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Abstract. We consider the semiparametric estimation of fractional cointegration in a multivariate
process of cointegrating rank r > 0. We estimate the cointegrating relationships by the eigenvectors
corresponding to the r smallest eigenvalues of an averaged periodogram matrix of tapered, di�erenced
observations. The number of frequencies m used in the periodogram average is held �xed as the sample
size grows. We �rst show that the averaged periodogram matrix converges in distribution to a singular
matrix whose null eigenvectors span the space of cointegrating vectors. We then show that the angle
between the estimated cointegrating vectors and the space of true cointegrating vectors is Op(n

du�d)
where d and du are the memory parameters of the observations and cointegrating errors, respectively.
The proposed estimator is invariant to the labeling of the component series, and therefore does not require
one of the variables to be speci�ed as a dependent variable. We determine the rate of convergence of
the r smallest eigenvalues of the periodogram matrix, and present a criterion which allows for consistent
estimation of r. Finally, we apply our methodology to the analysis of fractional cointegration in interest
rates.

Keywords : Fractional cointegration, long memory, tapering, periodogram.

1 Introduction

Fractional cointegration was originally de�ned in Engle and Granger (1987), and has been the subject of
increasing recent attention in the econometric literature. Robinson (1994) proposed a narrow band least
squares (NBLS) estimator of the cointegrating parameter, with bandwidth tending to1. Further results
on this estimator in the nonstationary case were obtained by Robinson and Marinucci (2001). Chen and
Hurvich (2002) considered a tapered NBLS estimator based on di�erenced data, and showed that this
estimator, which is invariant to additive polynomial trends of a certain order, can converge faster under
some circumstances than the non-tapered NBLS. Most of the existing theory for NBLS has been derived
in the bivariate case. For series of dimension three or higher, NBLS su�ers from the drawback that it
requires the speci�cation of one of the component series as a dependent variable. The estimator is not
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invariant to this choice, and not all choices are even permissible, since the chosen series may not appear
in a cointegrating relationship with any of the other series.

In this paper, we consider the properties of eigenvectors of the averaged periodogram matrix of
tapered, di�erenced observations using a �xed amount of averaging. Such eigenvectors are invariant to
the labeling of the variables, and are also invariant to additive polynomial trends. Since we hold the
amount of averaging �xed, we do not need to estimate the (common) memory parameter of the original
series. Such estimation, which cannot be carried out accurately in the presence of fractional cointegration,
was needed in Robinson and Yajima (2002), who studied the problem of determining the cointegrating
rank based on the eigenvalues of a standardized averaged periodogram matrix, where the amount of
averaging tends to 1. (See also Marinucci and Robinson 2002).

We will �rst derive the limit distribution of the averaged periodogram of the tapered, di�erenced
data, generalizing results obtained by Chen and Hurvich (2002) to the multivariate case. The averaged
periodogram matrix converges in distribution to a singular matrix with null space equal to the space of
cointegrating vectors. We then use recent results by Barlow and Slapni�car (2000) on perturbed (non-
stochastic) singular symmetric matrices to obtain bounds in probability on the angle between the data-
based eigenvectors and the space of cointegrating vectors. We then derive the rate of convergence of
the r smallest eigenvalues of the averaged periodogram matrix, and present a model selection criterion,
similar to one presented in Robinson and Yajima (2002), which allows for the consistent estimation of
the cointegrating rank, r. We then present an application of our methodology to the analysis of interest
rates. Next, we give a discussion, including possible generalizations of our methodology to a situation
where there are varying degrees of cointegration. We conclude with a mathematical appendix.

2 Model and Averaged Periodogram Matrix

Suppose that the original data are a q � 1 time series such that the p � 1th di�erences fytg are weakly
stationary with a common memory parameter d 2 (�p + 1=2; 1=2), where p � 1 is a �xed integer. The
use of p � 1th di�erences converts any additive polynomial trend of order p � 1 in the original series
into an additive constant. The value of this constant is irrelevant for our purposes since the estimators
considered here are functions of the discrete Fourier transform at nonzero Fourier frequencies. We can
therefore take the mean of fytg to be zero, without loss of generality.

In order to guarantee that the cointegrating relationships in the stochastic component of the levels
are preserved in the di�erences, we apply a taper to the di�erences, that is, we multiply the di�erences
by a sequence of constants prior to Fourier transformation. A convenient family of tapers for use on the
di�erences was given in Hurvich and Chen (2000), where it was used for semiparametric estimation of
the memory parameter. The same family of tapers was used on di�erences in Chen and Hurvich (2002)
for the tapered NBLS of fractional cointegration in a bivariate process.

We assume that the di�erenced series fytg has the generalized common-components representation

yt = Axt +But ; (1)

where A is a q � (q � r) unknown nonstochastic matrix of rank q � r (1 � r < q), B is a q � r
unknown nonstochastic matrix of rank r, fxtg is a (q � r) � 1 unobserved series, the entries of which
are called common components, and futg is an r � 1 unobserved error series. We further assume that
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each entry of fxtg has memory parameter d, and each entry of futg has memory parameter du, where
d; du 2 (�p+ 1=2; 1=2) and du < d.

Here, we specify a linear model for the vector series (x0t; u
0
t)
0
. Let  k be a sequence of q � q matrices

such that

 k =
1

2�

Z �

��

eik�	 (�) d� ;

where for each � 2 [��; �], 	(�) is a complex-valued matrix such that 	 (��) = 	 (�) and  0 is an
identity matrix. De�ne the q � 1 vector process (x0t; u

0
t)
0
as�

xt
ut

�
=

1X
k=�1

 k"t�k ;

where
�
"t = ("t;1; : : : ; "t;q)

0	 � iid (0; 2��) ; � is a symmetric positive de�nite matrix with diagonal

entries �2aa and o� diagonal entries �ab = �ba; a 6= b; a; b 2 f1; : : : ; qg and E k"tk4 < 1, where k�k
denotes the Euclidean norm. The spectral density matrix of (x0t; u

0
t)
0
is

f (�) = 	 (�)�	� (�) ; � 2 [��; �] ;

where the superscript � denotes conjugate transposition. We assume that all entries of xt are I (d)
processes (that is, integrated of order d) and all entries of ut are I (du) processes with �p+ 1=2 < du <
d < 1=2: We further assume that for � 2 [��; �] ; the (a; b)th entry of 	 (�) is given by

	ab (�) =
�
1� e�i�

��dab
�ab (�) e

i�ab(�) (2)

where for a 2 f1; : : : ; q � rg ; daa = d, dab � d if b 6= a and for a 2 fq � r + 1; : : : ; qg ; daa = du,
dab � du if b 6= a; �ab (�) are positive even real-valued functions, �ab (�) are odd real-valued functions, all
continuously di�erentiable in an interval containing zero. It follows from (2) that the �rst derivatives of
	ab(�) satisfy

	0
ab(�) = O

�
j	aa(�)	bb(�)j1=2 j�j�1

�
: (3)

