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Abstract

We study the effects of trade duration properties on dependence in counts (number of trans-
actions) and thus on dependence in volatility of returns. A return model is established to link
counts and volatility. We present theorems as well as a conjecture relating properties of dura-
tions to long memory in counts and thus in volatility. We then apply several parametric duration
models to empirical trade durations and discuss our findings in the light of the theorems and
conjecture.



It is widely accepted that volatility of financial returns has a high level of persistence, and
some have argued that it has long memory (see, for example, Andersen, Bollerslev, Diebold and
Labys 2001). Most studies have considered measures of volatility computed using data observed
at equally spaced time intervals, i.e., clock time. With the availability of transaction-level data in
tick time, it may be possible to obtain a better understanding of volatility beyond that obtained
by existing econometric models for clock-time data. A seminal paper in this regard is Engle
and Russell (1998) which presents a model for durations, i.e., the time elapsed between events.
Other papers on dependence in durations include Bauwens and Veredas (2003), Ghysels and
Jasiak (1997), Grammig and Wellner (2002), and Engle and Sun (2003).

It seems plausible that the dependence in durations is intimately connected to the depen-
dence in volatility. The dependence in durations will affect the dependence in the number of
transactions within any fixed clock-time interval (the counts). Furthermore, dependence in the
counts has long been understood to have a connection to dependence in the volatility of returns.
This idea builds on the seminal work of Clark (1976), who modeled asset prices as Brownian
motion subordinated to a non-decreasing positive stochastic process which could be considered
as a proxy for the cumulative counts (the counting process), or for the volume. Clark’s model
implies that any autocorrelation in the increments of the subordinating process yields autocor-
relation in the volatility of returns. Thus, either counts or volume may be thought of as proxies
for volatility, though the empirical literature seems to suggest that the counts are preferable.
See Jones, Koul and Lipson (1994) and Ané and Geman (2000).

In this paper, we study the effects of duration properties on dependence in counts and thus
on dependence in volatility. More specifically, we will focus on determining which properties of
durations result in long memory in volatility. Through a combination of theoretical and empirical
analysis we find that either long tails or long memory in durations is sufficient for generating long
memory in counts, and therefore in volatility. We will present a data and simulation analysis
of durations, counts and volatility in an attempt to reconcile the theoretical results currently
available with the stylized facts for volatility.

An explicit model for returns is needed for establishing a link between counts and volatility,
though not for the link between durations and counts. In Section I, we present a return model,
and briefly investigate its appropriateness. In Section II, we present existing relevant theorems
which provide sufficient conditions on durations to ensure long memory in counts, along with a
new conjecture of an additional sufficient condition which is supported by simulation results. In
Section III, we describe our data on durations between transactions on various stocks, and carry
out some preliminary exploratory data analysis. In Section IV, we investigate the presence of
long memory in durations, counts and volatility. In Section V, we fit some popular duration
models to the data, investigate their adequacy, and state their implications for volatility by
appealing to the theory and conjectures from Section II.



I Return Model

A model that explicitly incorporates the impact of counts on volatility, inspired by the work of
Clark (1976) is
log P(t) = B(N(t))

where P(t) is the price process, B(-) is Brownian motion and N(-) is a counting process with
stationary increments, representing the number of events in (0, ¢], which is independent of B.
This model implies that the returns rp at equally-spaced clock time intervals of width At > 0
may be expressed as

Ty = ANt/ ey, t/ = 1,2,3,... > (1)

where the {ey} are i.i.d. normal with zero mean, and are independent of {ANy} where ANy =
N(¥At)—N|[(#' —1)At]. In this model, the squared returns {r?} and the counts { ANy} have the
same autocorrelations. Thus, in order to capture persistence in squared returns it is necessary
in this model to allow for autocorrelation in the counts.

We can easily check the adequacy of the model in Equation (1) since data on trade counts and
returns are available. One can simply examine the autocorrelations of the normalized returns
ry /v/ ANy and their squares as well as a normal probability plot of the normalized returns. In
Figure 3, we present the results for data on IBM at five-minute and thirty-minute intervals,
for the year 2002. Following Ané and Geman (2000), the returns we used here were actually
residuals from an AR(10) process fitted to the raw returns, and the counts include transactions
that had no associated price change. Our results, which also generalize to other stocks that
we considered, clearly indicate violation of both normality and independence of the normalized
returns. The violation of normality is somewhat surprising, since it seems to contradict the
findings of Ané and Geman (2000). The normalized returns appear to be uncorrelated, while
the squared normalized returns indicate that the {ey} possess conditional heteroscedasticity.

We therefore modify the assumptions on {ey} in (1), and assume now the GARCH(1,1)
model
et/\\I/t/_l ~ N(O, ht/) (2)
hy = &+ aed |+ Bhy_y (3)
where Wy _; is the information set at time ¢/ — 1, @ > 0, & > 0, B >0and a+ 5 < 1.
Under this modified return model with GARCH innovations, we prove in the Appendix that
the lag-k autocorrelation of the squared returns is given by
corr(r, ri ) = [m1 +ma(@+ B)M pay, +ma(@+B)* (4)

where p,  , is the lag-k autocorrelation of the counts and m; € (0, 1), mz and m3 are constants
for any fixed value of At. Thus, if the autocorrelations of counts decay exponentially, then so
do the autocorrelations of the squared returns. Furthermore, if the autocorrelations of counts
have power-law decay, i.e., pyy, ~ c1k™? where 0 < # < 1 and ¢; # 0, then



COTT (T, T gs) ~ TP AN & as k — 00, (5)
so the squared returns have the same long-term persistence as the counts do.

In the Appendix, we show that 0 < m1 < 1 and hence when the counts have long memory
the autocorrelations of the squared returns are ultimately proportional to those of the counts,
with a proportionality constant that is less than 1. Thus, squared returns are at best a noisy
proxy for volatility. This is in line with existing literature. See, e.g. Andersen and Bollerslev
(1998).

It is important to note that if the squared returns have long memory then the realized
volatility series constructed from squared returns at any fixed interval A¢ will inherit long
memory with the same memory parameter.

Since the counting process is constructed from the duration process, the statistical properties
of the duration process completely determine those of the counting process, which, together
with a return model such as our modified version of (1), completely determines the statistical
properties of return volatility in clock time. In the remainder of the paper, we investigate
the question as to which statistical properties of the durations will generate counts with long
memory. We start by presenting some existing relevant results.

