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Abstract

Nonparametric regression techniques provide an effective way of identifying and examining
structure in regression data. The standard approaches to nonparametric regression, such
as local polynomial and smoothing spline estimators, are sensitive to unusual observations,
and alternatives designed to be resistant to such observations have been proposed as a
solution. Unfortunately, there has been little examination of the resistance properties of
these proposed estimators. In this paper we examine the breakdown properties of several
robust versions of local polynomial estimation. We show that for some estimators the
breakdown at any evaluation point depends on the observed distribution of observations
and the kernel weight function used. Using synthetic and real data, we show how the
breakdown point at an evaluation point provides a useful summary of the resistance of the

regression estimator to unusual observations.
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1 Introduction

Nonparametric regression techniques have been shown in recent years to be very effective
at identifying and estimating structure in regression data, without requiring restrictive
assumptions on the form of the relationship between the target and predicting variables.
Many different approaches to this problem have been suggested; see Simonoff (1996), chapter
5, for discussion of many of the possibilities. In this paper we focus on local polynomial
estimation based on a single predictor variable. Let {x;,y;},7 = 1,...,n, be the data set at

hand. The underlying model assumed for these data is

yi = p(xi) + &,

with F(¢|X = z) = 0 and V(¢|X = z) = 0%(z) not necessarily constant. The goal is to
estimate p(z), the conditional expectation E(Y|X = x).

Local polynomial estimation proceeds by fitting a polynomial locally over a small neigh-
borhood centered at any evaluation point x, based on weighted least squares. The (pth

order) local polynomial regression estimator is based on minimizing

Sl — o — - Byl — )PP (%55)- 1)

i=1

Here K(-) is the kernel function, typically a smooth symmetric density function that ac-

complishes local weighting by downweighting the influence of an observation y; on /i(z) as



; gets farther from x. The estimator ji(x) is then the intercept term Sy from the weighted

least squares regression based on the weight matrix

W:h—ldiag[K(’”l;x),...,K("””h_"”)]. 2)

The bandwidth A controls the amount of smoothness of /i(z), and can be fixed for all values

of z, or locally varied (based on nearest neighbor distance, for example) to allow different
levels of smoothing at different locations. Kernel regression corresponds to p = 0, and is
known to have inferior performance compared to taking p > 1 (in terms of bias in the
boundary region, for example). Assuming a given amount of smoothness of u(-), it can be
shown that certain local polynomial estimators, combined with appropriate choice of h, can
achieve the best possible asymptotic rate of convergence of the estimator to the true curve
p(-).

As is the case for any estimator based on least squares, local polynomial estimation based
on (1) is susceptible to the effects of observations with unusual response values (outliers). If
an observed y; is sufficiently far from the bulk of observed responses for nearby values of x,
f(z) will be drawn towards the unusual response and away from the majority of the points.
This has led to the proposal of the use of criteria other than (1) to fit local polynomials.
Lowess (Cleveland, 1979), and its successor loess (Cleveland and Devlin, 1988), are nearest
neighbor-based local polynomial estimators that allow the data analyst to downweight the
effect of unusual observations. This is done through an iterative process. An ordinary
local polynomial estimate is first calculated. Observations then have weights {d1,...,0,}

attached to them, where the weights decrease smoothly as the absolute residual from the



loess fit increases. The updated estimate is then the local polynomial estimate with weights
AW, where A = diag(01, ..., 0,). This process is then iterated several times. Unfortunately,
as Méchler (1989) noted, since the original residuals are based on the ordinary nonrobust
loess fit, the robust version still can be sensitive to outliers.

Several authors have suggested the related approach of using a local version of M-

estimation. The M—estimate attempts to achieve robustness by replacing (1) with

gp[yi—ﬂo—”'—ﬁp(xi—x)p]l( (’%;x> , (3)

where p(-) is chosen to downweight outliers (Tsybakov, 1986; Fan, Hu, and Truong, 1994;
Welsh, 1994). This is accomplished by choosing p(-) to be symmetric, with a unique min-
imum at zero, so that its derivative 1(-) is bounded. A typical choice is Huber’s function
P(z) = max{—c, min(c,z)} with ¢ = 1.5 or ¢ = 2. Minimization of (3) requires an itera-
tive procedure, and Fan and Jiang (1999) suggested stopping the iterations after one or two
steps (this is effectively what lo(w)ess does). The asymptotic properties of the M —estimator
(including one— or two—step versions) are broadly similar to those of the least squares ver-
sion. Starting the iterations at the least squares local polynomial estimator as is typical,
however, implies that the estimator is still potentially sensitive to outliers.

