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Abstract

We propose a new semiparametric estimator of the degree of persistence in volatility for
long memory stochastic volatility (LMSV) models. The estimator uses the periodogram of
the log squared returns in a local Whittle criterion which explicitly accounts for the noise
term in the LMSV model. Finite-sample and asymptotic standard errors for the estimator
are provided. An extensive simulation study reveals that the local Whittle estimator is
much less biased and that the finite-sample standard errors yield more accurate confidence
intervals than the widely-used GPH estimator. The estimator is also found to be robust
against possible leverage effects. In an empirical analysis of the daily Deutsche Mark/US
Dollar exchange rate, the new estimator indicates stronger persistence in volatility than the
GPH estimator, provided that a large number of frequencies is used.
Key Words: long-range dependence; nonlinearity; semiparametric estimation

1. INTRODUCTION
Long memory in volatility of financial returns has received considerable attention in recent

years. See, e.g. Ding, Granger and Engle (1993), de Lima and Crato (1993), Baillie, Bollerslev
and Mikkelsen (1996), Andersen and Bollerslev (1997a,b), Comte and Renault (1998), Lobato
and Savin (1998), Lobato and Robinson (1998), Ray and Tsay (2000), Lobato and Velasco
(2000), Andersen, Bollerslev, Diebold and Labys (2001), Robinson (2001), and Wright (2002).
A widely-used methodology for determining the degree of persistence in volatility, parameterized
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by d, is to estimate d semiparametrically using log periodogram regression based on squared or
absolute returns. The log periodogram regression estimator, d̂GPH , was originally proposed
by Geweke and Porter-Hudak (1983), in a non-volatility context. Properties of this estimator
for stationary Gaussian processes, which are linear and hence free of volatility clustering, were
derived by Robinson (1995a) and Hurvich, Deo and Brodsky (1998). In this case, d̂GPH is
consistent and asymptotically normal under certain regularity conditions. The GPH method is
practically appealing, as it is may be computed using simple linear regression.
To model observed persistence in volatility of financial returns, the long memory stochastic

volatility (LMSV) model was introduced independently by Breidt, Crato and de Lima (1998)
and Harvey (1998). For a comprehensive discussion of stochastic volatility models, including
various long memory specifications such as LMSV, see Ghysels, Harvey, and Renault (1996)
and the references therein. The series of logarithms of squared values of an LMSV process is
modeled as a long-range dependent process plus added noise (See Section 2). However, Deo
and Hurvich (2001) show that d̂GPH based on log squared returns in the LMSV model suffers
from a potentially severe negative bias which does not arise in the Gaussian case, and which
depends on d, becoming worse as d goes to zero. Deo and Hurvich (2001) is, to the best of our
knowledge, the first paper to derive theoretical properties for any semiparametric estimator of
d in the context of volatility.
In this paper, we propose a new semiparametric estimator of d in the LMSV context, designed

with a view towards bias reduction in comparison with d̂GPH . The new estimator, d̂LWN , is
a local Whittle estimator which explicitly accounts for the noise term in the LMSV model.
This noise term introduces a certain degree of roughness, which is determined by d, in the
short memory component of the spectral density in a neighborhood of zero frequency. The
estimator d̂LWN is implicitly defined, and may be computed using a two-dimensional nonlinear
optimization algorithm.

1.1 Analysis of transformed returns

We focus in this paper on estimators of d for series of log squared returns. This choice of
transformation seems to be justified empirically; Ding, Granger and Engle (1993) observed that
autocorrelations of absolute returns raised to the power c were typically maximized by taking
c close to 1. Deo and Hurvich (2003) have proposed an explanation in terms of outlier effects
for the fact that absolute and squared returns typically have smaller sample autocorrelations
than log squared returns. An analogous phenomenon presumably holds for the degree of persis-
tence implied by periodograms. Indeed, Wright (2002) has shown using simulations under both
LMSV and ARCH-type models that periodogram-based semiparametric estimators of d are less
negatively biased if log squared returns are used, instead of absolute or squared returns.

1.2 Using GPH to assess persistence in volatility

Even using log squared returns for analysis, however, the GPH estimator of persistence in
volatility in LMSV models still suffers from a potentially severe negative bias. This bias, which
is given explicitly in Theorem 1 of Deo and Hurvich (2001), implies a slow rate of convergence
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for d̂GPH . In general, in order to guarantee that
√
m(d̂GPH − d) will be asymptotically normal

with zero mean, m must grow more slowly than n4d/(4d+1), where n is the sample size and m is
the number of frequencies used in the regression. For example, if d = .25, then m must grow
more slowly than n1/2, while if d = .1, m must grow more slowly than n2/7. In no situation with
0 < d < 1/2 can m grow faster than n2/3.
Now, when d = 0 in the LMSVmodel, Hurvich and Soulier (2002) have shown that

√
m(d̂GPH−

d) is asymptotically normal with mean zero and variance π2/24, as long as m grows more slowly
than n4/5. Thus, an asymptotically valid test for long memory in volatility is to reject the null
hypothesis of d = 0 in favor of d > 0 if the test statistic d̂GPH/

√
π2/(24m) is greater than the

1 − α quantile of the standard normal distribution, where α is the desired significance level.
This would seem to suggest that d̂GPH is satisfactory for assessing the existence of persistence
in volatility.
Nevertheless, the fact that the bias in d̂GPH depends on d makes statistical inference based on

d̂GPH difficult, if not impossible, in general. Indeed, even if we knew that d > 0, we could not
construct an asymptotically valid confidence interval for d based on d̂GPH without an a priori,
strictly positive lower bound for d. Such a bound, which would seldom if ever be available in
practice, would be needed to prevent the practitioner from selecting too large a value of m,
and thereby invalidating the confidence interval by introducing excessive bias in d̂GPH . Thus, a
better estimator of long memory in volatility is desirable.