It also follows from (2) that we can write the spectral density matrix as

f (�) =�(�)fy(�)��(�) ; (4)

where �(�) = diag
n�

1� e�i�
��d

; : : : ;
�
1� e�i�

��d
;
�
1� e�i�

��du
; : : : ;

�
1� e�i�

��duo
, i.e, the �rst

q�r diagonal entries are �1� e�i�
��d

and the remaining diagonal entries are
�
1� e�i�

��du
, and fy(�) is

nonnegative de�nite, Hermitian, continuous at zero frequency, and therefore real-valued at zero frequency.
We further assume that fyxx(0); the (q � r) � (q � r) leading diagonal block matrix of fy(0); is positive
de�nite. Thus, fxtg is not fractionally cointegrated, but futg is allowed to be fractionally cointegrated (see
Robinson and Marinucci, 1998). Our assumptions imply that fytg is fractionally cointegrated. Indeed,
for any nonzero q � 1 vector � in the null space of A0, denoted by Ker(A0), the linear combination
f�0ytg has memory parameter less than or equal to du, with equality holding if futg is not fractionally
cointegrated. The space of cointegrating vectors Ker(A0) has dimension r, where r is the cointegrating
rank, assumed known.
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For any vector sequence of observations f�tgnt=1, de�ne the tapered discrete Fourier transform by

w�;j =
1r

2�
P���hp�1t

���2
nX
t=1

hp�1t �te
i�jt ;

where �j = 2�j=n is the j'th Fourier frequency, and fhtg is the complex-valued taper of Hurvich and
Chen (2000),

ht = 0:5
�
1� ei2�(t�0:5)=n

�
; t = 1; : : : ; n :

Note that p = 1 yields the no-tapering case. Next, de�ne the tapered cross-periodogram matrix of two
vector sequences f�tgnt=1 and f�tgnt=1 by

I��;j = w�;jw
�
�;j :

We will work with the (real part of the) averaged periodogram matrix of a sample of n observations
fytgnt=1,

Im =

mX
j=1

Re(Iyy;j) ;

where m is a �xed positive integer, m � q � r. It follows from (1) that

Im = A

mX
j=1

Re(Ixx;j)A
0 +A

mX
j=1

Re(Ixu;j)B
0 +B

mX
j=1

Re(Iux;j)A
0 +B

mX
j=1

Re(Iuu;j)B
0 : (5)

We will show that the righthand side of (5) is dominated by the �rst term,

M = A
mX
j=1

Re(Ixx;j)A
0 : (6)

We will also show that, with probability approaching one,
Pm

j=1 Re(Ixx;j) is positive de�nite, so that M
is a singular q � q matrix of rank q � r, and Ker(M) = Ker(A0). Thus, with probability approaching
one, the space of cointegrating vectors is precisely the null space of M (except for the zero vector),
that is, the space of eigenvectors of M with corresponding eigenvalue zero. Note that both Im and
M are symmetric nonnegative de�nite matrices, so all of the eigenvalues of both matrices are real and
nonnegative. Furthermore, all eigenvectors of Im corresponding to distinct eigenvalues are mutually
orthogonal.

From the discussion above, it seems plausible that the eigenvectors of Im corresponding to its r smallest
eigenvalues should be close in some sense to the space of cointegrating vectors. The primary goal of this
paper is to prove a precise version of this claim. It must be stressed, however, that the eigenvectors of
Im cannot be considered as estimators of the cointegrating vectors. Even though it is useful to view
Im as a perturbed version of M (with a "small" symmetric perturbation), it is not necessarily true that
any of the eigenvectors of Im converge in a meaningful sense to any of the eigenvectors of M , even
after appropriate labeling and standardization. Instead, we seek to show that any set of r orthonormal
eigenvectors f�igri=1 of Im corresponding to the r smallest eigenvalues is, with high probability, close to
the space of cointegrating vectors, in the sense that sin� = Op(n

du�d), where sin� is the square root of
the sum of the squared lengths of the residuals from the orthogonal projections of f�igri=1 on the space
of cointegrating vectors.
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3 Limiting Distribution of the Averaged Periodogram

The limiting distribution of the averaged periodogram follows from that of the tapered discrete Fourier
transform. Let G be the q � q matrix-valued spectral measure on [��; �] de�ned by G(d�) = f(�)d�.
Let Gn be the q � q renormalized spectral measure on R de�ned by

Gn(dx) = �nG(dx=n)�n = �n	(x=n)�	�(x=n)�n dx

where �n = diag
�
n�d; : : : ; n�d; n�du ; : : : ; n�du

�
, i.e., the �rst q � r diagonal entries are n�d and the

remaining diagonal entries are n�du . It follows from our assumptions that there exists a Hermitian
nonnegative de�nite q � q matrix-valued measure G0 on R such that Gn(S)! G0(S) as n!1 for all
bounded Lebesgue measurable sets S. For x > 0; we have

G0 (dx) = � (x) fy(0)�� (x) dx (7)

and G0 (�dx) = G0 (dx) where

�(x) = diag
�
e�i�d=2 jxj�d ; : : : ; e�i�d=2 jxj�d ; e�i�du=2 jxj�du ; : : : ; e�i�du=2 jxj�du

�
:

We will make use of the spectral representation for the vector process f�tg,

�t =

Z �

��

ei�tdZ�(�)

where dZ�(�) is a (q � 1) complex-valued random vector with the following properties:

dZ�(��) = dZ�(�) ; E[dZ�(�)] = 0 ; (8)

E[dZ�(�)dZ
�
� (�)] = 0 (� 6= �) ; E[dZ�(�)dZ

�
� (�)] = �d�: (9)

For any bounded set � in R, de�ne

 � (s) =
1

2�

Z
�=n

e�isx	 (x) dx; (10)

Zn (�) = n1=2�n

X
s

 � (s) "s = n1=2�n

Z
�=n

	 (x) dZ" (x) : (11)

De�ne ZG0
as the (q � 1) multivariate complex Gaussian random measure satisfying

E [ZG0
(S)] = 0; E

�
ZG0

(S)Z�G0
(S)
�
=G0 (S) ; ZG0

(�S) = ZG0
(S) ;

E
�
ZG0

(S1)Z
�
G0

(S2)
�
= 0; if S1 \ S2 = ;; (12)

where S is any Borel set in R.

Lemma 1 If �1; : : : ;�M are intervals in R with nonzero endpoints and ��1; : : : ;��M are disjoint;
then

(Zn (�1) ; : : : ; Zn (�M ))
d�! (ZG0

(�1) ; : : : ; ZG0
(�M ))

where the q � q matrix-valued measure G0 (S) is de�ned above, and ; ZG0
is the multivariate complex

Gaussian random measure satisfying the properties given in (12).
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Given the process (x0t; u
0
t)
0
=
P

k  k"t�k described above, consider the m tapered DFT vectors
wT
1 ; : : : ; w

T
m;

wT
j =

�
wT
x;j

wT
u;j

�
=

1r
2�
Pn

t=1

���hp�1t

���2
nX
t=1

hp�1t

�
xt
ut

�
exp (i�jt) ; j = 1; : : : ;m:

It is useful to note that
Pn

t=1

���hp�1t

���2 = ncp, where

cp = 2�2(p�1)
�

2p� 2
p� 1

�
:

We de�ne the function (for x 2 R)

�p(x) =

�
2p� 2
p� 1

��1=2 p�1X
k=0

�
p� 1
k

�
(�1)k�(x + 2�k) ;

where

�(x) =
1p
2�

eix � 1

ix
:

Theorem 1 As n!1 , with m a �xed positive integer,

f�nwT
j gmj=1 d�!