II Conditions on Durations to Give Long Memory in Counts

The following theorems are from Daley (1999) and Daley, Rolski and Vesilo (2000). Relevant
definitions are given in the Appendix.

Theorem 1 If the durations {1} are i.i.d. with tail index k € (1,2) then VarN(t) ~ Ct'+2d
ast — oo, where d =1—k/2.

Theorem 2 If the durations {1y} are stationary with tail index v € (1,2) under the Palm
probability measure (see Appendiz), then VarN(t) ~ Ct1+2? ast — oo where 1/2 > d > 1—k/2.

These two results establish that infinite variance of the durations is sufficient to guarantee
that the counting process has a variance which scales as a power of ¢, where the power is
greater than 1, as happens for partial sums of a long memory process. Under the assumptions
of the theorems, counts cannot have exponentially decaying autocorrelations. Furthermore, if
the counts are assumed to have power law decay in their autocorrelations, then the theorems
imply that the counts must have long memory, with memory parameter d, i.e., they have lag-h
autocorrelation p, ~ Ch?*~1 as h — oco.

Note that in the theorems above it is the tail behavior of the durations, and not their
dependence structure, that results in long memory in the counts. This prompts the question as
to whether long memory in the counts can be generated solely by dependence in finite-variance



durations. An answer in the affirmative was given by Daley et. al. (2000), who provide an
example outside of the framework of the popular econometric models we will consider here. We
next state a conjecture of more direct relevance for a duration model used in Econometrics (see
Section V for further discussion):

Conjecture: Suppose the durations are given by 1, = e¥*e;, where {ey} is a positive i.i.d.
process with all moments finite and let {1y} be a stationary Gaussian process independent of
{ex}. If {¢r} is a short memory process, then VarN(t) ~ Ct ast — oo. If {¢r} is a long
memory process with memory parameter d € (0,1/2), then VarN(t) ~ Ct1+24 as t — oo.

We are currently working on the proof of this conjecture, and we provide some simulations
supporting it in Part B of Section V. Note that the conjecture would provide a relevant example
where the absence or presence of long memory in durations implies the absence or presence of
long memory in counts.

In the sequel, we study empirical durations and counts in the light of the theorems and
conjecture presented above. We start with a description of the data and an exploratory analysis.

IIT Data Description

We study tick-by-tick trade data from the NYSE TAQ (Trade And Quote) database. Standard
filtering rules (See Saar, Yu and Boehmer) were applied to the trade data. ! The trade du-
ration here is defined as the waiting time between two consecutive trades. We also performed
an analysis, not reported here, on durations defined as waiting times between changes in the
mid-quote price, and obtained nearly equivalent results. We omitted all overnight returns and
durations from the analysis. We considered two subsets of stocks traded on the NYSE for the
year 2002: those with more than 400000 transactions (”active stocks”) included in the Dow Jones
Industrial Average and those with fewer than 100000 transactions (”less active stocks”). We
randomly selected five active stocks: American International Group (AIG), American Express
(AXP), Boeing (BA), Coca-Cola (KO) and IBM and five less active stocks: Beverly Enterprize
(BEV), Bally Total Fitness (BFT), CBL Associates Properties (CBL), Commercial Federal Cor-
poration (CFB) and SONY (SNE).

Usually one observes active trading during opening and closing hours and dormant trading
around noon. This is reflected by short durations during active hours and longer durations
around noon in a trading day. To remove the seasonal effects present in the duration process
in a manner that is robust to outliers, we applied a semi-logarithmic version of the method
suggested by Engle and Russell (1998) to get the diurnally-adjusted durations. Let 75 denote

'We used NYSE trades exclusively for which the TAQ field CORR, (” Correction Indicator”) is 0 or 1. We also
used trades for which the TAQ field ”Sales Condition” is blank or 0. We exclude trades with negative prices and
trades which are less than 50% or greater than 150% of the previous prices. We also exclude trading days which
had fewer than 6.5 regular trading hours. For the year 2002, we removed four trading days from our sample:
July 5, September 11, November 29 and December 24, since the market was open for only a half day. It is not
uncommon to observe multiple trades at different prices at the same time. In this case, we computed a weighted
average of the trade price with weights given by the trade volume to avoid zero durations.



the trade duration and 73 the diurnally-adjusted durations. Then we construct

i = expllog(7k) — o (tr)] (6)

where ¢(t),) is the fitted value from the regression

13

log(mh) = Y Bjajn+ w
j=1

zjr = max(ty —q;,0)

where ?;, denotes the event time such that 7, = ¢, — t;,_; and ¢; denotes the jth partition
endpoint. Since there are 6.5 trading hours per trading day, we partition the total number
of trading hours into 13 intervals, each with a length of 30 minutes. For example, ¢ is the
first endpoint, 9:30 AM, and ¢;3 is the last endpoint, 3:30 PM. From now on, we use the term
duration to denote the diurnally-adjusted durations and all of the subsequent data analysis is
based on the diurnally-adjusted durations unless stated otherwise.

IV  Preliminary Data Analysis for Durations and Counts

In Table 1 we report the summary statistics for the logged durations. Our decision to take logs
here is based on the extreme right-skewness of the non-logged durations. It is seen from the
table that all of the active stocks except IBM have right-skewed log durations, while all of the
less active stocks have left-skewed log durations.

The histograms of the logged durations for the active and less active stocks are presented in
Figures 4 and 5 respectively. The histograms for the active stocks look different from those for
the less active ones. Both sets of histograms show some evidence of bimodality.

We now investigate the serial dependence in durations and counts, where for counts we
consider three values of At: 5 minutes, 30 minutes and 1 day. The counts were constructed
from the non diurnally adjusted durations. In Figure 6 we present the ACF plots for durations,
logged durations and counts of the AIG data. The ACF for both durations and counts indicates
considerable persistence, and the ACF of the counts suggests seasonality. In light of the evidence
of persistence, we estimate the memory parameter d for log durations and (non-logged) counts.
We use log durations here to mitigate the effects of outliers and also since our parametric long
memory models in Section V will be estimated directly from log durations.