1.3 Outline of paper

Here, we investigate the properties of the local Whittle estimator, d̂LWN compared to d̂GPH
in practice. We also compare the proposed method to the local polynomial GPH estimator,
d̂LP−GPH of Andrews and Guggenberger (2003), which reduces the bias of GPH for sufficiently
regular linear processes. We present extensive simulation studies comparing the performance of
d̂GPH , d̂LP−GPH and d̂LWN . The simulations reinforce the fact that d̂GPH can be extremely
negatively biased. This is of considerable practical relevance, since it suggests, in conjunction
with our data analysis, that many of the published data analyses may be understating the
strength of the true persistence in volatility. The local polynomial GPH estimator is slightly
less biased, but at the cost of increased variability. We find that d̂LWN has much less bias than
d̂GPH , and its variance inflation compared with d̂GPH is not unreasonably large. Thus, d̂LWN

seems to hold great promise for estimating persistence in volatility. The theoretical properties
of d̂LWN have been studied by Hurvich, Moulines and Soulier (2002). We summarize here the
most relevant aspects of that theory, including an expression for the asymptotic variance of
d̂LWN , which depends on d. We also provide a feasible, finite-sample expression for the variance
of d̂LWN . The accuracy of these approximations, as well as resulting confidence intervals, is
assessed in our simulation study, which also explores the robustness of d̂LWN in the presence
of leverage effects. Finally, we present an empirical analysis of the daily Dollar/Deutsche Mark
exchange rate, and find a higher degree of persistence in volatility than suggested by the GPH
estimator when a large number of frequencies is used.

3



2. ESTIMATION OF d IN THE LMSV MODEL

The LMSV model for returns {rt} as defined by Breidt, Crato and de Lima (1998) takes form
rt = η exp(Yt/2)et (1)

where η > 0 is a scale parameter, {et} are independent identically distributed (i.i.d.) shocks,
not necessarily Gaussian, with zero mean and unit variance , and {Yt} is a zero-mean stationary
Gaussian process, independent of {et}, with spectral density

fY (x) = x−2df∗Y (x), (2)

where f∗Y is an even, positive, continuous function on [−π, π] and d is the memory parameter,
0 ≤ d < 1/2. The function f∗Y may be thought of as the spectral density of the short-memory
component of {Yt}. We assume hereafter that d > 0. The assumption that {Yt} is independent
of {et} precludes the possibility of leverage effects. We will consider relaxing this assumption in
Section 4.3. Under the LMSV model, the logarithms of the squared returns, Xt = log(r2t ), may
be expressed as

Xt = Yt + Zt, (3)

where {Zt} = {log e2t + log η2} is i.i.d. with variance σ2
Z <∞.

The assumptions given above for the LMSV model imply that the spectral density of Xt may
be written as

fX(x) = fY (x) + σ2
Z/(2π). (4)

The LMSV model described above can be generalized in various ways. The {Yt} series can be
non-Gaussian, subject to the regularity conditions described below. Additionally, the log squared
returns can be nonstationary, with memory parameter d ∈ (1/2, 1]. In this nonstationary case,
we define the model by rt = η exp(Ut/2)et where Ut =

∑t
s=1 Ys and fY (x) = x−2(d−1)f∗Y (x), so

that here {Yt} has memory parameter dY ∈ (−1/2, 0]. Since {Ut} is nonstationary, it does not
have a spectral density, but it does have a pseudo spectral density given by |1 − eix|−2fY (x).
This pseudo spectral density plays a similar role to that of the ordinary spectral density in
determining the properties of the periodogram when d > 1/2. See, e.g., Solo (1992), Hurvich
and Ray (1995), Velasco (1999).
Overall, then, our generalized model is

rt =
{

η exp(Yt/2)et , d ∈ (0, 1/2)
η exp(

∑t
s=1 Ys/2)et , d ∈ (1/2, 1)

such that {Yt} is independent of the i.i.d. process {et}, where {Yt} is stationary and invertible
with spectral density fY (x) = x−2dY f∗Y (x), dY ∈ (−1/2, 1/2), and

dY =
{

d if d ∈ (0, 1/2)
d− 1 if d ∈ (1/2, 1)

.

The log squared return series {log r2t } is given by

Xt =
{

Yt + Zt if d ∈ (0, 1/2)∑t
s=1 Ys + Zt if d ∈ (1/2, 1)

.
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In both cases, {Zt} = {log e2t + log η2} is an i.i.d. process with finite variance, independent of
{Yt}.

