulated in earlier sections assuming that the linear pricing measures

that span the set Θ are known explicitly. Alternatively, these linear programs can also be formulated when the set

Θ is not known explicitly but the traded securities that determine the set Θ are given. Here, we use the alternative

formulation since S1, S2, S3 are given. The variables αi, i = 5..7, give the attainable claims tranched from the pooled

asset. They are unsigned since the attainable claims can be both bought and sold.
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Investors i = 1

a b c

1 0 0 0

2 0 1 1

3 0 0 0

Investors i = 2

a b c

1 0 0 1

2 0 0 1

3 0 0 1

Investors i = 3

a b c

1 0 0 1

2 0 1 1

3 0 0 0

Investors i = 4

a b c

1 0 0 0

2 0 0 3

3 0 0 2

Table 2: Demand for unattainable claims by different investor classes at t=1

is: 4/9 (from the sale of attainable claims) + 14/30 (from the sale to investor classes 1 and 2)

−5/9c1 − 4/9c2 = 0.40, where c1 = 0.80 and c2 = 0.15.

Further, we find that if c2 = 0.15 and 1.06 ≤ c1 < 1.56, then ΘB is not empty and ΘA
⋂

ΘB is

empty. In this case, pooling by itself has no value but pooling with tranching has value.

No benefit from pooling and tranching. When c2 = 0.15 and c1 ≥ 1.56, then ΘA
⋂

ΘB is

not empty. Thus, there cannot be arbitrage because both prices are high enough to prevent any

advantage from pooling and tranching.

Figure 2 shows the ranges of values of c1 and c2 illustrating the three cases in Corollary 1. The

range where pooling by itself has value is represented by the region below the curve GHI. The range

for which pooling by itself has no value but pooling with tranching has value is represented by the

region between the curves ABCDEF and GHI. Within this region, tranching of the obligations of

firm 1 without pooling has value to the left of the line c1 = 0.28. Tranching of the obligations of

firm 2 without pooling never has value. The region above and to the right of the curve ABCDEF

represents the range of values for which neither pooling nor tranching has value. The optimal

pooling and tranching strategy varies in the region below ABCDEF. The optimal pooling ratio

takes the following values depending on c1 and c2: (1:0), (2:1), (5:4) or (1:2). The optimal tranching

strategy varies accordingly.
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6.2 Investment in Real Options

The data for this illustration are identical to those in Example 2 in §4. To the economy in that

example, we introduce a firm with a choice of two production plans, for example, two alternative

investments in oil exploration as discussed in Example B in §1. The first plan yields cash flows

X1 = (1, 0, 1/2, 3/2) and the second plan yields cash flows X2 = (3/2, 1, 1/4, 3/4). X1 is spanned

by the securities market and has a unique price of 1 (i.e., the same price under the three pricing

kernels, q1, q2 and q3). However, X2 is not spanned by the securities market. Using the values of

qj ’s computed earlier and applying Lemma 1, we find that V −(X2) = 0.5 and V +(X2) = 1.5. It

also follows from Theorem 2 that buying derivative instruments on the financial market will not

enhance the value of X2. Thus, in the absence of any buyers for unattainable claims, the firm might

choose plan X1 over X2.

Now suppose that there exist individuals willing to buy claims Y1 = (1, 0, 0, 0) and Y2 =

(0, 1, 0, 0) (defined earlier) at prices p1 = 0.34 and p2 = 0.2, respectively. Note that the prices

of Y1 and Y2 satisfy the no-arbitrage condition computed in Example 2 in §4 (0 ≤ p2 ≤ 1/3, 0 ≤

p1 ≤ 1 − 3p2). Referring to Figure 1(b), the set of feasible probability measures given p1 and p2

correspond to the triangle D′F′G′. Substituting the values of p1 and p2, the extreme points of this

triangle yield the following probability measures:

qD′ = (1− 3 · 0.2) · q1 + 0 · q2 + 3 · 0.2 · q3

= 0.4q1 + 0.6q3

= (0.4, 0.2, 0, 0.4),

qF ′ = (0.34, 0.20, 0.03, 0.43),

qG′ = (0.66, 0.34/3, 0, 0.68/3).

By Theorem 2, the optimal value of X2 is given by the minimum value of X2 under the restricted
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set of probability measures, ΘA, given by the triangle D′F′G′. Since the extreme points of this

triangle are known, we apply Lemma 1 to obtain minq∈ΘA
Eq[X]. We have,

EqD′ [X2] = 0.4 · 3/2 + 0.2 · 1 + 0 · 1/4 + 0.4 · 3/4 = 1.1,

EqF ′ [X2] = 1.04,

EqG′ [X2] ' 1.273.