A semiparametric estimator dapn was proposed by Geweke and Porter-Hudak (1983). To
motivate this estimator, we note that for a long-memory time series {X;} the spectral density
f(w) has power-law decay, f(w) ~ Aw™2% as w — 0. The GPH estimator dgpy is based
on an OLS regression of the log periodogram {log I;}7 ; on {logw;}7" ,, where w; = 2mj/n,
7 =0,...,n—1 are the Fourier frequencies,

1

Hwj) = 5

n
|ZX,5 exp(—iwjt)|2
t=1



is the periodogram, L and m are positive integers, and n is the number of observations. The
GPH estimator dgpy then is given by —1/2 times the least-squares slope estimate in the OLS
regression.

The statistical properties of dgpy and the choice of L and m for Gaussian long-memory
time series have been discussed in recent literature. Robinson (1995) showed that for Gaussian
processes the GPH estimator is m!/2-consistent and asymptotically normal if m~! + m/n — 0,
and a suitably increasing number of low frequencies L is trimmed. Hurvich, Deo and Brodsky
(1998) showed that trimming can be avoided for Gaussian processes, and under some additional
conditions the optimal m is O(n®). In our analysis, we choose L = 1, and since we are working
with only ten series, which are possibly non-Gaussian, we prefer to choose m by inspecting
log — log periodogram plots rather than by using an automatic procedure, such as the one
proposed by Hurvich and Deo (1999). Figure 7 presents the log-log periodogram plots of the
counts for our three choices of At, for the AIG series. Based on visual inspection of the plots,
we chose the values of m for the three values of At to be m = [n-57%], m = [n°%°] and m = [n"™?]
for At equal to 5 minutes, 30 minutes and 1 day, respectively. Corresponding plots for the
other series were sufficiently similar to what we found for AIG that we have used these same
choices of m for all of the stocks. In addition to our visually selected m, we also report estimates
using m = [n®]. Note that the GPH estimator is unaffected by seasonality in counts since the
estimator uses only Fourier frequencies in a neighborhood of zero.

The values of dgpy for the counts are presented in Table 3. The estimated memory parameter
in all cases is significantly greater than zero. For the visually chosen values of m, the estimated
memory parameter for A¢ of 5 minutes and 30 minutes is quite similar for all stocks, and
the estimate for At of 1 day is almost invariably higher, though not significantly so since the
standard error is more than doubled. Thus, our results here suggest that the memory parameter
for counts is invariant to At, as would be implied by the mechanisms we described in Section
3 for generating long memory in counts. At this stage, then, it seems that either long tails or
long memory in durations may be the source of long memory in the observed counts. Next, we
investigate whether durations have long memory.

In Table 2, we present GPH estimates of d for the log durations, using m = [n%] and
m = [n°], as suggested by visual inspection of the log —log periodogram plots. From Deo and
Hurvich (2001), the GPH estimator will be consistent and asymptotically normal if the durations
follow a long-memory stochastic duration model as defined in Section V. As Table 2 shows, all
the estimated values of d are significantly greater than zero, and are not significantly different
from the corresponding estimates for the counts. This is consistent with the paradigm implied
by our conjecture in Section II, under which long memory in durations leads to long memory in
counts with the same memory parameter.

In Table 4 we report GPH estimates of d for the squared returns on intervals At of 5 minutes,
30 minutes and 1 day. The values of m used were the same as those used for the counts. In
general, the estimates of d for the squared returns tend to be smaller than the corresponding
estimates for the counts. This apparent phenomenon may be illusory, in keeping with the general
observation that squared returns are a noisy proxy for volatility. We feel that our findings here



do not contradict the hypothesis that the memory parameter for squared returns is the same as
that for durations and counts.

In Table 5, for each of the ten stocks, we report GPH estimates of d for the 1 day log realized
volatility series, computed as the log of the sum of squares of the intra-day five-minute returns,
omitting the overnight return. In general, the estimates of d based on realized volatility are
larger than those based on either five-minute squared returns or five-minute counts. However,
the standard errors for the estimates based on realized volatility are very large due to the
reduced sample size. Overall, there seems to be no statistically significant difference between
the estimates based on the three volatility proxies. Nevertheless, the fact that realized volatility
yields larger estimates of d than squared returns is consistent with the idea that realized volatility
is the less noisy volatility proxy.

Our semiparametric analysis indicates evidence of long memory in durations, logged dura-
tions, counts, squared returns and realized volatility. Note, though, that from the theorems
in Section II, infinite variance in durations can also lead to long memory in counts. It would
thus be of interest to nonparametrically estimate the tail index of the durations. However, it
is generally accepted (see Resnick (1997)) that the standard method, the Hill (1975) estimator
performs very poorly even when the data are independent. Presumably, the performance of the
Hill estimator will deteriorate even further under strong dependence of durations, as we indeed
found in simulations not shown here. We thus prefer to investigate tail behavior of durations
through fully parametric models.

We now proceed to estimate a set of parametric models for durations and investigate the
implications of the fitted models for the propagation of long memory from durations to volatility
through counts.

V Parametric Models for Durations

A seminal econometric model for durations is the Autoregressive Conditional Duration (ACD)
model of Engle and Russell (1998). The simplest version is the AC'D(1,1) model, defined by

T = Yreg, (7)

Y =w+atp_1 + BYp_1 (8)

where w > 0, a € (0,1), 8 € [0,1), a + 3 < 1, and {¢;} are iid random variables with unit
mean and positive support. This model is closely related to the GARCH (1,1) model (Bollerslev
(1986)), widely used for clock-time returns. When the {¢;} are unit exponential, the model is
called the Exponential ACD, denoted by EACD(1,1). When the {ex} are Weibull, the model
is called the Weibull ACD, denoted by WACD(1,1). Note that in the ACD model, 9, is the
conditional mean of the durations, explicitly modeled through the past durations. Thus, the
ACD model is observation driven.



An alternative duration model is Bauwens and Veredas’ (2004) Stochastic Duration (SCD),
which is driven by a latent series. The model is given by

Tk — €¢k €k (9)

Y =w+ B +ur (10)

where w € R, || < 1, the {uy} are iid N(0,0?) and the {e;} are iid with unit mean and positive
support. Note that in the SCD model, e¥* is not the conditional mean of the durations, even
though dependence in {1} } produces dependence in the durations.

The SCD model is closely related to the AR(1)—Stochastic Volatility (SV) model (see Harvey,
Ruiz and Shephard (1994)) proposed for clock-time returns. Just as the AR(1)-SV model has
been extended to the long-memory case (see Harvey 1998, Breidt, Crato, de Lima 1998) we can
similarly extend the SCD model to allow for long memory. This is done by defining

Tk — €¢k6k (11)

vp=w+(1-L) My (12)

where the {¢;} are as specified above, {uy} is a zero-mean Gaussian stationary short-memory
series, L is the lag operator, and d € [0,1/2). We will refer to this as a long-memory stochastic
duration model, denoted by LMSD.