2.1 The GPH Estimator

Define the periodogram of the observations X1, · · · , Xn at the kth Fourier frequency xk = 2πk/n
by

IXn,k =
1
2πn

∣∣∣∣∣
n∑
t=1

Xte
itxk

∣∣∣∣∣
2

.

The GPH estimator of d using the first m Fourier frequencies may be written as

d̂GPH = − 1
2Sww

m∑
k=1

ak log IXn,k,

where ak = Wk −W , Wk = log |2 sin(xk/2)|, W = m−1
m∑
k=1

Wk and Sww =
m∑
k=1

a2
k. Note that

the intuition behind the GPH estimator in the standard Gaussian case is the linear relation at
low frequencies between the logarithm of the spectral density of a long memory process and the
logarithm of the corresponding frequencies, as can be seen from (2). The {Zt} process in (3)
may be viewed as an additive noise term which corrupts this linear relationship and impairs our
ability to estimate the memory parameter in the signal process {Yt}.

2.2 The Local Polynomial GPH Estimator, d̂LP−GPH

Andrews and Guggenberger (2003) proposed a local polynomial GPH estimator of long memory.
We will consider the simplest version here, in which the estimator d̂LP−GPH is defined as the
coefficient of −2 log xk in an ordinary least squares regression of log IXn,k on a constant, −2 log xk
and x2

k, for k = 1, . . . ,m. For a Gaussian (and therefore linear) process such that the spectral
density of the short memory component is sufficiently smooth, specifically, smooth of order s ≥ 1
at zero frequency, the optimal rate of convergence of mean squared error (MSE) of d̂LP−GPH is
proportional to n−2φ/(2φ+1) where φ = min{s, 4}. Unfortunately, in the context of the LMSV
model, we have s = 2d (see Equation (6) below), presumably leading to an optimal mean
squared error proportional to n−4d/(4d+1). This rate is identical to the rate attained by GPH in
the LMSV context as given by Deo and Hurvich (2001), and is inferior to the optimal rate of
n−4/5+ε attained by the MSE of d̂LWN , as will be shown in Section 3 below. Nevertheless, for
completeness we include d̂LP−GPH in our comparative Monte Carlo study in Section 4.

2.3 The Local Whittle with Noise Estimator, d̂LWN

We assume in this section that

f∗Y (x) = f
∗
Y (0) + Cx

2 +R(x), (5)
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where R(x) = o(x2) as x→ 0. This assumption holds for most short-memory models in current
use, including all stationary invertible ARMA models (see Robinson 1995a), and exponential
models (see Bloomfield, 1973). To avoid a conflict of notation, in this and the next section we
denote the true value of the memory parameter by d0. Then from Equations (2), (4) and (5),
we can write

fX(x) =
σ2
Z

2π

[
1 +

2πf∗Y (0)
σ2
Z

x−2d0

]
+O(x2−2d0) . (6)

Stationarity is implicitly assumed in writing (6), but an argument based on pseudo-spectral
densities shows that (6) holds even in the nonstationary case. See Hurvich and Ray (1995), or
Hurvich, Moulines and Soulier (2002).
Since the final O(x2−2d0) term is negligible with respect to the other terms in (6) for x close

to 0, it seems reasonable to try locally fitting a model of form

gθ(x) = b0(1 + b1x−2d) (7)

in a neighborhood of zero frequency, where θ = (b0, b1, d)′ is the vector of parameters. Model
(7) explicitly accounts for the noise term in (3).
For local fitting of model (7), we propose to minimize the local Whittle criterion

L(θ) =
m∑
j=1

[
log gθ(xj) +

IXn,j
gθ(xj)

]
, (8)

where the minimization is carried out in a compact set Θ ⊂ R
+ × R

+ × (0, 0.75), and m is a
positive integer such that 1/m+m/n→ 0 as n→ ∞. We assume that θ0 is an interior point of
Θ, where θ0 = [σ2

Z/(2π) , 2πf
∗
Y (0)/σ

2
Z , d0]′ is the vector of true parameters.

The parameter b0 can be concentrated out of (8), so minimizing L(θ) is equivalent to finding
(b1, d) to minimize

L̃(b1, d) =
m∑
j=1

[
log g̃θ̃(xj) +

IXn,j
g̃θ̃(xj)

]
, (9)

where θ̃ = (b1, d)′,
g̃θ̃(xj) = b

θ̃
0(1 + b1x

−2d
j ) , (10)

and

bθ̃0 =
1
m

m∑
j=1

IXn,j

1 + b1x−2d
j

. (11)

The vector of estimated parameters is θ̂ = (̂b0 , b̂1 , d̂LWN )′, where b̂1, d̂LWN minimize L̃, and

b̂0 = b
(̂b1,d̂LWN )′
0 . Here, the minimization is carried out in a compact set Θ ⊂ R