�Z
R

�p(x+ 2�j) dZG0
(x)

�m

j=1

;

where �n = diag
�
n�d; : : : ; n�d; n�du ; : : : ; n�du

�
and ZG0

is the multivariate complex Gaussian random
measure satisfying the properties given in (12).

We partition G0 into four sub-matrices

G0 =

�
G0;xx G0;xu

G0;ux G0;uu

�
;

where G0;xx is a (q � r)� (q � r) matrix and G0;uu is an r � r matrix. De�ning

�j (x) =
1

2

h
�p (�x+ 2�j) + �p (x+ 2�j)

i
;

�j (x) =
i

2

h
�p (�x+ 2�j)��p (x+ 2�j)

i
;

we have the following Corollary.

Corollary 1 Under the conditions of Theorem 1,

n�2dIm
d�! A

mX
j=1

�
UjU

0
j + VjV

0
j

�
A0 ; (13)
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where vec fUj ; Vkgmj;k=1 is a 2m(q � r)-variate normal random variable with zero mean, and covariance
determined by

E (UjU
0
k) =

Z
R

�j (x) �k (x)G0;xx (dx) ;

E (VjV
0
k) =

Z
R

�j (x) �k (x)G0;xx (dx) ;

E (UjV
0
k) =

Z
R

�j (x) �k (x)G0;xx (dx) :

Lemma 2 Let � denote the covariance matrix of vecfU1; : : : ; Um; V1; : : : ; Vmg in Corollary 1. Then �

is positive de�nite.

Remark: It follows from the proof of Lemma 2 that if fxtg were cointegrated, then � would not be
positive de�nite. Thus, positive de�niteness of � provides a characterization of lack of cointegration in
fxtg.

Following from Lemma 2 and the Theorem of Okamoto (1973), we have the following Corollary.

Corollary 2 The averaged periodgram of fxtg,

n�2d
mX
j=1

Re (Ixx;j) ;

under its limiting distribution, is positive de�nite with probability one.

Proof. LetU =(U1; : : : ; Um) andV =(V1; : : : ; Vm) ; then the limiting distribution of n
�2d

Pm
j=1 Re (Ixx;j)

is
mX
j=1

�
UjU

0
j + VjV

0
j

�
=
�
UU0 +VV0

�
:

Since vecfU1; : : : ; Um; V1; : : : ; Vmg is a 2m(q � r)-variate normal random variable with positive de�nite
covariance matrix, the joint distribution of vecfU1; : : : ; Um; V1; : : : ; Vmg is absolutely continuous. Since
we are assuming that m � q� r, it follows from the theorem of Okamoto (1973) that both UU0 and VV0

are positive de�nite with probability one �

It follows from (5) together with Corollary 1 and the proof of Corollary 2 that the limiting distribution
of n�2dIm is the same as the limiting distribution of n�2dM , where M is given by (6).

4 Angle between estimated and true spaces of cointegrating vec-

tors

If we de�ne ~H = n�2dIm and H = n�2dM , then from (5) we can write

~H = H +�H ; (14)
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where the entries of the q � q matrix �H are Op(n
du�d). The spaces of eigenvectors of Im and ~H are

identical, but it is convenient here to work with ~H . We see from (14) that ~H is a perturbed version of the
singular random symmetric matrix H , and the perturbation is a random symmetric matrix with entries
that are op(1). This setup in the non-stochastic case was studied by Barlow and Slapni�car (2000), and
we will generalize their results to the stochastic situation, (14). We will use the notation of Barlow and
Slapni�car (2000), who considered Hermitian matrices with Hermitian perturbations. Since our matrices
H and �H are real and symmetric, all eigenvectors are real.

Consider the family of perturbed matrices

H(�) = H + ��H ; � 2 [0; 1] :

Note that H = H(0), and ~H = H(1). For each value of �, let 0 � �1(�) � �2(�) : : : � �q(�) be the
eigenvalues of H(�), and let �i(�), i 2 f1; : : : ; qg, be a corresponding set of orthonormal eigenvectors, so
that

H(�)�i(�) = �i(�)�i(�) ; i = 1; : : : ; q :

We assume that Ker(H) has dimension r, so that �1(0) = : : : = �r(0) = 0.

De�ne
J = fi : H(�)�i(�) 6= 0 for all � 2 [0; 1]g : (15)

The set J and its complement J C play an important role in the results of Barlow and Slapni�car (2000)
in the nonstochastic case. Note that J is the set of indices i such that the ith smallest eigenvalue of H(�)
remains positive for all perturbations � 2 [0; 1]. Clearly, f1; : : : rg � J C . Since the matrices H(�) are
random, J and J C are random subsets of f1; : : : qg. It seems plausible that since dim(Ker(H)) = r, and
since the di�erence between H and H(�) is op(1), there is a very high probability that J C = f1; : : : rg.
The following lemma is proved in the Appendix.

Lemma 3 ProbfJ C 6= f1; : : : ; rgg ! 0 as n!1.

De�ne
X1 = [�r+1(0); : : : ; �q(0)] ;

a matrix of orthonormal eigenvectors of H associated with its q�r largest eigenvalues, �r+1(0); : : : ; �q(0).
Now, de�ne

sin� = jjX�
1
~X2jjF ;

where for any matrix E, jjEjjF =
pP jEij j2 is the Frobenius norm, and

~X2 = [�1(1); : : : ; �r(1)]

is a matrix of orthonormal estimated cointegrating vectors, that is, eigenvectors of ~H associated with its r
smallest eigenvalues, �1(1); : : : ; �r(1). We can think of sin� as the sine of the angle � between the space
spanned by the estimated cointegrating vectors and the space spanned by the true cointegrating vectors.
A related interpretation of sin� in terms of orthogonal projections was given in Section 2. Roughly
speaking, the smaller sin� is, the closer the spaces of estimated and true cointegrating vectors are to
each other. Barlow and Slapni�car (2000) show that if J = fr + 1; : : : ; qg then

sin� = jjX�
1
~X2jjF � jjHy(0)�HX2jjF

relgap0(�1; ~�2)
; (16)
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where the quantities on the righthand side of this inequality are de�ned below, without requiring the
assumption that J = fr + 1; : : : ; qg. We de�ne

X2 = [�1(0); : : : ; �r(0)] ;

an orthogonal matrix of true cointegrating vectors. We can write H(0) = X(0)�(0)X�(0), where

X(0) = [�1(0); : : : ; �q(0)] ;

and �(0) = diag(0; : : : ; 0; �r+1(0); : : : ; �q(0)). The Moore-Penrose inverse of H(0) is given by