True robustness requires an estimator that is not based on the least squares estimator.
Wang and Scott (1994) investigated the least absolute values (¢;) version of (3), estimating

1(+) by minimizing
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Wang and Scott (1994) showed that the estimator is the solution to a linear program, and
derived asymptotic theory under specific conditions. See also Chaudhuri (1991) and Yu and
Jones (1998).

An alternative approach to robust nonparametric regression is to use quantile smoothing
splines (Koenker, Ng, and Portnoy, 1992, 1994). Let p,(u) be the so—called check function
pp(u) = u[p—I(u < 0)] for p € [0,1]. The quantile smoothing spline is defined as a function

Gp(z) that minimizes
n
> ool = 9(e) + A [ I (w)ldu
=1

over the space of functions with [ |¢"(u)|du < oo, where X is the smoothing parameter. The

median quantile (p = .5) corresponds to the minimizer of

i=1

Portnoy (1997) and Shen (1998) discuss the asymptotic properties of quantile smoothing
splines. Other approaches are also possible; see, for example, White (1990) and Hendricks
and Koenker (1992).

A basic difficulty with all of this work is that while the asymptotic properties of the
methods have been investigated, the robustness properties have not. Thus, while a primary
justification of these methods is their supposed resistance to unusual observations, there
are no results that actually quantify this resistance. The breakdown of an estimator is
the smallest fraction of outliers that can force the estimator to arbitrary values, and is

thus a measure of the resistance of the estimator to unusual values. More specifically, the



breakdown point of an estimator 7 is defined to be
o = min [—;bzas(m;T,y,X) is infinite| ,
n

where bias(m;7,y,X) is the maximum bias that can be caused by replacing any m of the
original data points by arbitrary values (Donoho and Huber, 1983). An estimator that is not
at all resistant to outliers, such as one based on least squares, thus has breakdown % In this
paper we propose and investigate a locally varying notion of breakdown that is appropriate
for local polynomial estimation. By adapting breakdown results from robust linear regres-
sion estimation, we derive the robustness properties of various local polynomial estimators,
including ones based on least absolute values, least median of squares (LMS) and least
trimmed squares (LTS) (Rousseeuw, 1984), and one-step M —estimators from robust local
polynomial starting values. In the next section we propose and discuss the derivation of the
various breakdown values. Section 3 provides specific examples of conditional breakdown,
demonstrating its dependence in certain instances on the local distribution of predictor val-
ues. Artificial and real data sets are used in Section 4 to illustrate the properties of the
robust estimators, as well as the connection between breakdown and identification of local

curvature. Section 5 concludes the paper.

2 Determining the Conditional Breakdown

Since the local polynomial regression estimate fi(-) is implemented by solving many local
regression problems, each centered at an evaluation point x, its breakdown properties are

defined on a local level as well. We restrict ourselves to kernel functions K(-) that are



positive on a bounded interval (typically [—1,1]). When we refer to the conditional break-
down, we are merely reflecting that, unlike for parametric models, the breakdown value
changes depending on the evaluation point . Several key points illuminate how the notion
of conditional breakdown at a point x can be defined.

The first point to recognize is that since the local polynomial estimate is based on a
weighted regression, the breakdown of /i(z) is simply the breakdown of a weighted version
of the linear regression method being used, whether that is least squares, least absolute
values, least median of squares, least trimmed squares, or M—estimation.

We must also recognize that if an observation becomes unbounded (i.e., |z;| — 00), there
is no sensible way to define breakdown (or any robustness properties) in the neighborhood
of that x;. The reason for this is that, unlike in the case of a parametric function p, it isn’t
meaningful to talk about the “true” p(z) when z — +oo, since p is only defined by local
smoothness (11(00) is not well-defined). For this reason, we will only treat breakdown at an
evaluation point x for bounded z.

