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Abstract

We propose a new transaction-level bivariate log-price model, which yields fractional or standard

cointegration. Most existing models for cointegration require the choice of a fixed sampling interval

∆t. By contrast, our proposed model is constructed at the transaction level, thus determining the

properties of returns at all sampling frequencies. The two ingredients of our model are a Long Mem-

ory Stochastic Duration process for the waiting times {τk} between trades, and a pair of stationary

noise processes ({ek} and {ηk}) which determine the jump sizes in the pure-jump log-price process.

The {ek}, assumed to be i.i.d. Gaussian, produce a Martingale component in log prices. We assume

that the microstructure noise {ηk} obeys a certain model with memory parameter dη ∈ (−1/2, 0)

(fractional cointegration case) or dη = −1 (standard cointegration case). Our log-price model includes

feedback between the disturbances of the two log-price series. This feedback yields cointegration, in

that there exists a linear combination of the two series that reduces the memory parameter from 1

to 1 + dη ∈ (0.5, 1) ∪ {0}. Returns at sampling interval ∆t are asymptotically uncorrelated at any

fixed lag as ∆t increases. We prove that the cointegrating parameter can be consistently estimated

by the ordinary least-squares estimator, and obtain a lower bound on the rate of convergence. We

propose transaction-level method-of-moments estimators of several of the other parameters in our

model. We present a data analysis, which provides evidence of fractional cointegration. We then

consider special cases and generalizations of our model, mostly in simulation studies, to argue that

the suitably-modified model is able to capture a variety of additional properties and stylized facts,

including leverage, portfolio return autocorrelation due to nonsynchronous trading, Granger causal-

ity, and volatility feedback. The ability of the model to capture these effects stems in most cases

from the fact that the model treats the (stochastic) intertrade durations in a fully endogenous way.
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I Introduction

In this paper, we propose a transaction-level, pure-jump model for a bivariate price series, in which the

intertrade durations are stochastic, and enter into the model in a fully endogenous way. The model is

flexible, and able to capture a variety of stylized facts, including standard or fractional cointegration,

persistence in durations, volatility clustering, leverage, and nonsynchronous trading effects. In this in-

troduction, and indeed from here to Section VIII, we focus on cointegration, as this is the area in which

we have so far been able to develop theoretical results on our model. Nevertheless, simulations show

that a suitably-modified version of our basic model is able to produce the so-called leverage effect (i.e.,

negative autocorrelation between the current period’s return and the next period’s absolute return), as

well as portfolio return autocorrelation due to nonsynchronous trading, Granger causality, and volatility

feedback.

Cointegration has received considerable attention in Economics and Econometrics. Under both stan-

dard and fractional cointegration, there is a contemporaneous linear combination of two or more time

series which is less persistent than the individual series. Under standard cointegration, the memory pa-

rameter is reduced from 1 to 0, while under fractional cointegration the level of reduction need not be an

integer. Indeed, in the seminal paper of Engle and Granger (1987), both standard and fractional cointe-

gration were allowed for, although the literature has developed separately for the two cases. Important

contributions to the representation, estimation and testing of standard cointegration models include Stock

and Watson (1988), Johansen (1988, 1991), and Phillips (1991). Literature addressing the corresponding

problems in fractional cointegration includes Dueker and Startz (1998), Marinucci and Robinson (2001),

Robinson and Marinucci (2001), Robinson and Yajima (2002), Robinson and Hualde (2003), Velasco

(2003), Velasco and Marmol (2004), Chen and Hurvich (2003a, 2003b, 2006).
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A limitation of most existing models for cointegration is that they are based on a particular fixed

sampling frequency, e.g., one day, one month, etc. and therefore do not reflect the dynamics at all levels

of aggregation. One could build models for cointegration using diffusion-type continuous-time models

such as ordinary or fractional Brownian motion, but such models would fail to capture the pure-jump

nature of observed asset-price processes.

Before describing the cointegration aspects of our model, we provide some background on transaction-

level modeling. Currently, a wealth of transaction-level price data is available, and for such data the

(observed) price remains constant between transactions. If there is a diffusion component underlying

the price, it is not directly observable. Pure-jump models for prices thus provide a potentially appealing

alternative to diffusion-type models. The compound Poisson process proposed in Press (1967) is a pure-

jump model for the logarithmic price series, under which innovations to the log price are i.i.d., and

these innovations are introduced at random time points, determined by a Poisson process. The model

was generalized by Oomen (2006), who introduced an additional innovation term to capture market

microstructure.

An informative and directly-observable quantity in transaction-level data is the durations {τk} between

transactions. A seminal paper focusing on durations and, to some extent, on the induced price process,

is Engle and Russell (1998). They documented a key empirical fact, i.e., that durations are strongly

autocorrelated, quite unlike the i.i.d. exponential duration process implied by a Poisson transaction

process, and they proposed the Autoregressive Conditional Duration (ACD) model, which is closely

related to the GARCH model of Bollerslev (1986). Deo, Hsieh and Hurvich (2006) presented empirical

evidence that durations, as well as transaction counts, squared returns and realized volatility have long

memory, and introduced the Long Memory Stochastic Duration (LMSD) model, which is closely related

to the Long Memory Stochastic Volatility model of Breidt, Crato and de Lima (1998) and Harvey (1998).

The LMSD model is τk = ehkεk where {hk} is a Gaussian long-memory series with memory parameter

dτ ∈ (0, 1/2), the {εk} are i.i.d. positive random variables with mean 1, and {hk}, {εk} are mutually

independent.
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It was shown in Deo, Hurvich, Soulier and Wang (2006) that long memory in durations propagates

to long memory in the counting process N(t), where N(t) counts the number of transactions in the time

interval (0, t]. In particular, if the durations are generated by an LMSD model with memory parameter

dτ ∈ (0, 1/2), then N(t) is long-range count dependent with the same memory parameter, in the sense

that varN(t) ∼ Ct2dτ+1 as t → ∞. This long-range count dependence then propagates to the realized

volatility, under the simple return model considered in Deo, Hurvich, Soulier and Wang (2006).

In order to reflect the persistence in durations, we will assume in this paper that durations are

generated by an LMSD model with memory parameter dτ ∈ (0, 1/2). Thus, the resulting counting

process N(t) will have long-range count dependence with the same memory parameter, dτ .

In this paper, we propose a pure-jump model for a bivariate log-price series such that any discretiza-

tion of the process to an equally-spaced sampling grid with sampling interval ∆t produces fractional or

standard cointegration, i.e., there exists a contemporaneous linear combination of the two log-price series

which has a smaller memory parameter than the two individual series. A key ingredient in our model is

a microstructure noise contribution {ηk} to the log prices. In the fractional cointegration case, this noise

series obeys a fractional Gaussian noise model, with a corresponding memory parameter dη ∈ (−1/2, 0),

while in the standard cointegration case {ηk} is the difference of a white noise, and has memory parameter

dη = −1. In both cases, the reduction of the memory parameter is −dη. Due to the presence of the

microstructure noise term, the discretized log-price series are not Martingales, and the corresponding re-

turn series are not linear in either an i.i.d. sequence, a Martingale-difference sequence, or a strong-mixing

sequence. This is in sharp contrast to existing discrete-time models for cointegration, most of which

assume at least that the series has a linear representation with respect to a strong-mixing sequence.

The discretely-sampled returns (i.e., the increments in the log-price series) in our model are not Mar-

tingale differences, due to the microstructure noise term. Instead, for small values of ∆t they may exhibit

noticeable autocorrelations, as observed also in actual returns over short time intervals. Nevertheless,

the returns behave asymptotically like Martingale differences as the sampling interval ∆t is increased, in

the sense that the lag-k autocorrelation tends to zero as ∆t tends to ∞ for any fixed k. Again, this is
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consistent with the near-uncorrelatedness observed in actual returns measured over long time intervals.

The memory parameter of the log prices in our model is 1, in the sense that the variance of the

log price increases linearly in t, asymptotically as t → ∞. By contrast, the memory parameter of the

appropriate contemporaneous linear combination of the two log-price series is reduced to 1 + dη < 1,

thereby establishing the existence of cointegration in our model.

In order to derive the results described above, we will make use of the general theory of point processes,

and we will also rely heavily on the theory developed in Deo, Hurvich, Soulier and Wang (2006) for the

counting process N(t) induced by LMSD durations.

In Section II, we exhibit our pure-jump model for the bivariate log-price series. Since the two series

need not have all of their transactions at the same time points (due to nonsynchronous trading), it is not

possible to induce cointegration in the traditional way, i.e., by directly imposing in clock time an additive

common component for the two series, with a memory parameter equal to 1. Instead, the common

component is induced indirectly, and incompletely, by means of a feedback mechanism in transaction

time between current log-price disturbances of one asset and past log-price disturbances of the other.

This feedback mechanism also induces certain end-effect terms, which we explicitly display and handle

in our theoretical derivations using the theory of point processes.

In Section III, we present the properties of the log-price series implied by our model. In particular,

we show that the log price behaves asymptotically like a Martingale as t is increased, and the discretely-

sampled returns behave asymptotically like Martingale differences as ∆t is increased. We also present a

lemma on the microstructure component of the log-price series. We show that this component, which is

a random sum of the microstructure noise, has memory parameter 1 + dη < 1.

In Section IV, we establish that our model possesses cointegration, by showing that the cointegrating

error has memory parameter 1 + dη. We present two theorems, for the fractional and standard cointe-

gration cases respectively, using a different definition of the memory parameter of the cointegrating error

for each case.
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In Section V, we show that the ordinary least squares (OLS) estimator of the cointegrating parameter

θ is consistent, and obtain a lower bound on its rate of convergence.

In Section VI, we present simulation results on the OLS estimator of θ.

In Section VII, we propose a method of moments estimator of the error and mirostructure feedback

coefficients and variances. The estimator is based on the observed tick-time returns.

In Section VIII, we present data analyses of prices of classified stocks from a single company, buy and

sell prices of a single stock, and transaction prices of stocks of two companies in the same industry, all

of which provide evidence of fractional cointegration. We also consider the information share, which can

be estimated based on the method of moments estimators from Section VII.

In Section IX, we demonstrate, largely through simulations, that modified versions of our model can

reproduce two additional important stylized facts: leverage, and portfolio return autocorrelation due to

nonsynchronous trading. We also show that the original model yields volatility feedback, and a modified

version of the model can yield Granger causality. We trace all of these clock-time properties to their

tick-time source.

In Section X, we provide some remarks and discuss possible further generalizations of our model and

related future work.

II A Pure-Jump Model For Log Prices

Suppose that there are two assets, 1 and 2, and that each log price is affected by two types of disturbances

when a transaction happens. These disturbances are the efficient price shocks {ei,k} and the microstruc-

ture noise {ηi,k}, for Asset i = 1, 2. We assume that the {ei,k} are i.i.d. N(0, σ2
i,e). The fractional

cointegration case corresponds to dη ∈ (− 1
2 , 0). In this fractional case, we assume that for i = 1, 2, the

{ηi,k}, which are mutually independent, obey a fractional Gaussian noise model, with common memory
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parameter dη, i.e.

ηi,k = BH(k + 1)−BH(k) (1)

where BH(t) is fractional Brownian motion with memory parameter dη = H − 1
2 ∈ (− 1

2 , 0). In this

case, we will denote σ2
i,η = var(ηi,k). For details on the fractional Gaussian noise, see pages 318–332 of

Samorodnitsky and Taqqu (1994). The reason we choose the fractional Gaussian noise model is that it

leads to a very simple expression for the variance of a partial sum, which is useful in the proof of Lemma

1.

The standard cointegration case corresponds to dη = −1, and here we assume that ηi,k = ξi,k−ξi,k−1,

where {ξi,k}∞k=1 are i.i.d. (0, σ2
i,ξ) noise series, with the nonrandom initialization ξi,0 = 0, i = 1, 2. In this

case, var(ηi,k) = σ2
i,η = 2σ2

i,ξ.

The normality assumption on the efficient price shocks {ei,k} is only used in Theorem 5. The normality

assumption on the microstructure noise {ηi,k} in the fractional case may be relaxed by considering a

Fractional Laplace Noise. See Kozubowski, Meerschaert and Podgorski (2006). Note that we do not

assume normality of the {ηi,k} in the standard cointegration case.

We now describe the tick-time return interactions that yield cointegration in our model. We will

assume that the m-th tick-time return of Asset 1 incorporates not only its own current disturbances

e1,m and η1,m, but also weighted versions of all intervening disturbances of Asset 2 that were originally

introduced between the (m − 1)-th and m-th transactions of Asset 1. The weight for the efficient price

shocks, denoted by θ, may be different from the weight for the microstructure noise, denoted by g21

(the impact from Asset 2 to Asset 1). We similarly define the m-th tick-time return of Asset 2, but the

weight for the efficient price shocks from Asset 1 to Asset 2 is (1/θ) and the corresponding weight for the

microstructure noise is denoted by g12. The choice of the second impact coefficient (1/θ) is necessary for

the two log-price series to be cointegrated.

Figure 1 illustrates the mechanism by which tick-time returns are generated in our model. All dis-

turbances originating from Asset 1 are colored in blue while all disturbances originating from Asset 2
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are colored in red. When the first transaction of Asset 1 happens, an efficient price shock e1,1 and

a microstructure disturbance η1,1 are introduced. The first transaction of Asset 2 follows in clock

time and since the first transaction of Asset 1 occurred before it, the return for this transaction is

(e2,1 + η2,1 + 1
θ e1,1 + g12η1,1), i.e., the sum of the first efficient price shock of Asset 2, e2,1, the first

microstructure disturbance of Asset 2, η2,1, and a feedback term from the first transaction of Asset 1

whose disturbances are e1,1 and η1,1, weighted by the corresponding feedback impact coefficients 1
θ and

g12. In the figure, both log-price processes evolve until time t. Notice that the third return of Asset 1

contains no feedback term from Asset 2 since there is no intervening transaction of Asset 2. The second

return of Asset 2 includes its own current disturbances (e2,2, η2,2) as well as six weighted disturbances

(e1,2, e1,3, e1,4, η1,2, η1,3 and η1,4) from Asset 1 since there are three intervening transactions of Asset 1.

Figure 1: Changes in Log Prices

At a given clock time t, most of the disturbances of Asset 1 are incorporated into the log price of

Asset 2 and vice-versa. However, there is an end effect. The problem can be easily seen in the figure:

since the fifth transaction of Asset 1 happened after the last transaction of Asset 2 before time t, the

most recent Asset 1 disturbances e1,5 and η1,5 are not incorporated in the log price of Asset 2 at time

t. Eventually, at the next transaction of Asset 2, which will happen after time t, these two disturbances
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will be incorporated. But this end effect may be present at any given time t. We will handle this end

effect explicitly in all derivations in the paper.

Throughout the paper, unless otherwise noted, we will make the following assumptions for our the-

oretical results. The duration processes {τi,k} of Asset i, i = 1, 2, are assumed to follow LMSD models

with memory parameters dτ1 , dτ2 ∈ (0, 1
2 ). The corresponding counting processes are denoted by Ni(t).

Denote the clock time for the k-th transaction of Asset i by ti,k. We also assume that {τ1,k} and {τ2,k}
are mutually independent and also independent of all disturbance series {e1,k}, {e2,k}, {η1,k} and {η2,k},
which implies that N1(·) and N2(·) are mutually independent and independent of all disturbance series.

Finally, all disturbance series are assumed to be mutually independent.

Our model for the log prices is then given for all non-negative real t by

log P1,t =
N1(t)∑

k=1

(e1,k + η1,k) +
N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k) (2)

log P2,t =
N2(t)∑

k=1

(e2,k + η2,k) +
N1(t2,N2(t))∑

k=1

(
1
θ
e1,k + g12η1,k) .