Hy(0) = X(0)�y(0)X�(0) ;

where �y(0) = diag(0; : : : ; 0; ��1r+1(0); : : : ; �
�1
q (0)). The matrices �1 and ~�2 are de�ned by

�1 = diag(�r+1(0); : : : ; �q(0)), and ~�2 = diag(�1(1); : : : ; �r(1)). The generalized relative gap in the

eigenvalues of �1, ~�2 is given by

relgap0(�1; ~�2) = min
j2f1;:::;rg ; i2fr+1;:::;qg

�����i(0)� �j(1)

�i(0)

���� :

Since the eigenvalues of a matrix are continuous functions of the entries of the matrix, and since �H =
op(1), it follows that �1(1); : : : ; �r(1) all converge in probability to zero, and the limiting distribution
of �r+1(1); : : : ; �q(1) is the same as the limiting distribution of �r+1(0); : : : ; �q(0). Since H , under its
limiting distribution, has rank q�r with probability one, it follows that the limiting marginal distributions
of �r+1(0); : : : ; �q(0) have no mass at zero. Thus,

relgap0(�1; ~�2)
P�! 1 : (17)

Since �H = Op(n
du�d), we have

jjHy(0)�HX2jjF = Op(n
du�d) : (18)

Note that both (17) and (18) hold without the need to assume that J = fr + 1; : : : ; qg.

We now present our main theorem.

Theorem 2 sin� = Op(n
du�d).

Proof of Theorem 2: We need to show that nd�du sin� is bounded in probability, that is,

8� > 0 9M� : Probfnd�du sin� > M�g < � 8 suÆciently largen :

For any constant C,

Probfnd�du sin� > Cg = Probfnd�du sin� > C j J = fr + 1; : : : ; qggProbfJ = fr + 1; : : : ; qgg

+Probfnd�du sin� > C j J 6= fr + 1; : : : ; qggProbfJ 6= fr + 1; : : : ; qgg : (19)

The �nal term on the righthand side of (19) tends to zero as n!1 by Lemma 3. De�ne

R = nd�du jjHy(0)�HX2jjF =relgap0(�1; ~�2) :
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By (16), we have

Probfnd�du sin� > C j J = fr + 1; : : : ; qgg � Probf(R > C) \ (J = fr + 1; : : : ; qg)g
ProbfJ = fr + 1; : : : ; qgg

� ProbfR > Cg
ProbfJ = fr + 1; : : : ; qgg :

From (17) and (18), we conclude that R = Op(1), so we can say

8� > 0 9M�
� : ProbfR > M�

� g < �=2 8 suÆciently largen :

Then for the same � and M�
� as above and all suÆciently large n, we have

Probfnd�du sin� > M�
� g <

�=2

ProbfJ = fr + 1; : : : ; qgg + o(1) < � �

5 Consistent Estimation of the Cointegrating Rank

Robinson and Yajima (2002) proposed to use a model selection criterion described in Fujikoshi (1985),
Fujikoshi & Veitch (1979) and Gunderson & Muirhead (1997) to estimate the cointegrating rank, r > 0.
Here, we adapt this criterion to our setting, obtaining a consistent estimate of r. The method requires
some information about d and du. This shortcoming applies also to the analogous method presented
in Robinson and Yajima (2002), who require that d be estimated, using a bandwidth which cannot be
adequately set without the knowledge of a lower bound for d� du.

We start by obtaining a rate of convergence for the r smallest eigenvalues �1(1); : : : ; �r(1) of ~H .

Lemma 4 (�1(1); : : : ; �r(1)) = Op(n
du�d).

Proof of Lemma 4: Since �r(1)�r(1) = ~H�r(1), using jj � jj2 for the Euclidean norm, we have

�2r(1) = jj ~H�r(1)jj22 � 2jjH�r(1)jj22 + 2jj�H�r(1)jj22 = 2jjH�r(1)jj22 +Op(n
2(du�d)) : (20)

Note that

H�r(1) = X(0)�(0)X�(0)�r(1) = X(0)

0BBBBBB@

0
...

�r+1(0)�
0
r+1(0)�r(1)
...

�r+1(0)�
0
q(0)�r(1)

1CCCCCCA :

The entries of X(0) are O(1). Since H converges in distribution, we have (�r+1(0); : : : ; �q(0)) = Op(1).
By Theorem 2,

�0j(0)�r(1) = Op(n
du�d) ; j = r + 1; : : : ; q :

It follows that H�r(1) = Op(n
du�d). The lemma now follows from (20) �

10



Our estimator of r is based on eigenvalues of Im, which may be obtained directly from the observed
data. We denote these eigenvalues by Æ̂1 � : : : � Æ̂q, so that Æ̂i = n2d�i(1) for i = 1; : : : ; q. De�ne

�̂j;k =

kX
i=j

Æ̂i :

Let r̂ be the minimizer of L(u) for 1 � u < q, where

L(u) = V (n)(q � u)� �̂u+1;q ; (21)

and V (n) is a deterministic sequence. Under certain conditions on V (n), the estimator r̂ is consistent for
r.

Theorem 3 If V (n) is a deterministic sequence such that

ndu+d

V (n)
+
V (n)

n2d
! 0 ;

then Probfr̂ = rg ! 1.

Proof of Theorem 3: We follow the same lines as the proof of Theorem 4 of Robinson and Yajima
(2002). We have

Probfr̂ > rg �
qX

u=r+1

ProbfL(u) < L(r)g � q ProbfÆ̂r+1 < V (n)g ! 0 ;

since Æ̂r+1 = Op(n
2d) and V (n)=n2d ! 0. Next,

Probfr̂ < rg �
r�1X
u=1

ProbfL(u) < L(r)g � r ProbfV (n) < Æ̂rg ! 0 ;

since Æ̂r = Op(n
du+d) and V (n)=ndu+d !1 �

6 Application

We applied the methods of this paper to a multivariate series of interest rates on United States Treasury
securities, with maturities of 3 months, 6 months, 1 year, 3 years, 5 years, 7 years, 10 years and 30
years. The observations were daily, spanning the period from January 1, 1982 to Dec 31, 2001. The
sample size is n = 4999. The data were obtained from the database of the Federal Reserve Board, at
http://www.federalreserve.gov/releases/. We took logarithms of the interest rates, di�erenced the loga-
rithms once, and applied a �rst-order taper. We then computed eigenvalues and orthonormal eigenvectors
of the resulting averaged periodogram matrix, using a bandwidth of m = 10. Estimates of the memory
parameter of the tapered di�erences were not signi�cantly di�erent from zero for any of the series. This
provides some justi�cation for our assumption that all of the series share the same memory parameter.
Figure 1 plots the log interest rates for two short-term maturities (3 months, 6 months) and two long-term
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maturities (7 years, 10 years). Two groups are apparent, one for the short-term rates, the other for the
long-term rates. Table 1 gives the eigenvalues �j of the averaged periodogram matrix, sorted in order
from lowest to highest, as well as the corresponding eigenvectors, �j . The ratio of the largest to the
smallest eigenvalue �8=�1 is 4:7� 104. The largeness of this ratio is an indication of near-singularity of
the averaged periodogram matrix, and therefore of potential fractional cointegration of the time series.
It is perhaps of interest to note that, for �1, the only components with an absolute coeÆcient exceeding
0:1 are those corresponding to maturities of 3 years, 7 years, and 10 years. Furthermore, �3 has large
coeÆcients only for maturities of 3 months, 6 months, 1 year and 5 years. For j � 5, the coeÆcients of
�j for 3 months and 6 months are either both small or both large, as are the coeÆcients for 7 years and
10 years.