Consider now the use of a bandwidth A that is not a function of the local design (a
constant bandwidth is an obvious example of this, but A also can vary in ways that do not
depend on the observations z;. In this case, contamination in the predictor variable is no
longer relevant, since any value of x; that goes to oo eventually has zero weight in the
local regression; that is, only observations local to z can have an effect on fi(z). We thus
can describe robustness and breakdown in this case by considering the finite sample break-
down point of some regression estimator 7 with contamination restricted to the dependent

variable, or a (7,y|X) as denoted by Giloni and Padberg (2001).



The situation when using a bandwidth that varies as a function of the design is more
complicated. Consider the most common bandwidth choice of this type, the nearest neighbor
bandwidth chosen at z to yield a fixed proportion s of observations with nonzero weights
(the closest observations to x). If 1 — s is greater than the proportion of observations with
|z;] — oo, then once again contamination in the predictor variable is not relevant, since
eventually these z;’s will no longer be in the neighborhood of # and will have zero weight.
On the other hand, if 1 — s is less than or equal to the proportion of observations with
predictor contamination, at least one contaminated observation will have nonzero weight.
In this case we can appeal to known breakdown results for £;—, LTS, and LMS regression
when there is contamination in the predictor. That is, the breakdown at x of local ¢;—
regression is % (the smallest possible value, indicating no robustness), while that of local
LTS/LMS is the same as that described below, since LTS and LMS are as resistant to
contamination in the predictor as they are to contamination in the target variable. For
these reasons, throughout the rest of this paper we refer to the finite sample breakdown
point with contamination restricted to the dependent variable simply as the finite sample
breakdown point.

In this section, we provide a discussion of the breakdown properties of local polynomial
regression where the regression estimator is either the local ¢;-regression estimator, the
local LTS/LMS estimator, or either estimate followed by a one-step M—estimate. We first

focus on the case of local ¢;-regression.



2.1 Local /,—Regression

In order to describe the breakdown properties of local ¢;-regression estimators, we first must
consider the breakdown point of weighted ¢;—regression. Below, we demonstrate that as long
as the weights for weighted ¢;-regression remain positive and finite, the breakdown point
of weighted ¢;-regression can be calculated in the same way as in the case of standard ¢;—
regression. The weights that are used in each of the local regression problems are determined
by the selected kernel function and bandwidth, i.e., w; = h 'K (%) In the next section,
we show that the presence of weights that are not all constant can cause the breakdown to
change.

In our discussion below, we assume that we have n observations on the dependent vari-
able y and some number p > 1 of independent variables z1,...,z,, each one also providing

n values. We denote

1 1 1
Y1 1 =z Zp X
y = . JX: ) ’ ) = ) :(17X17"'7xp)7
n n n
Yn L2y - - - ay X

where y € R" is a vector of n observations and X is a n X p + 1 matrix referred to as
the design matriz. Furthermore, 1,x1,...,X, are column vectors with n components and
x! ..., x" are row vectors with p + 1 components corresponding to the columns and rows
of X respectively.

We denote the set of indexes corresponding to the rows of X as N. We denote the

cardinality of Z C N as |Z|. Furthermore, X, = (xi)iez, ey = (1,...,1)T with |Z]



components equal to one and Xy, ey, Xy and ey, are defined similarly.

The properties of the finite sample breakdown point for ¢;-regression, when fitting a
model y = XS + ¢, were first studied by He et al. (1990). To analyze the finite sample
breakdown point of a (finite) weighted ¢;—regression estimator, we refer to the definition of

a design matrix being g—stable. Giloni and Padberg (2001) defined a design matrix X to

be g-stable if there exists v € RIZ| such that
vXyz = —e%XU —i—e%XL , — eg <v< eg

is satisfied for all L,U C N with LNU = § and |[LUU| < ¢ where Z = N —U — L.
g—stability is defined by selecting ¢, the largest nonnegative integer such that the condition
is satisfied.