Note that (2) implies that log P1,0 = log P2,0 = 0, the same standardization used in Stock and Watson

(1988) and elsewhere.

The quantity N2(t1,N1(t)) represents the total number of transactions of Asset 2 occurring up to

the time (t1,N1(t)) of the most recent transaction of Asset 1. An analogous interpretation holds for the

quantity N1(t2,N2(t)).

To exhibit the various components of our model, we rewrite (2) as

log P1,t =
( N1(t)∑

k=1

e1,k +
N2(t)∑

k=1

θe2,k

︸ ︷︷ ︸
common component

)
+

( N1(t)∑

k=1

η1,k +
N2(t)∑

k=1

g21η2,k

︸ ︷︷ ︸
microstructure component

)
−

N2(t)∑

k=N2(t1,N1(t))+1

(θe2,k + g21η2,k)

︸ ︷︷ ︸
end effect

(3)

log P2,t =
( N1(t)∑

k=1

1
θ
e1,k +

N2(t)∑

k=1

e2,k

︸ ︷︷ ︸
common component

)
+

( N1(t)∑

k=1

g12η1,k +
N2(t)∑

k=1

η2,k

︸ ︷︷ ︸
microstructure component

)
−

N1(t)∑

k=N1(t2,N2(t))+1

(
1
θ
e1,k + g12η1,k)

︸ ︷︷ ︸
end effect

.

The common component is a Martingale, and is therefore I(1). We will show that the microstructure
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components are I(1 + dη), so these components are less persistent than the common component. This

is accomplished in Lemma 1 and the proof of Theorem 4 for the fractional and standard cointegration

cases, respectively. The end-effect terms are random sums over time periods that are Op(1) as t → ∞,

and hence are negligible compared to all other terms. See the discussion around (11) and Lemma 3.

Since both log P1,t and log P2,t are I(1) (see Theorem 1) and the linear combination log P1,t − θ log P2,t

is I(1 + dη) (by Theorems 3 and 4), the log-price series are cointegrated.

From (2) it can be seen that our model for the log price series can be represented in terms of subor-

dinated Brownian motions and fractional Brownian motions, in the spirit of Clark (1973). For example,

when H ∈ (0, 1/2), log P1,t can be written (up to a constant term) as

{
B1

(
N1(t)

)
+ θB2

(
N2(t1,N1(t))

)}
+

{
B1,H

(
N1(t + 1)

)
+ g21B2,H

(
N2(t1,N1(t) + 1)

)}

where B1 and B2 are mutually independent Brownian motions, independent of the mutually independent

fractional Brownian motions B1,H and B2,H . The arguments for B1,H and B2,H would be t rather than

t + 1, and the constant would be zero, if we had defined fractional Gaussian noise as the increment of a

fractional Brownian motion at times k − 1 and k rather than the standard k, k + 1. Here, the directing

processes are the non-decreasing processes N1(t) and N2(t1,N1(t)), yielding a pure-jump price process.

Frijns and Schotman (2006) considered a mechanism for generating quotes in tick time which is similar

to the mechanism we describe in Figure 1. However, they condition on durations, whereas we endogenize

them in our model (2). Furthermore, their model implies standard cointegration, with cointegrating

parameter that is known to be 1, and a single efficient shock component.

III Long-Term Martingale-Type Properties Of the Log Prices

Define λ = 1/E0(τk), where E0 denotes expectation under the Palm distribution, i.e., the stationary

distribution of {τk}. Note that λ is a positive finite constant.

From (3) it can be seen that the microstructure components of the log price are random sums of
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the microstructure noise. The following lemma shows that such random sums have memory parameter

1 + dη < 1, where dη is the memory parameter of the microstructure noise.

Lemma 1 For durations {τk} generated by an LMSD model with memory parameter dτ ∈ (0, 1
2 ) and a

fractional Gaussian noise series {ηk} with memory parameter dη = H− 1
2 ∈ (− 1

2 , 0), which is independent

of {τk},

var(
N(t)∑

k=1

ηk) ∼ (σ2λ2dη+1)t2dη+1

as t →∞, where σ2 = var[BH(1)] in Equation (1).

The following two theorems show that the log-price series in Model (2) have asymptotic variances

that scale like t as t → ∞, as would happen for a Martingale, and that their discretized differences are

asymptotically uncorrelated as the discretization interval increases, as would happen for a Martingale

difference series.

Define λ1 = 1/E0(τ1,k) and λ2 = 1/E0(τ2,k).

Theorem 1 For the log-price series in Model (2),

var(log Pi,t) ∼ Cit, i = 1, 2

as t →∞, where C1 = (σ2
1,eλ1 + θ2σ2

2,eλ2) and C2 = (σ2
2,eλ2 + 1

θ2 σ2
1,eλ1).

For a given sampling interval (equally-spaced clock-time period) ∆t, the returns for Asset 1 and 2

corresponding to Model (2) are

r1,j =
N1(j∆t)∑

k=N1((j−1)∆t)+1

(e1,k + η1,k) +
N2(t1,N1(j∆t))∑

k=N2(t1,N1((j−1)∆t))+1

(θe2,k + g21η2,k) (4)

r2,j =
N2(j∆t)∑

k=N2((j−1)∆t)+1

(e2,k + η2,k) +
N1(t2,N2(j∆t))∑

k=N1(t2,N2((j−1)∆t))+1

(
1
θ
e1,k + g12η1,k) .

Theorem 2 For any fixed integer k > 0, the lag-k autocorrelation of {ri,j}∞j=1, i = 1, 2, tends to 0 as

∆t →∞.
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IV Properties of the Cointegrating Error

We show that Model (2) implies a cointegrating relationship between the two series, treating the fractional

and standard cointegration cases separately.

Theorem 3 Under Model (2) with dη ∈ (−1/2, 0), the memory parameter of the linear combination

(log P1,t − θ log P2,t) is 1 + dη < 1, that is,

var(log P1,t − θ log P2,t) ∼ C t2dη+1

as t →∞, where C > 0. Thus, log P1,t and log P2,t are fractionally cointegrated.

Next, we investigate the standard cointegration case. It is important to note that, unlike in Theorem

3, where we measure the strength of cointegration using the asymptotic behavior of the variance of the

cointegrating errors var(log P1,t − θ log P2,t), we need a different measure here since log P1,t − θ log P2,t

is stationary and its variance is constant for all t. Instead, we consider the asymptotic covariance of the

cointegrating errors

cov(log P1,t − θ log P2,t, log P1,t+j − θ log P2,t+j)

as j →∞. We take t and j here to be positive integers, i.e., we sample the log-price series using ∆t = 1,

without loss of generality.

We say that a sequence {aj} has nearly-exponential decay if aj/j−α → 0 for all α > 0 as j →∞. We

say that a stationary time series has short memory if its autocovariances have nearly-exponential decay.

Theorem 4 Under Model (2), with dη = −1, the cointegrating error (log P1,t − θ log P2,t) has short

memory. Thus, log P1,t and log P2,t are cointegrated.
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V Least-Squares Estimation of the Cointegrating Parameter

Assume that the log-price series are observed at integer multiples of ∆t. The proposed model (2) becomes

log P1,j =
N1(j∆t)∑

k=1

(e1,k + η1,k) +
N2(t1,N1(j∆t))∑

k=1

(θe2,k + g21η2,k) (5)

log P2,j =
N2(j∆t)∑

k=1

(e2,k + η2,k) +
N1(t2,N2(j∆t))∑

k=1

(
1
θ
e1,k + g12η1,k) .

We show that the cointegrating parameter θ can be consistently estimated by OLS regression.

Theorem 5 For the discretely-sampled log-price series in (5), the cointegrating parameter θ can be con-

sistently estimated by θ̂, the ordinary least squares estimator obtained by regressing {log P1,j}n
j=1 on

{log P2,j}n
j=1 without intercept. For all δ > 0,

n−dη−δ(θ̂ − θ)
p→ 0, as n →∞,

The rate of convergence of θ̂ improves as dη decreases. In the standard cointegration case dη = −1,

the rate is arbitrarily close to n.

The n-consistency (super-consistency) of the OLS estimator of the cointegrating parameter in the

standard cointegration case has been shown for time series in discrete clock time that are linear with

respect to a strong-mixing or i.i.d. sequence by Phillips and Durlauf (1986) and Stock (1987). We are

currently unable to derive the asymptotic distribution of the OLS estimator of the cointegrating parameter

in the standard cointegration case for our model, as we cannot rely on the strong-mixing condition on

returns. This condition would not be expected to hold in the case of LMSD durations, since these are

not strong-mixing in tick time. Even if we consider ACD durations, which are indeed strong-mixing in

tick time, there is no guarantee that they lead to returns that are strong-mixing in clock time, even in

the standard cointegration case.
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VI Simulations on OLS Estimation of the Cointegrating Para-

meter

We study the performance of θ̂ in a simulation study carried out as follows.

First, we simulate two mutually independent duration process {τi,k}, i = 1, 2, for Asset i. Each

duration process follows the Long Memory Stochastic Duration (LMSD) model,

τi,k = ehi,kεi,k

where the {εi,k} are i.i.d. positive random variables with all moments finite, and the {hi,k} are a Gaussian

long-memory series with common memory parameter dτ ∈ (0, 1/2). Here, we assume that the {εi,k} follow

a Weibull distribution with shape parameter κ = 1 and scale parameter λ̃ = 1, so that E(εi,k) = 1. The

{hi,k} are simulated from a Gaussian ARFIMA(0, dτ , 0) model with unit innovation variance.

Using the simulated durations {τi,k}, i = 1, 2, we obtain the corresponding counting processes {Ni(t)},
using ti,1 = Uniform[0, τi,1]. This ensures that the counting processes are stationary.

Next, we generate mutually independent disturbance series {e1,k}, {e2,k}, {η1,k} and {η1,k}. Here,

{ei,k}, i = 1, 2, are i.i.d. N(0, 1). When dη ∈ (− 1
2 , 0), the {ηi,k} are given by fractional Gaussian noise as

defined in (1) with σ2
1,η = σ2

2,η = 1, simulated using the algorithm on page 218 of Beran (1994). When

dη = −1, {ηi,k} are simulated as the differences of two independent i.i.d. zero-mean standard normal

series {ξi,k}.

We then construct the log-price series {log Pi,j}n
j=1, i = 1, 2 from (2), using a fixed sampling interval

∆t. The estimated cointegrating parameter θ̂ is obtained by regressing {log P1,j}n
j=1 on {log P2,j}n

j=1.

In the study, we fixed the cointegrating parameter at θ = 1. We considered various values of the

parameters g12, g21, ∆t, dτ , dη and the sample size n. For each parameter configuration, 500 replications

of the log-price series were generated. The results are summarized in Table 1. The parameter values in

block A of the table are varied one by one in the other blocks.
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Table 1: Simulation Results on OLS Estimation of the Cointegrating Parameter

Block Simulation Parameters Estimated Cointegrating Parameter θ̂

g12 g21 ∆t dτ dη n Mean Standard Deviation Root Mean Squared Error

A 3 3 100 0.25 –0.25 200 0.9689 0.1730 0.1758

B 3 3 100 0.25 –0.25 50 0.9546 0.2504 0.2545

3 3 100 0.25 –0.25 800 0.9902 0.1315 0.1319

C 3 3 20 0.25 –0.25 200 0.9322 0.2463 0.2554

3 3 400 0.25 –0.25 200 0.9801 0.1324 0.1339

D 3 3 100 0.05 –0.25 200 0.9668 0.1698 0.1730

3 3 100 0.15 –0.25 200 0.9883 0.1885 0.1889

3 3 100 0.35 –0.25 200 0.9766 0.1709 0.1725

3 3 100 0.45 –0.25 200 0.9759 0.1641 0.1659

E 3 3 100 0.25 –0.05 200 0.7150 0.6479 0.7078

3 3 100 0.25 –0.15 200 0.9138 0.3591 0.3693

3 3 100 0.25 –0.35 200 1.0002 0.0731 0.0731

3 3 100 0.25 –0.45 200 0.9961 0.0538 0.0539

3 3 100 0.25 –0.75 200 0.9984 0.0242 0.0242

3 3 100 0.25 –1.00 200 0.9972 0.0235 0.0236

F 1 1 100 0.25 –0.25 200 0.9991 0.0029 0.0030

9 9 100 0.25 –0.25 200 0.6856 0.5248 0.6117

Not surprisingly, as the sample size n increases, the bias, standard deviation and Root Mean Squared

Error (RMSE) of θ̂ decrease, as seen in Blocks A and B. The same pattern holds when the sampling

interval ∆t is increased (see Blocks A and C), since the end effect is not as important when ∆t is

large. Similarly, θ̂ performers better when the microstructure noise feedback coefficients g12 and g21 are

small, as shown in Blocks A and F. This is because the cointegrating relationship is obscured less by the

microstructure noise when g12 and g21 are small.
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More interestingly, the memory parameter of the duration process dτ has no discernible impact on

the performance of θ̂ (See Blocks A and D). This is in agreement with the theoretical derivation for

Theorem 5, in which dτ plays no role. On the other hand, the variance of θ̂ decreases sharply as the

memory parameter of the microstructure noise dη decreases (see Blocks A and E). This is consistent with

the results in Theorem 5, though the case dη = −0.75 is not covered by the theorem. (In this case,

the microstructure noise {ηi,k}, i = 1, 2 were simulated as the difference of the corresponding fractional

Gaussian noise with memory parameter dη + 1 = 0.25.)

VII Method of Moments Parameter Estimation

We propose a simple (though clearly inefficient) transaction-level parameter estimation procedure for

model (2) using the method of moments.

Consider Figure 1. The returns for the first, the third and the fourth transactions of Asset 1 have a

simple structure, consisting of the sum of the current Asset 1 efficient and microstructure dusturbances,

since for these transactions there was no intervening Asset 2 transaction. In general, we define a Type I

transaction of Asset 1 as any Asset 1 transaction with no intervening Asset 2 transaction. Since {e1,k}
and {η1,k} are assumed to be mutually independent, the corresponding return variance for Type I Asset

1 transaction is σ2
1,e + σ2

1,η.

Consider the third and the fourth transactions of Asset 1 in Figure 1. This is a pair of adjacent Type

I transactions. Since {e1,k} are assumed to be i.i.d., the covariance of the returns of such a pair is equal

to the lag-1 autocovariance of the microstructure noise series {η1,k}, given by

f(σ2
i,η, dη) =





(22dη − 1)σ2
i,η, dη ∈ (− 1

2 , 0)

(22dη+2 − 1
232dη+1 − 7

2 )σ2
i,η, dη ∈ (−1,− 1

2 )

−σ2
1,ξ = − 1

2σ2
i,η, dη = −1.

(6)

Next, we define Type-II transactions of Asset 1 to be those with exactly one intervening Asset 2
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transaction. An example is the second and the fifth Asset 1 transaction in Figure 1. The corresponding

return variance is σ2
1,e + σ2

1,η + θ2σ2
2,e + g2

21σ
2
2,η.

We can define Type-I, adjacent pairs of Type-I and Type-II transactions of Asset 2 in a similar manner.

