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Abstract

Nonparametric regression techniques provide an effective way of identifying
and examining structure in regression data. The standard approaches to
nonparametric regression, such as local polynomial and smoothing spline
estimators, are sensitive to unusual observations, and alternatives designed
to be resistant to such observations have been proposed as a solution. Un-
fortunately, there has been little examination of the resistance properties
of these proposed estimators. In this paper we examine the breakdown
properties of local polynomial estimation based on least absolute values,
rather than least squares. We show that the breakdown at any evaluation
point depends on the observed distribution of observations and the kernel
weight function used, and make recommendations regarding choice of kernel
based on two different breakdown measures. The results suggest that the
breakdown point at an evaluation point provides a useful summary of the
resistance of the regression estimator to unusual observations.
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1 Introduction

Nonparametric regression techniques have been shown in recent years to

be very effective at identifying and estimating structure in regression data,

without requiring restrictive assumptions on the form of the relationship

between the target and predicting variables. Many different approaches

to this problem have been suggested; see Simonoff (1996), chapter 5, for

discussion of many of the possibilities. In this paper we focus on local

polynomial estimation based on a single predictor variable. Let {xi, yi}, i =

1, . . . , n, be the data set at hand. The underlying model assumed for these

data is

yi = µ(xi) + εi,

with εi having zero median and V (ε|X = x) = σ2(x) not necessarily con-

stant. The goal is to estimate µ(x), the conditional median of y given x

(if the errors are symmetric this also corresponds to the conditional mean,

assuming the mean exists).

Local polynomial estimation proceeds by fitting a polynomial locally

over a small neighborhood centered at any evaluation point x, based on

weighted least squares. The estimator µ̂(x) is then the intercept term β̂0

from the weighted least squares regression. The bandwidth h controls the

amount of smoothness of µ̂(x), and can be fixed for all values of x, or locally

varied (based on nearest neighbor distance, for example) to allow different

levels of smoothing at different locations. Kernel regression corresponds to

p = 0, and is known to have inferior performance compared to taking p ≥ 1

(in terms of bias in the boundary region, for example). Assuming a given

amount of smoothness of µ(·), it can be shown that certain local polynomial

estimators, combined with appropriate choice of h, can achieve the best
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possible asymptotic rate of convergence of the estimator to the true curve

µ(·).
As is the case for any estimator based on least squares, local polynomial

estimation is susceptible to the effects of observations with unusual response

values (outliers). If an observed yi is sufficiently far from the bulk of observed

responses for nearby values of x, µ̂(x) will be drawn towards the unusual

response and away from the majority of the points. This has led to the

proposal of the use of other criteria to fit local polynomials that downweight

these observations with large residuals. These include Lowess (Cleveland,

1979), its successor loess (Cleveland and Devlin, 1988), and local versions of

M–estimators (Tsybakov, 1986; Fan, Hu, and Truong, 1994; Welsh, 1994).

In order to determine these estimators, an iterative process is utilized that

typically begins with a least squares based initial estimate (we are not aware

of any implementation of such estimators that is not based on a least squares

initial estimate). However, since the original residuals are based on a least

squares criterion, these robust alternatives still can be sensitive to outliers.

Figure 1 illustrates the problem. The data are from a radioimmunoassay

calibration study, and relate counts of radioactivity to the concentration of

the dosage of the hormone TSH, in micro units per ml of incubator mix-

ture (Tiede and Pagano, 1979). There is a roughly hyperbolic relationship

between counts and concentration, with one clear outlier at (20, 4478). Fig-

ure 1 gives both nonrobust and robust loess estimates (based on a local

linear model) for these data, based on a nearest neighbor bandwidth cover-

ing 65% of the data. As can be seen, both loess estimates are affected by

the outlier. While the nonrobust estimate (solid line) is drawn towards the

outlier, the robust estimate (dotted line) is driven away from it, resulting

in a spurious dip below the bulk of the points. This dip is not a function

of choice of the bandwidth, as bandwidths from the smallest possible value
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(36% of the data) to one leading to clear oversmoothing (90% of the data)

all yield estimates exhibiting it.

