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Abstract

Nonparametric regression techniques provide an e�ective way of identifying and examining

structure in regression data� The standard approaches to nonparametric regression� such

as local polynomial and smoothing spline estimators� are sensitive to unusual observations�

and alternatives designed to be resistant to such observations have been proposed as a

solution� Unfortunately� there has been little examination of the resistance properties of

these proposed estimators� In this paper we examine the breakdown properties of several

robust versions of local polynomial estimation� We show that for some estimators the

breakdown at any evaluation point depends on the observed distribution of observations

and the kernel weight function used� Using synthetic and real data� we show how the

breakdown point at an evaluation point provides a useful summary of the resistance of the

regression estimator to unusual observations�
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� Introduction

Nonparametric regression techniques have been shown in recent years to be very e�ective

at identifying and estimating structure in regression data� without requiring restrictive

assumptions on the form of the relationship between the target and predicting variables�

Many di�erent approaches to this problem have been suggested� see Simono� ����	
� chapter

�� for discussion of many of the possibilities� In this paper we focus on local polynomial

estimation based on a single predictor variable� Let fxi� yig� i � �� � � � � n� be the data set at

hand� The underlying model assumed for these data is

yi � ��xi
 
 �i�

with E��jX � x
 � � and V ��jX � x
 � ���x
 not necessarily constant� The goal is to

estimate ��x
� the conditional expectation E�Y jX � x
�

Local polynomial estimation proceeds by �tting a polynomial locally over a small neigh�

borhood centered at any evaluation point x� based on weighted least squares� The �pth

order
 local polynomial regression estimator is based on minimizing

nX
i��

�yi � �� � � � � � �p�xi � x
p��K

�
xi � x

h

�
� ��


Here K��
 is the kernel function� typically a smooth symmetric density function that ac�

complishes local weighting by downweighting the in�uence of an observation yi on ���x
 as

�



xi gets farther from x� The estimator ���x
 is then the intercept term ��� from the weighted

least squares regression based on the weight matrix

W � h�� diag

�
K

�
x� � x

h

�
� � � � �K

�
xn � x

h

��
� ��


The bandwidth h controls the amount of smoothness of ���x
� and can be �xed for all values

of x� or locally varied �based on nearest neighbor distance� for example
 to allow di�erent

levels of smoothing at di�erent locations� Kernel regression corresponds to p � �� and is

known to have inferior performance compared to taking p � � �in terms of bias in the

boundary region� for example
� Assuming a given amount of smoothness of ���
� it can be

shown that certain local polynomial estimators� combined with appropriate choice of h� can

achieve the best possible asymptotic rate of convergence of the estimator to the true curve

���
�

As is the case for any estimator based on least squares� local polynomial estimation based

on ��
 is susceptible to the e�ects of observations with unusual response values �outliers
� If

an observed yi is su�ciently far from the bulk of observed responses for nearby values of x�

���x
 will be drawn towards the unusual response and away from the majority of the points�

This has led to the proposal of the use of criteria other than ��
 to �t local polynomials�

Lowess �Cleveland� ����
� and its successor loess �Cleveland and Devlin� ����
� are nearest

neighbor�based local polynomial estimators that allow the data analyst to downweight the

e�ect of unusual observations� This is done through an iterative process� An ordinary

local polynomial estimate is �rst calculated� Observations then have weights f��� � � � � �ng

attached to them� where the weights decrease smoothly as the absolute residual from the

�



loess �t increases� The updated estimate is then the local polynomial estimate with weights

�W � where � � diag���� � � � � �n
� This process is then iterated several times� Unfortunately�

as M�achler �����
 noted� since the original residuals are based on the ordinary nonrobust

loess �t� the robust version still can be sensitive to outliers�

Several authors have suggested the related approach of using a local version of M�

estimation� The M�estimate attempts to achieve robustness by replacing ��
 with

nX
i��

��yi � �� � � � � � �p�xi � x
p�K

�
xi � x

h

�
� ��


where ���
 is chosen to downweight outliers �Tsybakov� ���	� Fan� Hu� and Truong� �����

Welsh� ����
� This is accomplished by choosing ���
 to be symmetric� with a unique min�

imum at zero� so that its derivative 	��
 is bounded� A typical choice is Huber�s function

	�x
 � maxf�c�min�c� x
g with c � ��� or c � �� Minimization of ��
 requires an itera�

tive procedure� and Fan and Jiang �����
 suggested stopping the iterations after one or two

steps �this is e�ectively what lo�w
ess does
� The asymptotic properties of theM�estimator

�including one� or two�step versions
 are broadly similar to those of the least squares ver�

sion� Starting the iterations at the least squares local polynomial estimator as is typical�

however� implies that the estimator is still potentially sensitive to outliers�

True robustness requires an estimator that is not based on the least squares estimator�

Wang and Scott �����
 investigated the least absolute values �
�
 version of ��
� estimating