For both assets, we compute the sample variance of the Type-I and Type-II transactions, as well as

the sample covariance between adjacent pairs of Type-I transactions. The method-of-moments estimates

σ̂2
1,e, σ̂2

1,η, σ̂2
2,e σ̂2

2,η, ĝ12 and ĝ21 are given as the solutions to the following system, consisting of six

equations.

v̂ar(Type I; Asset i) = σ̂2
i,e + σ̂2

i,η (i = 1, 2) (7)

v̂ar(Type II; Asset 1) = σ̂2
1,e + σ̂2

1,η + θ̂2σ2
2,e + ĝ2

21σ̂
2
2,η

v̂ar(Type II; Asset 2) =
1

θ̂2
σ̂2

1,e + ĝ2
12σ̂

2
1,η + σ̂2

2,e + σ̂2
2,η

ĉov(Adjacent pairs of Type I; Asset i) = f(σ̂2
i,η, d̂η) (i = 1, 2)

where θ̂ is an OLS estimator of θ as justified in Section V, d̂η is obtained from the cointegrating residuals

using the log-periodogram regression method, and the function f(σ̂2
i,η, d̂η) is defined in (6). Note that

since both g21 and g12 appear as squares in the corresponding variances, we assume both to be positive.

A disadvantage of the method of moments is that the variance estimates σ̂2
1,e, σ̂2

1,η, σ̂2
2,e σ̂2

2,η can be

negative. The same is true for ĝ2
21 and ĝ2

12. We set the corresponding estimates to be zero, if negative

values are obtained in solving (7).

Table 2: Parameter Estimation using the Method of Moments

g21 = g12 σ̂2
1,e σ̂2

2,e σ̂2
1,η σ̂2

2,η ĝ21 ĝ12 θ̂ d̂η

0.1 1.1858 1.1882 0.8110 0.8123 0.1038 0.0678 0.9896 –0.3400

2.0 1.2427 1.2448 0.7540 0.7557 2.3550 2.3493 1.0011 –0.3639

5.0 1.0069 1.0084 0.9990 0.9999 5.1022 5.0626 0.9479 –0.2739

10.0 0.9591 0.9607 1.0866 1.0900 10.2175 9.4743 0.7322 –0.2643

We carried out a small simulation study to evaluate the performance of the method of moments
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estimators. The parameter values were dτ1 = dτ2 = 0.25, dη = −0.25, θ = 1, var(ei,k) = var(ηi,k) =

1, (i = 1, 2). We varied g12 and g21, which we took to be equal. The {hi,k} were simulated as in Section

VI. For each of 100 realizations, we simulated log prices in model (2) for a clock-time span of n∆t,

with n = 100, ∆t = 50. The estimators θ̂ and d̂η were constructed from the n = 100 clock-time log

prices, and then these estimates were used together with the tick-time returns to yield the method of

moments estimators. The estimator d̂η was based on using the differenced cointegrating residuals in a

log-periodogram regression with n0.5 frequencies, and then adding 1. The results, given in Table 2, are

averages based on the 100 realizations. As g12 is increased, all estimates except θ̂ become less biased.

VIII Data Analysis

We analyze three empirical examples, corresponding to three different scenarios: prices of two classified

stocks from a given company, buy and sell prices of a single stock, and prices of two different stocks

within the same industry. In the first two situations, the cointegrating parameter θ would be expected

to be 1, while in the third situation, there is no clear a priori value for θ.

Other possible scenarios that we do not pursue here include: (1) stock and option prices of a given

company; (2) corporate bond prices at different maturities for a given company.

We obtained our data from the TAQ database of WRDS. We considered daily transactions between

9:30 AM to 4:00 PM. Overnight durations and returns are ignored, as implemented in, for example

Hasbrouck (1995).

A Prices of Classified Stocks from a Given Company

Waddell & Reed Financial, Inc.’s initial public offering of Class A common stock (WDR) took place

on March 5, 1998. The Class B common stock (WDRB) began trading on November 6, 1998 following

the tax-free spin off of Waddell & Reed Financial, Inc. from its former parent company, Torchmark
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Corporation. The Class A and Class B common stock were combined as of the close of business on April

30, 2001. Class A stock has one vote per share while Class B stock has five votes per share.

We would expect the cointegrating parameter for the Class A and Class B log-prices to be close to

1. This is because Class A and B stocks have the same expected future cash flow. The only difference is

the voting right, which only changes infrequently.

Our data spans the time period January 3, 2000 to April 30, 2001. Overall, there are 55,255 transac-

tions of WDR and 10,689 transactions of WDRB. The average durations are 131.78 and 653.16 seconds

for WDR and WDRB, respectively.

Based on the log-prices of WDR and WDRB observed every ∆t seconds, we computed the ordinary

least squares estimates θ̂ of θ, as well as log-periodogram regression estimates d̂ of the memory parameters

for both log-price series as well as the cointegrating residuals (RES). The log-periodogram regression

estimators were based on differences (with 1 subsequently added to the result), and used a number of

frequencies equal to n0.7 for d̂WDR and d̂WDRB , and n0.6 for d̂RES , chosen by visual inspection. The

asymptotic estimated standard errors are also reported. The three choices of ∆t correspond to 1 minute,

5 minutes and 30 minutes. The results are reported in Table 3.

Table 3: Prices of Classified Stocks from a Given Company: WDR and WDRB

∆t (sec) n θ̂ d̂WDR d̂WDRB d̂RES SE(d̂WDR) SE(d̂WDRB) SE(d̂RES)

60 118,063 0.98428 1.0024 1.0343 0.7236 0.0108 0.0108 0.0193

300 23,718 0.98429 1.0198 1.0354 0.7964 0.0189 0.0189 0.0312

1800 4,008 0.98432 1.0388 1.0371 0.7642 0.0352 0.0352 0.0532

It can be seen that, for all choices of ∆t, the estimated cointegrating parameter is very close to 1, the

log-price series both have memory parameters that are insignificantly different from 1, while the residuals

have a memory parameter that is significantly greater than 0 and significantly less than 1. Thus, there is

evidence of fractional, but not standard, cointegration. Although the evidence of fractional cointegration

is strong, the degree of this cointegration seems rather weak, as the memory parameter is only reduced
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from (roughly) 1 to 0.75.

B Buy and Sell Prices of a Single Stock

We consider buy and sell prices for a single stock. We analyze two different buy-sell data sets, one for

a heavily-traded stock, Coca Cola (KO), and the other for a thinly-traded stock, Commercial Federal

Bank (CFB). The data span the period from June 1, 2000 to August 31, 2000. Within this three-month

period, there were 65 trading days (The market is closed on July 4, 2000) and 144,606 transactions of

KO, 6,397 transactions of CFB.

We follow Lee and Ready (1991) to classify individual trades. If the transaction price is higher than

the prior bid-ask midpoint, the current trade is labeled as a sell order. If the transaction price is lower,

it is labeled as a buy order. If the transaction price is exactly the same as the prior bid-ask midpoint,

the tick test (described in Lee and Ready 1991) is used to decide whether it should be classified as a buy

or sell order.

We study the buy and sell prices because they are closely related so that a strong cointegrating

relationship is expected. Separating the buy and sell prices makes two series free of bid-ask bounce.

Table 4: Buy and Sell Prices of a Single Stock

∆t (sec) n θ̂ d̂buy
KO d̂sell

KO d̂RES SE(d̂buy
KO) SE(d̂sell

KO) SE(d̂RES)

60 25,227 0.9997468 1.0320 1.0368 0.1074 0.0185 0.0185 0.0509

300 5,062 0.9997473 1.0432 1.0458 0.0825 0.0324 0.0324 0.0496

1800 845 0.9997408 1.1451 1.1145 0.0350 0.0433 0.0433 0.0606

∆t (sec) n θ̂ d̂buy
CFB d̂sell

CFB d̂RES SE(d̂buy
CFB) SE(d̂sell

CFB) SE(d̂RES)

60 24,704 0.9988320 1.0241 1.0236 0.0918 0.0186 0.0186 0.0512

300 4,965 0.9988289 1.0153 1.0462 0.1139 0.0213 0.0213 0.0499

1800 840 0.9988086 0.8859 0.9121 0.0844 0.0434 0.0434 0.1191
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The results are given in Table 4. The number of frequencies used in the log periodogram regressions

vary from n0.5 to n0.8, chosen by visual inspection of log-log periodogram plots. As expected, the

estimated cointegrating parameter is close to 1. Evidence of strong cointegration is found for both

stocks. Furthermore, there is some evidence that the cointegration is fractional, not standard.

C Transaction Prices of Two Company Stocks within an Industry

We consider prices for the stocks of two companies within the same industry. Unlike in the previous

examples, here there is no a priori value for the cointegrating parameter θ.

The two companies we study are GM (GM) and Ford (F), within a one month period from June 1 to

June 30, 2000. The results are given in Table 5. The cointegrating relationship between GM and Ford

Table 5: Transaction Prices of Two Company Stocks within an Industry

∆t (sec) n θ̂ d̂GM d̂F d̂RES SE(d̂GM ) SE(d̂F ) SE(d̂RES)

60 8,542 0.918506 0.9774 0.9848 0.8914 0.0172 0.0172 0.0270

300 1,715 0.918512 0.9659 0.9859 0.9468 0.0326 0.0326 0.0473

1800 286 0.918533 0.8968 1.1208 1.0338 0.0668 0.0668 0.1175

prices is much weaker than for the previous two examples, and because of this it is only significant for

the smallest choice of the sampling interval ∆t.

D Information Share

In Hasbrouck (1995), a single security is traded on several markets and different market prices share a

common random-walk component. Suppose there are two markets. Then the clock-time log stock prices
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at time j on two different markets can be written as

log P1,j = log P1,0 +
j∑

s=1

(ψ1ẽ1,s + ψ2ẽ2,s) + v1,j

log P2,j = log P2,0 +
j∑

s=1

(ψ1ẽ1,s + ψ2ẽ2,s) + v2,j

where log P1,0 and log P2,0 are constants, (ẽ1,s, ẽ2,s)′ is a zero-mean vector of serially uncorrelated dis-

turbances with covariance matrix Ω, ψ = (ψ1, ψ2) are the weights for ẽ1,s, ẽ2,s, and {(v1,j , v2,j)′} is a

zero-mean stationary bivariate time series. We regard ẽi,s, (i = 1, 2) as the innovation originating from

the i-th market. The model in Hasbrouck (1995) is defined in clock time and is estimated using a

one-second sampling interval. There, the information share of market i is defined as

Si =
ψ2

i Ωii

ψΩψ′
,

which is the proportional contribution from market i to the total random walk innovation variance. Only

the random-walk component is used in constructing the information share since this is the only permanent

component.

In our price model (3), we can also evaluate the information share, as described in words above. We

consider two series, not necessarily the price of a given security on two different markets. For a given

clock-time sampling interval ∆t, the information share of Asset 1, denoted by S1,C , is given by

S1,C =
var

( ∑N1(j∆t)
k=N1((j−1)∆t)+1 e1,k

)

var
(∑N1(j∆t)

k=N1((j−1)∆t)+1 e1,k + θ
∑N2(j∆t)

k=N2((j−1)∆t)+1 e2,k

) =
λ1σ

2
1,e

λ1σ2
1,e + θ2λ2σ2

2,e

.

Similarly, the information share of Asset 2 is given by

S2,C =
θ2λ2σ

2
2,e

λ1σ2
1,e + θ2λ2σ2

2,e

.

Note that only the common component in (3) is used to evaluate the information share, as was also done

by Hasbrouck (1995).

In Hasbrouck (1995), since the model is built in clock time, the trading intensities λ1, λ2 do not

appear explicitly in the information share formulas, but instead the impact of these intensities is reflected

in ψΩψ′. By contrast, λ1, λ2 appear explicitly in our formulas for S1,C and S2,C .
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As λ1/λ2 → ∞, S1,C approaches one and S2,C approaches zero. This is consistent with the general

intuition: an actively-traded security should reveal more information than a thinly-traded one. Indeed,

Hasbrouck (1995) found that, for the 30 Dow-Jones stocks, the preponderance of the price discovery takes

place at the NYSE and the majority of the transactions occurred on the NYSE.

To estimate the information share, estimates for the trading intensities λ1, λ2, and the efficient inno-

vation variances σ2
1,e, σ2

2,e are needed. To estimate λi, (i = 1, 2), we use the total number of transactions

divided by the total period of observation for asset i. We estimate σ2
1,e and σ2

2,e by the method of moments

as discussed in section VII. We estimate θ using OLS, with ∆t = 60 seconds.

We consider the information shares of the buy and sell prices of a single stock: Coca Cola (KO). A

question of interest is whether buy trades contain more information and therefore are more important

for the price discovery process than sell trades. The data spans a 65 trading-day period from June 1 to

August 31, 2000. The tick-time stock prices are plotted in Figure 2.

We estimate the information share for each of three clock-time periods. Period one is the entire

three-month interval comprising 65 trading days. Period two spans 36 trading days in which the stock

price rose by roughly 20%. Period three comprises 22 trading days in which the stock price dropped by

approximately 20%. The results are given in Table 6.

Table 6: Information Shares of Buy and Sell Price of KO

Period Type # of trades λ̂i(per day) σ̂2
i,e σ̂2

i,η Ŝi,C

1: 06/01 – 08/31/2000 Buy 74,856 1151.63 5.38e-07 4.45e-08 0.5144

Sell 69,750 1073.08 5.46e-07 4.75e-08 0.4856

2: 06/07 – 07/27/2000 Buy 42,804 1189.00 6.96e-07 4.39e-08 0.5813

Sell 39,437 1095.47 5.44e-07 4.37e-08 0.4187

3: 08/02 – 08/31/2000 Buy 23,800 1081.82 3.15e-07 4.26e-08 0.4120

Sell 21,626 983.00 4.95e-07 6.74e-08 0.5880

For the entire three-month period, the information shares are almost equally divided between buys
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and sells. For period two when the stock price increases dramatically, the buy trades possess much more

information than sell trades. By contrast, during period three when price has a significant drop, the sell

trades have more information.

Figure 2: KO Stock Price in June to August, 2000

IX Modifications of the Model to Capture More Stylized Facts

So far, we have seen that the model (2) yields cointegration, and also captures two stylized facts that

have been observed in actual data: volatility clustering, and persistence in durations. In this section, we

modify the basic model (2) to capture two additional key stylized facts: the leverage effect, and portfolio

autocorrelation due to nonsynchronous trading. We also show that the original model yields volatility

feedback, and a modified version of the model can yield Granger causality. Due to limitations in existing

theory for point processes, we are currently unable to develop explicit formulas for any of these effects

in terms of the model parameters, so we resort primarily to simulations based on the suitably-modified

model.
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A Volatility Feedback

In Model (2) we have assumed that N1(·) and N2(·) are mutually independent. Thus, for any fixed

sampling interval ∆t, the resulting series of counts, {∆N1,j}, {∆N2,j} are mutually independent, where

∆N1,j = N1(j∆t) − N1([j − 1]∆t) and ∆N2,j = N2(j∆t) − N2([j − 1]∆t). From Clark (1973) (see

also Deo, Hurvich, Soulier and Wang (2006)), it is known for univariate series that the autocorrelation

properties of realized volatility are related to those of counts. Thus, it may appear that for the bivariate

returns (4) corresponding to model (2), the realized volatilities of the two series should be mutually

independent. However, inspection of (4) reveals that both N1(·) and N2(·) appear in the equations for

both return series, {r1,j} and {r2,j}. Therefore, there is reason to suspect that in fact the realized

volatilities for the two return series will be mutually dependent. For example, if in a given time period

the durations of Asset 1 are shorter than average (yielding a large contribution to the realized volatility

of Asset 1), then although this will have no effect on the durations of Asset 2 it will still tend to produce

a large number of shocks in the Asset 2 return, due to the return feedback mechanism shown in Figure

1, leading to a large contribution to realized volatility for Asset 2 from this time period.