True robustness requires an estimator that is not based (even indirectly)

on a least squares criterion. Wang and Scott (1994) investigated the least

absolute values (LAV) version of local polynomial estimation. They showed

that the estimator is the solution to a linear program, and derived asymp-

totic theory under specific conditions. See also Chaudhuri (1991) and Yu

and Jones (1998), who looked at the general case of estimating regression

quantiles (LAV corresponds to the median). We note that although LAV re-

gression is an M–estimator, since it can be solved via linear programming, it

does not require an iterative process as is the case for ordinary M–estimators.

A characteristic of all of this work is that while the asymptotic properties

of the methods have been investigated, the robustness properties have not.

Thus, while a primary justification of these methods is their supposed re-

sistance to unusual observations, there are no results that actually quantify

this resistance. In this paper one measure of resistance, the breakdown, is

used to evaluate robustness. The breakdown of an estimator is the smallest

fraction of outliers that can force the estimator to arbitrary values, and is

thus a measure of the resistance of the estimator to unusual values. More

specifically, the breakdown point of an estimator τ is defined to be the max-

imum bias that can be caused by replacing any m of the original data points

by arbitrary values (Donoho and Huber, 1983). An estimator that is not

at all resistant to outliers, such as one based on least squares, thus has

breakdown 1
n . In this paper we propose and investigate a locally varying

(conditional on the evaluation point) notion of breakdown that is appropri-

ate for local polynomial estimation. By adapting breakdown results from

linear least absolute values regression estimation, we derive the robustness

properties of local LAV polynomial estimators. In the next section we pro-

4



pose and discuss the derivation of the breakdown values. Section 3 provides

specific examples of conditional breakdown. We investigate its dependence

on the local distribution of predictor values and the choice of kernel, and re-

analyze the data of Figure 1. Section 4 concludes the paper with discussion

of potential future work.

2 Determining the Conditional Breakdown

Since the local polynomial regression estimate µ̂(·) is implemented by solving

many local regression problems, each centered at an evaluation point x,

its breakdown properties are defined on a local level as well. We restrict

ourselves to kernel functions K(·) that are positive on a bounded interval

(typically [−1, 1]). When we refer to the conditional breakdown, we are

reflecting that, unlike for parametric models, the breakdown value changes

depending on the evaluation point x. Several key points illuminate how the

notion of conditional breakdown at a point x can be defined.

The first point to recognize is that since the local polynomial estimate

is based on a weighted regression, the breakdown of µ̂(x) is simply the

breakdown of a weighted version of the linear regression method being used,

whether that is least squares or least absolute values estimation.

We also must recognize that if the evaluation point becomes unbounded

(i.e., |x| → ∞), there is no sensible way to define breakdown (or any ro-

bustness properties) in the neighborhood of that x. The reason for this is

that, unlike in the case of a parametric function µ, it isn’t meaningful to

talk about the “true” µ(x) when x → ±∞, since µ is only defined by local

smoothness (µ(∞) is not well–defined). For this reason, we will only treat

breakdown at an evaluation point x for bounded x.

Consider now the use of a bandwidth h that is not a function of the
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local design (a constant bandwidth is an obvious example of this, but h

also can vary in ways that do not depend on the observations xi). In this

case, contamination in the predictor variable is no longer relevant, since any

value of xi that goes to ±∞ eventually has zero weight in the local regression;

that is, only observations local to x can have an effect on µ̂(x). We thus

can describe robustness and breakdown in this case by considering the finite

sample breakdown point of some regression estimator τ with contamination

restricted to the dependent variable.

The situation when using a bandwidth that varies as a function of the

design is more complicated. Consider the most common bandwidth choice

of this type, the nearest neighbor bandwidth chosen at x to yield a fixed

proportion s of observations with nonzero weights (the closest observations

to x). If 1− s is greater than the proportion of observations with |xi| → ∞,

then once again contamination in the predictor variable is not relevant,

since eventually these xi’s will no longer be in the neighborhood of x and

will have zero weight. On the other hand, if 1 − s is less than or equal

to the proportion of observations with predictor contamination, at least

one contaminated observation will have nonzero weight. In this case we

can appeal to known breakdown results for LAV regression when there is

contamination in the predictor. That is, the breakdown at x of local LAV

regression is 1
n (the smallest possible value, indicating no robustness). For

these reasons, throughout the rest of this paper we refer to the finite sample

breakdown point with contamination restricted to the dependent variable

simply as the finite sample breakdown point.