+ × (0, 0.75).
In the discussion above, it was implicitly assumed that the minimizer of L̃ occurs at an interior

point of Θ. In this case, the estimators b̂1 and d̂LWN satisfy the so-called first order conditions
(FOC), that is, the partial derivatives of L̃ are zero at (b1, d) = (b̂1, d̂LWN ). In fact, we need to
slightly modify the definition of d̂LWN to account for possible solutions to (7) on the boundary.
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If the global minimizer of L̃ occurs at a boundary point of Θ, then, although there may be
several interior points which satisfy the FOC, none of these local optima corresponds to a global
optimum, and we define our estimator as follows. (1) If there are no solutions to the FOC, we
use the global optimum (boundary point) as our estimator. (2) If there are any solutions to the
FOC, then our estimator is defined to be that solution which is closest in the sense of ordinary
Euclidean distance to the global optimum (boundary point).
It should be noted that the above algorithm implies that a local optimum will be chosen

over the global optimum when the latter is a boundary point. The reason for this choice is to
facilitate the development of theory, as suggested by Andrews and Sun (2001). The context for
the suggestion of Andrews and Sun (2001) was a local polynomial Whittle estimator of long
memory, in a non-volatility context. There, as here, the estimator involves minimization of a
multidimensional criterion function, and the individual components of the estimator converge
at different rates.

3 PROPERTIES OF d̂LWN

The asymptotic properties of d̂LWN and other related estimators are derived in Hurvich,
Moulines and Soulier (2002). We present here the result for d̂LWN under simplified assumptions.
We assume that {Yt} has an infinite order moving average representation

Yt =
∞∑
j=0

ajεt−j , (12)

where {εt} is a zero-mean white noise process, not necessarily Gaussian, with V ar[εt] = σ2
ε ,

and
∑∞

j=0 a
2
j < ∞. Note that {εt} is independent of {Zt}. We lose no generality in assuming

that {Yt} has zero mean, since the estimators considered in this paper are all functions of the
periodogram at nonzero Fourier frequencies. In the nonstationary case, the assumption that
{Yt} has mean zero ensures that {Xt} is free of linear trends.
Define a(x) =

∑∞
j=0 aje

ijx. The spectral density of the process {Yt} is then fY (x) = |a(x)|2σ2
ε /(2π),

and we assume that it can be expressed as

fY (x) = x−2dY f∗Y (x), (13)

with dY ∈ (−1/2, 1/2).
To present our theoretical results, we require the following definition.

Definition 1. For α ∈ (0, π], β > 0 and 0 < µ <∞, F0(α, β, µ) is the set of functions g defined
on [−π, π] satisfying ∫ π

−π |g(x)|dx ≤ µ and for all x ∈ [−α, α],

|g(x)| ≤ µ|x|β . (14)

We also require the following assumption, which was made in Robinson (1995b) as well.
{εt} is a martingale difference sequence such that for all t, E[ε4t ] := µ4 <∞ and

E[ε2t | εs, s < t] = 1 almost surely.
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Theorem 1. Let {Yt} have a moving average representation (12) with respect to a white noise
{εt} which satisfies (A1) and such that the function a(x) =

∑∞
j=0 aje

ijx can be expressed as
a(x) = x−dY a∗(x), where (a∗(0)−1a∗(x)− 1) ∈ F0(α, β, µ) for some β > 2d0, α > 0 and µ > 0.
Assume that d0 ∈ (0, .75). If m is a non decreasing sequence of integers such that

lim
n→∞(m

−4d0−1n4d0 + n−2βm2β+1 log2(m)) = 0, (15)

thenm1/2(d̂LWN−d0) is asymptotically Gaussian with zero mean and variance (1+2d0)2/(16d0
2).

Thus, if β = 2 (as is most commonly assumed) and we use m = n4/5−2ε for some small ε, then
d̂LWN is n2/5−ε-consistent, i.e., the same rate of convergence enjoyed by Robinson’s (1995b)
Gaussian semiparametric estimator in the linear case. The first term in (15) imposes a lower
bound on the allowable value of m, requiring that m tend to ∞ faster than n4d0/(4d0+1). Thus,
for example, if d0 = .4 and β = 2 then m must tend to ∞ faster than n8/13 ≈ n.62 and slower
than n4/5 in order for Theorem 1 to be valid.
Note that the asymptotic variance of d̂LWN in Theorem 1 depends only on d0, and is a

decreasing function of d0. Unfortunately, unless the noise to signal ratio (nsr) is quite small,
this asymptotic variance may not accurately reflect the actual variance, even in the relatively
large sample sizes considered in this paper. An alternative approach is to construct a finite-
sample approximation to the variance. Here, we proceed heuristically and omit some long
algebraic calculations, but we note that our approximation is asymptotically equivalent to the
result in Theorem 1, and its improvement over the asymptotic expression

var(d̂LWN ) ≈ (1/m)(1 + 2d0)2/(16d0
2)

is documented in our simulation study.
Standard likelihood theory suggests that the covariance matrix of (b̂1, d̂LWN )′ is well approx-

imated by the inverse of the Fisher information matrix,

Cov[∇L̃(b1,0, d0)] ,

where b1,0 is the signal to noise ratio, b1,0 = 2πf∗Y (0)/σ
2
Z , and ∇ is the gradient, i.e., the vector

of partial derivatives with respect to b1 and d. Treating the periodogram values IXn,j as inde-
pendently distributed as gθ0(xj)(1/2)χ