We performed a small simulation study to confirm the volatility feedback effect. The parameter values

were dτ1 = dτ2 = 0.35, dη = −0.25, θ = 1, var(ei,k) = var(ηi,k) = 1, (i = 1, 2). We varied g12 and g21

(which we took to be equal), to include or exclude the microstructure noise. We also varied the sampling

frequency ∆t and the expected values of the durations of the two assets. The {hi,k} were simulated as in

Section VI with unit innovation variance. The results, presented in Table 7, are based on 100 realizations

of length n = 500. We denote by rRV the contemporaneous cross correlation of the realized volatilities of

the two assets. Here, the realized volatilities were computed by summing the tick-time squared returns

within each time period of width ∆t. This version of realized volatility was also considered in Andersen,

Bollerslev, Frederiksen and Nielsen (2006).

It is seen from Table 7 that, as the average duration decreases or the sampling interval increases, rRV

increases. This correlation decreases when microstructure noise is introduced.
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Table 7: Simulation for the Volatility Feedback Effect

∆t g12 = g21 E(τ1,k) E(τ2,k) mean(rRV ) SE(rRV )

10 0 2.18 2.18 0.5914 0.0084

10 0 2.18 21.8 0.1975 0.0079

10 0 21.8 21.8 0.1582 0.0090

100 0 2.18 2.18 0.9609 0.0016

100 0 2.18 21.8 0.5763 0.0100

100 0 21.8 21.8 0.6157 0.0082

10 5 2.18 2.18 0.1140 0.0048

10 5 2.18 21.8 0.1591 0.0060

10 5 21.8 21.8 0.0508 0.0037

B Portfolio Return Autocorrelation Due to Nonsynchronous Trading

The problem of nonsynchronous trading was first pointed out by Fisher (1966) and the issue has played

an important role in the subsequent finance literature. Nonsynchronous trading can adversely affect pa-

rameter estimation in the market model, (see, e.g., Scholes and Williams 1977), as well as the estimation

of the covariance matrix of the returns (Shanken 1987), and can partially explain the positive autocor-

relation of portfolio returns (see, e.g., Atchison, Butler and Simonds 1987, Lo and MacKinlay 1990 a,b,

Boudoukh, Richardson and Whitelaw 1994, Kadlec and Patterson 1999).

There are three main approaches to handling nonsynchronous trading in the literature. Scholes

and Williams (1977) assumed that, for a given set of equally-spaced time intervals, each asset trades

at least once within each time interval. Unfortunately, it is not possible to impose this assumption

endogenously, since trading is stochastic. Subsequently, Lo and MacKinlay (1990 a,b) allowed for the

possibility of time intervals with no trades, but assumed that the indicator variables for non-trading are

serially independent. However, as pointed out by Boudoukh, Whitelaw and Richardson (1994), this is also

an unrealistic assumption since the existence of very long durations should be expected to induce positive

dependence in the non-trading indicator. In spite of this, Boudoukh, Whitelaw and Richardson (1994)
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reverted to the even stronger assumption of Scholes and Williams (1977) that there is no nontrading.

Nevertheless, in one important respect, the assumptions of Boudoukh, Whitelaw and Richardson (1994)

are general, since they allow for cross-sectional dependence of the returns, unlike Lo and MacKinlay

(1990 a,b). Recently, Kadlec and Patterson (1999) used a simulation-based approach to assess portfolio

autocorrelation due to nonsynchronous trading, in which they use the event times as observed in actual

data. Still, Kedlac and Patterson (1999) do not fully endogenize the event times, since if one wanted to

run another simulation in their framework, they would have to use the same set of event times.

Up to now, the nontrading mechanism has not been modeled truly endogenously. In this paper, we

model the duration process of the price directly, thus endogenize the nontrading mechanism in the price

process.

To gain a better picture of the nonsynchronous trading effect implied by our model, we ignore tem-

porarily the microstructure noise. Also, since stock prices may not be cointegrated in general, we change

the efficient shock feedback coefficients in Model (2), 1/θ and θ, to θ12 and θ21, respectively. The resulting

return series become

r1,j =
N1(j∆t)∑

k=N1((j−1)∆t)+1

e1,k +
N2(t1,N1(j∆t))∑

k=N2(t1,N1((j−1)∆t))+1

θ21e2,k (8)

r2,j =
N2(j∆t)∑

k=N2((j−1)∆t)+1

e2,k +
N1(t2,N2(j∆t))∑

k=N1(t2,N2((j−1)∆t))+1

θ12e1,k.

Lemma 2 Consider a portfolio consisting of s1 shares of Asset 1 and s2 shares of Asset 2, where the re-

turns on the two assets are given by (8). Suppose that θ12 > 0 and θ21 > 0. Then the lag-1 autocorrelation

of the portfolio return is O(∆t−1) as ∆t →∞, and is positive for all values of ∆t.

Table 8 presents simulated averages of the lag-1 autocorrelations of returns of Asset 1, Asset 2 and

a portfolio consisting of one share of each asset, i.e., s1 = s2 = 1, based on 5000 realizations. We also

present the minimum and maximum portfolio autocorrelations. The LMSD model implemented here is

τi,k = 10ehi,kεi,k, (i = 1, 2). We used n = 500, θ12 = θ21 = 1, dτ1 = dτ2 = 0.45 but vary the sampling

interval ∆t. Other parameter values are the same as described before, unless otherwise listed in the table.
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Table 8: Simulated Lag-1 Autocorrelations to Show Nonsynchronous Trading Effects

∆t 10 50 200

Asset 1 mean –0.0018 –0.0014∗ –0.0017∗

Asset 2 mean –0.0010 –0.0017∗ –0.0014∗

Portfolio mean 0.1077∗∗∗ 0.0894∗∗∗ 0.0376∗∗∗

maximum 0.3039 0.3354 0.2369

minimum –0.0668 –0.1321 –0.1288
∗, ∗∗ and ∗∗∗ indicate two-tailed significance at level 5%, 1% and 0.1%, respectively.

Individual asset returns do not show strong autocorrelation. Nevertheless, the portfolio return has

significant positive autocorrelation for all sampling intervals ∆t considered. The mean autocorrelations

range from 0.0376 to 0.1077. The maximum portfolio autocorrelation can be as high as 0.3354. As ∆t

increases, the portfolio autocorrelation decreases, consistent with the theory described above.

In this paper, we only have two assets. With more assets, it may be possible to obtain far more

spurious autocorrelation in the portfolio due to nonsynchronous trading. Empirically, as discussed in

Perry (1985), the portfolio lag-1 autocorrelation increases as the number of securities in the portfolio

increases. The generalization of our model to the case of N ≥ 3 assets is beyond the scope of the current

paper, but will be the subject of future research.

C Granger Causality

Consider the return model (8). Suppose that θ12 6= 0 but θ21 = 0. Then the clock-time returns for

Asset 2, {r2,j}, will contain contributions from both tick-time shock series {e1,k} and {e2,k}, whereas

the returns from Asset 1 will only contain contributions from {e1,k}. Roughly speaking, new information

flows from Asset 1 to Asset 2, but not from Asset 2 to Asset 1. It seems plausible that the directionality

of the tick-time interactions in prices should induce some form of causality in clock time, with the same
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directionality. If, for example, we were to fit a (misspecified) bivariate AR(1) model to the return data,

we might expect to find that {r1,j} Granger-causes {r2,j} but that {r2,j} does not Granger-cause {r1,j}.
To get a clearer idea of why this might happen, note that although the individual return series are serially

uncorrelated, there is a cross-correlation between the two returns when Asset 1 leads Asset 2 but not

when Asset 2 leads Asset 1. This follows from the proof of Lemma 2 and is also in accord with intuition.

For example, if Asset 1 was the last asset to trade in time period j − 1 then the corresponding Asset

1 shock will be incorporated into the Asset 2 return at a time period after j − 1. However, no Asset 2

shock will ever be incorporated into the Asset 1 return.

To study the causality properties of Model (8) under various restrictions, we simulated returns from

the model using the same parameter values as in Table 7 (unless otherwise indicated). For each pair

of simulated returns, we ran two OLS regressions: (1) Current returns of Asset 1 on lagged returns of

both assets; (2) Current returns of Asset 2 on lagged returns of both assets. Table 9 reports means (over

the 100 replications), and corresponding standard errors, for the estimated coefficient of lagged returns

of Asset 2 in regression (1), and lagged returns of Asset 1 in regression (2). Denoting the population

versions of these two regression coefficients as π12 and π21, it is seen that there is strong evidence that

π21 > 0 but we cannot reject the hypothesis that π12 = 0. Thus, at least in the context of the misspecified

bivariate AR(1) model, it seems that the above-conjectured patterns in Granger causality indeed hold.

The strength of π21 diminishes as ∆t increases, since it is the nonsynchronous trading effect that induces

the causality.

Table 9: Simulation Results for Granger Causality

∆t θ12 θ21 mean(π̂12) SE(π̂12) t-stat(π̂12) mean(π̂21) SE(π̂21) t-stat(π̂21)

10 10 0 –0.0001 0.0005 –0.20 4.6588 0.0565 82.40

20 10 0 –0.0006 0.0007 –0.84 4.8621 0.0728 66.82

50 10 0 0.0011 0.0010 1.14 4.6951 0.0911 51.56

20 5 0 –0.0013 0.0014 –0.90 2.2726 0.0378 60.14

20 1 0 –0.0041 0.0033 –1.25 0.2402 0.0088 27.42
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D The Leverage Effect

The leverage effect is a negative correlation between the current return and future volatility (say, absolute

return). We obtain a leverage effect in clock time by introducing a positive lagged cross-correlation

between the current efficient shock ek and the next-transaction innovation (νk+1) to the log duration.

The moving average representation of the long-memory component hi,k of τi,k in the LMSD model for

durations can be written as hi,k =
∑∞

j=0 ψjνi,k−j where {ψj} are constants with
∑∞

j=0 ψ2
j < ∞ and

{νi,k} is an i.i.d. Gaussian series with mean zero and variance σ2
νi

. We will show using simulation that

a positive correlation between νi,k+1 and ei,k in transaction time induces a clock-time leverage effect for

the Asset i return.

Specifically, we assume that ei,k = σi,e(φiνi,k+1 + wi,k)/
√

φ2
i σ

2
νi

+ 1, where ψi (i = 1, 2) are con-

stants, and the {wi,k} are i.i.d. standard normal, independent of {νi,k}. Thus, corr(ei,k, νi,k+1) =

φiσνi/
√

φ2
i σ

2
νi

+ 1. As described in Section VI, the Asset i durations {τi,k} follow an LMSD model,

τi,k = ehi,kεi,k, where {hi,k} follow an ARFIMA(0, dτi , 0) model and {εi,k}, independent of {hi,k}, are

i.i.d. Weibull with shape parameter κi and scale parameter λ̃i such that E(εi,k) = 1. A simple calculation

yields

corr(ei,k, τi,k+1) =
φiσ

2
νi√

φ2
i σ

2
νi

+ 1
· 1√

λ̃2
i Γ(1 + 2

κi
)e

σ2
νi

Γ(1−2dτi
)

Γ2(1−dτi
) − 1

.

The intuition for why this should produce a leverage effect is that if the current return shock is

negative, this induces a below-average shock νk+1 to the log duration, which then persists in the duration

series to yield a sequence of below-average durations, i.e., frequent trading in clock time, and above-

average volatility.

We verify using simulations that the correlation introduced above yields a leverage effect. For sim-

plicity, we set the microstructure noise to zero. The resulting two-asset return model is given by (8).

We simulated n = 500 clock-time returns {ri,j}n
j=1 for each asset, i = 1, 2, observed at sampling interval

∆t. Sample correlations ˆcorr(ri,j , ri,j+1), ˆcorr(|ri,j |, ri,j+1) and ˆcorr(|ri,j |, ri,j−1) are calculated for each

realization, and the results are averaged, as also done in Andersen, Bollerslev, Frederiksen and Nielsen
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(2006). We also compared the portfolio return autocorrelations to those simulated under independence

of ei,k and νi,k+1.

Note that corr(ri,j , ri,j+1) is the return lag-1 autocorrelation for Asset i = 1, 2, while corr(|ri,j |, ri,j+1)

and corr(|ri,j |, ri,j−1) measure the risk-premium effect (RP) and leverage effect (Lev), respectively. Other

parameter values used in the simulation are θ = 1, dτ1 = dτ2 = 0.45, σi,e = 1, var(νi,k) = Γ2(1−dτ )
Γ(1−2dτ ) so that

var(hi,k) = 1 for i = 1, 2, κi = λ̃i = 1, (i = 1, 2). Results are based on 5000 realizations, and reported in

Table 10.

Table 10: Risk Premium, Leverage, and Portfolio Autocorrelation from Simulations

Asset 1 Asset 2 Portfolio

∆t φi corr(ei,k, τi,k+1) RP Lev RP Lev Lag-1 Autocorr

10 0 0 –0.0006 0.0008 –0.0005 –0.0002 0.1077∗∗∗

5 0.23 –0.0059∗∗∗ –0.0924∗∗∗ –0.0062∗∗∗ –0.0916∗∗∗ 0.1279∗∗∗

50 0 0 –0.0005 0.0002 0.0002 –0.0004 0.0894∗∗∗

5 0.23 0.0018∗∗ –0.1178∗∗∗ 0.0011 –0.1169∗∗∗ 0.1038∗∗∗

200 0 0 –0.0008 0.0000 –0.0002 –0.0008 0.0376∗∗∗

5 0.23 0.0047∗∗∗ –0.1097∗∗∗ 0.0043∗∗∗ –0.1105∗∗∗ 0.0432∗∗∗

∗, ∗∗ and ∗∗∗ indicate two-tailed significance at level 5%, 1% and 0.1%, respectively.

A positive correlation between {ei,k} and {νi,k+1} induces a significant leverage effect (with the

predicted negative sign) for all values of ∆t. The magnitude of the leverage effect can be as large as

10%. On the other hand, the magnitude of the simulated risk-premium effect is always much smaller

than that of the leverage effect: the corresponding ratio is no larger than 7%. Andersen, et. al. (2006)

concluded from an analysis of 30 blue-chip stocks, there is evidence of a leverage effect, but no convincing

evidence of a risk premium effect, so our model is consistent with their findings. The risk premium effect

produced by our model, though small, has the interesting property that it is negative for short horizons,

but becomes positive for long horizons.

The leverage effect has an impact on the portfolio return autocorrelation, for all sampling frequencies.
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In each case, the two-sample t-test of equal means for the lag-1 return autocorrelation with and without

the leverage effect leads to rejection of the null hypothesis at the 0.1% level. The leverage effect can

increase the portfolio return autocorrelation by as much as 2%, as found for ∆ = 10. In the Finance

literature, it has been concluded that nonsynchronous trading can explain at most part of the portfolio

return autocorrelation; see, for example, Lo and MacKinlay (1990 a,b). We feel that this question merits

re-investigation, in the light of the model we have proposed in which durations are fully endogenized, and

in the light of our current finding of interactions between the leverage effect and nonsynchronous trading

effects.

X Remarks and Suggestions for Future Work

Remark 1: Although we have assumed that the durations are generated by the LMSD model, the

theoretical results of Sections III, IV and V on cointegration continue to hold under the more general

conditions given in Theorem 1 of Deo, Hurvich, Soulier and Wang (2006), which would allow, for example,

the Autoregressive Conditional Duration model of Engle and Russell (1998).

Remark 2: In the fractional cointegration case, we have assumed that the memory parameter dη of

the microstructure noise components {ηi,k} (i = 1, 2) lies in the range (−0.5, 0). Two generalizations

may be of interest. First is the case dη = 0, which implies that there is no cointegration, as would be

the case for a factor model such as CAPM, see Sharpe (1964). Second is the case dη ∈ (−1,−1/2),

which should presumably result in stronger fractional cointegration than we have allowed with our pre-

vious restrictions. We have only a partial understanding of what would happen in this case. To obtain

dη ∈ (−1,−1/2), we could define {ηi,k} as the difference of a fractional Gaussian noise. The random

partial sum of such a series is stationary, so its variance does not grow with t. Thus in order to gauge the

long memory parameter of the partial sum we would need to consider something other than its variance.