We multiplied the transpose of each eigenvector by the multivariate series of logarithms of non-tapered
interest rates, yielding eight univariate residual series. For each residual series, we computed the Gaussian
semiparametric estimator of the memory parameter of the tapered di�erences, using a �rst-order taper
and bandwidths of 30. For the bandwidth of 30, we plot in Figure 2 the log periodogram of the tapered
di�erenced series versus log frequency for each of the residual series. It can be seen that the di�erenced
residual series corresponding to the largest eigenvalues seem to have a memory parameter of nearly
zero, as the scatterplot shows a slope of approximately zero, while those corresponding to the smaller
eigenvalues seem to have increasingly negative memory parameters. This suggests the potential presence
of fractional cointegration.

The Gaussian semiparametric estimators of the memory parameters du for each series are given in
Figure 2. In each case, the approximate standard error for the estimator is 0:146. The standard error
was computed using the �nite-sample expression given in Hurvich and Chen (2000). Only the series
corresponding to the six smallest eigenvalues have estimated memory parameters which are signi�cantly
less than zero. Furthermore, there is evidence that the underlying memory parameters corresponding to
these six residual series are not all the same. This suggests that some of the cointegrating relationships
are stronger than others. We will discuss this point further in the next section.

It should be stressed that there is as yet no full theoretical basis to justify the above Gaussian
semiparametric estimators. However, it seems clear that the presence of fractional cointegration would
place rather strict upper bounds on the bandwidth that could be used. This is the reason why we have
used the relatively small bandwidth of 30. We also tried a bandwidth of 70. This gave estimated memory
parameters that are somewhat closer to zero, but which may be contaminated by bias.

We computed r̂ as the minimizer of L(u) given by (21). We tried several choices for the tuning
parameter V (n). Most of these choices yielded either r̂ = 6 or r̂ = 7. Overall, this suggests a cointegrating
rank of r = 6, since the estimated memory parameter is signi�cantly negative for �6 but not for �7.

7 Discussion

In the case of classical nonparametric cointegration, in which (d; du) is known to be (1; 0), Bierens (1997)
obtained estimators of the cointegrating vectors based on solutions to a generalized eigenvalue problem,
and showed that for these estimators sin� = Op(n

�1), where sin� is de�ned in the same way as in
the current paper. It might be interesting to compare Bierens' (1997) estimators to ours in the case
(d; du) = (1; 0), especially since one of the matrices used in Bierens' generalized eigenvalue problem is

12



closely related to the averaged periodogram matrix, with a �xed degree, m, of smoothing.

Although we have considered the consistent estimation of the cointegrating rank r assuming that
cointegration is known to exist (r > 0), we have not presented a test for the presence of fractional
cointegration. A Hausman-type test for fractional cointegration was proposed by Marinucci and Robinson
(2002), where it was shown to work well in simulations. Presumably, the methods of the current paper
could be safely applied once the null hypothesis of no cointegration (r = 0) is rejected by such a test.

We would like to stress here that the results obtained in this paper allow the cointegrating errors to
have di�erent memory parameters. Since we do not assume fyuu(0) to be positive de�nite, it follows that
futg, unlike fxtg, is allowed to be cointegrated. If futg is cointegrated then analogously to (1) we can
write

ut = ~A1u
(1)
t + ~A2u

(2)
t

so that
yt = A0xt +A1u

(1)
t +A2u

(2)
t

where A1 = B ~A1 and A2 = B ~A2. In general we can elaborate the common trend representation in (1)

as follows. Let
n
u
(k)
t

o
; k = 1; : : : ; s; be rk � 1 series with memory parameter duk , with

Ps
k=1 rk = r and

d > du1 > du2 > � � � > dus : Let Ak be q � rk full-rank matrices for k = 1; : : : ; s. We have the common
trend representation

yt = A0xt +A1u
(1)
t + � � �+Asu

(s)
t ; (22)

where A0 is a full-rank q � (q � r) matrix as was the matrix A in (1). This representation implies that
some of the cointegrating relationships among yt are stronger than others, as we saw in our analysis of
the interest rate data. All of the theoretical results in this paper hold for this elaborated model, if we
take du = du1 throughout. Indeed, the elaborated model is simply a special case of the model we have
assumed in Section 2.

Under model (22), there will exist cointegrating vectors such that the cointegrating residual has
memory parameter duk for all k. We are currently exploring the ability of the estimators we have studied
in this paper to approximately recover such cointegrating vectors.

8 Appendix

For convenience of notation, throughout this appendix we write vx = q� r, vu = r, and v = vx+ vu = q.

Proof of Lemma 1: From (11) and the properties (8), (9) of the spectral representation, we conclude
that Zn (�j) = Zn (��j) for j = 1; : : : ;M and

E[ReZn(�j) ReZ
0
n(�k)] = E[ReZn(�j) ImZ 0n(�k)] = E[ImZn(�j) ReZ

0
n(�k)]

= E[ImZn(�j) ImZ 0n(�k)] = 0 ; (j 6= k) :

It therefore suÆces to prove that Zn(�)
d�! ZG0

(�) for any interval � with nonzero endpoints and �\
�� = ;. By the Cramer-Wold device, this is equivalent to showing that for all �; � 2 R2 , �0ReZn(�) +

�0 ImZn(�)
d�! �0 ReZG0

(�) + �0 ImZG0
(�). Note that E[Zn(�)Z

�
n(�)] = Gn(�) ! G0(�) as

13



n ! 1. Note also that from the properties of the spectral representation, E[Zn(�)Z
�
n(��)] = 0. It

follows that

V ar[�0 ReZn(�) + �0 ImZn(�)] =
1

4
(�0 � i�0)Gn(�) (�+ i�) +

1

4
(�0 + i�0)Gn(�) (�� i�)

! 1

4
(�0 � i�0)G0(�) (�+ i�) +

1

4
(�0 + i�0)G0(�) (�� i�)

= V ar[�0 ReZG0
(�) + �0 ImZG0

(�)] := �20 � 0 :

Note that it is possible that �20 = 0 since the limiting normal distribution as asserted in Lemma 1
may have a singular covariance matrix. We will require bounds on the entries of  �(s; n), where here we
explicitly denote the dependence on n as well as s. Without loss of generality, we assume that � = (A;B]
where 0 < A < B. We denote the (a; b) entry,  �(s; n)ab. Using integration by parts, we have

 �(s; n)ab =
1

2�

Z B=n

A=n

e�isx	ab(x) dx =
1

2�

1

�is e
�isx	ab(x)jB=nA=n �

1

2�

1

�is
Z B=n

A=n

e�isx	0
ab(x) dx :