2
2, and ignoring a multiplying constant which converges in

probability to 1, we obtain after a long calculation the approximation Cov[∇L̃(b1,0, d0)] ≈ M ,
where

M11 =
m∑
k=1

1
(x−2d0
k + b−1

1,0)
2
− 1
m

(
m∑
k=1

1
x−2d0
k + b−1

1,0

)2

M12 = −2
m∑
k=1

log xk x−2d0
k

(x−2d0
k + b−1

1,0)
2
+

(
2
m

m∑
k=1

log xk x−2d0
k

x−2d0
k + b−1

1,0

)  m∑
j=1

1
x−2d0
j + b−1

1,0


M21 = M12

M22 = 4
m∑
k=1

(
log xk x−2d0

k

x−2d0
k + b−1

1,0

)2

− 4
m

(
m∑
k=1

log xk x−2d0
k

x−2d0
k + b−1

1,0

)2

. (16)
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Thus, we may approximate V ar(d̂LWN ) by A2,2, the (2,2) entry of A = M−1. The use of A2,2

is not feasible in practice, since d0 and b1,0 are not known. We can, however, use the feasible
version Â2,2 where d0 and b1,0 are replaced by d̂LWN and b̂1 in (16).
In the next section, we compare the performance of d̂LWN relative to that of d̂GPH and

d̂LP−GPH and assess the accuracy of the asymptotic and finite-sample expressions for V ar(d̂LWN )
using simulation.

4 SIMULATION RESULTS

4.1 Assessment of Empirical Bias and Variance for d̂LWN

We simulated logarithms of squared LMSV processes by first simulating Gaussian ARFIMA(p, d, q)
data. The PACF method of Hosking (1984) was used to generate data from a Gaussian
ARFIMA(0, d, 0) process. An ARMA(p, q) filter was then applied to give ARFIMA(p, d, q) data.
An independent sequence of logarithms of squared standard normal random variates was added
to the ARFIMA data to produce a series of logarithms of a squared LMSV-ARFIMA(p, d, q)
process. One thousand realizations were generated for each value of n = (1000, 5000, 10000),
and for each of two values of the noise to signal ratio, nsr = b−1

1,0. Since we take the {et} to be
standard normal, we have σ2

Z = π2/2. The values nsr = 5 and nsr = 10 were chosen to cor-
respond to the large nsr values observed in other empirical studies of LMSV models in finance
(e.g., Breidt, Crato, and de Lima, 1998) and to see how the estimates of d are influenced by nsr
in practice. For each realization, the d̂GPH , d̂LP−GPH and d̂LWN estimators were evaluated for
m = ([n.4], [n.5], [n.6], [n.7], [n.8]). We investigated the LMSV-ARFIMA(0, d, 0) model for values
of d = 0.3, 0.4, 0.45, 0.49. These values were chosen based on previous findings of relatively strong
persistence in financial time series (e.g. Lobato and Savin, 1999; Ray and Tsay, 2000). We also
investigated the influence of ARMA components on the estimates by considering three LMSV-
ARFIMA models having nonzero ARMA terms, that of an LMSV-ARFIMA(1, d, 0) model with
d = 0.4 and φ = 0.5, 0.8 where φ is the autoregressive parameter in the ARFIMA(1, d, 0) model,
that is, (1−B)d(1− φB)yt = ηt with {ηt} i.i.d normal random variates having standard devia-
tion such that the specified nsr is obtained, and that of an LMSV-ARFIMA(0, d, 1) model with
d = 0.4 and θ = −0.8, where θ is the moving-average parameter in the ARFIMA(0, d, 1) model,
that is, (1−B)dyt = (1− θB)ηt. The d̂LWN estimator was obtained by numerical optimization
of (9) as a function of d and b1. The value of d was constrained to lie in the range [0.01, .75],
while log(b1) was constrained to the region [−8, 20].
All computations were performed using Microsoft Visual FORTRAN in conjunction with the

IMSL numerical libraries running on a 1 GHz Pentium 3 processor with 512 MB RAM in
a Windows 2000 operating environment. The IMSL function DBCONF with default control
parameters was used for optimization. The initial value used in computing d̂LWN for a given
m was the d̂GPH estimator based on the same value of m. To find solutions to the FOC when
the global optimum was obtained at a boundary point, we divided Θ into 16 equal-sized, non-
overlapping rectangular regions. For each of these regions, (9) was optimized using DBCONF
with starting value given by the midpoint of the region. Any interior solutions obtained by
DBCONF were assumed to be solutions to the FOC. Complete simulation results for all sample
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sizes and nsr values for each specified ARFIMA(p, d, q) model required approximately 15 hours
of CPU time.
Figure 1 presents representative results for the LMSV-ARFIMA(0, 0.4, 0) model graphically, in

the form of boxplots, for the nsr = 5 case, while Table 1 provides detailed numerical results in the
LMSV-ARFIMA(0, 0.4, 0) case for each nsr value when n = 5000. Tables and figures correspond-
ing to additional simulation results are available for download from
http://www.stern.nyu.edu/sor/research/wp03.html.
We start by discussing the results for the LMSV-ARFIMA(0, d, 0) processes. Overall, in most