It is interesting to compare the dependence structure and the tail properties of the ACD and
LMSD models. The tail index of durations under an ACD(1,1) model can take any value x in
(1,00), as determined by the solution to the equation

E[(B+ae) =1 . (13)

(See Nelson, 1990). If k > 2, the durations are weakly stationary with exponentially decaying
autocorrelations, and hence have short memory. On the other hand, if k € (1,2), then the
durations are not weakly stationary, and it follows from Theorem 2 that the corresponding
counting process will have long memory with memory parameter d > 1 — /2.

Note that in the ACD model, the tail index & is inextricably connected with the dependence
of the process, as both are completely determined by the parameters o and (. Increasing the
persistence of the ACD durations forces the tail thickness to also increase. Specifically, as o+ (3
approaches its maximal value, 1, k must approach its lowest allowable value, 1.

In contrast, for the SCD and LMSD models, the tail index & of 7, is equivalent to the tail
index of €5, (See Breiman, 1965), irrespective of the dependence structure of the {t;}. Here, the
tail index and the dependence structure of the duration process can be separately controlled. In
particular, the persistence can be increased from short memory to long memory without affecting
the tail index in any way. For the LMSD models, Theorem 2 implies that the counts will have
long memory if the €5 have a tail index k € (1, 2), irrespective of the dependence structure in the
{1 }. If the durations follow an LMSD model with finite variance, we cannot apply Theorem
2 to infer that the counts have long memory. Nevertheless, our conjecture implies that the



counting process will indeed have long memory in this case, with the same memory parameter
as that of the durations.

We next estimate ACD and LMSD models for our data.

A Empirical Analysis with ACD Models

We estimate the ACD(1,1) model by maximum likelihood. Since the ACD model is observation
driven, we can write the log likelihood function as

n
log L(6 Z log{— exp Z log(v) Z %
k=1

if the ¢, are standard exponential, and as

1ogL(0):§{log( ) +vlog (W) ‘[WH

if the {e;} are Weibull (k,7) with unit mean, so that x = 1/I'(1 + %) The MLE for the
ACD(1,1) model is computed using the Berndt, Hall, Hall and Hausmann (1974) algorithm.
The estimation results for the EACD(1,1) and WACD(1,1) models are presented in Table 6 and
Table ??. The estimated values of a and (3 are quite similar for the EACD(1,1) and WACD(1,1)
models, with the sum of & and B close to one, suggesting a nearly integrated duration process.
All of the less active stocks have 4 less than one in the fitted WACD(1,1) model, indicating
that the shocks have a longer tail than a standard exponential distribution. The results for the
actively traded stocks are mixed since some have 4 greater than one while others have 4 less
than one. However, the 4 for all the active stocks are all greater than those for the less active
stocks.

From (13), it can be shown that as 7 decreases while holding the other parameters fixed,
the tail index x of the durations also decreases. This suggests that the durations of the active
stocks tend to have shorter tails than those of the less active stocks. In Tables 6 and 7 we also
present the tail indices of the durations as implied by (13) based on the estimated parameters.
The estimated values of  for the less active stocks are typically between 4 and 10, while those
for the active stocks are typically between 13 and 30.

The resulting estimated values of « are all greater than two. Thus the estimated EACD and
WACD models yield finite variance in durations. Consequently, we are unable to use Theorems
1 and 2 to conclude that the corresponding counts have long memory. Note, however, that these
estimates of k will be accurate estimates of the true tail indices only if the model is correctly
specified. We therefore perform diagnostic tests for the fitted ACD and WACD models.

Define the residuals from the ACD model as
Th

Uk

~

€k = (14)

Ne)



where 73, are the diurnally-adjusted durations.

We present Q-Q plots of the residuals for the AIG and BEV data in Figure 8 to check
the adequacy of the exponential and Weibull distribution for the shocks in the EACD(1,1) and
WACD(1,1) models, respectively. The plots indicate that the actual distribution has a longer
right tail than that implied by the model. Results for the other stocks were similar, and are not
shown here.

Following Engle and Russell (1998), we also assess the goodness of fit of the Weibull dis-
tribution by examining the survivor function of the residuals. The survivor function for the

—log(F (1|vx)) = <¢Zbk ) 7

Thus, the negative log of the empirical survivor function should be linearly related to the trans-
formed standardized residuals with a slope of unity. Figure 9 presents this plot. Except for
the case of Sony, we observe curvature in the empirical survivor functions, which is once again
indicative that the distribution has a longer right tail than that implied by the Weibull.

We conclude that both the WACD(1,1) and EACD(1,1) models fitted to our data are mis-
specified in terms of the conditional distribution of the shocks. One implication of this is that
the estimated tail indices of the durations based on (13) cannot be trusted. Thus the question
as to whether durations have infinite variance remains open.

and hence

Next, we explore the adequacy of the ACD(1,1) model in describing the dependence among
the durations. This is done by investigating the dependence in the standardized residuals and the
squared standardized residuals from both the EACD(1,1) and WACD(1,1) model. Since both
models assume that the shocks are independent, any dependence in either the standardized
residuals or their squares indicates misspecification in the time series structure of the model.
For the AIG data, the Ljung-Box statistics for both of the residuals and the squared residuals
under the EACD(1,1) model as well as the WACD(1,1) model are all significant up to lag 100.
We found similar results for the other stocks. We conclude that the residuals under the EACD
and WACD models are not independent. Thus the dependence structure implied by the fitted
ACD models is unable to adequately capture the dependence structure of the durations.

Here, we examine the extent of the misspecification of the dependence structure of the fitted
ACD(1,1) models by estimating the memory parameter from the residuals. Figure 1 is the log-
log periodogram plot of the AIG residuals under the EACD(1,1) model. The vertical line is
drawn at log(j) = log(y/n) , where n = 461, 346 is the number of residuals.

The resulting GPH estimates for the memory parameter using m = +/n frequencies were
0.2062 and 0.2185 for the AIG residuals under the EACD(1,1) and WACD(1,1) models respec-
tively. Results were similar for the other stocks. The fitted ACD models all had short memory,
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Figure 1: log —log periodogram plots for the AIG residuals from the EACD(1,1)Model, n =
461,346 m = /.