In the sequel, we use C to denote a generic constant. From Equations (2) and (3) we have, for all
suÆciently small x > 0, j	ab(x)j < Cx�dx and j	0

ab(x)j < Cx�d�1 for a 2 f1; : : : ; vxg, j	ab(x)j < Cx�du

and j	0
ab(x)j < Cx�du�1 for a 2 f(vx + 1) ; : : : ; vg and We obtain for all s 6= 0

j �(s; n)abj � C

jsj [(A=n)
�d + (B=n)�d] +

C

jsj
B �A

n
[(A=n)�d�1 + (B=n)�d�1] � Cnd

1

jsj (23)

for a 2 f1; : : : ; vxg and
j �(s; n)abj � Cndu

1

jsj : (24)

for a 2 f(vx + 1) ; : : : ; vg : We can write

�0ReZn(�) + �0 ImZn(�) = �0n1=2�n

X
s

Re  �(s)�s + �0n1=2�n

X
s

Im �(s)�s

= n1=2�d
vxX
a=1

vX
b=1

X
s

[�aRe �(s)ab�s;b + �a Im �(s)ab�s;b]

+ n1=2�du
vX

a=vx+1

vX
b=1

X
s

[�aRe  �(s)ab�s;b + �a Im  �(s)ab�s;b]

=
X
s

Wns;

where for each n, the fWnsg1s=�1 are independent random variables given by

Wns

= n1=2
vX

b=1

(
n�d

vxX
a=1

[�aRe  �(s)ab + �a Im �(s)ab] + n�du
vX

a=vx+1

[�aRe  �(s)ab + �a Im  �(s)ab]

)
�s;b

(25)

Since jRe  �(s)abj � j �(s)abj and j Im  �(s)abj � j �(s)abj for a; b 2 f1; : : : ; vg, we conclude that for
s 6= 0

E[W 2
ns] � Cn

vX
b=1

(
n�2d

vxX
a=1

j �(s)abj2 + n�2du
vX

a=vx+1

j �(s)abj2
)
� Cn=s2 (26)
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where the �nal inequality follows from the bounds (23), (24) for the entries of  �(s; n).

Let V0(n) be a non-decreasing sequence, to be determined later. We haveX
s

Wns =
X

jsj�V0(n)

Wns +
X

jsj>V0(n)

Wns :

Using (26), we have

E[j
X

jsj>V0(n)

Wnsj2] =
X

jsj>V0(n)

E[W 2
ns] � Cn

X
jsj>V0(n)

1

s2
� C

n

V0(n)
:

If we choose V0(n) so that n=V0(n)! 0 as n!1, the Lemma will follow if we can show thatX
jsj�V0(n)

Wns
d�! N(0; �20) if �20 > 0 ;

and that X
jsj�V0(n)

Wns
p�! 0 if �20 = 0 :

In the case �20 = 0, the equation above follows since
P

jsj�V0(n)
E[W 2

ns] = �20 + o(1). Now suppose that

�20 > 0. By the Lyapounov condition (see, e.g., Billingsley 1986, p. 371) it suÆces to show thatP
jsj�V0(n)

E[W 4
ns]�P

jsj�V0(n)
E[W 2

ns]
�2 ! 0 :

Since
P

jsj�V0(n)
E[W 2

ns] = �20+o(1), it suÆces to show that
P

jsj�V0(n)
E[W 4

ns]! 0 for a suitably chosen

non-decreasing sequence with n=V0(n)! 0.

Since E k"tk4 <1, we have from (25)

E[W 4
ns] � Cn2

vX
b=1

(
vxX
a=1

��n�d �(s)ab��4 + vX
a=vx+1

��n�du �(s)ab��4
)
:

For a 2 f1; : : : ; vxg, we have from the Cauchy-Schwarz inequality

max
s
jn�d�  �(s; n)abj � 1

2�
n�d

 Z B=n

A=n

j	ab(x)j2 dx
!1=2 Z B=n

A=n

(1) dx

!1=2

� Cn�d
�
(B=n)�2d+1 + (A=n)�2d+1

�1=2 �B �A

n

�1=2

= C n�1 :

Using similar arguments, we obtain overall that maxsE[W
4
ns] = O(1=n2), and therefore thatX

jsj�V0(n)

E[W 4
ns] �

CV0(n)

n2
:

The proof of the lemma is therefore completed by choosing V0(n) to be any non-decreasing sequence such
that n=V0(n)! 0 and V0(n)=n

2 ! 0, for example, V0(n) = [n1:5]: �
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Proof of Theorem 1

By the Cramer-Wold device, applied to complex-valued random variables, it suÆces to show that
any linear combination of the vm complex-valued random variables contained in f�nwT

j gmj=1, with �xed
complex-valued coeÆcients, converges in distribution to the corresponding linear combination of the limit
distribution given in the statement of Theorem 1. The initial linear combination can be expressed as

Yn =

mX
j=1

a�j�nw
T
j

where aj are v �1 vectors of complex numbers. Using the de�nitions given here and in the preceding
section, together with the change of variable s = t� k, we can write

mX
j=1

a�j
�
�nw

T
j

�
=

1p
2�ncp

mX
j=1

a�j�n

nX
t=1

hp�1t

1X
k=�1

 k�t�k exp(i�jt)

=
1p
2�ncp

mX
j=1

a�j�n

nX
t=1

hp�1t

1X
k=�1

1

2�

Z �

��

eik�	 (�) d� �t�k exp(i�jt)

=
1p
2�ncp

mX
j=1

a�j�n

nX
t=1

hp�1t

1X
s=�1

1

2�

Z �

��

ei(t�s)�	 (�) d� �s exp(i�jt)

=
1p
2�ncp

1X
s=�1

8<: 1

2�

Z �

��

e�is�
mX
j=1

a�j

nX
t=1

hp�1t exp(it(�+ �j)�n	 (�) d�

9=; �s :

Using a similar argument to that given above and de�ning

h�n(�) =
1p
2�ncp

mX
j=1

a�j

nX
t=1

hp�1t exp(it(�+ �j)) ;

we conclude that

Yn =
1X

s=�1

1

2�

Z �

��

e�is�h�n(�)�n	 (�) d� �s : (27)

Let A be a real number with 0 < A < n�. We write Yn = Y A
n +Rn, where

Y A
n =

1X
s=�1

1

2�

Z A=n

�A=n

e�is�h�n(�)�n	 (�) d� �s ; (28)

Rn =

1X
s=�1

1

2�

Z
[��;�]n[�A=n;A=n]

e�is�h�n(�)�n	 (�) d� �s : (29)

By an argument similar to that given in the proof of Proposition 2 of Terrin and Hurvich (1994), it can
be shown that K�

n(x) := n�1=2h�n(x=n)! K�
0 (x) and uniformly on [�A;A], where

K�
0 (x) =

mX
j=1

a�j�p(x+ 2�j) :
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Similarly, it can be shown that for �p+ 1=2 < du < d < 1=2,

lim
n!1

"Z
[��;�]

khn(x)k2 tracef�ndG(x)�ng
#
=

Z
R

kK0(x)k2 trace fdG0(x)g <1 (30)

and

lim
A!1

"Z
Rn[�A;A]

kKn(x)k2 trace f�ndG(x)�ng
#
= 0 ; (31)

uniformly for n = 1; 2; : : :.