Perhaps the autocorrelation of the partial sum could be derived, but this is so far intractable, because

it is related to the autocorrelation of fractional Gaussian noise, at a random lag. It is easily seen that
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we would get fractional cointegration in this case, but we are currently unable to establish the exact

degree of cointegration; we can merely show that it is at least is strong as what would be obtained for

dη ∈ (−1/2, 0). The OLS estimator of θ would still be consistent, with a rate that is at least as fast as
√

n.

Remark 3: There is an important caveat regarding the Martingale property in the special case of

model (2) in which the microstructure noise components {η1,k} and {η2,k} are absent. For each series,

as long as the conditioning set involves only returns of the given series up to time t, the log price series

(observed at discrete, equally spaced time intervals) is a Martingale. The Martingale property is lost,

however, if the conditioning set is augmented to include returns on both assets up to time t. Because

of the feedback effect in the model, and the nonsynchronous trading, recent information about Asset 1

can help to predict the Asset 2 return, even though the Asset 2 return is unpredictable based on its own

past. Such a situation can occur in actual markets. For example, to predict the (real) return on the sale

of a given home, it helps to know the returns on sales of similar homes that have taken place recently,

though it may not help at all to know the past returns on sales of the given home, especially if it has not

been sold for a long time.

Remark 4: In certain situations it might be useful to allow for different additive constants in the

model (2) for log P1,t and log P2,t. In particular, we could consider adding a positive constant C to log P1,t

and subtracting C from log P2,t (cf. Roll, 1984). This would have no effect on any of the theoretical results

on cointegration or the OLS estimation of the cointegrating parameter. In the example we considered

in Section VIII of buy and sell prices of a given stock, the constant C could represent transaction costs.

Note that it would still not necessarily be the case that log P1,t exceeds log P2,t, but such a constraint

is not needed here since the buy and sell markets trade nonsynchronously. The constant C would not

be estimable by OLS (which would still be run without an intercept), but could be estimable from the

cointegrating residuals if there is strong cointegration, with dη < −1/2.

Finally, we list a few possibilities for future work stemming from the current project.

It might be interesting to investigate the interplay between cointegration and option pricing, hedging,
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asset allocation, pairs trading and index tracking in the current pure-jump context. So far, work has

been done for option pricing based on pure-jump processes (Prigent, 2001) and dynamic asset allocation

based on jump-diffusion processes (Liu, Longstaff and Pan, 2003), but these papers do not allow for

cointegration. Another strand of literature has shown that, in a diffusion context, cointegration may

have an impact on option pricing (Duan and Pliska, 2004), and on index tracking (Dunis and Ho, 2005;

Alexander and Dimitriu, 2005), but these papers do not allow for a pure-jump process.

Other estimators of the cointegrating parameter could be considered, besides OLS. Though many

such estimators have been proposed for both standard and fractional cointegration, none have yet been

justified under a transaction-level model such as (2). Semiparametric estimators could be considered,

since by the remark above the results of this paper do not require a parametric model for durations.

Generalizations of our model (2) could also be studied. For example, we could relax the assumptions

that N1(·) and N2(·) are independent. For a related model, see Hsieh and Hurvich (2006). Finally, the

possibility of more than two assets as well as deterministic linear trends should be considered.
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XI Appendix

A Proof of Lemma 1

Proof: Because N(·) is independent of {ηk}, conditioning on N(·), we obtain

var(
N(t)∑

k=1

ηk) = E(
N(t)∑

k=1

ηk)2 = E
[
E

(
(
N(t)∑

k=1

ηk)2|N(·)
)]

= E
[
var

( N(t)∑

k=1

ηk|N(·)
)]

= E{Ṽ [N(t)]},

where Ṽ (s) = var(
∑s

k=1 ηk). Because {ηk} is fractional Gaussian noise,
∑s

k=1 ηk = BH(s + 1)−BH(1).

Using the definition of the fractional Brownian motion,

cov[BH(t1), BH(t2)] =
σ2

2
[|t1|2H + |t2|2H − |t1 − t2|2H ]·

We obtain

Ṽ (s) = var(
s∑

k=1

ηk) = var[BH(s + 1)−BH(1)]

= var[BH(s + 1)] + var[BH(1)]− 2cov[BH(s + 1), BH(1)]

= σ2|s + 1|2H + σ2 − σ2{|s + 1|2H + 1− |s|2H}

= σ2|s|2H = σ2|s|2(dη+1/2) = σ2|s|2dη+1
·

Therefore,

var(
N(t)∑

k=1

ηk) = σ2E
{

[N(t)]2dη+1
}
·

(9)

We evaluate E
{

[N(t)]2dη+1
}

in (9) as follows. Denote Z(t) = N(t)−λt
t1/2+dτ

. As shown by Deo, Hurvich,

Soulier and Wang (2006, in the proof of Theorem 1) using Iglehart and Whitt (1971, Theorem 1),

Z(t) D→ CBdτ+ 1
2
(1) as t → ∞, where D→ denotes converge in distribution and C is a positive constant.

Since dτ < 1/2, as t →∞,
N(t)
λt

= 1 +
1
λ

tdτ− 1
2 Z(t)

p→ 1
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and thus
[

N(t)
λt

]2dη+1 p→ 1.

Next, we will prove that

E
[N(t)

λt

]2dη+1

→ 1 (10)

by showing that lim supt E
[

N(t)
λt

]2dη+1+δ

< ∞ for some positive δ. Since dη < 0, we choose δ = 3−2dη >

0. Using the fact that for all real x

(1 + x)4 = [(1 + x)2]2 ≤ (2 + 2x2)2 = 4(x4 + 2x2 + 1)

≤ 4[x4 + (x4 + 1) + 1] = 8(x4 + 1)

we obtain that, for t ≥ 1

[N(t)
λt

]2dη+1+δ

=
[
1 +

1
λ

tdτ− 1
2 Z(t)

]4

≤
[
1 +

∣∣∣ 1
λ

Z(t)
∣∣∣
]4

≤ 8 +
8
λ4

Z4(t) .

By Lemma 2 in Deo, Hurvich, Soulier and Wang (2006), lim supt E[Z4(t)] < ∞. Therefore,

lim supt E
[

N(t)
λt

]2dη+1+δ

< ∞ and we obtain (10).

From (9) and (10), we obtain

var(
∑N(t)

k=1 ηk)
(λt)2dη+1

= σ2E
[N(t)

λt

]2dη+1

→ σ2 > 0. ¤

B Proof of Theorem 1

Proof: We first consider the fractional cointegration case, dη ∈ (− 1
2 , 0). We focus on log P1,t, since the

proof for log P2,t follows along similar lines.

The log price of Asset 1 is

log P1,t =
N1(t)∑

k=1

(e1,k + η1,k) +
N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k) ·
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Note that the two terms on the righthand side are uncorrelated. By Lemma 1, since dη < 0, we obtain

var[
N1(t)∑

k=1

(e1,k + η1,k)] = σ2
1,eE[N1(t)] + var[

N1(t)∑

k=1

η1,k]

∼ (σ2
1,eλ1)t + (σ2

1,ηλ
2dη1+1
1 )t2dη1+1 = (σ2

1,eλ1)t + o(t).

Next, consider E{N1(t)−N1(t2,N2(t))}, which is the expected number of transactions of Asset 1 after

the most recent transaction of Asset 2 up to time t. Define the backward recurrence time for Asset 2 at

time t as

BRT2,t = inf{s > 0 : N2(t)−N2(t− s) > 0}. (11)

Clearly, BRT2,t = t − t2,N2(t) and thus E{N1(t) − N1(t2,N2(t))} = λ1E[BRT2,t]. Because N2(t) is a

stationary point process, BRT2,t has the same distribution as BRT2,0 and E[BRT2,t] = E[BRT2,0] < ∞
does not depend on t (Daley and Vere-Jones (2002), page 58–59 for a detailed discussion, and our Lemma

3). Thus

E{N1(t)−N1(t2,N2(t))} = λ1E[BRT2,t] = λ1E[BRT2,0] = C̃1, (12)

a finite constant, independent of t. Similarly

E{N2(t)−N2(t1,N1(t))} = λ2E[BRT1,t] = λ2E[BRT1,0] = C̃2 (13)

is also a finite constant, independent of t as well. Intuitively, both (12) and (13) make sense. For example,

(12) says that the expected number of transactions of Asset 1 after the most recent transaction of Asset 2

up to time t increases as the expected duration of Asset 1 decreases (λ1 increases) and/or as the expected

backward recurrence time of Asset 2, E[BRT2,0], increases.

Using (9),

var
[ N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k)
]

= θ2 σ2
2,eE{N2(t1,N1(t))}︸ ︷︷ ︸

T1

+g2
21σ

2
2,η E

{
[N2(t1,N1(t))]

2dη+1

︸ ︷︷ ︸
T2

}

By (13), the first term equals

θ2T1 = θ2σ2
2,e(E{N2(t)} − C̃2) = θ2σ2

2,e(λ2t− C̃2) ∼ (θ2σ2
2,eλ2)t,
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as t →∞.

As for the second term, since when x > 0 and 0 < p = (2dη + 1) < 1, the function xp is concave, we

can apply Jensen’s inequality to obtain

g2
21σ

2
2,ηT2 ≤ g2

21σ
2
2,η

{
E[N2(t1,N1(t))]

}2dη+1

= g2
21σ

2
2,η(λ2t− C̃2)2dη+1 = o(t)·

Therefore,

var
[ N2(t1,N1(t))∑

k=1

(θe2,k + g21η2,k)
]
∼ (θ2σ2

2,eλ2)t

as t →∞. Overall,

var[log P1,t] ∼ (σ2
1,eλ1)t + (θ2σ2

2,eλ2)t = C1t

where C1 = (σ2
1,eλ1 + θ2σ2

2,eλ2).

Similarly,

var[log P2,t] ∼ (σ2
2,eλ2)t + (

1
θ2

σ2
1,eλ1)t = C2t

where C2 = (σ2
2,eλ2 + 1

θ2 σ2
1,eλ1).

Next, we consider the standard cointegration case, dη = −1. The proof is identical to that for the

fractional cointegration case, except that here we have var(
∑Ni(t)

k=1 ηi,k) = 2σ2
i,ξ, i = 1, 2, which does not

increase with t. ¤

C Proof of Theorem 2

Proof: We first consider the fractional cointegration case, dη ∈ (− 1
2 , 0). We focus on the returns {r1,j}

of Asset 1, which corresponds to the first equation in (4) since the proof for {r2,j} follows along similar

lines.
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Consider the lag-1 autocorrelation of

r1,j =
N1[j∆t]∑

k=N1[(j−1)∆t]+1

e1,k

︸ ︷︷ ︸
T1

+
N1[j∆t]∑

k=N1[(j−1)∆t]+1

η1,k

︸ ︷︷ ︸
T2

+
N2(t1,N1(j∆t))∑

k=N2(t1,N1((j−1)∆t))+1

θe2,k

︸ ︷︷ ︸
T3

+
N2(t1,N1(j∆t))∑

k=N2(t1,N1((j−1)∆t))+1

g21η2,k ·

︸ ︷︷ ︸
T4

Denote ∆N1,j = N1(j∆t) − N1((j − 1)∆t) and ∆N2,j = N2(j∆t) − N2((j − 1)∆t). We know that

E(∆N1,j) = λ1∆t and E(∆N2,j) = λ2∆t. Thus,

var(T1) = E
{[ N1(j∆t)∑

k=N1((j−1)∆t)+1

e1,k

]2}
= E

[
E

{[ N1(j∆t)∑

k=N1((j−1)∆t)+1

e1,k

]2∣∣∣N1(·)
}]

= σ2
1,eE{N1(j∆t)−N1((j − 1)∆t)}

= σ2
1,eE(∆N1,j) = σ2

1,eλ1∆t · (14)

By the proof of (9), var(T2) = σ2
2,ηE[{∆N1,j}2dη+1]. Since the function xp is concave when x > 0 and

0 < p < 1, by Jensen’s inequality for dη ∈ (−0.5, 0),

var(T2) = σ2
2,ηE[{∆N1,j}2dη+1] ≤ σ2

2,η{E[∆N1,j ]}2dη+1 = σ2
2,η{λ1∆t}2dη+1 = o(∆t), (15)

as ∆t →∞.

Next, by the proof of (9) and equations (12) and (13),

var(T3) = θ2σ2
2,eE{N2(t1,N1(j∆t))−N2(t1,N1((j−1)∆t))}

= θ2σ2
2,eE[N2(j∆t)−N2((j − 1)∆t)]

= θ2σ2
2,eE[∆N2,j ] = θ2σ2

2,eλ2∆t (16)

and

var(T4) = g2
21σ

2
2,ηE

[
{N2(t1,N1(j∆t))−N2(t1,N1((j−1)∆t))}2dη+1

]

≤ g2
21σ

2
2,η

[
E{N2(t1,N1(j∆t))−N2(t1,N1((j−1)∆t))}

]2dη+1

= g2
21σ

2
2,η

{
E[∆N2,j ]

}2dη+1

= g2
21σ

2
2,η(λ2∆t) = o(∆t). (17)
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As for the covariance terms, by the Cauchy-Schwartz inequality and Equations (14) to (17),

|cov(T1, T2)| ≤
√

var(T1)var(T2) ≤
√

σ2
1,eσ

2
2,η(λ1∆t)2dη+2 = o(∆t) (18)

|cov(T1, T4)| ≤
√

var(T1)var(T4) ≤
√

g2
21σ

2
1,eσ

2
2,η(λ1∆t)(λ2∆t)2dη+1 = o(∆t) (19)

|cov(T2, T3)| ≤
√

var(T2)var(T3) ≤
√

θ2σ2
2,eσ

2
2,η(λ2∆t)(λ1∆t)2dη+1 = o(∆t) (20)

|cov(T2, T4)| ≤
√

var(T2)var(T4) ≤
√

g2
21σ

4
2(λ1∆t)2dη+1(λ2∆t)2dη+1 = o(∆t) (21)

|cov(T3, T4)| ≤
√

var(T3)var(T4) ≤
√

θ2g2
21σ

2
2,eσ

2
2,η(λ2∆t)2dη+2 = o(∆t) (22)

since dη < 0. Also,

cov(T1, T3) = 0 (23)

since {e1,k} and {e2,k} are mutually independent i.i.d. series.

Overall, by (14) to (23), we obtain var(r1,j) ∼ (σ2
1,eλ1 + θ2σ2

2,eλ2)∆t, as ∆t →∞, i.e.

lim
∆t→∞

var(r1,j)
∆t

= (σ2
1,eλ1 + θ2σ2

2,eλ2).

Similarly, for

(r1,j + r1,j+1) =
N1((j+1)∆t)∑

k=N1((j−1)∆t)+1

(e1,k + η1,k) +
N2(t1,N1((j+1)∆t))∑

k=N2(t1,N1((j−1)∆t))+1

(θe2,k + g21η2,k)

we obtain

var(r1,j + r1,j+1) ∼ 2(σ2
1,eλ1 + θ2σ2

2,eλ2)∆t

i.e.

lim
∆t→∞

var(r1,j + r1,j+1)
2∆t

= (σ2
1,eλ1 + θ2σ2

2,eλ2).