The breakdown properties of local LAV–regression estimators can be

determined by determining the breakdown properties of each subproblem,

which is a weighted LAV regression problem involving the observations for

which the weights are positive. The finite sample breakdown point of LAV
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regression (with contamination restricted to the dependent variable) has

been studied previously. Note that in the case of local LAV regression (as

opposed to the traditional LAV regression), we are only concerned with the

intercept term, i.e., β̂0, but this is not an important distinction, since the

finite sample breakdown point of β̂0 of (weighted) LAV regression is the

same as the finite sample breakdown point of (weighted) LAV regression for

all of the parameters.

The weighted LAV regression problem with positive, finite weights wi

can be formulated and solved as a linear program with an objective function

consisting of the sum of the absolute weighted residuals. Equivalently, the

objective function can be taken to be the same as in the case of unweighted

LAV regression, changing the data by setting ỹi = wiyi and setting the ith

set of predictor values to x̃′
i = (wi wixi). Thus, to calculate the finite

sample breakdown of weighted LAV regression with design matrix X one

just needs to calculate the finite sample breakdown of LAV regression with

design matrix X̃.

We utilize the approaches of Giloni and Padberg (2003), Giloni, Sen-

gupta, and Simonoff (2003), and Mizera and Müller (2001) to calculate this

finite sample breakdown. Giloni and Padberg (2003) show that the finite

sample breakdown of LAV regression can be solved by mixed integer pro-

gramming techniques. Giloni, Sengupta, and Simonoff (2003) and Mizera

and Müller (2001) provide an algorithm for calculating the finite sample

breakdown point of LAV regression that is very efficient when the number

of predictor variables is small. We use this methodology to calculate the

finite sample breakdown locally for local LAV regression in the next section.
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3 Local breakdown and its relationship to kernel

choice

In this section we investigate more closely the conditional breakdown prop-

erties of the local LAV linear estimators. Since the breakdown is based on a

set of weighted LAV regressions, it depends at any evaluation point on both

the local distribution of predictor values and the kernel used. While the

local distribution of predictors is typically beyond the control of the data

analyst, the choice of kernel is not, leaving open the possibility that it might

be chosen in such a way as to make the estimator as robust as possible.

The properties of the local LAV linear estimator at an evaluation point

depend on the bandwidth used, as that determines the set of observations

within the local regression. This suggests that the bandwidth could be

chosen so as to maximize robustness (in some sense), but this is a mistaken

conclusion. Wang and Scott (1994) derived the bandwidth that minimized

the asymptotic average mean squared error of µ̂, showing that it satisfies

hopt =

(
36

f(0)2
∫ 1
0 µ′′(x)2dx

)1/5

n−1/5, (1)

where f is the density of the errors (taking x to be uniform on [0, 1] and

assuming constant variance for the errors). Thus, the optimal choice of

h depends on the curvature of µ and the density of ε, and cannot be set

arbitrarily so as to ensure robustness.

Equation (1) assumes use of a uniform kernel, so if a different kernel

is used, the bandwidth must be adjusted. Wang and Scott (1994) showed

that the equivalent bandwidth when using a kernel K2 rather than one K1

satisfies

hopt(K2) = hopt(K1)[V (K2)/V (K1)]1/2,
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where V (K) is the variance of the kernel,
∫

x2K(x)dx. Table 1 lists the

kernels we examine, which include most of the ones used in practice. The

interpretation of the table is that, for example, if the bandwidth h yields an

appropriate amount of smoothing when using a uniform kernel, the band-

width 1.291h is the appropriate choice when using a quadratic kernel. Thus,

any comparisons of robustness across kernels corrects for this scale effect by

using equivalent bandwidths. Although (1) is based on a uniform design,

the nonuniform case is similar, in that the design only appears as a con-

stant multiplier for the bandwidth, and does not depend on the kernel (Yu

and Jones, 1998). Thus, the multipliers in Table 1 are appropriate for any

design.

We evaluate the robustness of a particular kernel choice at any evalu-

ation point in two ways. First, we use the breakdown value, the smallest

number of observations that can force the estimator to arbitrary values.