situations studied, d̂LWN has a smaller root mean squared error (RMSE) than either d̂GPH or
d̂LP−GPH . As m increases for given values of n, nsr and d, the RMSE for d̂LWN typically
decreases, while the RMSE for d̂GPH and d̂LP−GPH is typically a convex function of m. The
minimum RMSE with respect to m for a given situation is typically smaller for d̂LWN than for
d̂GPH or d̂LP−GPH .
The bias of d̂LWN is uniformly small, while the biases of d̂GPH and d̂LP−GPH become in-

creasingly negative as either m or nsr is increased. This is in agreement with the theoretical
results of Deo and Hurvich (2001). Even for samples of size n = 10000, the bias of d̂GPH
may be quite severe. For example, for the LMSV-ARFIMA(0, 0.40, 0) process with n = 10000,
m = [n.8], nsr = 10, the bias in d̂GPH is −0.262, rendering the estimate nearly useless. The
bias in d̂LP−GPH , although smaller, is still −0.182. See Table 1.
The standard errors of both d̂GPH and d̂LWN decrease as m or n is increased, holding every-

thing else fixed. Consistent with theory, the standard error of d̂GPH is often smaller than that of
the corresponding d̂LWN . For a given n, m, d, the standard error for d̂GPH is insensitive to nsr
while the standard error for d̂LWN increases as nsr increases. Thus, for large nsr, the standard
error for d̂LWN can become dramatically larger than the standard error for d̂GPH (except when
m is small). However, this inflation in standard error for d̂LWN is usually not enough to offset
the inflation in bias for d̂GPH , so that d̂LWN typically has the smaller RMSE. The boxplots
illustrate very nicely the trade-off between bias and variance, clearly showing the superiority of
d̂LWN when m is large.
Additional simulation results over a range of d values show that as d is increased, holding

everything else fixed, the standard error for d̂LWN goes down, while that for d̂GPH remains
stable. Furthermore, as d is increased, the bias for d̂LWN remains stable, while negative bias
for d̂GPH becomes more severe. These findings are consistent with the theoretical results of
Theorem 1 for d̂LWN and those of Deo and Hurvich (2001) for d̂GPH , showing strong superiority
of d̂LWN to d̂GPH in terms of RMSE when d is large.
Boxplots of estimates for the LMSV-ARFIMA(1, d, 0) model with φ = 0.8 and n = 5000 are

shown in Figure 2. For this model, d̂GPH appears less biased than it was when the autoregressive
parameter was absent. This can be explained by noting that the presence of the autoregressive
parameter tends to increase the expected value of d̂GPH , and thereby results in a less negatively
biased estimator. Nevertheless, in almost all situations studied for this model, d̂LWN has a
smaller RMSE than d̂GPH . This is true despite the strong positive short-range correlation
induced by the autoregressive parameter φ = 0.8. Similar results were found for the other
ARMA component models considered.
Overall, our simulation results suggest that d̂LWN is preferable to d̂GPH since the latter
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estimator may suffer from a very strong negative bias due to the noise term in the LMSV model,
while the former estimator suffers from no such bias.

4.2 Assessment of Approximate Variance Expression for d̂LWN

According to the asymptotic theory given in Theorem 1, the variance of d̂LWN does not depend
on nsr. Our simulations appear to be at least somewhat at odds with that theory, as seen from
the above discussion. The first two rows of the boxes labeled Asymptotic in Table 2 show the
average and median standard errors across replications obtained using the asymptotic expression
(1+2d)/(4dm1/2) evaluated using d̂LWN for the ARFIMA(0, 0.4, 0) model with n = 5000, while
the third row gives the asymptotic value computed using the true value of d. The mean values
are much larger than the values obtained using the asymptotic expression with the true value
of d, especially when m is small. We attribute this to a few outlying values of d̂LWN , as can be
seen from the boxplots in Figure 1. Although the median value for the standard errors based
on estimated d values is close to that based on the true value of d, the values typically do not
match closely the standard errors observed in the simulations, which increase as nsr increases
(see rows labeled Simulation in Table 2). Thus, for the sample sizes typically encountered in
practice, the asymptotic expression does not seem to provide a reliable approximation to the
actual standard error of d̂LWN .
We also explored whether A2,2, the (2, 2) entry of M−1, provides a better approximation,

where the entries of M are given by (16). Note that A2,2 depends not only on d, but also on b1.
A feasible version can be computed by substituting estimates of the unknown parameters in the
expression for A2,2. The first two rows of the boxes labeled Hessian in Table 2 give the mean
and median values of the standard errors computing using (16) with LWN-estimated parameter
values, while the third row gives the value obtained when the true parameter values are used
in (16). Again we see that the mean value of the standard errors computed using estimated
parameter values can be extremely large. This is true in particular when n = 1000 and also
when n is larger but m is small. This is due to large variations in the estimated nsr values used
in the computation of (16). Large sample sizes and large values of m, i.e. m = [n.7], [n.8] are
needed to accurately estimate nsr. When this is the case, both the mean and median values are
very close to the values observed in the simulations.
We also compared the empirical 90% and 95% coverage obtained for Gaussian-based confi-