Therefore,

corr(r1,j , r1,j+1) =
cov(r1,j , r1,j+1)

var(r1,j)
=

1
2var(r1,j + r1,j+1)− var(r1,j)

var(r1,j)
=

1
2var(r1,j + r1,j+1)

var(r1,j)
− 1

=
var(r1,j+r1,j+1)

2∆t
var(r1,j)

∆t

− 1 → 0,
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as ∆t →∞.

The fact that the lag-2 autocorrelation also converges to zero can be shown by recognizing that

corr(r1,j , r1,j+2) =
1
2

[var(r1,j + r1,j+1 + r1,j+2)
var(r1,j)

− 3− 4corr(r1,j , r1,j+1)
]

and using the lag-1 autocorrelation results proved above as well as

lim
∆t→∞

var(r1,j + r1,j+1 + r1,j+2)
3∆t

= (σ2
1,eλ1 + θ2σ2

2,eλ2).

The result follows for any fixed lag k by induction.

Next, we consider the standard cointegration case, dη = −1. The proof is identical to that for the

fractional cointegration case, except that here we have var(
∑Ni(j∆t)

k=Ni((j−1)∆t)+1 ηi,k) = 2σ2
i,ξ, i = 1, 2, and

other similar terms which do not increase with ∆t. ¤

D Proof of Theorem 3

Proof: Consider a linear combination of log P1,t and log P2,t using vector (1,−θ),

log P1,t − θ log P2,t

=
N1(t)∑

k=N1(t2,N2(t))+1

e1,k − θ

N2(t)∑

k=N2(t1,N1(t))+1

e2,k

+
N1(t)∑

k=1

η1,k − θg12

N1(t2,N2(t))∑

k=1

η1,k − θ

N2(t)∑

k=1

η2,k + g21

N2(t1,N1(t))∑

k=1

η2,k

=
N1(t)∑

k=N1(t2,N2(t))+1

e1,k

︸ ︷︷ ︸
T1

−θ

N2(t)∑

k=N2(t1,N1(t))+1

e2,k

︸ ︷︷ ︸
T2

+(1− θg12)
N1(t)∑

k=1

η1,k

︸ ︷︷ ︸
T3

(24)

+θg12

N1(t)∑

k=N1(t2,N2(t))+1

η1,k

︸ ︷︷ ︸
T4

−(θ − g21)
N2(t)∑

k=1

η2,k

︸ ︷︷ ︸
T5

−g21

N2(t)∑

k=N2(t1,N1(t))+1

η2,k·

︸ ︷︷ ︸
T6

Since all shock series are mutually independent and also independent of the counting processes N1(t)
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and N2(t), we obtain

var
[
log P1,t − θ log P2,t

]
= var(T1) + θ2var(T2) + (1− θg12)2var(T3) + θ2g2

12var(T4)

+2θg12(1− θg12)cov(T3, T4) + (θ − g21)2var(T5) + g2
21var(T6)

+2g21(θ − g21)cov(T5, T6)· (25)

First, by Lemma 1

var(T3) ∼ (σ2
1,ηλ

2dη+1
1 )t2dη+1

var(T5) ∼ (σ2
2,ηλ

2dη+1
2 )t2dη+1 · (26)

Using (12) and the proof of (9), we obtain

var(T4) = var[BH(N1(t) + 1)−BH(N1(t2,N2(t)) + 1)]

= σ2
1,ηE

[
{N1(t)−N1(t2,N2(t))}2dη+1

]

≤ σ2
1,η

[
E{N1(t)−N1(t2,N2(t))}

]2dη+1

= σ2
1,ηC̃

2dη+1
1 (27)

where we apply Jensen’s inequality in the last step, noting that for x > 0 and 0 < p = (2dη + 1) < 1, the

function xp is concave. Similarly,

var(T6) ≤ σ2
2,ηC̃

2dη+1
2 . (28)

Also, by (12) and (13)

var(T1) = var(e1,k)E{N1(t)−N1(t2,N2(t))} = σ2
1,eC̃1 (29)

var(T2) = var(e2,k)E{N2(t)−N2(t1,N1(t))} = σ2
2,eC̃2· (30)

Next, we consider the covariance terms in (25) using Cauchy-Schwartz inequality. By (26) and (12)

|cov(T3, T4)| ≤
√

var(T3)var(T4) ≤
√

σ2
1,ηC̃

2dη+1
1 var(T3) ∼ (σ2

1,ηC̃
dη+ 1

2
1 λ

dη+ 1
2

1 )tdη+ 1
2 = o(t2dη+1) (31)

and similarly by (26) and (13)

|cov(T5, T6)| ≤
√

var(T5)var(T6) ≤
√

σ2
2,ηC̃

2dη+1
2 var(T5) ∼ (σ2

2,ηC̃
dη+ 1

2
2 λ

dη+ 1
2

2 )tdη+ 1
2 = o(t2dη+1). (32)
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Overall, using (26) to (32) for (25), we obtain

var
(

log P1,t − θ log P2,t

)
∼ Ct2dη+1 (33)

where C = (1− θg12)2(σ2
1,ηλ

2dη1+1
1 ) + (θ − g21)2(σ2

2,ηλ
2dη2+1
2 ).

Overall, the cointegrating vector is (1,−θ) and the memory parameter decreases from 1 for both log

prices to 1 + dη. ¤

E Proof of Theorem 4

We will need the following lemmas.

Lemma 3 If the durations {τk} are generated by a Long Memory Stochastic Duration (LMSD) model

with memory parameter dτ ∈ (0, 1/2) and all moments of the durations {τk} are finite, then all moments

of the backward recurrence time (BRTt), as defined in (11), are also finite.

Proof of Lemma 3: First, by exercise 3.4.1 on page 59 of Daley and Vere-Jones (2002),

BRTt
d≡ u1 (34)

where
d≡ denotes equivalence in distribution and u1 is the time of occurrence of the first transaction

following time zero. Since 0 < u1 ≤ τ1, and we have assumed that all moments of τ1 are finite,

E(BRTm
t ) = E(um

1 ) ≤ E(τm
1 ) = C < ∞ for all m > 0. ¤

Lemma 4 For durations {τk} satisfying the assumptions in Lemma 3, E[N(s)m] ≤ Km(sm + 1) for all

s > 0, where Km < ∞, m = 1, 2, · · · .

Proof of Lemma 4: By Proposition 1 in Deo, Hurvich, Soulier and Wang (2006), and the fact that

for a > 0, b > 0 and positive integer m, (a + b)m ≤ 2m−1(am + bm) (which can be shown using Jensen’s
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inequality and the convexity of the function xm, x > 0), we obtain that, for s > 0,

E[N(s)m] = E{[λs + Z(s)s1/2+dτ ]m} ≤ E{[λs + |Z(s)|s1/2+dτ ]m}

≤ 2m−1
[
λmsm + E|Z(s)|msm(1/2+dτ )

]
≤ Km(sm + 1),

where Km is a finite constant, Z(s) = N(s)−λs
s1/2+dτ

and λ as defined before. ¤

We now present the proof of Theorem 4. As in the proof of Theorem 3, we denote

St = log P1,t − θ log P2,t =
N1(t)∑

k=N1(t2,N2(t))+1

e1,k

︸ ︷︷ ︸
S1,t

−θ

N2(t)∑

k=N2(t1,N1(t))+1

e2,k

︸ ︷︷ ︸
S2,t

+
N1(t)∑

k=1

η1,k

︸ ︷︷ ︸
S3,t

−θg12

N1(t2,N2(t))∑

k=1

η1,k

︸ ︷︷ ︸
S4,t

−θ

N2(t)∑

k=1

η2,k

︸ ︷︷ ︸
S5,t

+g21

N2(t1,N1(t))∑

k=1

η2,k

︸ ︷︷ ︸
S6,t

= S1,t − θS2,t + S3,t − θg12S4,t − θS5,t + g12S6,t ,

and evaluate the terms in cov(St, St+j).

1) Consider cov(S1,t, S1,t+j) = E(S1,tS1,t+j). The term S1,t is a sum of shocks occurring in the time

interval between the last transaction of Asset 2 before time t and time t. Similarly, S1,t+j is a sum of shocks

occurring between the last transaction of Asset 2 before time t + j and time t + j. Clearly, if at least one

transaction of Asset 2 occurs in (t, t+j], we must have t2,N2(t+j) > t so that E[S1,tS1,t+j |N1(·), N2(·)] = 0

because {e1,k} is i.i.d.. Otherwise, t2,N2(t+j) = t2,N2(t) and E[S1,tS1,t+j |N1(·), N2(·)] = σ2
1,e[N1(t) −

N1(t2,N2(t))]. Therefore, by the Cauchy-Schwartz inequality,

cov(S1,t, S1,t+j) = E(S1,tS1,t+j) = E
{

E[S1,tS1,t+j |N1(·), N2(·)]
}

= E
{

σ2
1,e[N1(t)−N1(t2,N2(t))] · I{N2(t + j)−N2(t) = 0}

}

≤ σ2
1,e{E[N1(t)−N1(t2,N2(t))]

2}1/2 · {P [N2(t + j)−N2(t) = 0]}1/2 ·
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By Lemma 4 and the stationarity of N1(·), we obtain

E{[N1(t)−N1(t2,N2(t))]
2} = E{[N1(t− t2,N2(t))]

2} = E{[N1(BRT2,t)]2}

= E
(
E{[N1(BRT2,t)]2

∣∣∣N1(·), N2(·)}
)

≤ E
[
K2(BRT 2

2,t + 1)
]

which is bounded uniformly in t using Lemma 3.

Next, since N2(·) is stationary, for any positive integer m, we obtain

P
[
N2(t + j)−N2(t) = 0

]
= P

[
N2(j) ≤ 0

]

≤ P
[
|Z2(j)| ≥ λ2j

1/2−dτ

]
≤ E|Z2(j)|m

λm
2 jm(1/2−dτ )

= O(jm(dτ−1/2)), (35)

where Z2(j) = N2(j)−λ2j
j1/2+dτ

. This is true since it follows from the proof of Proposition 1 in Deo, Hurvich,

Soulier and Wang (2006) that E|Z2(j)|m is bounded uniformly in j for all m. Therefore, P
[
N2(t +

j) − N2(t) = 0
]

has nearly-exponential decay, because (35) holds for all m. Thus, cov(S1,t, S1,t+j) has

nearly-exponential decay.

Similarly, cov(S2,t, S2,t+j) has nearly-exponential decay.

2) Next, we consider cov(S3,t, S3,t+j), cov(S3,t, S4,t+j), cov(S4,t, S3,t+j) and cov(S4,t, S4,t+j).

2.i) First,

cov(S3,t, S3,t+j) = cov
(
ξ1,N1(t) − ξ0, ξ1,N1(t+j) − ξ0

)
= cov

(
ξ1,N1(t), ξ1,N1(t+j)

)

= cov
(
ξ1,N1(t), ξ1,N1(t+j)

)
= σ2

1,ξP
[
N1(t + j)−N1(t) = 0

]

which has nearly-exponential decay, as shown above for N2(·) in (35).

49



2.ii) Next, we consider cov(S3,t, S4,t+j). We have

0 ≤ cov(S3,t, S4,t+j) = cov
(
ξ1,N1(t) − ξ0, ξ1,N1(t2,N2(t+j)) − ξ0

)
= cov

(
ξ1,N1(t), ξ1,N1(t2,N2(t+j))

)

= σ2
1,ξP

[
N1(t2,N2(t+j))−N1(t) = 0

]

≤ σ2
1,ξP

[
N1(t2,N2(t+j))−N1(t) ≤ 0

]

≤ σ2
1,ξP

{
[N1(t + j)−N1(t)]− [N1(t + j)−N1(t2,N2(t+j))]︸ ︷︷ ︸

Xt,j

≤ 0
}

= σ2
1,ξP

{ [N1(t + j)−N1(t)]− λ1j

j1/2+dτ
− Xt,j

j1/2+dτ
≤ −λ1j

j1/2+dτ

}

≤ σ2
1,ξP

{∣∣∣ [N1(t + j)−N1(t)]− λ1j

j1/2+dτ
− Xt,j

j1/2+dτ

∣∣∣ ≥ λ1j
1/2−dτ

}

≤ σ2
1,ξE

∣∣∣ [N1(t + j)−N1(t)]− λ1j

j1/2+dτ
− Xt,j

j1/2+dτ

∣∣∣
m

λ−m
1 jm(dτ−1/2) (36)

for any positive integer m. Thus, cov(S3,t, S4,t+j) has nearly-exponential decay, provided that

E
∣∣∣ [N1(t+j)−N1(t)]−λ1j

j1/2+dτ
− Xt,j

j1/2+dτ

∣∣∣
m

is bounded uniformly in t and j. By Minkowski’s inequality, it is

sufficient to show that both E
∣∣∣ [N1(t+j)−N1(t)]−λ1j

j1/2+dτ

∣∣∣
m

and E|Xt,j |m are uniformly bounded.

Using the stationarity of N1(·),

E
∣∣∣ [N1(t + j)−N1(t)]− λ1j

j1/2+dτ

∣∣∣
m

= E
∣∣∣N1(j)− λ1j

j1/2+dτ

∣∣∣
m

= E|Z1(j)|m,

which is bounded uniformly in j, by the proof of Proposition 1 in Deo, Hurvich, Soulier and Wang (2006).

By Lemma 4, we obtain

E|Xt,j |m = E
{

E
[
|Xt,j |m

∣∣∣N2(·)
]}

= E
{

E
[(

N1(t + j)−N1(t2,N−2(t+j))
)m∣∣∣N2(·)

]}

≤ KmE(BRTm
2,t+j + 1),

which is uniformly bounded in t and j by Lemma 3. Thus, cov(S3,t, S4,t+j) has nearly-exponential decay.

2.iii) Next, we consider cov(S4,t, S3,t+j). Since

0 ≤ cov(S4,t, S3,t+j) = cov
(
ξ1,N1(t2,N2(t)) − ξ0, ξ1,N1(t+j) − ξ0

)

= σ2
1,ξP

[
N1(t + j)−N1(t2,N2(t)) = 0

]
≤ σ2

1,ξP
[
N1(t + j)−N1(t) = 0

]
·
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Thus, cov(S4,t, S3,t+j) has nearly-exponential decay, by the proof of (35).

Finally, since

0 ≤ cov(S4,t, S4,t+j) = cov
(
ξ1,N1(t2,N2(t)) − ξ0, ξ1,N1(t2,N2(t+j)) − ξ0

)

= σ2
1,ξP

[
N1(t2,N2(t+j))−N1(t2,N2(t)) = 0

]

≤ σ2
1,ξP

[
N1(t2,N2(t+j))−N1(t2,N2(t)) ≤ 0

]

≤ σ2
1,ξP

[
N1(t2,N2(t+j))−N1(t) ≤ 0

]
(37)

which as we have shown in (36) has nearly-exponential decay. The last inequality in (37) holds since

N1(t2,N2(t)) ≤ N1(t).

2.iv) Similarly to the above proofs, we can show that cov(S5,t, S5,t+j), cov(S5,t, S6,t+j), cov(S6,t, S5,t+j)

and cov(S6,t, S6,t+j) have nearly-exponential decay.

3) So far, we have shown that the following terms have nearly-exponential decay as j →∞: cov(S1,t, S1,t+j),

cov(S2,t, S2,t+j), cov(S3,t, S3,t+j), cov(S3,t, S4,t+j), cov(S4,t, S3,t+j), cov(S4,t, S4,t+j), cov(S5,t, S5,t+j),

cov(S5,t, S6,t+j), cov(S6,t, S5,t+j) and cov(S6,t, S6,t+j). Since {e1,k}, {e2,k}, {η1,k} and {η2,k} are mutu-

ally independent, the remaining covariances are all zero. ¤

F Proof of Theorem 5

Proof: We will treat the fractional cointegration case and standard cointegration case separately.