It follows from the properties given above that we can approximate Kn on [�A;A] by step functions
of form

gA(x) =

LX
`=�L

g�`
1�`

(x) ;

where ��L; : : : ;�L partitions [�A;A] into equal subintervals, and g�0
= 0. Speci�cally, we have

Lemma 5 There exist step functions fgAgA>0 as above, such that for any � > 0Z A

�A

kKn � gAk2 trace fdGn(x)g < " (32)

when A > A (�) and n � n (�) ; and such thatZ A

�A

kK0 � gAk2 trace fdG0(x)g < " (33)

when A > A (�) :

De�ne

IAn =
X
s

(
1

2�

Z A=n

�A=n

e�isxn1=2g�A(nx)�n	(x)dx

)
�s (34)

= n1=2
X
s

X
`

g��`

1

2�

Z
�`=n

e�isx�n	(x)dx �s

=
X
`

g��`
Zn(�`) :

It follows from Lemma 1 that as n!1 for �xed A,

IAn
d�! IA0 :=

X
`

g��`
ZG0

(�`): (35)

We will complete the proof of the theorem by showing that Yn
d�! Y , where Y is a complex normal

random variable given by

Y :=

Z 1

�1

K�
0 (x) dZG0

(x):

17



For a given A, we have shown that IAn
d�! IA0 . If we can show that IA0

d�! Y as A!1 and that for
all � > 0

lim
A

lim sup
n

P [jYn � IAn j � �] = 0 (36)

it will follow that Yn
d�! Y by Theorem 25.5 of Billingsley (1986). We prove Equation (36) in Lemma 6.

It remains to show that IA0
d�! Y as A!1.

We have

IA0 � Y =

Z 1

�1

(g�A(x)�K�
0 (x)) dZG0

(x):

By Equation (12) and Cauchy's inequality,

EjIA0 � Y j2 � 3

Z 1

�1

kgA(x) �K0(x)k2 trace fdG0(x)g :

It follows from (33) and (30) that EjIA0 � Y j2 ! 0 and hence that IA0
d�! Y as A!1 : �

Lemma 6 For every � > 0;
lim
A

lim sup
n
P
���Yn � IAn

�� � �
�
= 0:

Proof of Lemma 6: Since Yn � IAn = Y A
n � IAn +Rn; it suÆces to show that

lim
A

lim sup
n
E
��Y A

n � IAn
��2 �! 0 (37)

and
lim
A

lim sup
n
E jRnj2 �! 0: (38)

We start by proving (37). We have

Y A
n � IAn =

X
s

(
1

2�

Z A=n

�A=n

e�isx[h�n(x)� n1=2g�A(nx)]�n	(x)dx

)
"s :

Thus, using C to denote a generic constant, we have

V ar[Y A
n � IAn ]

=
X
s

ZZ A=n

�A=n

e�isx
h
h�n(x)� n1=2g�A(nx)

i
�n	(x)�	�(y)�0

ne
isy
h
hn(y)� n1=2gA(ny)

i
dxdy

� C
X
s

ZZ A=n

�A=n

e�isx
h
h�n(x) � n1=2g�A(nx)

i
eisy [hn(y)� n1=2gA(ny)] trace f�n	(x)�	�(y)�0

ng dxdy

= C

Z A=n

�A=n

hn(x)� n1=2gA(nx)
2 trace f�n	(x)�	�(x)�0

ng dx ;

by Parseval's equality. With a change of variables, we obtain

V ar[Y A
n � IAn ] � C

Z A

�A

kKn(x) � gA(x)k2 trace fdGn(x)g
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Equation (37) now follows from Lemma 3, Equation (32). We next prove (38). Using an argument very
similar to that given in proving (37), we conclude from (29) that

V ar[Rn] � C

Z
[�n�;n�]n[�A;A]

kKn(x)k2 trace fdGn(x)g :

Thus, (38) follows from (31) �

Proof of Lemma 2: Denote the 2m� 1 vector '(x) =
�
f�j(x)gmj=1 ; f�k(x)gmk=1

�0
. Then

� =

Z
R

('(x)'�(x)) 
G0;xx (dx) :

We will show that

a0�a =

Z
R

a0 [('(x)'�(x)) 
G0;xx (dx)] a > 0;

where a is a real-valued 2vxm�1 constant vector. Since both ('(x)'�(x)) andG0;xx (dx) are nonnegative
de�nite in R, it suÆces to show that

a0 [('(x)'�(x)) 
G0;xx (dx)] a 6= 0 (39)

for x 2 S; where S is a Borel set with positive measure. Partitioning a
0

= (a01; : : : ; a
0
2m) ; where aj are

vx � 1 vectors, we write the lefthand side of (39)0@ mX
j=1

[aj�j(x) + am+j�j(x)]

1A�

G0;xx (dx)

 
mX
k=1

[ak�k(x) + am+k�k(x)]

!
:

Note that G0;xx (dx) is positive de�nite everywhere in Rn f0g by (7). We show (39) by showing that
f�j(x)gmj=1 ; f�k(x)gmk=1are linearly independent. First we write

�j (x) =

�
eix � 1

�
2i
p
2�

�
2p� 2
p� 1

��1=2 p�1X
k=0

�
p� 1
k

�
(�1)k ��j+k (x) + ��(j+k) (x)

	
and

�j (x) =

�
eix � 1

�
2
p
2�

�
2p� 2
p� 1

��1=2 p�1X
k=0

�
p� 1
k

�
(�1)k ���j+k (x) + ��(j+k) (x)

	
;

where

�` (x) =
1

x+ 2�`
; ` = �1; : : : ;� (m+ p� 1) :

It can be shown that f�` (x)g` are linearly independent, since for x =2 f2�` : ` = �1; : : : ;� (m+ p� 1)g ;P
` b`�` (x) 6= 0 if fb`g are not all zero. Let

e�j (x) = (�i)
p�1X
k=0

�
p� 1
k

�
(�1)k ��j+k (x) + ��(j+k) (x)

	
and

e�j (x) = p�1X
k=0

�
p� 1
k

�
(�1)k ��j+k (x)� ��(j+k) (x)

	
:
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It suÆces to show that fe�j(x)gmj=1 ; fe�k(x)gmk=1 are linearly independent. We will only show this for the

case m � p: The case of m < p can be handled similarly. Let f�jgmj=1 and f�jgmj=1be two sequences of
complex constants where neither sequence is identically zero. Then

mX
j=1

[�je�j (x) + �je�j (x)]
=

p�1X
k=0

�
p� 1
k

�
(�1)k

mX
j=1

�
(�i�j + �j) �j+k (x)� (i�j + �j) ��(j+k) (x)

	
=

mX
j=1

j+p�1X
`=j

�
p� 1
`� j

�
(�1)`�j f(�i�j + �j)�` (x)� (i�j + �j)��` (x)g

=

m+p�1X
j`j=1

b`�` (x) (40)

where

b` =

min(m;`)X
j=max(1;`�p+1)