Thus, the optimal value of X2 is 1.04. It is obtained by stripping the attainable claim (1/2, 0, 1/4, 3/4),

selling it for V −(X1), and selling one unit each of Y1 and Y2 at prices 0.34 and 0.2, respectively.

Thus, the value of X1 is enhanced by finding buyers willing to purchase Y1 and Y2. This changes

the optimal decision of the firm.

Relating to Example B in §1, note that options X1 and X2 could represent the two opportunities

for oil exploration. X1 corresponds to payoffs from oil with low sulfur content, which can be hedged

perfectly using derivative instruments on the benchmark WTI grade. X2 represents payoffs from

oil with high sulfur content, which cannot be hedged perfectly in this manner. Y1 and Y2 represent

investment in oil refineries that are capable of processing oil with different grades of sulfur. The

presence of Y1 and Y2 puts a premium on oil with high sulfur content and enhances the value of

the firm.

7 Discussion and Conclusions

It is well known from the previous literature that when markets are incomplete, it is not possible

to compute all asset prices in a unique manner using arbitrage principles since some states are

not spanned by traded claims. Attainable claims have unique prices, whereas only bounds can be

established for the others. Hence, it is difficult for firms or investors to establish the optimality of

their asset choices. Our paper adds to this literature by examining how incompleteness causes the
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market to place a premium on assets that augment the spanning of the market by existing traded

claims.

In particular, we demonstrate that a firm that has an opportunity to invest in an asset can

maximize its value by stripping away the maximal attainable portion of the pool of claims for

which market prices can be readily established. The remaining part of the cash flows is packaged

and sold to willing agents at prices that do not create arbitrage. Our framework and results have

several applications to common financial problems relating to the valuation of assets, real and

financial. We discuss two such problems, one relating to mergers and the other to securitization.

It has been documented in the academic and practitioner literature that the synergies from a

merger of two companies may come from several sources, economies of scale or scope from their

operations, improvement in their debt capacity, etc. All these explanations deal with the benefits

created in individual states of nature where the cash flow of the combined firm are larger than the

sum of the cash flows of the parts taken separately. We provide a different rationale. We argue

that if the merger produces synergies across states rather within states, it may increase the span

of the market by creating new claims as described above.

Another application is the area of securitization, discussed in detail in the example in the text.

In this problem, our analysis provides guidance in terms of the optimal combination of securities

that can be pooled and tranched from a universe of available securities, so as to maximize the

benefit to the financial intermediary that designs and implements the structure.

Our paper also provides a plausible hypothesis for the eventual completion of markets. We show

that in an incomplete market, firms have an incentive to produce assets X that are not spanned

by the market. The inclusion of X expands the set of agents willing to trade unattainable claims

Yi, and tightens the bounds on their prices. Thus, incrementally, the market is brought closer

to completeness. Finally, our approach can be applied within either the preference-based or the
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approximate arbitrage based pricing approach to further sharpen the price bounds given by those

methods.
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Appendix

Proof of Lemma 1. Consider the linear program:

min z

subject to

z ≥
K∑

k=1

qj(ωk)Z(ωk) j = 1, . . . , J

z unsigned.

If z ≥
∑

k qj(ωk)Z(ωk) for all j, then
∑

j δjz ≥
∑

j

∑
k δjqj(ωk)Z(ωk) for all δj ≥ 0,

∑
j δj = 1.

Thus, z ≥ supq∈Θ Eq[Z(ωk)]. Therefore, the optimal solution must be greater than or equal to

V +(Z). On the other hand, z = maxj∈J Eqj [Z] is a feasible solution to the linear program. But

maxj∈J Eqj [Z] ≤ supq∈Θ Eq[Z(ωk)]. Thus, V +(Z) = maxj∈J Eqj [Z]. Similarly, it can be shown

that V −(Z) = minj∈J Eqj [Z]. 2

Proof of Lemma 2. If, for some α ∈ <I ,
∑

αipi > V +(
∑

αiYi), then it is possible to create

an arbitrage position by purchasing the attainable claim S+(
∑

αiYi) at price V +(
∑

αiYi) and

selling the portfolio
∑

αiYi at price
∑

αipi. Thus, the inequality is necessary. The proof of

necessity of V −(
∑

αiYi) ≤
∑

αipi is similar. Moreover, the inequalities are sufficient because for

the establishment of an arbitrage position, we must have that for some α ∈ <I ,
∑

αipi lies outside

the interval [V −(
∑

αiYi), V +(
∑

αiYi)]. 2
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Proof of Theorem 1. We assume that αi ≥ 0 for all i. This is a technical assumption required to

facilitate the proof. It does not result in a loss of generality. In particular, it does not restrict short

sales, because if there exists a contingent claim Yi that agents are willing to both buy and sell at price

pi, then this claim can be represented by two claim-price pairs (Yi, pi) and (Yj , pj) = (−Yi,−pi).