AlIG residuals from EACD

log{periodogram)

log(d
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whereas it appears that long memory is needed in order to adequately model the dependence
structure of the durations.

Finally, we examine the adequacy of the ACD models from the point of view of the behavior
of the corresponding counts. If the ACD model were adequate, then the statistical properties
of the counts simulated from the ACD model should be consistent with those of the empirical
counts. Table 9 and Table 10 present the lag-1 and lag-2 autocorrelations of the counts for
At = 5 minutes, 1 hour, and 1 day generated from the simulated durations under the estimated
EACD(1,1) model and WACD(1,1) models. As At increases, the autocorrelations of the counts
become extremely small. This strongly contradicts the findings of much larger autocorrelations
for counts of the empirical data (see Figure 6).

B Empirical Analysis with LMSD Models

In view of the substantial long-range dependence in the durations, we fit the LMSD model
introduced in the previous section to the duration data, assuming an AR(1) process for the short-
memory component {uy}. Unlike the observation-driven ACD model, the latent process {¢}} in
the LMSD model is not observable and thus it is difficult to implement the MLE for estimating
the parameters of the LMSD model. However, a Quasi Maximum Likelihood Estimator (QMLE)
using the Whittle approximation (1962) can be used for parameter estimation. Under the LMSD
model, the log durations {log 7} in equation (11) can be written as

log 7, = E [log ex] + ¢, + &

where {e} is the shock process and {¢} = {loge;, — E [log €k} with variance ag and is indepen-
dent of 1. We assume that the latent process v follows a Gaussian ARFIM A(1,d,0) process

with innovations wy, N (0,02), given by
(1= aL)(1 = L)"y, = wy

with |a| < 1. The spectral density for log 7 is given by

o2 o .
folwj) = 5|1 — avexp(—iw;)| ?1 — exp(—iw;)| 7> + 7 (15)
where 0 = (d,a, 02, 02), and w; = 2mj/n. The Whittle negative log likelihood is
& 1)
En(0) = > {log fo(w;) + 25} (16)
j=1 fe(wj)

where fy(w;) is the spectral density of {log 7} under the LMSD model. This expression is an
approximation to the negative log Gaussian quasi likelihood.

Even though log 74 is not Gaussian, it is known that the resulting estimator is \/n consistent
and asymptotically normal. See Hosoya (1997). The assumptions on the distribution of ¢
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Figure 2: Densities for the log standard exponential, log Weibull (1,1.3672) and log Weibull (1,
2.1169). The solid line represents the density for log standard exponentials. The curve with the
highest peak represents the density of logged Weibull(1, 2.1169)). The values of 4 presented
here are estimated from AIG and IBM durations.
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determine the value of ag. If €, is standard exponential, then O'g = 712/6. If ¢ is Weibull(y, 1),
then Jg = 72/(672), and in this case ag needs to be estimated.

We fit the LMSD model with both Weibull and standard exponential shocks. The estimation
algorithm failed to converge in the case of the exponential shocks for the active stocks. To try
to understand this, we note first that the empirical log durations are right-skewed for the active
stocks (see Figure 4), while the log Weibull and log exponential distributions are both left-
skewed. However, the left skewness is less extreme for the log Weibull distribution, particularly
as v increases. This can be seen in the density plots in Figure 2.

Since the Weibull distribution is apparently less misspecified than the exponential, we focus
on fitting an LMSD model with Weibull shocks. The resulting Whittle estimates are presented in
Table 8. The estimates of d generally vary between .35 and .42. These parametric estimates are
quite similar to the corresponding semiparametric GPH estimates of d for log durations presented
in Table 2. The AR(1) parameter estimates vary between —.3 and —.5. It is interesting to note
that the estimates of «y for all the less active stocks are very close to 1, which corresponds to the
exponential distribution, while the estimates for the active stocks are much larger than 1. This
underscores the misspecification of the exponential model for these stocks.

13



To perform diagnostics for the LMSD model, one would ideally want to compute the residu-
als. Unfortunately, unlike the observation-driven ACD model, the LMSD model has no explicit
expression for the residuals since the latent process {ty} is not observable. Harvey (1998)
proposed a smoothing methodology based on the MMSLE (Minimum Mean Square Linear Es-
timator) for smoothing the latent process in the Long Memory Stochastic Volatility model. It
may thus be tempting to consider the sample ACF of the pseudo-residuals defined as log 73, — ﬂk
where {wAk} is given by

b= S5 (- ), (17)
p = Ellogtg], 7 = {log(m1),...,log(r,)}, X+ is the autocovariance matrix of 7, ¥, is the
autocovariance matrix of {1,...,1,} and 1 is an n x 1 vector of ones.

Unfortunately, even if the true parameter values of the model for ¢ are known, it can be
shown that the autocorrelation of the resulting pseudo-residuals would still be nonzero at fixed
lags, though slowly decaying for higher lags. More specifically, Bhansali and Karavellas (1983)
point out that the spectral density of the pseudo-residuals (based on the true parameter values)
is given by

f3N)
TV + o2/ (2m)

where fy, is the spectral density of {1 }. It is thus clear that the pseudo-residuals will not
behave like a white noise process, even when the model is correctly specified. Unfortunately,
there seems at present to be no satisfactory method for model diagnostics for latent variable
models such as SCD or LMSD.

fu(A) —

We therefore chose to examine the adequacy of the LMSD model by simulating durations
from the estimated models and then comparing the properties of the resulting counts to the
stylized facts observed in the data. In Table 11 we present the sample ACF of the simulated
counts for At = 5 minutes, 30 minutes, and 1 hour. It is seen that the sample correlations do
not die out quickly to zero for any of the choices of At, unlike what was found for the simulated
ACD models. In Table 12, we also present GPH estimates of the long memory parameter of
the simulated counts. It is seen that these estimates are significantly larger than zero and very
close to the memory parameter (d = .3545) of the durations of the model, in keeping with the
conjecture of Section 3.

VI Conclusion

In this paper, we have explored some statistical properties of durations that lead to long mem-
ory in volatility. Existing theorems show that infinite variance in durations can produce long
memory in counts, though our empirical analysis did not support this route to long memory.
We also stated a conjecture, supported by simulations, that under an LMSD model the memory
parameter in durations would equal that in counts, and in volatility. Moreover, we concluded
that an LMSD model adequately accounted for the long range dependence in durations.