���
 by minimizing

nX
i��

jyi � �� � � � � � �p�xi � x
pjK

�
xi � x

h

�
�

�



Wang and Scott �����
 showed that the estimator is the solution to a linear program� and

derived asymptotic theory under speci�c conditions� See also Chaudhuri �����
 and Yu and

Jones �����
�

An alternative approach to robust nonparametric regression is to use quantile smoothing

splines �Koenker� Ng� and Portnoy� ����� ����
� Let �p�u
 be the so�called check function

�p�u
 � u�p� I�u � �
� for p � ��� ��� The quantile smoothing spline is de�ned as a function

�gp�x
 that minimizes

nX
i��

�p�yi � g�xi

 
 �

Z
jg���u
jdu

over the space of functions with
R
jg���u
jdu ��� where � is the smoothing parameter� The

median quantile �p � ��
 corresponds to the minimizer of

nX
i��

jyi � g�xi
j

�

 �

Z
jg���u
jdu�

Portnoy �����
 and Shen �����
 discuss the asymptotic properties of quantile smoothing

splines� Other approaches are also possible� see� for example� White �����
 and Hendricks

and Koenker �����
�

A basic di�culty with all of this work is that while the asymptotic properties of the

methods have been investigated� the robustness properties have not� Thus� while a primary

justi�cation of these methods is their supposed resistance to unusual observations� there

are no results that actually quantify this resistance� The breakdown of an estimator is

the smallest fraction of outliers that can force the estimator to arbitrary values� and is

thus a measure of the resistance of the estimator to unusual values� More speci�cally� the

�



breakdown point of an estimator 
 is de�ned to be

�� � min
hm
n
� bias�m� 
�y�X
 is in�nite

i
�

where bias�m� 
�y�X
 is the maximum bias that can be caused by replacing any m of the

original data points by arbitrary values �Donoho and Huber� ����
� An estimator that is not

at all resistant to outliers� such as one based on least squares� thus has breakdown �

n
� In this

paper we propose and investigate a locally varying notion of breakdown that is appropriate

for local polynomial estimation� By adapting breakdown results from robust linear regres�

sion estimation� we derive the robustness properties of various local polynomial estimators�

including ones based on least absolute values� least median of squares �LMS
 and least

trimmed squares �LTS
 �Rousseeuw� ����
� and one�step M�estimators from robust local

polynomial starting values� In the next section we propose and discuss the derivation of the

various breakdown values� Section � provides speci�c examples of conditional breakdown�

demonstrating its dependence in certain instances on the local distribution of predictor val�

ues� Arti�cial and real data sets are used in Section � to illustrate the properties of the

robust estimators� as well as the connection between breakdown and identi�cation of local

curvature� Section � concludes the paper�

� Determining the Conditional Breakdown

Since the local polynomial regression estimate ����
 is implemented by solving many local

regression problems� each centered at an evaluation point x� its breakdown properties are

de�ned on a local level as well� We restrict ourselves to kernel functions K��
 that are

	



positive on a bounded interval �typically ���� ��
� When we refer to the conditional break�

down� we are merely re�ecting that� unlike for parametric models� the breakdown value

changes depending on the evaluation point x� Several key points illuminate how the notion

of conditional breakdown at a point x can be de�ned�

The �rst point to recognize is that since the local polynomial estimate is based on a

weighted regression� the breakdown of ���x
 is simply the breakdown of a weighted version

of the linear regression method being used� whether that is least squares� least absolute

values� least median of squares� least trimmed squares� or M�estimation�

We must also recognize that if an observation becomes unbounded �i�e�� jxij � �
� there

is no sensible way to de�ne breakdown �or any robustness properties
 in the neighborhood

of that xi� The reason for this is that� unlike in the case of a parametric function �� it isn�t

meaningful to talk about the �true� ��x
 when x � ��� since � is only de�ned by local

smoothness ����
 is not well�de�ned
� For this reason� we will only treat breakdown at an

evaluation point x for bounded x�

Consider now the use of a bandwidth h that is not a function of the local design �a

constant bandwidth is an obvious example of this� but h also can vary in ways that do not

depend on the observations xi� In this case� contamination in the predictor variable is no

longer relevant� since any value of xi that goes to �� eventually has zero weight in the

local regression� that is� only observations local to x can have an e�ect on ���x
� We thus

can describe robustness and breakdown in this case by considering the �nite sample break�

down point of some regression estimator 
 with contamination restricted to the dependent

variable� or � �
�yjX
 as denoted by Giloni and Padberg �����
�

�



The situation when using a bandwidth that varies as a function of the design is more

complicated� Consider the most common bandwidth choice of this type� the nearest neighbor

bandwidth chosen at x to yield a �xed proportion s of observations with nonzero weights

�the closest observations to x
� If �� s is greater than the proportion of observations with

jxij � �� then once again contamination in the predictor variable is not relevant� since

eventually these xi�s will no longer be in the neighborhood of x and will have zero weight�

On the other hand� if � � s is less than or equal to the proportion of observations with

predictor contamination� at least one contaminated observation will have nonzero weight�

In this case we can appeal to known breakdown results for 
��� LTS� and LMS regression

when there is contamination in the predictor� That is� the breakdown at x of local 
��

regression is �

n
�the smallest possible value� indicating no robustness
� while that of local

LTS LMS is the same as that described below� since LTS and LMS are as resistant to

contamination in the predictor as they are to contamination in the target variable� For

these reasons� throughout the rest of this paper we refer to the �nite sample breakdown

point with contamination restricted to the dependent variable simply as the �nite sample

breakdown point�

In this section� we provide a discussion of the breakdown properties of local polynomial

regression where the regression estimator is either the local 
��regression estimator� the

local LTS LMS estimator� or either estimate followed by a one�step M�estimate� We �rst

focus on the case of local 
��regression�

�



��� Local ���Regression

In order to describe the breakdown properties of local 
��regression estimators� we �rst must

consider the breakdown point of weighted 
��regression� Below� we demonstrate that as long

as the weights for weighted 
��regression remain positive and �nite� the breakdown point

of weighted 
��regression can be calculated in the same way as in the case of standard 
��

regression� The weights that are used in each of the local regression problems are determined

by the selected kernel function and bandwidth� i�e�� wi � h��K
�
xi�x
h

�
� In the next section�

we show that the presence of weights that are not all constant can cause the breakdown to

change�

In our discussion below� we assume that we have n observations on the dependent vari�

able y and some number p � � of independent variables x�� � � � � xp� each one also providing

n values� We denote

y �

�BBBB�
y�
�
�
�
yn

	CCCCA � X �

�BBBB�
� x�� � � � x�p
� � �
� � �
� � �
� xn� � � � xnp

	CCCCA �

�BBBB�
x�

�
�
�
xn

	CCCCA � ���x�� � � � �xp
 �

where y � R
n is a vector of n observations and X is a n � p 
 � matrix referred to as

the design matrix� Furthermore� ��x�� � � � �xp are column vectors with n components and

x�� � � � �xn are row vectors with p
 � components corresponding to the columns and rows

of X respectively�

We denote the set of indexes corresponding to the rows of X as N � We denote the

cardinality of Z 	 N as jZj� Furthermore� XZ �
�
xi
�
i�Z

� eZ � ��� � � � � �
T with jZj

�



components equal to one and XU � eU � XL and eL are de�ned similarly�

The properties of the �nite sample breakdown point for 
��regression� when �tting a

model y � X� 
 �� were �rst studied by He et al� �����
� To analyze the �nite sample

breakdown point of a ��nite
 weighted 
��regression estimator� we refer to the de�nition of

a design matrix being q�stable� Giloni and Padberg �����
 de�ned a design matrix X to

be q�stable if there exists v � RjZj such that

vXZ � �eTUXU 
 eTLXL � � eTZ 
 v 
 eTZ

is satis�ed for all L�U � N with L � U � 
 and jL � U j 
 q where Z � N � U � L�

q�stability is de�ned by selecting q� the largest nonnegative integer such that the condition

is satis�ed�

Using this de�nition of q�stability of a design matrix� Giloni and Padberg �����
 showed

that if a design matrix X is q�stable for some q � �� then the �nite sample breakdown point

with contamination restricted to the dependent variable of 
��regression is equal to q��
n

�

Assuming that the weights are �nite and positive� generalizing the above result to weighted


��regression requires rede�ning the design matrix X as follows�

The weighted 
��regression problem with positive� �nite weights wi can be formulated

��



and solved as a linear program

min

nX
i��

wir
�

i 
 wir
�
i

s�t�

xi� 
 r�i � r�i � yi for i � �� � � � � n

� free� r� � ��r� � ��

Equivalently� the objective function can be taken to be the same as in the case of

standard 
��regression� changing the data by setting eyi � wiyi and setting exi � wix
i�

Thus� to calculate the breakdown of weighted 
��regression one just needs to determine the

q�stability of eX� In the next section� we give breakdown points for local weighted polynomial

regression based upon a tricube kernel function and include results for the case where the

weights are all constant for the data points which are in each local problem �that is� a

uniform kernel function K
�

Note that in the case of local 
��regression �as opposed to the traditional 
��regression
�

we are only concerned with the intercept term� i�e�� ���� In such a case� one would like to

ascertain that the breakdown results are the same� It might be the case that the restriction

to an intercept increases the breakdown point� This turns out not to be the case� as stated

in the following proposition� which is proved in the Appendix�

Proposition � The �nite sample breakdown point of ��� of �weighted� 
��regression is the

same as the �nite sample breakdown point of �weighted� 
��regression�

Thus� determining the q�stability of a design matrix for each local weighted 
��regression

��



describes the �nite sample breakdown point for local 
��regression� Giloni and Padberg