Case 1: fractional cointegration, dη ∈ (− 1
2 , 0).
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The log prices given by (5) can be written as

Aj ≡ log P1,j =
N1(j∆t)∑

k=1

(e1,k + η1,k) +
N2(t1,N1(j∆t))∑

k=1

(θe2,k + g21η2,k)

Bj ≡ log P2,j =
N2(j∆t)∑

k=1

(e2,k + η2,k) +
N1(t2,N2(j∆t))∑

k=1

(
1
θ
e1,k + g12η1,k)

=
N2(j∆t)∑

k=1

(e2,k + η2,k) +
N1(j∆t)∑

k=1

(
1
θ
e1,k + g12η1,k)−

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

(
1
θ
e1,k + g12η1,k)

=
N2(j∆t)∑

k=1

e2,k +
1
θ

N1(j∆t)∑

k=1

e1,k

︸ ︷︷ ︸
B1,j

+
N2(j∆t)∑

k=1

η2,k

︸ ︷︷ ︸
B2,j

+g12

N1(j∆t)∑

k=1

η1,k

︸ ︷︷ ︸
B3,j

− 1
θ

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

e1,k

︸ ︷︷ ︸
B4,j

−g12

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

η1,k

︸ ︷︷ ︸
B5,j

and

Tj ≡ Aj − θBj =
N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

e1,k

︸ ︷︷ ︸
T1,j=B4,j

−θ

N2(j∆t)∑

k=N2(t1,N1(j∆t))+1

e2,k

︸ ︷︷ ︸
T2,j

+(1− θg12)
N1(j∆t)∑

k=1

η1,k

︸ ︷︷ ︸
T3,j=B3,j

+θg12

N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

η1,k

︸ ︷︷ ︸
T4,j=B5,j

−(θ − g21)
N2(j∆t)∑

k=1

η2,k

︸ ︷︷ ︸
T5,j=B2,j

−g21

N2(j∆t)∑

k=N2(t1,N1(j∆t))+1

η2,k

︸ ︷︷ ︸
T6,j

·

The OLS slope estimator θ̂ obtained from regressing {log P1,j}n
j=1 on {log P2,j}n

j=1 is

θ̂ =

∑n
j=1 AjBj∑n

j=1 B2
j

=

∑n
j=1 (θBj + Tj)Bj∑n

j=1 B2
j

= θ +

∑n
j=1 TjBj∑n
j=1 B2

j
· (38)

First, we show that n−r
∑n

j=1 TjBj
p→ 0, where r = 2 + dη + δ for ∀ δ > 0. By the Cauchy-Schwartz

inequality,

1
nr

n∑

j=1

Ti,jBk,j ≤
√√√√(

1
n2r−2

n∑

j=1

T 2
i,j)(

1
n2

n∑

j=1

B2
k,j)

·

(39)

It is therefore sufficient to show that the righthand side of (39) converges in probability to zero, for

all i = 1, . . . , 6 and k = 1, . . . , 5.
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By (9), (12), (13), Lemma 1 and Jensen’s inequality E(X2dη+1) ≤ (EX)2dη+1 for x ≥ 0, dη ∈
(−1/2, 0), we obtain that, for any ε > 0,

1
n2r−2

P (
n∑

j=1

T 2
1,j > ε) ≤ E(

∑n
j=1 T 2

1,j)
n2r−2ε

=

∑n
j=1 var(T1,j)

n2r−2ε
=

∑n
j=1 σ2

1,eC̃1

n2r−2ε
=

σ2
1,eC̃1

n2r−3ε
→ 0,

1
n2r−2

P (
n∑

j=1

T 2
2,j > ε) ≤ E(

∑n
j=1 T 2

2,j)
n2r−2ε

=

∑n
j=1 var(T2,j)

n2r−2ε
=

∑n
j=1 σ2

2,eC̃2

n2r−2ε
=

σ2
2,eC̃2

n2r−3ε
→ 0,

1
n2r−2

P (
n∑

j=1

T 2
3,j > ε) ≤ E(

∑n
j=1 T 2

3,j)
n2r−2ε

=

∑n
j=1 var(T3,j)

n2r−2ε
=

∑n
j=1 σ2

1,η{λ1j∆t}2dη+1

n2r−2ε
=

O(n2dη+2)
n2r−2ε

→ 0,

1
n2r−2

P (
n∑

j=1

T 2
4,j > ε) ≤

∑n
j=1 var(T4,j)

n2r−2ε
=

∑n
j=1 σ2

1,ηE{[N1(j∆t)−N1(t2,N2(j∆t))]2dη+1}
n2r−2ε

≤
∑n

j=1 σ2
1,η{E[N1(j∆t)−N1(t2,N2(j∆t))]}2dη+1

n2r−2ε
=

∑n
j=1 σ2

1,η(C̃1)2dη+1

n2r−2ε
→ 0,

1
n2r−2

P (
n∑

j=1

T 2
5,j > ε) → 0 (similar as for

1
n2r−2

P (
n∑

j=1

T 2
3,j > ε)),

1
n2r−2

P (
n∑

j=1

T 2
6,j > ε) → 0 (similar as for

1
n2r−2

P (
n∑

j=1

T 2
4,j > ε)),

as n →∞, since dη, dη ∈ (− 1
2 , 0), (2r − 2) = max(2dη + 2, 2dη + 2) + δ and (2r − 3) > 1.

Therefore,

1
n2r−2

n∑

j=1

T 2
i,j

p→ 0 (40)

for i = 1, . . . , 6.

Next, since

P
[ 1
n2

n∑

j=1

B2
1,j > µ

]
≤ E(

∑n
j=1 B2

1,j)
n2µ

=

∑n
j=1(σ

2
2,eλ2j∆t + 1

θ2 σ2
1,eλ1j∆t)

n2µ

=
1
2
(σ2

2,eλ2∆t +
1
θ2

σ2
1,eλ1∆t)(1 +

1
n

)
1
µ

and for any ε > 0 and all n > 1, we can choose µ > 1
ε (σ2

2,eλ2∆t + 1
θ2 σ2

1,eλ1∆t), so that

P
[ 1
n2

n∑

j=1

B2
1,j > µ

]
< ε,

we obtain

1
n2

n∑

j=1

B2
1,j = Op(1)· (41)
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Since B2,j = T5,j , B3,j = T3,j , B4,j = T1,j and B5,j = T4,j , it follows from (40) that

1
n2

n∑

j=1

B2
i,j

p→ 0, (42)

for i = 2, . . . , 5.

Applying (40), (41), (42) in (39), we obtain

1
nr

n∑

j=1

TjBj
p→ 0, (43)

where r = 2 + max(dη, dη) + δ for any δ > 0.

Next, we show that 1
1

n2
Pn

j=1 B2
j

is Op(1) by bounding it by a random variable that converges in

distribution.

Since n
∑n

j=1 a2
j ≥ (

∑n
j=1 aj)2 for any sequence {aj}, we have,

1
1

n2

∑n
j=1 B2

j

≤ 1
1

n3 (
∑n

j=1 Bj)2 ·

Note that

1
n3

(
n∑

j=1

Bj)2 =
1
n3

(
n∑

j=1

B1,j)2 +
1
n3

5∑

i=2

(
n∑

j=1

Bi,j)2 +
1
n3

5∑

i=1

5∑

s 6=i,s=1

[
(

n∑

j=1

Bi,j)(
n∑

j=1

Bs,j)
]
·

We will show that

1
n3/2

n∑

j=1

B1,j
d→

√
1
3
σ2

2,eλ2∆t +
1

3θ2
σ2

1,eλ1∆t Z , (44)

where Z is standard normal and

1
n3/2

n∑

j=1

Bi,j
p→ 0 (45)

for i = 2, . . . , 5, so that

1
1

n3 (
∑n

j=1 Bj)2
d→

( 3θ2

θ2σ2
2,eλ2∆t + σ2

1,eλ1∆t

) 1
Z2

,

and

1
1

n2

∑n
j=1 B2

j

= Op(1)· (46)
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To show (44), we write

1
n3/2

n∑

j=1

B1,j =
1

n3/2

n∑

j=1

N2(j∆t)∑

k=1

e2,k

︸ ︷︷ ︸
G1

+
1

n3/2

1
θ

n∑

j=1

N1(j∆t)∑

k=1

e1,k

︸ ︷︷ ︸
G2

,

where G1 and G2 are independent.

Since {e2,k} is serially independent,

G1 =
1

n3/2

(
n

N2(∆t)∑

k=1

e2,k + (n− 1)
N2(2∆t)∑

k=N2(∆t)+1

e2,k + . . . +
N2(n∆t)∑

k=N2((n−1)∆t)+1

e2,k

)

d≡ σ2,e

n3/2

(
n
√

∆N2,1Z1 + (n− 1)
√

∆N2,2Z2 + . . . +
√

∆N2,nZn

)

d≡ σ2,e

n3/2

(√
n2∆N2,1 + (n− 1)2∆N2,2 . . . + ∆N2,n Z

)

= σ2,e

√√√√√√
1
n3

n∑

k=1

(n− k + 1)2∆N2,k

︸ ︷︷ ︸
D

Z (47)

where
d≡ denotes equivalence in distribution, ∆N2,j = N2(j∆t) − N2((j − 1)∆t), {Zk}n

k=1 are i.i.d.

standard normal and Z is a standard normal random variable.

Consider D defined in (47). Applying the summation by parts formula for two sequences {fk} and

{gk},
n∑

k=m

fk(gk+1 − gk) = (fn+1gn+1 − fmgm)−
n∑

k=m

gk+1(fk+1 − fk) ,

we obtain

D =
n∑

k=1

(n− k + 1)2∆N2,k =
n∑

k=1

(n− k + 1)2
[
N2(k∆t)−N2((k − 1)∆t)

]

=
n−1∑

k=0

(n− k)2︸ ︷︷ ︸
fk

[
N2((k + 1)∆t)︸ ︷︷ ︸

gk+1

−N2(k∆t)︸ ︷︷ ︸
gk

]

= (fngn − f0g0)−
n−1∑

k=0

N2((k + 1)∆t)
[
(2n− 2k − 1)(−1)

]

=
n−1∑

k=0

(2n− 2k − 1)N2((k + 1)∆t) (since fn = 0 and g0 = 0)

=
n∑

k=1

(2n− 2k + 1)N2(k∆t)
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thus

E(
1
n3

D) =
1
n3

n∑

k=1

(2n− 2k + 1)E[N2(k∆t)] =
λ2∆t

n3

n∑

k=1

(2n− 2k + 1)k

=
λ2∆t

n3

[
2n

n(n + 1)
2

− 2
n(n + 1)(2n + 1)

6
+

n(n + 1)
2

]
→ 1

3
λ2∆t, (48)

and

var(
1
n3

D) ≤ 1
n6

n∑

j=1

n∑
s=1

(2n− 2j + 1)(2n− 2s + 1)
∣∣∣cov(N2(j∆t), N2(s∆t))

∣∣∣

≤ 1
n6

n∑

j=1

n∑
s=1

(2n− 2j + 1)(2n− 2s + 1)
√

var(N2(j∆t))var(N2(s∆t))

≤ 4n2

n6

( n∑

j=1

√
var(N2(j∆t))

)( n∑
s=1

√
var(N2(s∆t))

)
= O(n2dτ−1) → 0 (49)

as n →∞ since dτ ∈ (0, 1
2 ) and by Theorem 1 of Deo, Hurvich, Soulier and Wang (2006),

var(N2(n∆t)) ∼ C(n∆t)2dτ+1 as n →∞·

By (48) and (49),
(

1
n3 D − 1

3λ2∆t
)

converges in mean-square to zero, which implies that

1
n3

D =
1
n3

n∑

k=1

(n− k + 1)2∆N2,k
p→ 1

3
λ2∆t · (50)

Using (50) in (47), by Slutsky’s theorem

G1
d→ σ2,e

√
1
3
λ2∆t Z1 (51)

and similarly

G2
d→ σ1,e

θ

√
1
3
λ1∆t Z2 (52)

where Z1 and Z2 are independent standard normals.

Overall, by (51), (52) and the independence between G1 and G2, (44) is obtained.

To show (45), since for any ε > 0, and i = 2, . . . , 5, by Chebyshev’s inequality,

P
(∣∣∣ 1

n3/2

n∑

j=1

Bi,j

∣∣∣ > ε
)
≤ var(

∑n
j=1 Bi,j)

n3ε2
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it is enough to show that,

var(
∑n

j=1 Bi,j)
n3

→ 0, i = 2, . . . , 5. (53)

Since

var(B2,j) = σ2
2,ηE[(N2(j∆t))2dη+1] ≤ σ2

2,η{E[N2(j∆t)]}2dη+1 = σ2
2,η(λ2j∆t)2dη+1

≤ σ2
2,η(λ2∆t)2dη+1n2dη+1 (since j ≤ n and 2dη + 1 > 0)

var(B3,j) ≤ σ2
1,η(λ1∆t)2dη+1n2dη+1 (similar as for var(

n∑

j=1

B2,j))

var(B4,j) = σ2
1,eC̃1

var(B5,j) = σ2
1,eE

[
(N1(j∆t)−N1(t2,N2(j∆t)))2dη+1

]

≤ σ2
1,e

{
E

[
(N1(j∆t)−N1(t2,N2(j∆t))

]2dη+1}
= σ2

1,e(C̃1)2dη+1 ,

we obtain

var(
n∑

j=1

B2,j) ≤
n∑

j=1

n∑
s=1

|cov(B2,j , B2,s)| ≤
n∑

j=1

n∑
s=1

σ2
2,η(λ2n∆t)2dη+1 = O(n2dη+3) (54)

var(
n∑

j=1

B3,j) ≤
n∑

j=1

n∑
s=1

|cov(B3,j , B3,s)| = O(n2dη+3) (similar as above)

var(
n∑

j=1

B4,j) ≤
n∑

j=1

n∑
s=1

|cov(B4,j , B4,s)| =
n∑

j=1

n∑
s=1

σ2
1,eC̃1 = O(n2)

var(
n∑

j=1

B5,j) ≤
n∑

j=1

n∑
s=1

|cov(B5,j , B5,s)| =
n∑

j=1

n∑
s=1

σ2
1,e(C̃1)2dη+1 = O(n2) ·

This implies (53) and (45), since dη < 0.