Using this definition of ¢-stability of a design matrix, Giloni and Padberg (2001) showed
that if a design matrix X is g—stable for some ¢ > 0, then the finite sample breakdown point
with contamination restricted to the dependent variable of ¢;-regression is equal to %1.
Assuming that the weights are finite and positive, generalizing the above result to weighted

£1-regression requires redefining the design matrix X as follows.

The weighted ¢;-regression problem with positive, finite weights w; can be formulated

10



and solved as a linear program

n
. . + '_
min w;r; + w;ir;
i=1

s.t.
Xi,3+7“i+—7”;:yi fori=1,...,n

B free, r™ > 0,r~ > 0.

Equivalently, the objective function can be taken to be the same as in the case of
standard ¢;-regression, changing the data by setting 7; = w;y; and setting X! = w;x".
Thus, to calculate the breakdown of weighted ¢;—regression one just needs to determine the
g-stability of X. In the next section, we give breakdown points for local weighted polynomial
regression based upon a tricube kernel function and include results for the case where the
weights are all constant for the data points which are in each local problem (that is, a

uniform kernel function K).

Note that in the case of local /1-regression (as opposed to the traditional ¢1-regression),

we are only concerned with the intercept term, i.e., Bg. In such a case, one would like to
ascertain that the breakdown results are the same. It might be the case that the restriction
to an intercept increases the breakdown point. This turns out not to be the case, as stated

in the following proposition, which is proved in the Appendix.

Proposition 1 The finite sample breakdown point of Bo of (weighted) €1-regression is the

same as the finite sample breakdown point of (weighted) £1—regression.

Thus, determining the g—stability of a design matrix for each local weighted ¢;-regression

11



describes the finite sample breakdown point for local ¢;-regression. Giloni and Padberg
(2001) demonstrated how to calculate the g-stability of a design matrix through both an
enumerative procedure as well as by formulating and solving a suitable mixed—integer pro-
gram (both of these methods can be very computationally intensive, however). We use this
methodology to calculate the finite sample breakdown points locally for local £;—regression

in Section 3.

2.2 Local LTS/LMS Regression

Before discussing the breakdown properties of local LTS/LMS polynomial regression, we

first briefly describe the LTS and LMS regression estimators. The LTS regression estimator

ALTS | . e
B is determined by minimizing

k
2
Z (T )zn’
i=1
where r; = y; — 30 - l’iBl - = %BP and

Similarly, BLM 9 is determined by minimizing

(TZ)k;n :

In the case of local polynomial regression with one predictor, the sth residual is

Tiz(yi—Bo—(xi—x)Bl—"'—(fﬂi—x)pﬁp)-
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Thus, each local LTS regression problem evaluated at = requires the minimization of

k
(") in, (4)
=1

7
where 7; = y/h~ 1K (%)n,

(?2)1:713; S (?2)2:713; S T S (;Q)nz:nm’

and n,; is the number of observations with nonzero weight in the span of the kernel centered
at evaluation point z.

Alternatively, one could solve the local LTS problem by minimizing

Z (r2)i:nw ’

=1

where

TP = (?71 —Bo— TP — —@pﬁ}) ;

where 7;; = \/h 1K (”C’h—*"”)(gyZ —z)) and §; = \/h 1K (””’,;"‘3)(1;Z The local LMS regression

problem can be formulated similarly. Since each local regression problem can be formulated
exactly as a standard LTS or LMS regression problem, it is thus evident that the high
breakdown properties of LT'S/LMS regression hold in the case of local LTS/LMS polynomial
regression. Specifically, if there are n, observations in the local regression around the value
x, the conditional breakdown can be as large as {|(n, — p)/2| + 1}/n,, where |-] is the

greatest integer function.
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2.3 One-Step M—Estimates

In this subsection, we discuss the breakdown properties of local one—step M—estimators
with starting estimates of either £;—, LTS, or LMS regression. In standard linear regression
models, one-step M—estimators have been used to improve the efficiency of certain high
breakdown regression estimators, for example LMS regression (Rousseeuw and Leroy, 1987,
p. 129). In the case of local polynomial regression, the only change is that p, and thus 1,
are weighted, where the weights are defined by the kernel function K (%)