dence intervals on d constructed using the estimated standard errors based on the asymptotic
formula, the formula of (16) with LWN-estimated parameters, and the formula of (16) with
known parameters. For completeness, these coverages were compared to those obtained from
the GPH estimator with variance π2/(24Sww). Table 3 shows a representative result of these
comparisons for the ARFIMA(0, 0.4, 0) case when n = 5000. The values in parentheses denote
the median lengths of the constructed intervals. The LWN-based confidence intervals provide
close to nominal coverage when d is estimated using a large number of Fourier frequencies and
the interval is constructed using the standard errors computed from (16) with estimated param-
eter values. The GPH-based confidence intervals, in contrast, provide very poor coverage. These
results indicate that reliable determination of the degree of persistence in an LMSV model can
be made using the Local Whittle method.
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4.3 Robustness of d̂LWN Against Leverage Effects

Our assumption that {et} and {Yt} are independent in model (1) implies that there is no
leverage effect, whereby the conditional variance of the return for the next period would respond
asymmetrically to a current return of a given magnitude, according to its sign. This may be
viewed as a drawback as financial data sets often do present evidence of a leverage effect. (See
Jacquier, Polson and Rossi 1999). We therefore now consider replacing the model (1) by

rt = η exp(Yt−1/2)et , d ∈ (0, 1/2) , (17)

where the series {Yt} is given by (12), so that {Yt} has a one-sided linear representation with
respect to a series of potentially non-Gaussian shocks {εt}, which we assume here to be i.i.d.
with zero mean and finite fourth moment. We assume further that et and εu are independent
if t �= u, but that et and εt may be correlated. We will use the notation ρ = Corr(et, εt). A
negative value of ρ would induce the type of leverage effect observed in practice, whereby a
current negative return is associated with an increase in future volatility. An important reason
for using Yt−1 rather than Yt in (17) (see, e.g., Shephard 1996, pp. 22, 37 and Ghysels, Harvey
and Renault 1996) is that if ρ �= 0, the series {rt} in (1) would not be a Martingale difference
sequence, whereas {rt} in (17) will be a Martingale difference sequence, and this is a desirable
property for financial returns.
We study here the effect that a nonzero value of ρ in model (17) has on the properties of

d̂LWN . The fact that d̂LWN is computed from the series {log r2t } induces some robustness of
d̂LWN against nonzero ρ. In particular, as long as the joint distribution of (et, εt) is symmetric
around (0, 0) (as would happen, for example, if (et, εt) were bivariate normal or bivariate t), we
obtain ρz,ε = Corr(log e2t , εt) = 0. Then the decomposition (6) continues to hold, and it can
be shown that the asymptotic properties for d̂LWN are completely unchanged. If, on the other
hand, ρz,ε �= 0, then there will be an additional term of order x−d0 in (6) which is not accounted
for by d̂LWN . This would be expected to inflate the asymptotic bias of d̂LWN . One way to
remove the bias would be to consider a modification of d̂LWN in which the additional term
is directly fitted. Theoretical properties of the modified estimator were developed in Hurvich,
Moulines and Soulier (2002). Here, we remain focused on the unmodified estimator d̂LWN and
evaluate its robustness to misspecified correlation structure.
Our simulations here were carried out for model (17) with an ARFIMA(0, d, 0) model for {Yt}

having the representation (12), and two different specifications for the distribution of (et, εt).
Under the first specification, we take (et, εt) to be independent bivariate normal with zero mean
and covariance matrix [

1 ρ
ρ 1

]
and ρ = −0.6. Under the second specification, we take the εt iid∼ δ(1/2)(χ2

2 − 2), and

et = (γ2δ2 + 2)−1/2[γεt + (χ2
1 − 1)] ,
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where the χ2
1 are i.i.d and independent of the χ

2
2 random variables. For this specification, we

have var(εt) = δ2, var(et) = 1, Corr(et, εt) = ρ = γδ(γ2δ2 + 2)−1/2. We chose γ = −0.875,
δ =

√
1.496 to correspond to ρ = −0.60. From simulations, we then calculate that the noise to

signal ratio is V ar[log e2t ]/V ar[εt] = 5.00, and ρz,ε = 0.493.
Figure 3 shows boxplots of the results for the LMSV-ARFIMA(0, 0.4, 0) model with n = 5000

in the case of Gaussian and non-Gaussian correlated et and εt, generated as described above,
while Tables 4 and 5 provide detailed numerical results concerning the bias, standard deviation,
and RMSE for these models. As expected from the above discussion, the results for the Gaussian
correlated errors are basically unchanged from those shown in Figure 1. In the non-Gaussian
case, the unaccounted for correlation results in a negative bias in d̂LWN for large m, while
the already negative bias observed for d̂GPH is increased even more. An understanding of this
phenomenon is similar to that underlying the negative bias observed for d̂GPH in the standard
LMSV model, i.e., the correlation results in an additional additive term that is unaccounted
for by d̂LWN , thereby resulting in model misspecification. The simulation standard deviation in
the correlated non-Gaussian model is slightly smaller than that observed in the standard case,
although the increased bias results in larger RMSE. For m = [nα], α = 0.6, 0.7, 0.8, d̂LWN still
provides better performance than either d̂GPH or d̂LP−GPH for LMSV processes with leverage.