14



VII Appendix

A Proof of Equation (5)

Since {ey} follows a GARCH(1,1) model, it is well known that we can represent {e} as an
ARMA(1,1) process of the form

6%/ =w+ (6( + B)efl_l + vy — th’—l )

where {vy} is a white noise process, provided that FE [ef,]~< oo. This condition is not overly
restrictive in our context since we would not expect & + (3 to be close to one, as the {ey} are
already normalized. Hence, B
cov (€3, epyy) = (@ +B)FCy
where (s is a positive constant, and thus
E [e?/e?,+k] = COV (6?/7 e%"ﬁ'k) + E[@%/]E[@?{_Fk] = (6& + B)kCQ + C]? (18)
where C; = E[e%]. From Equation (18), we have

cov(ri, 7‘t2'+k) = E[ANyANy.yi] {(d + B)kcz +Cf| — CYE[ANy] E[ANy 1]
= C%COV (ANt/, ANt/+k) + 02(54 + B)kE [ANt/ANt/+k]

and
var(rZ) = cov(rd,r4) = C¥var(ANy) + CoE[AN?]

Using this result and noting that

cov(ry,ry_y) = cov(AN{e?, ANy_i€},,) = E [ANpej ANy yep ;| — E [ANpen] E [ANyrey ]
= E [ANt’ANt/-i-k‘} E [6?/6%/+kj| — E [ANt/] E [ANt/—FkJ] E [6?/] E [6§/+ki| s
we obtain
cov(rd, r2.,)
corr(r2, rfurk) = W
t/
CIZCOV(Nt/, Nt’+k) 02(6{ + B)kE [ANt/+kANt/]

C%V&I’(ANt/) —+ CQE [ANE,] CIQV&I‘(ANt/) =+ CQE [ANE,]

(a+B)*E[AN,, ,AN,]

AN E[AN2
- /R ANy _ (19)
14 C2E[AN] 1+ Civar(AN,)
Chvar(AN,) C2E[AN]]
Noting that
E[AN7] " E[ANy)? (20)
var(ANy) var(ANy)
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and

E[ANt/+kANt/] _ COV(A]\QI_|4€7 ANt/) —|— E[ANt/]E[ANt/+k]
E[AN?] var(ANy) + E[AN]?
_ 2N + BE[ANy]E[ANy 1] /var(ANy) (21)
1 + E[ANt/}Q/VaI'(ANt/) ’
we obtain . .
corr(r, 5,) = [ma +ma(@ + )| Y + ma(a+ B, (22)
where mq, ma, ms are constants with
m 1
| = Qe
CQE[AN%}
1+ C’lzvar(AI\tft/)

Note that 0 < m; < 1 since Cs > 0. Furthermore, since & + B <1,

2 2 AN
corr(ry, iy g) ~ mipg

as k — oo.

B Definitions

Definition: A point process N (t) = N (0, t] is stationary if for every r = 1,2, ... and all bounded
Borel sets A1, ..., Ay, the joint distribution of {N(A; +t),..., N(A, +t)} does not depend on
t €[0,00).

Definition: Given a stationary point process N(t), there is a corresponding Palm probabil-
ity measure P given by
PY(A) = P(Alto = 0) (23)

forall A € o({m:}72 o, {tk}72_ ), where P is the marginal probability measure for the interar-
rival times, ¢ is the event time for the k’th event and 7, = t — tx_1 is the waiting time between
the k — 1’st and the k’th event. The Palm probability P°(A) is the conditional probability of A
given that an event occurred at time zero. Note that P(ty = 0) = 1. It can be shown that for
a stationary renewal process (in which the {7} are iid)

PO<T1) = P(m). (24)

Definition: The tail index x of a distribution function F' is given by
K = sup {k: : /|£B|de(.%') < oo}
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Figure 3: ACF plots of the adjusted IBM returns and squared returns.
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Figure 4: Histograms of the logged diurnally-adjusted durations for Active Stocks.
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Figure 5: Histograms of the logged diurnally-adjusted durations for Less Active Stocks.
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Figure 7: log-log periodogram plots for the AIG counts. The first vertical line in each plot

is the visually chosen m, and the second is m = n*S.
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Figure 8: Q-Q plots for the residuals of the EACD(1,1) and WACD(1,1)model.
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Figure 10: Histograms of the logged residuals from the EACD(1,1) and WACD(1,1) model.
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Figure 11: Densities of the durations and the logged durations simulated from the WACD(1,1)
model with Weibull (1, 0.942916).
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Table 1: Descriptive Statistics for logged durations of the Active Stocks and the Less-Active

Stocks.

AIG AXP BA KO IBM
Mean —3.67x10712 —462x10712 —413x10712 —348x 10712 —.6.84 x 10712
Median —0.092 —0.029 —0.043 —0.060 0.027
Std Deviation 1.167 0.943 1.107 1.117 0.845
Skewness 0.268 0.111 0.171 0.185 —0.057
Kurtosis 2.370 2.614 2.273 2.296 2.733
Range 6.907 6.316 6.689 6.387 6.455
n 461347 626717 515304 509897 745826

BEV BFT CBL CFB SNE
Mean —455x 1078 —1.13x10712 213 x 10712 —-185x1071? 6.17x10°13
Median 0.151 0.237 0.179 0.303 0.348
Std Deviation 1.522 1.656 1.622 1.689 1.590
Skewness —0.227 —0.309 —0.333 —0.483 —0.418
Kurtosis 2.439 2.256 2.417 2.380 2.169
Range 8.454 8.102 8.108 8.209 7.619
n 62046 80364 56571 66876 78939
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Table 2: GPH estimators (standard errors) for the logged diurnally-adjusted durations. For
each stock, we report two GPH estimators. Here m; and mso denote the number of frequencies

used in the GPH regression, where m; = n’* and my = n%? (n is the sample size).
’ dGPH, dGPH,., ‘
AIG 0.2907 (0.0498) 0.3093 (0.0251)
AXP 0.3426 (0.0498) 0.2956 (0.0251)
BA 0.3557 (0.0498) 0.3489 (0.0251)
IBM 0.3711(0.0498) 0.3446 (0.0251)
KO 0.4583 (0.0498) 0.2982 (0.0251)
BEV 0.3297 (0.0498) 0.3750 (0.0251)
BFT 0.2583 (0.0498) 0.3127(0.0251)
CBL 0.4619 (0.0498) 0.3500 (0.0251)
CFB 0.3982 (0.0498) 0.2728 (0.0251)
SNE 0.3763 (0.0498) 0.2966 (0.0251)
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Table 3: GPH estimators (standard errors) for the counts generated from the empirical durations
for different values of At. For each At, we report two GPH estimators. Here m; and ms denote
the number of frequencies used in the GPH regression. We chose mj = n%576 | n0-69 n0.72 for
At =5 min , 30 min , 1 day respectively and mg = n%® for all choices of At.