The one-step M—estimator that we discuss here is the Bickel (1975) Type 2 estimator,

based on the Huber ¢ function, ¢(z) = max{—c, min(c,z)}. An initial robust estimate 3
is determined, and residuals r are calculated. The Huber function is then applied to the

residuals, yielding

—co ifr;,<co
i =47 if || < ¢é,
co if r; > co.
Here 6 is a preliminary robust scale estimate, 6 = 1.483 median|r;| (Rousseeuw and Leroy,

1987, p. 44). Let Sy be the number of observations where |r;| < ¢6. Let

1 z1—2z
X =
1 z,—=
The one—step M—estimator is then
~ n A\ 1 .
Btg (XTWX) XIWr*, (5)



where W is the weight matrix defined in (2).

Within the context of local regression, since breakdown is only based on observations
within the span of the kernel, and we are using a bounded kernel, for A not a function
of the local design, predictor value contamination ultimately results in the point having
zero weight. Thus, the design matrix, X ultimately used in each local problem is bounded.

Furthermore, the modified vector of residuals is also bounded by design, and the elements
of W are bounded. It is natural to restrict ourselves to the situation where (XTWX) is

invertible, since otherwise the one-step M-estimate (5) is not defined. Thus the maximal

bias between the original estimate 8 and the one-step M —estimate defined in (5) is bounded.
Therefore, the breakdown of the one—step M—estimator remains the same as that of the
original estimator, independent as to whether the original estimate was any one of either
£1—, LTS, or LMS regression.

However, as mentioned previously, when, for example, a nearest neighbor bandwidth
is utilized, it is possible that predictor value contamination can result in a point having a
positive weight. In such a case, both local £;—regression as well as a one—step M—estimate
based upon it will have a finite sample breakdown point of % In order to ensure that one—
step M—estimates based upon LTS/LMS regression retains the high breakdown property of
LTS/LMS regression, it is sufficient to use a redescending M—estimator such as the biweight
1—function (see Rousseeuw and Leroy, 1987, p. 129). Whenever it is possible to ascertain
that predictor value contamination results in a point having a weight of zero, it is sufficient
to use a one—step M—estimator based on the Huber ¢—function as described above. Thus,

in our examples and in the figures displayed at the end of the paper, we use a one-step
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M—estimator based on the Huber —function.

It is obvious that the conditional breakdown is never larger than roughly one-half of
the number of observations within the span of the kernel (that is, n,/2). Since consistency
of fi requires that n,/n — 0 as n — oo, the asymptotic breakdown of any local polynomial
estimator with respect to the total sample size is zero. In other words, if any fixed percentage
of the total number of observations, no matter how small, is placed at a particular value x,
and the associated y values are sent to oo, as n — oo eventually the number of outliers
will exceed the breakdown point. We do not consider this a meaningful criticism of the idea
of conditional breakdown for nonparametric regression, since (as will be seen in the next
section) the finite sample conditional breakdown provides a useful summary of meaningful

differences between the methods for finite samples.

3 Examples of Conditional Breakdown

In this section we describe the relationship between the conditional breakdown properties of
local linear estimators and the distribution of predictor values. More precisely, we describe
this relationship for local ¢;-regression, since (as was noted in the previous section), the
breakdown is not a function of the design distribution for local least squares regression
(where the breakdown is always %) or local LTS/LMS regression (where it is always as
high as roughly 50%).

Figures 1 through 3 give the “maximum resistant” proportions, which we define as % less
than the breakdown point (that is, this is the maximum proportion of local observations that

can be outliers without the estimator breaking down). The ith predictor value satisfies z; =

16



F~i/(n + 1)], where F(-) is either the uniform [0, 1], standard Gaussian, or exponential
(with mean one) cumulative distribution function (that is, the design density is consistent
with either a uniform, Gaussian, or exponential pattern, covering what might be considered
typical design patterns), with n = 100. In each plot breakdown values at a fine grid of
values over the range of the data are connected by lines, with the solid line referring to local

¢1—regression based on a tricube kernel,

K() (70/81)(1 — |z|?)® if -1 <=z <1,
€T =
0 otherwise

(this is the kernel used in loess), and the dotted line referring to estimation based on a
uniform kernel.