Note that when comparing kernels we do not wish to use the breakdown

point (the proportion of observations in the span of the kernel that can

force the estimator to arbitrary values) because the number of observations

in the span depends on the appropriate multiplier for the bandwidth for

the chosen kernel. Say, for example, that the bandwidth used at evaluation

point x using a uniform kernel includes nu(x) observations, with breakdown

point αu(x). Then, the smallest number of observations that could possi-

bly break down the estimate at x using the uniform kernel is �nu(x)αu(x)�,
where �·� represents the smallest integer greater than or equal to the value.

On the other hand, if a quadratic kernel was used, the bandwidth would

be 29.1% larger at x, yielding nq(x) observations in the span of the kernel,

with nq(x) probably larger than nu(x). The smallest number of observations

that could possibly break down the estimate at x using the quadratic kernel

is �nq(x)αq(x)�, where αq(x) is the breakdown point at x when using the
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quadratic kernel. The choice of kernel is up to the data analyst, so the pre-

ferred choice on the basis of breakdown would be the one with larger value

of n(x)α(x) (the breakdown value), not larger α(x) (the breakdown point).

This argument also shows why breakdown value is not sufficient to describe

resistance in the nonparametric regression context. Since the breakdown

value is an increasing function of the number of observations in the span of

the kernel, kernels with larger equivalent bandwidths (such as the triweight)

have an advantage over kernels with smaller equivalent bandwidths (such as

the uniform) in terms of breakdown value.

For this reason, we examine a second measure of breakdown. For a given

kernel, say there are n(x) observations in the span of the kernel at evaluation

point x, and the breakdown value at that point is b(x). The estimator cannot

break down at x if the number of outliers within the span of the kernel is

less than b(x), so the probability that the estimator will not break down at

x is

P (Estimator cannot break down at x) =

b(x)−1∑
j=0

P (j of the observations in the span are outliers).

Say there are k outliers in the sample, and they are spread randomly over the

observations in the sample. Then the probability that j of the observations

in the span of the kernel are outliers is hypergeometric,

P (j of the observations in the span are outliers) =

(k
j

)( n−k
n(x)−j

)(
n

n(x)

) ,

with 0 ≤ j ≤ k. Note that if k < b(x), the estimator cannot possibly

break down at x, but as k gets larger, the probability of having too many

outliers in the span of the kernel increases, decreasing the probability that
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the estimator cannot break down. Note also that a smaller bandwidth makes

it more likely that the estimator cannot break down, since there are fewer

observations in the span of the kernel, implying an advantage for kernels

with smaller equivalent bandwidths. Thus, these two measures quantify a

tradeoff between choosing kernels using smaller bandwidths and those using

larger bandwidths.

We will focus here on nearest neighbor–type bandwidths, rather than

fixed–width bandwidths. The reason for this is that fixed–width bandwidths

add the complication of including different numbers of observations within

the span of the kernel for different evaluation points if the predictor vari-

able design is not uniform (and even if it is uniform at the boundaries). In

what follows the ith predictor value satisfies xi = G−1[i/(n+1)], where G(·)
is either the uniform [0, 1], standard Gaussian, or exponential (with mean

one) cumulative distribution function (that is, the design density is consis-

tent with either a uniform, Gaussian, or exponential pattern, yielding what

might be considered typical design patterns), with n = 100. The breakdown

measures are determined at an equally–spaced grid of 1000 values.

Figure 2 gives breakdown values for the different kernels for a uniformly

distributed design. The bandwidth is taken so that 20% of the observations

are covered by the uniform kernel (recall that for other kernels the equivalent

number based on Table 1 is used). In this figure, and all following ones, the

uniform kernel is represented by a solid line, the quadratic kernel by a dotted

line, and the triweight kernel by a dashed line. We have omitted the biweight

and tricube kernels from this figure (and most of the following figures) to

make them clearer; generally speaking, the properties of these two kernels are

similar to those of the triweight kernel. The uniform kernel consistently has

the poorest breakdown. The other kernels have similar breakdown values,

with the biweight and triweight alternating between values of 7 and 8 outliers
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for most evaluation points.