�
p� 1
`� j

�
(�1)`�j (�i�j + �j) ; 1 � ` � (m+ p� 1);

=

min(m;`)X
j=max(1;`�p+1)

�
p� 1
`� j

�
(�1)`�j (�i�j � �j) ; �(m+ p� 1) � ` � �1:

We need to show that the fb`g are not all zero, and hence that (40) is not almost everywhere the zero
function. We will prove this by contradiction. Note that

b1 = �i�1 + �1 and b�1 = �i�1 � �1:

If b1 = b�1 = 0 then �1 = �1 = 0: Together with the assumption that b2 = b�2 = 0; we have �2 = �2 = 0.
Continuing this induction, we have �j = �j = 0 for all j: This contradicts our assumptions on f�jgmj=1
and f�jgmj=1 : �

Proof of Lemma 3: It suÆces to show for s = 1; : : : ; q � r that Probfr + s 2 J Cg = O(ndu�d).
Suppose that r + s 2 J C . Then for some � 2 [0; 1], we have H(�)�r+s(�) = 0. It follows that �1(�) =
: : : = �r+s(�) = 0, so that dim(Ker(H(�)) � r+s. Thus �1(�); : : : ; �r+s(�) are orthonormal null vectors
of H(�). We then have for i 2 f1; : : : ; r + sg,

0 = H(�)�i(�) = [H + ��H ]�i(�) = H�i(�) +Op(n
du�d) ;

so that
jjH�i(�)jj2 = Op(n

2(du�d)) ; i = 1; : : : ; r + s ; (41)

where jj � jj denotes the Euclidean norm.

Since f�j(0)gqj=1 are an orthonormal basis for C q , we can write

�i(�) =

qX
j=1

�ij�j(0) i = 1; : : : ; r + s ;
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with
qX

j=1

�Lj�Mj =

�
1 L =M
0 L 6=M

�
:

From (41) we have for i = 1; : : : ; r + 1,

�2r+1(0)

qX
j=r+1

�2ij �
qX

j=r+1

�2ij�
2
j (0) = jj

qX
j=r+1

�ij�j(0)�j(0)jj2 = jjH�i(�)jj2 = Op(n
2(du�d)) : (42)

Since f�j(�)gqj=1 are orthonormal, we have

�0L(�)�M (�) = 0 =

rX
j=1

�Lj�Mj +

qX
j=r+1

�Lj�Mj ; L;M = 1; : : : ; r + 1 ; L 6=M : (43)

De�ne

~�i =

0B@ �i1
...
�ir

1CA ; i = 1; : : : ; r + 1 ;

and de�ne B = [~�1; : : : ; ~�r]. We now show that B0B = Tr + op(1), where Tr is an r � r identity matrix.
Note �rst from (42) and (43) that if L 6=M ,

~�0L ~�M = �
qX

j=r+1

�Lj�Mj �
vuut qX

j=r+1

�2Lj

vuut qX
j=r+1

�2Mj = Op

�
1

�2r+1(0)
n2(du�d)

�
:

Since �2r+1(0) converges in distribution to a random variable which has no atom at zero, we have

~�0L~�M
P�! 0 for L 6=M and similarly ~�0L~�L

P�! 1. It follows that B0B = Tr + op(1).

Since ~�1; : : : ; ~�r+1 are not linearly independent, there exist coeÆcients �1; : : : ; �r such that

~�r+1 = �1 ~�1 + : : :+ �r ~�r : (44)

Since (�1; : : : ; �r)
0 = B�1 ~�r+1 we obtain

rX
M=1

�2M = ~�0r+1(BB
0)�1 ~�r+1 = 1 + op(1) :

We now obtain an upper bound for
Pr

j=1 �
2
r+1;j . From (43), (44) and the Cauchy-Schwarz inequality,

we have

rX
j=1

�2r+1;j = �
rX

M=1

�M

qX
j=r+1

�r+1;j�Mj �
rX

M=1

j�M j
vuut qX

j=r+1

�2r+1;j

vuut qX
j=r+1

�2Mj

�
vuut qX

j=r+1

�2r+1;j

vuut rX
M=1

�2M

vuut rX
L=1

qX
j=r+1

�2Lj = Op

�
n2(du�d)

�2r+1(0)

�
: (45)
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From (42), we have

�2r+1(0)� �2r+1(0)
rX

j=1

�2r+1;j = Op

�
n2(du�d)

�
:

Combining this with (45), we obtain

�2r+1(0) = Op

�
n2(du�d)

�
:

Thus, ProbfJ C 6= f1; : : : ; rgg � Probf�2r+1(0) � Rg, whereR is a random variable which isOp(n
2(du�d)).

By Corollary 2, the limiting distribution of H = An�2d
P
Re(Ixx;j)A

0 has rank q� r with probability 1.
We conclude that in fact �2r+1(0) converges in distribution to a random variable which has no mass at
zero. Thus,

ProbfJ C 6= f1; : : : ; rgg � ProbfR=�2r+1(0) � 1g ! 0 ;

since R=�2r+1(0) is op(1) �
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Figure 1: Log interest rates, maturities 3 months 6 months 7 years and 10 years. Daily data, 1/1/1982 to
12/31/2001

�1 �2 �3 �4 �5 �6 �7 �8
3m -0.0153 0.0088 0.3931 -0.0192 0.2733 0.5759 -0.4513 0.4846
6m -0.0096 -0.0956 -0.7932 0.0587 -0.1807 -0.0122 -0.2971 0.4869
1y 0.0282 0.1764 0.4311 0.1664 -0.4245 -0.5806 -0.1202 0.4720
3y -0.1525 -0.4270 0.0503 -0.6407 0.3301 -0.2985 0.2557 0.3434
5y 0.0863 0.7858 -0.1570 -0.0636 0.3735 -0.0217 0.3660 0.2693
7y 0.7024 -0.3594 0.0284 0.3860 0.1254 0.0713 0.3920 0.2306
10y -0.6881 -0.1618 0.0206 0.5143 0.0447 0.1251 0.4205 0.2026
30y 0.0371 0.0674 0.0453 -0.3747 -0.6681 0.4699 0.4047 0.1436
�j 1.80 �10�8 3.50 �10�8 5.11�10�8 1.25�10�7 7.14�10�7 3.94�10�6 1.01�10�4 8.47�10�4

Table 1. Eigenvectors �j and corresponding eigenvalues �j of averaged periodogram for tapered, di�er-
enced log interest rate data, m = 10.
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6131.0^,1 −=udχ 4522.0^,2 −=udχ

7785.0^,3 −=udχ 7072.0^,4 −=udχ

6033.0^,5 −=udχ 3212.0^,6 −=udχ

0007.0^,7 −=udχ 0944.0^,8 =udχ
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Figure 2: Log periodogram of tapered, di�erenced cointegrating residuals vs. log frequency. Each residual process
is obtained by multiplying an eigenvector �j by the log interest rate data. Tapered Gaussian semiparametric
estimated values of du with bandwidth 30 are also provided.
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