Figure 1 gives proportions for a nearest neighbor version of the estimator, where the local
bandwidth is adjusted to guarantee 20% of the observations in the span of the kernel (i.e.,
ng = 20 for all z). The top plot shows that when the design density is uniform and a uniform
kernel is used, the local maximum resistant proportion is exactly 25%, corresponding to a
breakdown of 30%. That is, up to five outliers can be accommodated within the span of
the kernel at any evaluation point. This can be contrasted with the 50% breakdown value
of local linear LTS/LMS, which implies that up to nine outliers can be accommodated by
those methods (the latter value is appropriate for any design and any kernel when using
a nearest neighbor bandwidth, since it is only dependent on the number of observations
within the span of the kernel).

What is also striking is that using a uniform kernel has clear advantages from a robust-

ness point of view. The maximum resistant proportion is no longer constant if a tricube
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kernel is used, being lower near the endpoints of the interval than in the center. Further,
even in the center the tricube kernel leads to an estimator with smaller breakdown than
using the uniform kernel.

The maximum resistant proportions (and hence the breakdowns) are not constant for
either kernel when the design density is not uniform. The middle (Gaussian design) and
bottom (exponential design) plots show that generally speaking the estimator is more re-
sistant where the design is densest (this is not a function of n,, since that is constant here,
but rather the design within the span of the kernel). The breakdown values are at least as
high when using the uniform kernel compared to using the tricube kernel, and local per-
turbations in the breakdown that occur when using the tricube kernel are absent. In the
sparser design areas, the uniform-based estimator can accommodate two additional outliers
compared to the tricube estimator.

Figure 2 gives the corresponding proportions for a fixed bandwidth version of the es-
timator. The bandwidths were taken to be h = .1 (uniform design), h = .25 (Gaussian
design), and h = .12 (exponential design), which results in roughly 20 observations within
the span of the kernel in the densest regions. While the broad patterns are similar (with
maximum resistant proportions again peaking at around 25%), the proportions are consid-
erably more unstable for fixed h. The reason for this is that, in addition to the local design
changing as the evaluation point changes, the actual number of observations in the span of
the kernel also changes. Once again a uniform kernel results in a more robust estimator than
using a tricube kernel, although in this case there are a few evaluation locations where the

pattern reverses. Note that in regions where the design is sparse, and there are relatively
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few observations, the maximum resistant number drops to zero, indicating that the local
linear /;—estimator is as nonrobust as local least squares.

The figure also gives corresponding figures for the local LT'S/LMS estimator (dashed
line). As was the case for nearest neighbor estimation, local LTS/LMS is typically more
robust than local ¢1, but as the design gets sparser (and the number of observations in
the span of the kernel gets smaller), the gap between the two methods becomes smaller.
Ultimately, in the sparsest regions, local LT'S/LMS is as nonrobust as ¢; and least squares.
Figure 3 makes things a bit clearer by plotting the actual number of outliers that can be
resisted, rather than the proportion. The patterns are now similar to those in Figure 1,
although the maximum resistant values are generally lower than those that would be implied

by the nearest neighbor bandwidth, as would be expected from the smaller values of n,.

4 Application to Real and Synthetic Data

In this section we examine several synthetic data sets, and one real data set, to illustrate
the properties of the robust local linear estimators. Figures 4 through 7 refer to synthetic
data with n = 100, predictors on a uniform grid, and p(z) = sin(1.57z). Figure 4 illustrates
performance on clean data, with y; = u(z;) + & and ¢ ~ N(0,.22). The top plot gives
loess estimates based on a nearest neighbor bandwidth covering 30% of the data, where the
solid line is the standard loess estimate and the dotted line is the robust version. The true
regression curve is given as the dashed line (the same representations, and the ones given
below, are also used in Figures 5 through 9). As would be expected, there is little difference