It is difficult to separate the curves for the different kernels in the fig-

ure, so Table 2 gives the average breakdown values (averaged over the 1000

evaluation points) for each of the kernels. It is clear that the uniform kernel

is a decidedly inferior choice in this case, while the breakdown properties of

the other kernels are similar.

Not surprisingly, breakdown values are more dependent on the evalu-

ation point when the design is not uniform. Even though the estimate is

based on the same number of observations at each evaluation point (since

it is uses a nearest–neighbor bandwidth), breakdown is higher in the region

where observations are denser. This is related to the connection between

breakdown and leverage for the LAV regression estimator. The breakdown

point of the estimator drops in the presence of leverage points. Toward the

edges of the design, the observations fall asymmetrically, making the ones

farthest towards the edges leverage points in the local regressions. If an

outlier falls at one of those locations, it is more likely to break down the

estimate.

Despite this difference from the uniform design situation, the general

breakdown patterns are similar (Figure 3 and Table 2). Once again the uni-

form is a distinctly inferior choice, while the differences between the other

kernels are relatively small. The breakdown values are generally lower than

those for the uniform design, in keeping with the effects of leverage noted

earlier. The situation for an exponential design (Figure 4 and Table 2) is

consistent with the findings for uniform and Gaussian designs. The break-

down is highest in the densest observation region, and the uniform kernel is

decidedly inferior to the other kernels.

These results would seem to imply that any kernel other than the uniform

kernel is a reasonable choice, with the triweight kernel (slightly) better than
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the others, but this ignores the preference the breakdown value measure gives

to using a larger bandwidth discussed earlier. Figures 5–8 summarize the

results of analysis based on the probability that no breakdown can occur

(which gives preference to using smaller bandwidths). Figure 5 refers to

the uniform design case. When there are only 5 outliers, the probability

of no breakdown is virtually 1, since this is below the breakdown value.

Differences between the kernels become evident when there are 15 or 25

outliers in the data. The uniform kernel is a relatively strong performer

now, but the quadratic kernel is best (this is clearest for 25 outliers). The

triweight kernel, which had the highest breakdown values, has the lowest

probability of not breaking down as the number of outliers increases. These

patterns can be seen more clearly in the top plot of Figure 6. These curves

give the values of the probability of no breakdown for each of 1 to 40 outliers,

averaged over all of the evaluation points. Under the uniform design, the

quadratic kernel is clearly best, with the uniform kernel following behind.

Figure 7 gives the probability of no breakdown for the Gaussian design.

In this case the probability of no breakdown decreases markedly near the

edges for some kernels even when there are only 5 outliers. The uniform

kernel is particularly strong near the edges, with the quadratic kernel best

in the middle of the design region. This translates into overall strong per-

formance of these two kernels when averaging over all design points (the

middle plot of Figure 6). These patterns carry over to the exponential de-

sign (Figure 8 and the bottom plot of Figure 6). Only the uniform kernel

keeps the probability of no breakdown relatively high over the entire design,

but the quadratic kernel is either the best or second–best choice over the

entire region.

The properties of the two breakdown measures together imply a rea-

sonable approach to kernel choice. Since all of the kernels other than the
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uniform had similar breakdown values, and the uniform and quadratic kernel

have the highest probabilities of not breaking down, the quadratic (Epanech-

nikov) kernel is the best choice from a robustness point of view when fitting

an LAV local linear regression. This provides a nice counterpoint to the

well–known optimality (in terms of mean squared error) of this kernel for

least squares local polynomial estimation, but now based on a breakdown

argument for a robust estimator.

We briefly investigate the properties of local LAV linear estimation for

a much larger sample size (n = 1000). The top plot of Figure 9 gives

breakdown values by evaluation point for a uniform design for the three

different kernels, again based on a nearest neighbor bandwidth that covers

20% of the observations for the uniform kernel. The patterns are similar

to those for n = 100, except that the differences between kernels are more

pronounced. The triweight kernel comes through as a particularly strong

performer, with a breakdown value close to 90 in the center of the data

range, with the quadratic and uniform kernels trailing behind. Thus, for

the large sample, the advantage in terms of breakdown of a larger equivalent

bandwidth is more noticeably more pronounced than for the smaller sample.