Thus, we need to prove Theorem 1 only for condition (i).

Sufficiency: Consider any α > 0. If condition (i) holds for some q ∈ Θ, then we have

∑
i

αipi ≤
∑

i

∑
k

q(ωk)αiYi(ωk).

Therefore,
∑

αipi ≤ V +(
∑

αiYi).

An alternative proof of sufficiency is obtained using linear programming. This also provides the

setup for establishing the necessity of condition (i). Let PL be the linear program

max
I∑

i=1

αipi − Z (14)

subject to

Y (ωk)−
I∑

i=1

αiYi(ωk) = 0 k = 1, . . . ,K (15)

K∑
k=1

qj(ωk)Y (ωk)− Z ≤ 0 j = 1, . . . , J (16)

Y (ωk) unsigned for all k, Z unsigned, αi ≥ 0 for all i. (17)

This linear program maximizes the profit that any agent in the market can make by purchasing

an attainable claim, splitting it into components αiYi, and selling them to the respective buyers at

prices αipi. Constraint (15) computes the portfolio Y by adding up the cash flows αiYi for all i.

Constraint (16) computes the cost Z of creating Y from the securities traded in the market. Since

Y may not be attainable, the minimum cost of creating Y from the securities traded in the market

is equal to V +(Y ). This is so because, by the definition of V +(Y ), there exists an attainable claim
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S+(Y ) which is greater than or equal to Y in all states of nature and has price V +(Y ). Thus,

Z must be greater than or equal to V +(Y ). Applying Lemma 1, this is so if Z is larger than

the expected value of Y under each of the pricing measures qj . Therefore, we get the constraints

(16). The objective function of PL represents the amount of profit that can be made by purchasing

S+(Y ) at price Z and selling
∑

αiYi at price
∑

i αipi.

Assume to the contrary that the condition in Lemma 2 does not hold, i.e., there exists an α such

that V +(
∑

αiYi) <
∑

αipi. Fix α at this value. Under this assumption, we get an arbitrage by

purchasing the attainable claim S+(
∑

i αiYi) at Z and selling
∑

i αiYi at price
∑

i αipi. Therefore,

PL is unbounded. Thus, by the strong duality theory, the dual of PL is infeasible. The dual

program, denoted DL, is shown below. Here, qk and πj are the dual variables corresponding to

constraints (15) and (16), respectively.

min 0 (18)

subject to

K∑
k=1

qkYi(ωk) ≥ pi i = 1, . . . , I (19)

qk −
J∑

j=1

πjqj(ωk) = 0 k = 1, . . . ,K (20)

J∑
j=1

πj = 1 (21)

qk unsigned, πj ≥ 0. (22)

Here, constraints (20)-(22) imply that q is a pricing measure in set Θ that is obtained by taking a

convex combination of qj ’s with weights πj . Constraints (19) hold if the expectation of Yi computed

under the measure q is smaller than pi for each i. Thus, constraints (19)-(22) are equivalent to (1).

Thus, the infeasibility of DL implies that there does not exist any q ∈ Θ such that (1) holds for

all i. Therefore, if V +(
∑

αiYi) <
∑

i αipi for any α, then there does not exist any q ∈ Θ such that
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(1) holds for all i.

Necessity: Note that PL is always feasible and Z = αi = 0 is a feasible solution. Therefore, if

there is no arbitrage, then Z ≤
∑

i αipi for all α. Thus, PL has an optimal solution equal to 0.

This implies that DL also has an optimal solution equal to 0. The optimal solution of DL gives a

q ∈ Θ such that (1) holds for all i. 2

Proof of Lemma 3. The only if part is obvious since it can be easily shown that if the time 0

value of the combined time 1 cash flows from X and Y is separable in X and Y , then the value of

X cannot be enhanced by augmenting it with Y .

The if part follows from assuming that the time 0 value of the combined cash flows is a function,

g(X, Y ). But then, the time zero value of a combination of X and Y must account for the fact

that the decision maker has to acquire the contingent claim at time 0. Due to the fact that q is

the unique risk neutral probability measure, the time 0 fair price of the contingent claim is Eq[Y ].

Thus, the “net” value of the cash flows at time zero equals g(X, Y )−Eq[Y ] for all Y . In particular,

g(X, Y )− Eq[Y ] = g(X, 0)− Eq[0].

Therefore,

g(X, Y ) = g(X, 0) + Eq[Y ].

2

Proof of Theorem 2. Consider the dual of P2, DX:

min
∑

k

λkX(ωk) (23)
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subject to

λk −
∑

j

µjqj(ωk) = 0 k = 1, . . . ,K (24)

∑
j

µj = 1 (25)

∑
k

λkYi(ωk) ≥ pi i = 1, . . . , I (26)

λk, µj ≥ 0 j = 1, . . . , J, k = 1, . . . ,K. (27)

Here, λk and µj are the dual variables corresponding to the constraints (5) and (6), respectively.