between the robust and nonrobust versions for these data.
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The middle and bottom plots give estimates for robust local linear estimation. The
middle plot refers to least absolute values ¢1—estimates, also based on a nearest neighbor
bandwidth covering 30% of the data. The solid line is the /;-estimate based on a tricube
kernel, with the dotted line the one—step M—estimate based on that initial estimate (using
¢ = 2). The estimates are similar to the loess estimates, although they are less smooth,
and are virtually identical to each other. Increasing the bandwidth would not alleviate
this roughness, since it is an inherent property of least absolute values estimation (Ellis,
1998, discusses the tendency for ¢;-regression lines to change greatly as a result of a small
change in the data in ordinary regression, which results in “jumpiness” in this context as
observations move into and out of the span of the kernel). The third (dashed) line is the
¢1—estimator based on a uniform kernel. It is very similar to the tricube kernel estimate,
except that it levels off a bit at the left end of the data.

This tendency is much more pronounced in the bottom plot, which gives the local LTS
estimate (the local LMS estimate was very similar, and is omitted here). The local LTS
estimate (solid line) flattens out considerably at both ends. This lack of sensitivity to lo-
cal curvature arises as a direct result of the high breakdown of LTS (or LMS). The high
breakdown estimator, being constructed to resistantly fit a straight line, has trouble dis-
tinguishing between a change in the regression line (local curvature) and observations off
a straight line that are outliers, particularly at the boundary. The one—step M—estimate
corrects for this problem. Note also that the LTS estimate is quite jumpy, since high break-
down methods also can change noticeably from small changes in the data (Hettmansperger

and Sheather, 1992).
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In Figure 5 three observations have been replaced with outliers. As would be expected,
the nonrobust version of loess is affected by these outliers, being drawn towards them. All
of the robust estimates, on the other hand, are unaffected by the outliers, looking virtually
identical to the estimates in Figure 4. In Figure 6 three more outliers are added. While the
uniform kernel-based ¢;-estimate, and the LTS estimate (and to a lesser extent the tricube—
based ¢;-estimate) are relatively unaffected, the M-estimates are now drawn towards the
outliers. This reflects an interesting issue in using the M-—estimate. When the initial
estimate is not robust, the M—step can downweight the effects of the outliers, but when
the initial estimate is itself robust, the M-step (in attempting to increase the efficiency of
the estimator) actually becomes more affected by the outliers, and less robust (although,
as shown in Section 2.3, the effect on the M—estimate is limited, since the breakdown point
is identical to that of the initial estimate).

The number of outliers is increased to nine in Figure 7. While the robust loess and
LTS estimates are unaffected (although the one-step M—estimate from the LTS estimate is
drawn towards the outliers), the 1 -estimates break down (consistent with their roughly 30%
breakdown point). Interestingly, the /;-estimate based on a uniform kernel is unaffected
by the outliers in the neighborhood of them, but exhibits spurious negative lobes on either
side of that region.

It is possible that the location and number of the unusual observations in Figures 6
and 7 might reflect a structural change in p in that neighborhood, rather than the pres-
ence of outliers. Ultimately, this doesn’t matter; since nonparametric regression estimation

hypothesizes smoothness of u, these observations represent a violation of the underlying
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hypothesized relationship. It is important that these observations not unduly affect j so
that they can be identified as discrepant. Note also that while a larger bandwidth (resulting
in more local observations) could result in even the nine outliers not causing breakdown,
this is not a viable strategy, since it would result in drastic oversmoothing.

Figure 8 shows that the robust loess estimate also can be strongly affected by outliers.
The data are on a uniform grid with n = 100, with u(z) = sin(57z). The response values
satisfy y; = u(z;) +¢; and g; ~ N(0,.12), except that four observations are adjusted to be
outlying. The figure gives estimates based on a nearest neighbor bandwidth covering 12%
of the data. Both versions of loess (top plot) are drawn to the outliers, as is the ¢;—estimate.
The LTS estimate, on the other hand, is completely resistant to the outliers. As in earlier
cases, the M—estimate based on the robust estimate is drawn towards the outliers.