�����
 demonstrated how to calculate the q�stability of a design matrix through both an

enumerative procedure as well as by formulating and solving a suitable mixed�integer pro�

gram �both of these methods can be very computationally intensive� however
� We use this

methodology to calculate the �nite sample breakdown points locally for local 
��regression

in Section ��

��� Local LTS�LMS Regression

Before discussing the breakdown properties of local LTS LMS polynomial regression� we

�rst brie�y describe the LTS and LMS regression estimators� The LTS regression estimator

��
LTS

is determined by minimizing

kX
i��

�
r�
�
i�n

�

where ri � yi � ��� � xi ��� � � � � � xp ��p and

�
r�
�
��n



�
r�
�
��n


 � � � 

�
r�
�
n�n

�

Similarly� ��LMS is determined by minimizing

�
r�
�
k�n

�

In the case of local polynomial regression with one predictor� the ith residual is

ri �


yi � ��� � �xi � x
 ��� � � � � � �xi � x
p ��p

�
�

��



Thus� each local LTS regression problem evaluated at x requires the minimization of

kX
i��

�er��
i�nx

� ��


where eri �q
h��K

�
xi�x
h

�
ri�

�er��
��nx



�er��

��nx

 � � � 


�er��
nx�nx

�

and nx is the number of observations with nonzero weight in the span of the kernel centered

at evaluation point x�

Alternatively� one could solve the local LTS problem by minimizing

kX
i��

�
r�
�
i�nx

�

where

ri �

eyi � ��� � exi� ��� � � � � � exip ��p� �

where exij �q
h��K

�
xi�x
h

�
�xi � x
j and eyi �q

h��K
�
xi�x
h

�
yi� The local LMS regression

problem can be formulated similarly� Since each local regression problem can be formulated

exactly as a standard LTS or LMS regression problem� it is thus evident that the high

breakdown properties of LTS LMS regression hold in the case of local LTS LMS polynomial

regression� Speci�cally� if there are nx observations in the local regression around the value

x� the conditional breakdown can be as large as fb�nx � p
��c 
 �g�nx� where b�c is the

greatest integer function�

��



��� One�Step M�Estimates

In this subsection� we discuss the breakdown properties of local one�step M�estimators

with starting estimates of either 
��� LTS� or LMS regression� In standard linear regression

models� one�step M�estimators have been used to improve the e�ciency of certain high

breakdown regression estimators� for example LMS regression �Rousseeuw and Leroy� �����

p� ���
� In the case of local polynomial regression� the only change is that �� and thus 	�

are weighted� where the weights are de�ned by the kernel function K
�
xi�x
h

�
�

The one�step M�estimator that we discuss here is the Bickel �����
 Type � estimator�

based on the Huber 	 function� 	�x
 � maxf�c�min�c� x
g� An initial robust estimate ��

is determined� and residuals r are calculated� The Huber function is then applied to the

residuals� yielding

r�i �

�
�
�
�c �� if ri � c ��

ri if jrij � c ���

c �� if ri � c ���

Here �� is a preliminary robust scale estimate� �� � �����medianjrij �Rousseeuw and Leroy�

����� p� ��
� Let S� be the number of observations where jrij � c ��� Let

�X �

�BBBB�
� x� � x
� �
� �
� �
� xn � x

	CCCCA
The one�step M�estimator is then

�� 

n

S�



�XTW�X

���
�XTWr�� ��


��



where W is the weight matrix de�ned in ��
�

Within the context of local regression� since breakdown is only based on observations

within the span of the kernel� and we are using a bounded kernel� for h not a function

of the local design� predictor value contamination ultimately results in the point having

zero weight� Thus� the design matrix� �X ultimately used in each local problem is bounded�

Furthermore� the modi�ed vector of residuals is also bounded by design� and the elements

of W are bounded� It is natural to restrict ourselves to the situation where


�XTW�X

�
is

invertible� since otherwise the one�step M�estimate ��
 is not de�ned� Thus the maximal

bias between the original estimate �� and the one�stepM�estimate de�ned in ��
 is bounded�

Therefore� the breakdown of the one�step M�estimator remains the same as that of the

original estimator� independent as to whether the original estimate was any one of either


��� LTS� or LMS regression�

However� as mentioned previously� when� for example� a nearest neighbor bandwidth

is utilized� it is possible that predictor value contamination can result in a point having a

positive weight� In such a case� both local 
��regression as well as a one�step M�estimate

based upon it will have a �nite sample breakdown point of �

n
� In order to ensure that one�

step M�estimates based upon LTS LMS regression retains the high breakdown property of

LTS LMS regression� it is su�cient to use a redescendingM�estimator such as the biweight

	�function �see Rousseeuw and Leroy� ����� p� ���
� Whenever it is possible to ascertain

that predictor value contamination results in a point having a weight of zero� it is su�cient

to use a one�step M�estimator based on the Huber 	�function as described above� Thus�

in our examples and in the �gures displayed at the end of the paper� we use a one�step