At dapm,, dapi,,
AIG  5min__ 0.2764(0.0388) 0.3811 (0.0124)
30 min  0.2685 (0.0411) 0.3165 (0.0258)
1 day 0.4198 (0.0996) 0.3245 (0.0776)
AXP  5min  0.3155(0.0388) 0.2919 (0.0124)
30 min  0.3141(0.0411) 0.3369 (0.0258)
1 day 0.4857 (0.0996) 0.3581 (0.0776)
BA 5min 0.3548 (0.0388) 0.3559 (0.0124)
30 min  0.3608 (0.0411) 0.3768 (0.0258)
1 day 0.3556 (0.0996) 0.4522 (0.0776)
IBM  5min  0.2311(0.0388) 0.3139 (0.0124)
30 min  0.2214 (0.0411) 0.3479 (0.0258)
1 day 0.3775 (0.0996) 0.3306 (0.0776)
KO 5min  0.3247 (0.0388) 0.3040 (0.0124)
30 min 0.3173 (0.0411) 0.3760 (0.0258)
1 day 0.3069 (0.0996) 0.2884 (0.0776)
BEV  5min  0.3123(0.0388) 0.3173 (0.0124)
30 min  0.3296 (0.0411) 0.3635 (0.0258)
1 day 0.4454 (0.0996) 0.4044 (0.0776)
BFT  5min  0.4273(0.0388) 0.3169 (0.0124)
30 min 0.4547 (0.0411) 0.4013 (0.0258)
1 day 0.3372 (0.0996) 0.3718 (0.0776)
CBL 5 min 0.3509 (0.0388) 0.2733 (0.0124)
30 min  0.3640 (0.0411) 0.3308 (0.0258)
1 day 0.4327 (0.0996) 0.4483 (0.0776)
CFB 5 min 0.3185 (0.0388) 0.2675 (0.0124)
30 min 0.3128 (0.0411) 0.3412 (0.0258)
1 day 0.5383 (0.0996) 0.5117 (0.0776)
SNE 5 min 0.3008 (0.0388) 0.2554 (0.0124)
30 min 0.3214 %.0411) 0.3063 (0.0258)
1 day 0.467170.0996) 0.3439 (0.0776)




Table 4: GPH estimators (standard errors) for the squared returns on different lengths of time
intervals At. For each At, we report two GPH estimators. Here m; and mo denote the number
of frequencies used in the GPH regression. We chose m; = n%%76 | n%6% 7072 for At =5 min ,
30 min, 1 day respectively and mgy = n®® for all choices of At.

At dapm,, dapi,,
AIG  5min__ 0.4364(0.0388) 0.2385 (0.0124)
30 min  0.3304 (0.0411) 0.2918 (0.0258)
1 day 0.3123 (0.0996) 0.2575 (0.0776)
AXP  5min  0.2850(0.0388) 0.1662 (0.0124)
30 min 0.2443 (0.0411) 0.1576 (0.0258)
1 day 0.2033 (0.0996) 0.1266 (0.0776)
BA 5min  0.3815 (0.0388) 0.1616 (0.0124)
30 min  0.1663 (0.0411) 0.1456 (0.0258)
1 day 0.1044 (0.0996) 0.0636 (0.0776)
IBM  5min  0.3334(0.0388) 0.1658 (0.0124)
30 min 0.2876 (0.0411) 0.1478 (0.0258)
1 day 0.2402 (0.0996) 0.1452 (0.0776)
KO 5 min 0.4283 (0.0388) 0.2020 (0.0124)
30 min 0.3219 (0.0411) 0.2141 (0.0258)
1 day 0.3194 (0.0996) 0.0860 (0.0776)
BEV  5min  0.2553(0.0388) 0.1739 (0.0124)
30 min  0.1561 (0.0411) 0.1551 (0.0258)
1 day 0.1925 (0.0996) 0.0824 (0.0776)
BFT  5min  0.3033(0.0388) 0.1454 (0.0124)
30 min  0.2045 (0.0411) 0.1543 (0.0258)
1 day 0.1416 (0.0996) 0.0544 (0.0776)
CBL  5min  0.2717(0.0388) 0.1383 (0.0124)
30 min  0.2016 (0.0411) 0.0552 (0.0258)
1 day 0.3161 (0.0996) 0.1803 (0.0776)
CFB 5 min 0.2663 (0.0388) 0.0971 (0.0124)
30 min 0.2268 (0.0411) 0.1716 (0.0258)
1 day 0.2119 (0.0996) 0.0919 (0.0776)
SNE 5 min 0.1851 §.0388) 0.1247 (0.0124)
30 min 0.2374 .0411) 0.1313 (0.0258)
1 day 0.1531 (0.0996) 0.0224 (0.0776)




Table 5: GPH estimators (standard errors) of the daily log realized volatility generated from
5-minute returns. Let my and ms denote the number of frequencies used in the OLS regression.

We computed the GPH estimators based on the values of m; = n

n = 249 for all stocks.

0.6

and my = n

AdGPH,m

dGpH,..

AIG

AXP

BA

IBM

KO

BEV

BFT

CBL

CFB

SNE

0.8242 (0.1495)
0.7706 (0.1495)
0.6670 (0.1495)
0.6827 (0.1495)
0.8731 (0.1495)
0.5885 (0.1495)
0.3038 (0.1495)
0.8122 (0.1495)
0.5220 (0.1495)

0.7087 (0.1495)

0.6063 (0.0776)
0.4738 (0.0776)
0.4508 (0.0776)
0.5514 (0.0776)
0.6318 (0.0776)
0.4007 (0.0776)
0.2829 (0.0776)
0.4757 (0.0776)
0.3382 (0.0776)

0.3992 (0.0776)

30

0.8

, where



Table 6: Parameters and tail index estimates of the EACD(1,1) model and WACD(1,1) model
for the ” Active Stocks”. Note that s denotes the tail index computed from the Nelson’s equation.
~ and 6 are the parameters in the Weibull density function. The parameters marked with * are
statistically significant from zero at significance level of 1%. The parameter v marked with *x

reject the null hypothesis v = 1 in favor of the alternative hypothesis v < 1 at significance level
of 1%.