5 ANALYSIS OF CURRENCY EXCHANGE RATES

We consider a data set previously analyzed in Li, Deo and Hurvich (2000) consisting of daily
returns on the Deutsche Mark / US Dollar exchange rate, from Jan 2 1985 to May 12 1998,
n = 3485. Several of the returns rt were zero. Adjusted log squared returns were constructed,
using the method of Fuller (1996), computing

Xt = log(r2t + κ)−
κ

r2t + κ
,

where κ = τ(n−1
∑
r2t ) and τ = 0.02. Time series plots of the returns series and volatility

series are shown in Figure 4, while Figure 5 shows the sample autocorrelation function for the
volatility series. The volatilities of DM/$ exchange rates exhibit the apparently changing mean
levels characteristic of long-range dependent processes. The sample ACF values, although small,
are positive even at large lags.
Table 6 presents the d̂GPH and d̂LWN estimators for various values of m. The d̂GPH values

decrease as m increases, a pattern which is consistent with the theoretical fact that the bias in
d̂GPH becomes strongly negative for large values of m. On the other hand, the d̂LWN values
increase with m, reaching 0.556 for m = [n0.8]. For each given value of m, except for m = [n0.5],
d̂LWN exceeds the corresponding value of d̂GPH .
To gain some insight on the proper choice of m for d̂LWN in this exchange rate dataset, we

carried out some additional simulations, using a fully parametric LMSV-ARFIMA(1, d, 0) model
fitted to the periodogram of {Xt} at all Fourier frequencies using the Whittle likelihood. This
model was found to fit well according to diagnostic tests performed in Li, Deo and Hurvich
(2000). The fitted model has spectral density

fX(x) = fY (x) + fZ(x) =
|2 sin(x/2)|−2d̂ σ̂2

η

2π|1− φ̂ exp(−ix)|2
+ σ̂2

Z/(2π) ,
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with d̂ = 0.4086, φ̂ = −0.1556, σ̂η = 0.8452, and σ̂Z = 2.4652. The simulations were done by
generating data from this model, using a Gaussian {Yt} process and a noise process given by
Zt = log e2t where et are i.i.d. with a t(3) distribution. The value of the degrees of freedom for
et was chosen so that the standard error for Zt nearly matches the estimated value, σ̂Z = 2.4652.
Note that the asymptotic results of Theorem 1 are not dependent on a Gaussian assumption for
the multiplicative noise in the LMSV-ARFIMA model.
Table 7 gives the bias and RMSE of d̂LWN based on one hundred simulated realizations. It

is seen that the bias is stable with respect to m, and is quite small, while the RMSE decreases
uniformly in m. Overall, m = [n0.8] would appear to be the best choice for this data set, leading
to d̂LWN = 0.556. It is notable that this value is so large that it lies outside the range of d
values corresponding to a weakly stationary process. The estimated nsr for this series is 23.89.
Using (16) with d̂ = 0.556 and b̂1 = 1/23.89, we obtain an estimated standard error of 0.095. A
corresponding confidence interval for d includes values in both the stationary and non-stationary
range.

6 SUMMARY

We have investigated the efficacy of a modified Local Whittle method for semiparametrically
estimating the degree of long memory in an LMSV process. Our simulation study has focused
on the weakly stationary case, d < 0.5, with and without leverage effects. The LWN estimator
clearly dominates existing methods, such as GPH and the local polynomial GPH method of
Andrews and Guggenberger (2003), in the presence of noisy observations. Reliable estimates of
standard errors can be obtained using a finite-sample approximation to the asymptotic variance
of the modified Local Whittle estimator.
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Figure 1: Box-plots of d̂GPH , d̂LP−GPH , and d̂LWN for the LMSV-ARFIMA(0, 0.4, 0) model
with nsr = 5. Estimates were obtained using m = [nα] Fourier frequencies, where α =
0.4, 0.5, 0.6, 0.7, 0.8. The solid line indicates the true value of d = 0.4.
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Figure 2: Box-plots of d̂GPH , d̂LP−GPH , and d̂LWN for the LMSV-ARFIMA(1, 0.4, 0) model
with φ = 0.8 and nsr = 5. Estimates were obtained using m = [nα] Fourier frequencies, where
α = 0.4, 0.5, 0.6, 0.7, 0.8. The solid line indicates the true value of d = 0.4.
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Figure 3: Box-plots of d̂GPH , d̂LP−GPH , and d̂LWN for the LMSV-ARFIMA(0, 0.4, 0) model
with nsr = 5, n = 5000 having Gaussian or non-Gaussian correlated errors εt and et. Estimates
were obtained using m = [nα] Fourier frequencies, where α = 0.4, 0.5, 0.6, 0.7, 0.8. The solid line
indicates the true value of d = 0.4.
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Figure 4: Top plot: Deutsche Mark/ US Dollar exchange rate from Jan 2, 1985 to May 12, 1998.
Bottom plot: Volatility series for Deutsche Mark/ US Dollar exchange rate constructed using
adjusted log squared returns.
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Figure 5: Sample ACF for volatility series of Deutsche Mark/ US Dollar exchange rates