As expected, however, this larger bandwidth has a detrimental effect on

the probability of not breaking down. The middle plot in Figure 9 gives

the probability of no breakdown by evaluation point when there are 260

outliers. The quadratic kernel is a much stronger performer here, having

a consistently high probability over the entire data range. The triweight

kernel does surprisingly well in the center of the data range, but does poorly

near the edges. The usefulness of the quadratic kernel is reinforced in the

bottom plot of Figure 9, which averages the probability of no breakdown

over all evaluation points for up to 400 outliers. The larger-bandwidth

triweight kernel has a clear advantage over the uniform kernel up to roughly
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250 outliers, where the uniform becomes noticeably better. The quadratic

kernel, on the other hand, is competitive over the entire range of outliers,

and thus provides a good choice when the number of outliers is unknown.

Figure 10 examines again the regression relationship for the calibration

data. The dotted line in the figure is the local LAV linear estimate based

on a 55% nearest neighbor bandwidth and quadratic kernel. The 55% span

is roughly equivalent to the 65% span used in loess (which is based on the

tricube kernel). The results are very similar for spans between 50% and

75%. The robustness of the estimate is obvious, as it is unaffected by the

outlier.

The roughness of the estimate is worth further comment. Local LAV es-

timates are inherently “jumpy,” but this property is pronounced in this case,

because there are only seven distinct predictor design points. In situations

where there are more distinct data points the roughness of the estimate is

much less noticeable; see, for example, Figure 4 of Wang and Scott (1994)

and Figures 3 and 5a of Yu and Jones (1998). A simple correction for the

jumpiness of the estimate is to input the estimated regression curve into

an ordinary local least squares estimate, thereby smoothing it out. An ex-

ample of this is given as the solid line in Figure 10. This is a local linear

(least squares) estimate derived from the local LAV estimate. The estimate

preserves the robustness of the underlying LAV estimate, while exhibiting

an intuitively appealing smooth form. Yu and Jones (1998) also noted the

benefits of post-smoothing the local LAV estimator, and proposed a “double

kernel” method to do this.
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4 Conclusion

In this paper we have discussed and examined the robustness properties of

local linear estimation based on least absolute values. We have found that

the quadratic (Epanechnikov) kernel is a good choice for this estimator, as it

provides strong protection in terms of both high breakdown value and high

probability of avoiding breakdown for different predictor distributions, par-

ticularly for smaller sample sizes. In contrast to other proposed estimators

for robust nonparametric regression, local least absolute values polynomial

regression has both verifiable robustness properties and known asymptotic

convergence properties.

Practical application of these methods requires guidance on bandwidth

choice. Wang and Scott (1994) proposed using a robust version of cross–

validation for this, and Yu and Jones (1998) suggested modifying a plug–

in least squares–based bandwidth. Considering the strong performance of

a corrected version of AIC for bandwidth selection found in Hurvich, Si-

monoff, and Tsai (1998) for nonparametric regression based on least squares,

adaptation of the corresponding criterion for LAV regression in Hurvich and

Tsai (1990) to the nonparametric regression context seems an interesting po-

tential choice.

An appealing possibility for improving the breakdown of local polyno-

mial estimators would seem to be the use of a more robust criterion function

than least absolute values, such as least median of squares or least trimmed

squares (Rousseeuw, 1984). While this is relatively straightforward to im-

plement, its properties are very unclear. In particular, unless the asymptotic

squared error properties can be derived, it is not possible to compare kernels,

since the notion of equivalent bandwidths is not available.

We have restricted ourselves to univariate nonparametric regression in
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this paper, but many problems involve multiple predictors. The robustness

and estimation properties of the local polynomial LAV estimators in that

context, including application to additive models (Hastie and Tibshirani,

1990), is an important problem, since outliers are as problematic in this

case as in univariate regression. Finally, the theoretical properties of post–

estimation smoothing (to reduce the jumpiness in the estimate) are an open,

and interesting, question.
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Kernel Formula Variance Multiplier