EACD(1,1) WACD(1,1) \
AIG w  0.015608* 0.016672*
n=461346 o  0.029198" 0.028022*
B 0.963152* 0.963319*
v 0.879661**
0 0.93828
ko 14.59018 13.09937
AXP w  0.072136* 0.073313*
n=626716 « 0.059430* 0.060287*
B 0.894546* 0.893541*
~y 1.089883
9 1.033174
k  14.65366 17.19794
BA w  0.012337* 0.012248*
n=515303 « 0.023161* 0.022773*
B 0.970158* 0.970467*
v 0.941954**
0 0.973106
K 19.26017 17.67065
KO w  0.010871* 0.010561*
n=509896 « 0.015261* 0.014469*
B 0.978925* 0.979743*
v 0.918299**
0 0.9606728
K 33.27753 30.84229
IBM w  0.049819* 0.046344*
n=T745825 «  0.049725* 0.049746*
B 0.915143* 0.918233*
v 1.244746
0 1.072634
K 16.28203 24.58099

31



Table 7: Parameters and tail index estimates of the EACD(1,1) model and WACD(1,1) model for
the Less Active Stocks. Note that k denotes the tail index computed from the Nelson’s equation.
~ and 6 are the parameters in the Weibull density function. The parameters marked with * are
statistically significant from zero at significance level of 1%. The parameter v marked with *x

reject the null hypothesis v = 1 in favor of the alternative hypothesis v < 1 at significance level
of 1%.

EACD(1,1) WACD(1,1) \
BEV w  0.022465% 0.027088*
n=62046 o 0.055131* 0.055681*
B 0.937231* 0.933935*
v 0.771251**
0 0.85886
Kk 5.421413 4.287598
BFT w  0.027766* 0.034344*
n=80363 a 0.055813* 0.060299*
B 0.935491* 0.928247*
v 0.727482**
0 0.8183602
Kk 5.823822 5.293579
CBL w  0.025468* 0.030751*
n=56570 o  0.050998* 0.04760*
B 0.940324* 0.934215*
v 0.745174**
0 0.8353984
K 6.809044 5.522461
CFB w  0.027933* 0.030879*
n=66875 o 0.038498" 0.038347*
B 0.951654* 0.950770*
v 0.733751*
0 0.8245082
k 11.21668 6.695557
SNE w  0.029339* 0.024219*
n=78938 a 0.032997* 0.030115*
B 0.955550* 0.960447*
v 0.768937**
0 0.8568542
K  15.64121 9.472656
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Table 8: Whittle’s estimators of the LMSD model for the Active Stocks and the Less Active
Stocks. We assume the shock process {ex} follows a Weibull (1, v) distribution. d denotes

Whittle’s estimator of the long memory parameter and « denotes the AR(1) coefficient in an
ARFIMA(1,d,0) process.

’ Active Stock Less-Active Stock ‘
AIG  d 0.3471 BEV d 0.4338
o2 0.2730 o2 0.4769
a —0.3995 oY —0.4997
v 1.2720 v 1.0075
AXP d 0.2516 BFT 4 0.4298
o2 0.3986 o2 0.7599
e! —0.1814 @ —0.5588
v 1.9131 y 0.9989
BA d 0.3545 CBL d 0.3961
o2 0.2368 o2 0.7600
oY —0.4212 oY —0.4360
¥ 1.3376 v 1.0115
IBM d 0.2616 CFB d 0.3664
o2 0.3139 o2 0.6050
oY —0.2521 oY —0.4731
v 2.1173 v 0.8890
KO d 0.2744 SNE 4 0.3228
o2 0.2771 o2 0.7001
oY —0.3872 oY —0.4908
7y 1.3321 v 0.9925
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Table 9: The first two sample autocorrelations of the counts generated from the estimated
EACD(1,1) model for Boeing durations with w = 0.012337, o = 0.023161, 8 = 0.970158 on
different length of clock time interval At. The reported values are computed as the average of
the autocorrelations from the 100 replications of the counts with sample size n = 10, 000.

’ ‘ Sample Autocorrelation ‘

’ At ‘ p1 P2 ‘
5 min | 0.46001 0.17361
30 min | 0.10020 —0.00112

60 min | 0.04625 0.00098
3 hr | 0.01456 0.00094
6 hr | 0.00721 0.00011

Table 10: The first two sample autocorrelations of the counts generated from the WACD model
for Boeing durations with w = 0.012248, a = 0.022773, § = 0.970467, and v = 0.941954
estimated on different lengths of clock time interval At. The reported values are computed
as the average of the autocorrelation from the 100 replications of the counts with sample size
n = 10, 000.

’ ‘ Sample Autocorrelation ‘
’ At ‘ P1 P2 ‘
5 min | 0.56678 0.30133
30 min | 0.18167 0.00921

60 min | 0.08363 —0.00201
3 hr | 0.02592 0.00084
6 hr | 0.01380 —0.00003
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Table 11: Mean of the first two sample autocorrelations of the counts generated from the LMSD
model with Weibull (1, ) distribution on different length of clock time intervals. We used the
estimated LMSD parameters of the Boeing durations presented in Table 8 (d = .3545) for our
simulations. We simulated 200 replications of the counts, each with sample size n = 10, 000.

’ ‘ Sample Autocorrelation ‘

’ At ‘ p1 P2 ‘
5 min | 0.5531 0.4186
30 min | 0.5556 0.4310
60 min | 0.5589 0.4756

Table 12: Mean of the GPH estimators of the counts generated from the LMSD model with
Weibull (1, v) distribution on different length of clock time intervals. We used m = /n to
compute the GPH estimators. We used the estimated LMSD parameters of the Boeing durations
presented in Table 8 (d = .3545) for our simulations. We simulated 200 replications of the counts,
each with sample size n = 10,000. Numbers in brackets represent standard errors of the mean
of the GPH estimators.

’ At ‘ mean(dgpr) ‘

5 min | 0.3458 (0.004937)
30 min | 0.3873 (0.009519)
60 min | 0.3923 (0.009335)
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