��



M�estimator based on the Huber 	�function�

It is obvious that the conditional breakdown is never larger than roughly one�half of

the number of observations within the span of the kernel �that is� nx��
� Since consistency

of �� requires that nx�n� � as n��� the asymptotic breakdown of any local polynomial

estimator with respect to the total sample size is zero� In other words� if any �xed percentage

of the total number of observations� no matter how small� is placed at a particular value x��

and the associated y values are sent to ��� as n � � eventually the number of outliers

will exceed the breakdown point� We do not consider this a meaningful criticism of the idea

of conditional breakdown for nonparametric regression� since �as will be seen in the next

section
 the �nite sample conditional breakdown provides a useful summary of meaningful

di�erences between the methods for �nite samples�

� Examples of Conditional Breakdown

In this section we describe the relationship between the conditional breakdown properties of

local linear estimators and the distribution of predictor values� More precisely� we describe

this relationship for local 
��regression� since �as was noted in the previous section
� the

breakdown is not a function of the design distribution for local least squares regression

�where the breakdown is always �

nx

 or local LTS LMS regression �where it is always as

high as roughly ��!
�

Figures � through � give the �maximum resistant� proportions� which we de�ne as �

nx
less

than the breakdown point �that is� this is the maximum proportion of local observations that

can be outliers without the estimator breaking down
� The ith predictor value satis�es xi �

�	



F���i��n 
 �
�� where F ��
 is either the uniform ��� ��� standard Gaussian� or exponential

�with mean one
 cumulative distribution function �that is� the design density is consistent

with either a uniform� Gaussian� or exponential pattern� covering what might be considered

typical design patterns
� with n � ���� In each plot breakdown values at a �ne grid of

values over the range of the data are connected by lines� with the solid line referring to local


��regression based on a tricube kernel�

K�x
 �

�
������
�� � jxj�
� if �� 
 x 
 ��

� otherwise

�this is the kernel used in loess
� and the dotted line referring to estimation based on a

uniform kernel�

Figure � gives proportions for a nearest neighbor version of the estimator� where the local

bandwidth is adjusted to guarantee ��! of the observations in the span of the kernel �i�e��

nx � �� for all x
� The top plot shows that when the design density is uniform and a uniform

kernel is used� the local maximum resistant proportion is exactly ��!� corresponding to a

breakdown of ��!� That is� up to �ve outliers can be accommodated within the span of

the kernel at any evaluation point� This can be contrasted with the ��! breakdown value

of local linear LTS LMS� which implies that up to nine outliers can be accommodated by

those methods �the latter value is appropriate for any design and any kernel when using

a nearest neighbor bandwidth� since it is only dependent on the number of observations

within the span of the kernel
�

What is also striking is that using a uniform kernel has clear advantages from a robust�

ness point of view� The maximum resistant proportion is no longer constant if a tricube

��



kernel is used� being lower near the endpoints of the interval than in the center� Further�

even in the center the tricube kernel leads to an estimator with smaller breakdown than

using the uniform kernel�

The maximum resistant proportions �and hence the breakdowns
 are not constant for

either kernel when the design density is not uniform� The middle �Gaussian design
 and

bottom �exponential design
 plots show that generally speaking the estimator is more re�

sistant where the design is densest �this is not a function of nx� since that is constant here�

but rather the design within the span of the kernel
� The breakdown values are at least as

high when using the uniform kernel compared to using the tricube kernel� and local per�

turbations in the breakdown that occur when using the tricube kernel are absent� In the

sparser design areas� the uniform�based estimator can accommodate two additional outliers

compared to the tricube estimator�

Figure � gives the corresponding proportions for a �xed bandwidth version of the es�

timator� The bandwidths were taken to be h � �� �uniform design
� h � ��� �Gaussian

design
� and h � ��� �exponential design
� which results in roughly �� observations within

the span of the kernel in the densest regions� While the broad patterns are similar �with

maximum resistant proportions again peaking at around ��!
� the proportions are consid�

erably more unstable for �xed h� The reason for this is that� in addition to the local design

changing as the evaluation point changes� the actual number of observations in the span of

the kernel also changes� Once again a uniform kernel results in a more robust estimator than

using a tricube kernel� although in this case there are a few evaluation locations where the

pattern reverses� Note that in regions where the design is sparse� and there are relatively

��



few observations� the maximum resistant number drops to zero� indicating that the local

linear 
��estimator is as nonrobust as local least squares�

The �gure also gives corresponding �gures for the local LTS LMS estimator �dashed

line
� As was the case for nearest neighbor estimation� local LTS LMS is typically more

robust than local 
�� but as the design gets sparser �and the number of observations in

the span of the kernel gets smaller
� the gap between the two methods becomes smaller�

Ultimately� in the sparsest regions� local LTS LMS is as nonrobust as 
� and least squares�

Figure � makes things a bit clearer by plotting the actual number of outliers that can be

resisted� rather than the proportion� The patterns are now similar to those in Figure ��

although the maximum resistant values are generally lower than those that would be implied

by the nearest neighbor bandwidth� as would be expected from the smaller values of nx�

� Application to Real and Synthetic Data

In this section we examine several synthetic data sets� and one real data set� to illustrate

the properties of the robust local linear estimators� Figures � through � refer to synthetic

data with n � ���� predictors on a uniform grid� and ��x
 � sin�����x
� Figure � illustrates

performance on clean data� with yi � ��xi
 
 �i and �i � N��� ���
� The top plot gives

loess estimates based on a nearest neighbor bandwidth covering ��! of the data� where the

solid line is the standard loess estimate and the dotted line is the robust version� The true

regression curve is given as the dashed line �the same representations� and the ones given

below� are also used in Figures � through �
� As would be expected� there is little di�erence

between the robust and nonrobust versions for these data�

��



The middle and bottom plots give estimates for robust local linear estimation� The

middle plot refers to least absolute values 
��estimates� also based on a nearest neighbor

bandwidth covering ��! of the data� The solid line is the 
��estimate based on a tricube

kernel� with the dotted line the one�step M�estimate based on that initial estimate �using

c � �
� The estimates are similar to the loess estimates� although they are less smooth�

and are virtually identical to each other� Increasing the bandwidth would not alleviate

this roughness� since it is an inherent property of least absolute values estimation �Ellis�

����� discusses the tendency for 
��regression lines to change greatly as a result of a small

change in the data in ordinary regression� which results in �jumpiness� in this context as

observations move into and out of the span of the kernel
� The third �dashed
 line is the


��estimator based on a uniform kernel� It is very similar to the tricube kernel estimate�

except that it levels o� a bit at the left end of the data�

This tendency is much more pronounced in the bottom plot� which gives the local LTS

estimate �the local LMS estimate was very similar� and is omitted here
� The local LTS

estimate �solid line
 �attens out considerably at both ends� This lack of sensitivity to lo�

cal curvature arises as a direct result of the high breakdown of LTS �or LMS
� The high

breakdown estimator� being constructed to resistantly �t a straight line� has trouble dis�

tinguishing between a change in the regression line �local curvature
 and observations o�

a straight line that are outliers� particularly at the boundary� The one�step M�estimate

corrects for this problem� Note also that the LTS estimate is quite jumpy� since high break�

down methods also can change noticeably from small changes in the data �Hettmansperger

and Sheather� ����
�

��



In Figure � three observations have been replaced with outliers� As would be expected�

the nonrobust version of loess is a�ected by these outliers� being drawn towards them� All

of the robust estimates� on the other hand� are una�ected by the outliers� looking virtually

identical to the estimates in Figure �� In Figure 	 three more outliers are added� While the

uniform kernel�based 
��estimate� and the LTS estimate �and to a lesser extent the tricube�

based 
��estimate
 are relatively una�ected� the M�estimates are now drawn towards the

outliers� This re�ects an interesting issue in using the M�estimate� When the initial

estimate is not robust� the M�step can downweight the e�ects of the outliers� but when

the initial estimate is itself robust� the M�step �in attempting to increase the e�ciency of

the estimator
 actually becomes more a�ected by the outliers� and less robust �although�

as shown in Section ���� the e�ect on the M�estimate is limited� since the breakdown point

is identical to that of the initial estimate
�

The number of outliers is increased to nine in Figure �� While the robust loess and

LTS estimates are una�ected �although the one�step M�estimate from the LTS estimate is

drawn towards the outliers
� the 
��estimates break down �consistent with their roughly ��!

breakdown point
� Interestingly� the 
��estimate based on a uniform kernel is una�ected

by the outliers in the neighborhood of them� but exhibits spurious negative lobes on either

side of that region�

It is possible that the location and number of the unusual observations in Figures 	

and � might re�ect a structural change in � in that neighborhood� rather than the pres�

ence of outliers� Ultimately� this doesn�t matter� since nonparametric regression estimation

hypothesizes smoothness of �� these observations represent a violation of the underlying

��



hypothesized relationship� It is important that these observations not unduly a�ect �� so

that they can be identi�ed as discrepant� Note also that while a larger bandwidth �resulting

in more local observations
 could result in even the nine outliers not causing breakdown�

this is not a viable strategy� since it would result in drastic oversmoothing�

Figure � shows that the robust loess estimate also can be strongly a�ected by outliers�

The data are on a uniform grid with n � ���� with ��x
 � sin���x
� The response values

satisfy yi � ��xi
 
 �i and �i � N��� ���
� except that four observations are adjusted to be

outlying� The �gure gives estimates based on a nearest neighbor bandwidth covering ��!

of the data� Both versions of loess �top plot
 are drawn to the outliers� as is the 
��estimate�

The LTS estimate� on the other hand� is completely resistant to the outliers� As in earlier

cases� the M�estimate based on the robust estimate is drawn towards the outliers�

Even one outlier can cause trouble for estimators in a sparse design region� In Figure �

the data are on a grid generated by a Beta���	� ��	
 density� and are denser near zero and

one and sparse near ��� The response values are generated as in Figure �� with two isolated

outliers replacing two observations� The nonrobust loess estimator is drawn towards the

outliers in the top plot� as expected� but the robust estimator is also a�ected� in that the

estimate in the neighborhood of the outlier in the sparse region is pushed farther away from

the outlier� resulting in the peak not being estimated well� The 
��estimator �middle plot


doesn�t have a problem with the single outlier in the sparse region� but the 
��estimator

based on a tricube kernel is a�ected by the outlier in the asymmetric region around x � ����

Locally� the design in this region is similar to the exponential design examined in the

previous section� and as was indicated there� a uniform kernel leads to a more robust

��



estimator that is una�ected by the outlier� The local LTS estimate �bottom plot
 has no

problems with either outlier� but the M�estimates based on the 
�� and LTS estimates are

drawn towards the outlier in the sparse data region�

We conclude this section with analysis of a real data set that illustrates the di�culties

in robust nonparametric estimation when the design is very asymmetric� The data are

from a radioimmunoassay calibration study� and relate counts of radioactivity to the con�

centration of the dosage of the hormone TSH� in micro units per ml of incubator mixture

�Tiede and Pagano� ����
� There is a roughly hyperbolic relationship between counts and

concentration� with one clear outlier at ���� ����
� Figure �� gives local linear estimates

for these data� based on a nearest neighbor bandwidth covering 	�! of the data� The loess

estimates �top plot
 are both a�ected by the outlier� While the nonrobust estimate �solid

line
 is drawn towards the outlier� the robust estimate �dotted line
 is driven away from

it� resulting in a spurious dip below the bulk of the points� This dip is not a function of

choice of the bandwidth� as bandwidths from the smallest possible value ��	! of the data


to one leading to clear oversmoothing ���! of the data
 all yield estimates exhibiting it�

The 
��estimates based on a 	�! nearest neighbor bandwidth �middle plot
 are much more

satisfactory� particularly the one based on the tricube kernel �solid line
� The estimate

based on the uniform kernel �dotted line
 is slightly jumpier� but still follows the general

pattern of the data�

This cannot be said of the LTS estimate �solid line� bottom plot
� The high breakdown

estimate is unable to recognize the nonoutlying value at ���� ���	
� which occurs as the

design becomes sparser� as representing a change of curvature� and tracks the downward

��



trend until x � �	� where it suddenly jumps up to the correct level of the data� This is a

direct result of the high breakdown� which is illustrated by the dotted line� This is an LTS

estimate where k in ��
 is taken to result in a ��! breakdown� and it is very similar to the


��estimate�

� Conclusion

In this paper we have discussed and examined the robustness properties of local linear

estimates based on 
��� least trimmed squares� and least median of squares� Although

the latter estimates have higher breakdown than the 
��estimate� this is balanced by the

tendency for the high breakdown estimates to be less sensitive to changes in local curvature�

While one�step M�estimation improves performance when there are not outliers� outlying

observations can have a deleterious e�ect on the estimate�

The jumpiness of the robust estimates is an issue to be addressed� One simple solution

would be to input the estimated regression curve to an ordinary local least squares estimate�

thereby smoothing it out� An example of this is given in Figure ��� This is a local linear

�least squares
 estimate derived from the local 
��estimate based on a tricube kernel in

Figure ��� This estimate preserves the robustness of the underlying 
��estimate� while

exhibiting an intuitively appealing smooth form� The theoretical properties of such post�

estimation smoothing are an open question� The apparent connection between breakdown

and the ability of a robust estimate to adjust to changes in curvature suggests the possibility

of choosing the level of robustness in an adaptive way �based on the curvature in the

underlying regression curve
� allowing for more robustness when the curve has less complex

��



structure�

We have restricted ourselves to univariate nonparametric regression in this paper� but

many problems involve multiple predictors� Local polynomial estimation generalizes to more

than one predictor� and it would be interesting to investigate the robustness and estimation

properties of the robust local polynomial estimators in that context� Additive models

�Hastie and Tibshirani� ����
 provide an alternative to direct nonparametric estimation�

�tting models of the form

yi � ���x�i
 
 � � � 
 �r�xri
 
 �i�

rather than the more general

yi � ��x�i� � � � � xri
 
 �i�

Outliers are as much of a problem for additive models as in univariate regression� so being

able to assess the breakdown of models �t using robust smoothers would be very informative

to the data analyst�

Appendix

Proof of Proposition �� We prove the proposition by contradiction� Since we are considering

the �nite sample breakdown point� we assume that the design matrix� X is known� its

entries are bounded� and that it is in general position �all p
��p
� submatrices have full

rank
� We assume that after a design matrix is suitably contaminated� the maximal bias of

the �weighted
 
��regression is in�nite but the maximal bias of its constant term remains

bounded� In other words� we assume that we are in a situation in which �weighted
 
��

��



regression breaks down but its constant term does not� We show that the above assumption

is a contradiction�

It is well�known that an 
��regression estimate is an exact �t to some p
� observations�

Let B� 	 N � jB�j � p
�� and r �XB�

 � p
� �i�e�� B� is a subset of p
� indexes of rows of

X such that these rows of X are of full rank
� Denote the �weighted
 
��regression estimate

for data �X�y
 as �� � X��
B�
yB�

� Assume that the vector of the dependent variable y is

contaminated by some vector g � R
n � i�e�� g � �g�� � � � � gn


T � multiplied by some positive

constant �� Further assume that as ���

kX��
B�
yB�

�X��
B�

�yB�

 �g
 k � �

where B� is de�ned similarly to B� in the sense that it is the set of indexes of rows of X such

that it de�nes the optimal 
��estimate of the regression problem with contaminated data�

In other words� the contamination vector g has caused the �weighted
 
��regression estimate

to break down� Let ���
B�

be the estimate of the constant term based upon �� � X��
B�
yB�

� i�e�

based upon the rows of X de�ned by the set of indexes B�� Let


X��
B�

��
be the �rst row

of the matrix


X��
B�

�
� Assume that ��� has not broken down even though �� has� i�e�� there

exists some K � � such that

k ���
B�

� ���
B�

k � k


X��
B�

��
yB�

�


X��
B�

��
�yB�


 �g
 k � K ��

as ���� This implies that 

X��
B�

��
g � �� �	


�	



In order that ��� does not break down� �	
 must hold for every g � R
n and for every

associated B� 	 N where jB�j � p
 � and r �XB�

 and B� de�nes an optimal 
��estimate

to some contaminated data set� There are �at most
 T �
�

n
p��

�
candidates for a �weighted



��regression estimator� In the case where the design matrix is in general position� there are

exactly T candidates� Let B�k
be the kth subset of indexes of rows ofX� where k � �� � � � � T �

In order to show that ��� will indeed break down it su�ces to show that there exists some

g� � R
n such that 


X��
B�k

��
g� �� � for k � �� � � � � T � ��


However� as long as


X��
B�k

��
does not consist of only zeros� g� as in ��
 exists� Since



X��
B�k

��
is a row of an inverse of a matrix� it cannot consist of only zeros� and therefore

there exists a case in which ��� breaks down where �� does as well�

We note that contamination need not have the form described above� However� since

the breakdown point is a worst case measure and we have shown that under a particular

structure of contamination� �� breaks down when � does� the proposition follows�
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Figure �" Local maximum resistant proportion values for nearest neighbor local linear 
��
regression� Top plot refers to uniform design density� middle plot refers to Gaussian design
density� and bottom plot refers to exponential design density� The solid line refers to using
a tricube kernel and the dotted line refers to using a uniform kernel�
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Figure �" Local maximum resistant proportion values for �xed bandwidth local linear 
��
and LTS LMS regression� Top plot refers to uniform design density� middle plot refers to
Gaussian design density� and bottom plot refers to exponential design density� The solid
line refers to 
� using a tricube kernel� the dotted line refers to using a uniform kernel� and
the dashed line refers to local LTS LMS�
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Figure �" Local maximum resistant number values for �xed bandwidth local linear 
��
regression� Top plot refers to uniform design density� middle plot refers to Gaussian design
density� and bottom plot refers to exponential design density� The solid line refers to 
�
using a tricube kernel� the dotted line refers to using a uniform kernel� and the dashed line
refers to local LTS LMS�
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Figure �" Local regression estimates for clean synthetic data� Top plot refers to nonrobust
�solid line
 and robust �dotted line
 versions of loess� along with true curve �dashed line
�
middle plot refers to local 
��estimation based on tricube kernel �solid line
 and uniform
kernel �dashed line
 and one�step M�estimate based on tricube kernel �dotted line
� and
bottom plot refers to local LTS estimation �solid line
 and one�step M�estimate �dotted
line
�
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Figure �" Local regression estimates for synthetic data with three outliers� Plots and curves
are as in Figure ��
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Figure 	" Local regression estimates for synthetic data with six outliers� Plots and curves
are as in Figure ��
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Figure �" Local regression estimates for synthetic data with nine outliers� Plots and curves
are as in Figure ��
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Figure �" Local regression estimates for synthetic data with four outliers� Plots and curves
are as in Figure ��
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Figure �" Local regression estimates for synthetic data with nonuniform design and two
outliers� Plots and curves are as in Figure ��
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Figure ��" Local regression estimates for calibration data� Top plot refers to nonrobust
�solid line
 and robust �dotted line
 versions of loess� middle plot refers to local 
��estimation
based on tricube �solid line
 and uniform �dashed line
 kernels� and bottom plot refers to
local LTS estimation based on ��! breakdown �solid line
 and ��! breakdown �dotted
line
�
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Figure ��" Local 
��estimate for calibration data� after having curve smoothed using local
least squares estimate�
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