Observe from constraints (24) and (25) that λ is a pricing measure in Θ. Also, from constraint

(26), λ satisfies (1) in Theorem 1. Thus, λ ∈ ΘA. Since Theorem 1 holds, the dual problem DX

has at least one feasible solution. Further, the primal problem P2 is also feasible since X̄ = 0, z =

0, α = 0 is a feasible solution. Thus, both the primal and dual problems have optimal solutions.

These solutions are equal by weak duality theory.

Also note that the objective function of DX is the expectation of X under λ. Therefore, the

optimal solution of DX (and of P2) is equal to minq∈ΘA
Eq[X]. By Lemma 1, the optimal solution

is further equal to minl EqAl
[X]. 2

Proof of Corollary 1. (i) From Theorem 1, if ΘB is empty, then there exist weights βj ≥ 0

such that
∑

j βjcj < V −(
∑

j βjXj). Therefore, V −(
∑

j βjXj)−
∑

j βjcj > 0 so that there is value

to pooling claims Xj in the proportion given by βj for all j. Conversely, if ΘB is not empty, then

for all βj ≥ 0, we have that
∑

j βjcj ≥ V −(
∑

j βjXj), so that there is no value to pooling without

tranching.

(ii) If ΘA
⋂

ΘB = ∅, then applying Theorem 1 to claims {Xj} and {Yi}, there exist (α, β) such

that
∑

j βjcj −
∑

i αipi < V −(
∑

j βjXj −
∑

i αiYi). Thus, there is value in pooling the claims {Xj}

in ratio β, selling tranches {αiYi}, and selling the remaining payoffs at V −(
∑

j βjXj −
∑

i αiYi).
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(iii) Let q ∈ ΘA
⋂

ΘB. Then, from Theorem 1,
∑

j βjcj ≥ Eq[
∑

j βjXj ] for all β ≥ 0. Further,

from Theorem 2, the value of
∑

j βjXj is less than or equal to Eq[
∑

j βjXj ]. Thus, there is no value

in pooling or tranching. 2
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Figure 1(a): Graph of feasible values of x and y for Example 2
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x+3y=p1

x+3y=1–3p2

x – y=p2

A

B
X

The figure illustrates the feasible set of values of x and y in Example 2. The triangle ABC 
represents the feasible set in the absence of information about thinly traded claims. When 
individuals are willing to buy claims Y2 (or Y1 and Y2), the set shrinks to DEC (or even further to 
DFG).

Coordinates of the labeled vertices:
A = (1/4, 1/4), B = (0, 0), C = (1/4, -1/12), D = (1/4, 1/4 – p2),
E = (3/4 p2, – 1/4 p2), F = (3/4 p2 + 1/4 p1, 1/4 p1 – 1/4 p2), G = (1/4, 1/3 p1 – 1/12).
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Figure 1(b): Graph of feasible pricing measures for Example 2

A’

C’

B’

D’
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Q3 = (0,1/3,0,2/3)

Q1 = (1,0,0,0)

Q2 = (0,0,1/2,1/2)

E’

The figure illustrates the feasible set of pricing kernels in Example 2. The axes represent the 
independent pricing kernels that span Θ. Points in the region A’B’C’ represent all feasible 
pricing kernels as linear combinations of the independent pricing kernels when there is no 
information about thinly traded claims. This set shrinks to D’E’C’ when individuals are willing to 
buy claim Y2 at price p2, and further shrinks to D’F’G’ when individuals are willing to buy Y1 and 
Y2 at prices p1 and p2, respectively. Sets A’B’C’, D’E’C’ and D’F’G’ correspond to ABC, DEC 
and DFG, respectively, in Figure 1(a).

The coordinates of the labeled vertices are:
A’ (1, 0, 0), B’ (0, 1, 0), C’ (0, 0, 1), D’ (1-3p2, 0, 3p2),
E’ (0, 1-3p2, 3p2), F’ (p1, 1-p1-3p2, 3p2), G’ (p1, 0, 1-p1).

For example, F’ corresponds to the pricing kernel: 
p1*Q1 + (1-p1-3p2)*Q2 + 3p2*Q3 = (p1, p2, 1/2-p1/2-3p2/2, 1/2-p1/2+p2/2).
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Figure 2: Value of securitization in the example in §6.1
as a function of c1 and c2
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In the region below the curve GHI, pooling by itself has value. In the region between 
ABCDEF and GHI, pooling by itself has no value but pooling with tranching has value. 
Tranching of the obligations of firm 1 without pooling has value to the left of the line c1
= 0.28. Tranching of the obligations of firm 2 without pooling never has value. In the 
region above and to the right of the curve ABCDEF, neither pooling nor tranching has 
value.
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