Uniform 1
2

1
3 1.000

Quadratic 3
4(1 − x2) 1

5 1.291

Biweight 15
16(1 − x2)2 1

7 1.528

Triweight 35
32(1 − x2)3 1

9 1.732

Tricube 70
81 (1 − |x|3)3 .1440329 1.521

Table 1: Multipliers to give equivalent bandwidths for different kernels.
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Design
Kernel Uniform Gaussian Exponential

Uniform 5.00 4.58 4.43

Quadratic 6.75 5.63 5.29

Biweight 6.99 5.70 5.53

Triweight 7.06 5.72 5.66

Tricube 6.80 5.59 5.40

Table 2: Average breakdown values over 1000 equally-spaced evaluation
points for three different designs. The sample size n = 100, and the band-
width is chosen so that it covers 20 observations for the uniform kernel.
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Figure 1: Loess estimates for calibration data. The solid line is the ordi-
nary (nonrobust) version of the estimate, while the dotted line is the robust
version.
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Figure 2: Conditional breakdown values of different kernels for uniform de-
sign based on nearest neighbor bandwidth covering 20% of the observations
for the uniform kernel (n = 100). The solid line refers to the uniform kernel,
the dotted line to the quadratic kernel, and the dashed line to the triweight
kernel.
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Figure 3: Conditional breakdown values of different kernels for Gaussian de-
sign based on nearest neighbor bandwidth covering 20% of the observations
for the uniform kernel (n = 100). The solid line refers to the uniform kernel,
the dotted line to the quadratic kernel, and the dashed line to the triweight
kernel.
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Figure 4: Conditional breakdown values of different kernels for exponential
design based on nearest neighbor bandwidth covering 20% of the observa-
tions for the uniform kernel (n = 100). The solid line refers to the uniform
kernel, the dotted line to the quadratic kernel, and the dashed line to the
triweight kernel.

Evaluation point

B
re

ak
do

w
n 

va
lu

e

0 1 2 3 4

0
2

4
6



Figure 5: Probability of no breakdown of different kernels for uniform design
based on nearest neighbor bandwidth covering 20% of the observations for
the uniform kernel (n = 100). The solid line refers to the uniform kernel,
the dotted line to the quadratic kernel, and the dashed line to the triweight
kernel. The top plot refers to 5 outliers in the data, the middle plot to 15
outliers, and the bottom plot to 25 outliers.
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Figure 6: Average probability (over evaluation points) of no breakdown for
different numbers of outliers of different kernels for uniform design based
on nearest neighbor bandwidth covering 20% of the observations for the
uniform kernel (n = 100). The solid line refers to the uniform kernel, the
dotted line to the quadratic kernel, the short–dashed line to the biweight
kernel, the medium–dashed line to the triweight kernel, and the long–dashed
line to the tricube kernel. The top plot refers to the uniform design, the
middle plot to the Gaussian design, and the bottom plot to the exponential
design.
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Figure 7: Probability of no breakdown of different kernels for Gaussian de-
sign based on nearest neighbor bandwidth covering 20% of the observations
for the uniform kernel (n = 100). The solid line refers to the uniform kernel,
the dotted line to the quadratic kernel, and the dashed line to the triweight
kernel. The top plot refers to 5 outliers in the data, the middle plot to 15
outliers, and the bottom plot to 25 outliers.
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Figure 8: Probability of no breakdown of different kernels for exponential
design based on nearest neighbor bandwidth covering 20% of the observa-
tions for the uniform kernel (n = 100). The solid line refers to the uniform
kernel, the dotted line to the quadratic kernel, and the dashed line to the
triweight kernel. The top plot refers to 5 outliers in the data, the middle
plot to 15 outliers, and the bottom plot to 25 outliers.
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Figure 9: Properties of local least absolute values linear estimator using
different kernels for a uniform design when n = 1000, based on nearest
neighbor bandwidth covering 20% of the observations for the uniform kernel.
The solid line refers to the uniform kernel, the dotted line to the quadratic
kernel, and the dashed line to the triweight kernel. The top plot gives
conditional breakdown values, the middle plot gives the probability of no
breakdown of when there are 260 outliers, and the bottom plot gives the
average probability (over evaluation points) of no breakdown for different
numbers of outliers.
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Figure 10: Local least absolute values linear estimates for calibration data.
The dotted line is the estimate, while the solid line is a version that has
been smoothed.
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