Overall, since (44), (45) are proved, we obtain (46). Thus, by (38), (43) and (46),

n2−r(θ̂ − θ) =
1

nr

∑n
j=1 TjBj

1
n2

∑n
j=1 B2

j

p→ 0·

Case 2: standard cointegration, dη = −1.
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When dη = −1, η1,k = ξ1,k − ξ1,k−1 and η2,k = ξ2,k − ξ2,k−1. Denote

Bj ≡
N2(t1,N1(j∆t))∑

k=1

e2,k

︸ ︷︷ ︸
B∗1,j

+
N2(j∆t)∑

N2(t1,N1(j∆t))+1

e2,k

︸ ︷︷ ︸
B∗2,j

+
1
θ

N1(t2,N2(j∆t))∑

k=1

e1,k

︸ ︷︷ ︸
B∗3,j

+g12 · ξ1,N1(t2,N2(j∆t))︸ ︷︷ ︸
B∗4,j

+ ξ2,N2(j∆t)︸ ︷︷ ︸
B∗5,j

and

Tj ≡ Aj − θBj =
N1(j∆t)∑

k=N1(t2,N2(j∆t))+1

e1,k

︸ ︷︷ ︸
T∗1,j

−θ

N2(j∆t)∑

k=N2(t1,N1(j∆t))+1

e2,k

︸ ︷︷ ︸
T∗2,j=B∗2,j

+ ξ1,N1(j∆t)︸ ︷︷ ︸
T∗3,j

− θg12 · ξ1,N1(t2,N2(j∆t))︸ ︷︷ ︸
T∗4,j=B∗4,j

−θ · ξ2,N2(j∆t)︸ ︷︷ ︸
T∗5,j=B∗5,j

+g21 · ξ2,N2(t1,N1(j∆t))︸ ︷︷ ︸
T∗6,j

1) Consider
∑n

j=1 B∗
1,jT

∗
1,j . Since E(B∗

1,jT
∗
1,j) = E[E(B∗

1,jT
∗
1,j |N1(·), N2(·))] = 0, we obtain

var(
n∑

j=1

B∗
1,jT

∗
1,j)

= E
[ n∑

j=1

n∑
s=1

B∗
1,jB

∗
1,sT

∗
1,jT

∗
1,s

]
−

{
E(

n∑

j=1

B∗
1,jT

∗
1,j)

}2

=
n∑

j=1

E(B∗
1,j

2T ∗1,j
2) + 2

n∑

j=1

n∑

s=j+1

E(B∗
1,jB

∗
1,sT

∗
1,jT

∗
1,s)

=
n∑

j=1

E[E(B∗
1,j

2T ∗1,j
2|N1(·), N2(·))] + 2

n∑

j=1

n∑

s=j+1

E[E(B∗
1,jB

∗
1,sT

∗
1,jT

∗
1,s|N1(·), N2(·))]

=
n∑

j=1

E[E(B∗
1,j

2|N1(·), N2(·)) · E(T ∗1,j
2|N1(·), N2(·))]

+ 2
n∑

j=1

n∑

s=j+1

E[E(B∗
1,jB

∗
1,s|N1(·), N2(·)) · E(T ∗1,jT

∗
1,s|N1(·), N2(·))]

= σ2
1,eσ

2
2,e

n∑

j=1

E{N2(t1,N1(j∆t)) · [N1(j∆t)−N1(t2,N2(j∆t))]}
︸ ︷︷ ︸

O(n2), as shown in below

(55)

+ 2σ2
1,eσ

2
2,e

n∑

j=1

n∑

s=j+1

E
{

N2(t1,N1(j∆t)) · [N1(j∆t)−N1(t2,N2(j∆t))] · I{N2(s∆t)−N2(j∆t) = 0}
}

·

By the Cauchy-Schwartz inequality,

E{N2(t1,N1(j∆t)) · [N1(j∆t)−N1(t2,N2(j∆t))]}

≤
√

E{[N2(t1,N1(j∆t))]2} · E{[N1(j∆t)−N1(t2,N2(j∆t))]2} = O(j)
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because by Lemma 3 and Lemma 4, E{[N1(j∆t) − N1(t2,N2(j∆t))]2} is bounded uniformly in j and by

Theorem 1 in Deo, Hurvich, Soulier and Wang (2006),

E{[N2(t1,N1(j∆t))]2} ≤ E{[N2(j∆t)]2 = {E[N2(j∆t)]}2 + var[N2(j∆t)] = (λ2j∆t)2 + O(j2dτ+1) = O(j2)

hence

σ2
1,eσ

2
2,e

n∑

j=1

E{N2(t1,N1(j∆t)) · [N1(j∆t)−N1(t2,N2(j∆t))]} = O(n2),

as indicated in (55).

Similarly, since

n∑

j=1

n∑

s=j+1

E
{

N2(t1,N1(j∆t)) · [N1(j∆t)−N1(t2,N2(j∆t))] · I{N2(s∆t)−N2(j∆t) = 0}
}

≤
n∑

j=1

n∑

s=j+1

√
E{[N2(t1,N1(j∆t))]2} · {E[N1(j∆t)−N1(t2,N2(j∆t))]4}1/4 · {P [N2(s∆t)−N2(j∆t) = 0]}1/4

≤
√

E{[N2(n∆t)]2}︸ ︷︷ ︸
O(n)

·
n∑

j=1

n∑

s=j+1

{E[N1(j∆t)−N1(t2,N2(j∆t))]4︸ ︷︷ ︸
bounded uniformly in j

}1/4 · {P [N2(s∆t)−N2(j∆t) = 0]︸ ︷︷ ︸
≤ K(s− j)m(dτ−1/2), ∀m ≥ 1

}1/4

and by Lemma 3 and Lemma 4, E{[N1(j∆t)−N1(t2,N2(j∆t))]4} is bounded uniformly in j, while by (35),

P [N2(s∆t)−N2(j∆t) = 0] ≤ K(s− j)m(dτ−1/2) for all m ≥ 1. We obtain that,

var(
n∑

j=1

B∗
1,jT

∗
1,j) ≤ O(n2) + Kn

n∑

j=1

n∑

s=j+1

(s− j)m(dτ−1/2)/4. (56)

Consider
∑n

j=1

∑n
s=j+1(s − j)m(dτ−1/2)/4. For any fixed integer 1 ≤ j ≤ n, we choose m > 8

1−2dτ

so that
∑n

s=j+1(s − j)m(dτ−1/2)/4 is summable in s, hence
∑n

j=1

∑n
s=j+1(s − j)m(dτ−1/2)/4 = O(n).

Therefore, var(
∑n

j=1 B∗
1,jT

∗
1,j) = O(n2) and by Chebyshev’s inequality, we obtain that for any δ > 0,

1
n1+δ

n∑

j=1

B∗
1,jT

∗
1,j

p→ 0 ·
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2) Next, we consider
∑n

j=1 B∗
1,jT

∗
2,j . Since E(B∗

1,jT
∗
2,j) = E[E(B∗

1,jT
∗
2,j |N1(·), N2(·))] = 0, we have

var(
n∑

j=1

B∗
1,jT

∗
2,j)

= E
[ n∑

j=1

n∑
s=1

B∗
1,jB

∗
1,sT

∗
2,jT

∗
2,s

]
−

{
E(

n∑

j=1

B∗
1,jT

∗
2,j)

}2

=
n∑

j=1

E(B∗
1,j

2T ∗2,j
2) + 2

n∑

j=1

n∑

s=j+1

E(B∗
1,jB

∗
1,sT

∗
2,jT

∗
2,s)

=
n∑

j=1

E[E(B∗
1,j

2T ∗2,j
2|N1(·), N2(·))] + 2

n∑

j=1

n∑

s=j+1

E[E(B∗
1,jB

∗
1,sT

∗
2,jT

∗
2,s|N1(·), N2(·))]

Since conditionally on N1(·) and N2(·), B∗
1,j , B

∗
1,s, T

∗
2,j and T ∗2,j are zero-mean normals, using Isserlis’

Formula (Isserlis, 1918), we obtain

var(
n∑

j=1

B∗
1,jT

∗
2,j)

=
n∑

j=1

E[E(B∗
1,j

2|N1(·), N2(·)) · E(T ∗2,j
2|N1(·), N2(·))]

+ 2
n∑

j=1

n∑

s=j+1

E
[

E(B∗
1,jB

∗
1,s|N1(·), N2(·)) · E(T ∗2,jT

∗
2,s|N1(·), N2(·))

+E(B∗
1,jT

∗
2,j |N1(·), N2(·))︸ ︷︷ ︸

0

·E(B∗
1,sT

∗
2,s|N1(·), N2(·)) + E(B∗

1,jT
∗
2,s|N1(·), N2(·))︸ ︷︷ ︸

0

·E(B∗
1,sT

∗
2,j |N1(·), N2(·))

]

=
n∑

j=1

E[E(B∗
1,j

2|N1(·), N2(·)) · E(T ∗2,j
2|N1(·), N2(·))]

+ 2
n∑

j=1

n∑

s=j+1

E
[
E(B∗

1,jB
∗
1,s|N1(·), N2(·)) · E(T ∗2,jT

∗
2,s|N1(·), N2(·))

]

= σ4
2,e

n∑

j=1

E{N2(t1,N1(j∆t)) · [N2(j∆t)−N2(t1,N1(j∆t))]}

+ 2σ4
2,e

n∑

j=1

n∑

s=j+1

E
{

N2(t1,N1(j∆t)) · [N2(j∆t)−N2(t1,N1(j∆t))] · I{N1(s∆t)−N1(j∆t) = 0}
}

·

which is similar to (55). Following along similar lines as for (55), we obtain

1
n1+δ

n∑

j=1

B∗
1,jT

∗
2,j

p→ 0, ∀ δ > 0

3) Similarly to 1), for
∑n

j=1 B∗
1,jT

∗
3,j =

∑n
j=1 B∗

1,jξ1,N1(j∆t), we consider var(
∑n

j=1 B∗
1,jξ1,N1(j∆t)) and
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obtain

var(
n∑

j=1

B∗
1,jξ1,N1(j∆t))

= σ2
2,eσ

2
1,ξ

n∑

j=1

E[N2(t1,N1(j∆t))] + 2σ2
2,eσ

2
1,ξ

n∑

j=1

n∑

s=j+1

E
[
N2(t1,N1(j∆t)) · I{N1(s∆t)−N1(j∆t) = 0}

]

≤ σ2
2,eσ

2
1,ξ

n∑

j=1

E[N2(j∆t)] + 2σ2
2,eσ

2
1,ξ

n∑

j=1

n∑

s=j+1

E
[
N2(j∆t) · I{N1(s∆t)−N1(j∆t) = 0}

]

≤ σ2
2,eσ

2
1,ξλ2∆t

n(n + 1)
2

+ 2σ2
2,eσ

2
1,ξ

n∑

j=1

n∑

s=j+1

√
E{[N2(j∆t)]2} · P [N1(s∆t)−N1(j∆t) = 0]

≤ σ2
2,eσ

2
1,ξλ2∆t

n(n + 1)
2

+ 2σ2
2,eσ

2
1,ξ

√
E{[N2(n∆t)]2}︸ ︷︷ ︸

O(n)

·
n∑

j=1

n∑

s=j+1

√
P [N1(s∆t)−N1(j∆t) = 0]︸ ︷︷ ︸

≤K(s−j)m(dτ−1/2)

·

Since E{[N2(j∆t)]2} = O(j2) and P [N1(s∆t)−N1(j∆t) = 0] ≤ K(s− j)m(dτ−1/2) for all m ≥ 1, we

can choose m large enough so that
∑n

j=1

∑n
s=j+1

√
E{[N2(j∆t)]2} · P [N1(s∆t)−N1(j∆t) = 0] = O(n2),

following similar lines as for the double summation in the second term on the righthand side of (56).

Therefore, var(
∑n

j=1 B∗
1,jξ1,N1(j∆t)) = O(n2), and

1
n1+δ

n∑

j=1

B∗
1,jT

∗
3,j

p→ 0, ∀ δ > 0

using Chebyshev’s inequality.

By similar arguments for
∑n

j=1 B∗
1,jT

∗
3,j , we obtain that ∀ δ > 0

1
n1+δ

n∑

j=1

B∗
1,jTi,j

p→ 0, i = 4, 5, 6.

4) The proof for
∑n

j=1 B∗
3,jTi,j , (i = 1, . . . , 6) follows along similar lines as for

∑n
j=1 B∗

1,jTi,j , (i =

1, . . . , 6), since B∗
3,j and B∗

1,j are essentially the same since one is for Asset 1 and the other is for Asset

2. Thus, ∀ δ > 0
1

n1+δ

n∑

j=1

B∗
3,jT

∗
i,j

p→ 0, i = 1, . . . , 6.

5) The remaining terms
∑n

j=1 B∗
i,jT

∗
k,j , (i = 2, 4, 5) and (k = 1, . . . , 6) are all Op(n), as can easily be

shown by using the Cauchy-Schwartz inequality and Chebyshev’s inequality. For example:
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5.1) We have
n∑

j=1

B∗
2,jT

∗
1,j ≤

√√√√
n∑

j=1

B∗
2,j

2 ·
n∑

j=1

T ∗1,j
2 = Op(n)

since by Chebyshev’s inequality, for any ε > 0, we can choose M >
σ2
2,eC̃2

ε , so that

P
( 1

n

n∑

j=1

B∗
2,j

2 > M
)
≤ E(

∑n
j=1 B∗

2,j
2)

nM
=

∑n
j=1 var(B∗

2,j)
nM

=
σ2

2,eC̃2

M
< ε

and similarly
∑n

j=1 T ∗1,j
2 = Op(n).

5.2) We have
n∑

j=1

B∗
2,jT

∗
2,j =

n∑

j=1

B∗
2,j

2 = Op(n).

Therefore, ∀ δ > 0

1
n1+δ

n∑

j=1

B∗
i,jT

∗
k,j

p→ 0, i = 2, 4, 5 and k = 1, . . . , 6.

6) Overall, when dη = −1
1

n1+δ

n∑

j=1

BjTj
p→ 0 (57)

for any δ > 0.

Furthermore, the proof for (46) in the standard cointegration case is identical to that for the fractional

cointegration case, except that here we have var(
∑Ni(t)

k=1 ηi,k) = 2σ2
i,ξ, i = 1, 2, which does not increase

with t. This, together with (57), gives that

n1−δ(θ̂ − θ)
p→ 0.

¤

G Proof of Lemma 2

By the serial and mutual independence of {e1,k} and {e2,k}, we have

cov(r1,j , r1,j+1) = cov(r2,j , r2,j+1) = 0.
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On the other hand,

0 < cov(r1,j , r2,j+1) = θ12σ
2
1,eE

{
[N1(j∆t)−N1(t2,N2(j∆t))] · I{N2((j + 1)∆t)−N2(j∆t) > 0}

}

≤ θ12σ
2
1,eλ1E(BRT2,0)

0 < cov(r2,j , r1,j+1) = θ21σ
2
2,eλ2E

{
[N2(j∆t)−N2(t1,N1(j∆t))] · I{N1((j + 1)∆t)−N1(j∆t) > 0}

}

≤ θ21σ
2
2,eλ2E(BRT1,0).

For a portfolio consisting of s1 shares of Asset 1 and s2 shares of Asset 2, its return at time j∆t is

rj = s1r1,j + s2r2,j . Thus,

0 < cov(rj , rj+1) ≤ s1s2

[
θ12σ

2
1,eλ1E(BRT2,0) + θ21σ

2
2,eλ2E(BRT1,0)

]
.

Meanwhile,

var(r1,j) = σ2
1,eλ1∆t + θ2

21σ
2
2,eλ2∆t

var(r2,j) = σ2
2,eλ1∆t + θ2

12σ
2
1,eλ1∆t

0 ≤ cov(r1,j , r2,j) = θ12σ
2
1,eE

{
[N1(t2,N2(j∆t))−N1((j − 1)∆t)] · I{N2(j∆t)−N2((j − 1)∆t) > 0}

}

+ θ21σ
2
2,eE

{
[N2(t1,N1(j∆t))−N2((j − 1)∆t)] · I{N1(j∆t)−N1((j − 1)∆t) > 0}

}
.

Thus, var(rj) = s2
1var(r1,j) + s2

2var(r2,j) + 2s1s2cov(r1,j , r2,j) is between

[
σ2

1,eλ1(s2
1 + s2

2θ
2
12) + σ2

2,eλ2(s2
2 + θ2

21s
2
1)

]
∆t and

[
σ2

1,eλ1(s1 + s2θ12)2 + σ2
2,eλ2(s2 + θ21s1)2

]
∆t.

Thus, corr(rj , rj+1) = O(∆t−1).

Overall, the lag-1 autocorrelation of a portfolio consisting of s1 shares of Asset 1 and s2 shares of

Asset 2 is positive for a given ∆t, but as ∆t increases, the nonsynchronous-trading-induced portfolio

autocorrelation converges to zero.
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