Even one outlier can cause trouble for estimators in a sparse design region. In Figure 9
the data are on a grid generated by a Beta(.16, .16) density, and are denser near zero and
one and sparse near .5. The response values are generated as in Figure 8, with two isolated
outliers replacing two observations. The nonrobust loess estimator is drawn towards the
outliers in the top plot, as expected, but the robust estimator is also affected, in that the
estimate in the neighborhood of the outlier in the sparse region is pushed farther away from
the outlier, resulting in the peak not being estimated well. The ¢;-estimator (middle plot)
doesn’t have a problem with the single outlier in the sparse region, but the ¢;—estimator
based on a tricube kernel is affected by the outlier in the asymmetric region around = = .03.
Locally, the design in this region is similar to the exponential design examined in the

previous section, and as was indicated there, a uniform kernel leads to a more robust
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estimator that is unaffected by the outlier. The local LTS estimate (bottom plot) has no
problems with either outlier, but the M—estimates based on the £;— and LTS estimates are
drawn towards the outlier in the sparse data region.

We conclude this section with analysis of a real data set that illustrates the difficulties
in robust nonparametric estimation when the design is very asymmetric. The data are
from a radioimmunoassay calibration study, and relate counts of radioactivity to the con-
centration of the dosage of the hormone TSH, in micro units per ml of incubator mixture
(Tiede and Pagano, 1979). There is a roughly hyperbolic relationship between counts and
concentration, with one clear outlier at (20,4478). Figure 10 gives local linear estimates
for these data, based on a nearest neighbor bandwidth covering 65% of the data. The loess
estimates (top plot) are both affected by the outlier. While the nonrobust estimate (solid
line) is drawn towards the outlier, the robust estimate (dotted line) is driven away from
it, resulting in a spurious dip below the bulk of the points. This dip is not a function of
choice of the bandwidth, as bandwidths from the smallest possible value (36% of the data)
to one leading to clear oversmoothing (90% of the data) all yield estimates exhibiting it.
The ¢;-estimates based on a 65% nearest neighbor bandwidth (middle plot) are much more
satisfactory, particularly the one based on the tricube kernel (solid line). The estimate
based on the uniform kernel (dotted line) is slightly jumpier, but still follows the general
pattern of the data.

This cannot be said of the LTS estimate (solid line, bottom plot). The high breakdown
estimate is unable to recognize the nonoutlying value at (20,2396), which occurs as the

design becomes sparser, as representing a change of curvature, and tracks the downward
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trend until x = 26, where it suddenly jumps up to the correct level of the data. This is a
direct result of the high breakdown, which is illustrated by the dotted line. This is an LTS
estimate where k in (4) is taken to result in a 10% breakdown, and it is very similar to the

{1—estimate.

5 Conclusion

In this paper we have discussed and examined the robustness properties of local linear
estimates based on £;—, least trimmed squares, and least median of squares. Although
the latter estimates have higher breakdown than the ¢;—-estimate, this is balanced by the
tendency for the high breakdown estimates to be less sensitive to changes in local curvature.
While one—step M—estimation improves performance when there are not outliers, outlying
observations can have a deleterious effect on the estimate.

The jumpiness of the robust estimates is an issue to be addressed. One simple solution
would be to input the estimated regression curve to an ordinary local least squares estimate,
thereby smoothing it out. An example of this is given in Figure 11. This is a local linear
(least squares) estimate derived from the local ¢;—estimate based on a tricube kernel in
Figure 10. This estimate preserves the robustness of the underlying ¢;—estimate, while
exhibiting an intuitively appealing smooth form. The theoretical properties of such post—
estimation smoothing are an open question. The apparent connection between breakdown
and the ability of a robust estimate to adjust to changes in curvature suggests the possibility
of choosing the level of robustness in an adaptive way (based on the curvature in the

underlying regression curve), allowing for more robustness when the curve has less complex
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structure.

We have restricted ourselves to univariate nonparametric regression in this paper, but
many problems involve multiple predictors. Local polynomial estimation generalizes to more
than one predictor, and it would be interesting to investigate the robustness and estimation
properties of the robust local polynomial estimators in that context. Additive models
(Hastie and Tibshirani, 1990) provide an alternative to direct nonparametric estimation,

fitting models of the form
yi = pr(@) + -+ pr (@) + €5,
rather than the more general
yi = p(T1iy. ey Tri) + €.

Outliers are as much of a problem for additive models as in univariate regression, so being
able to assess the breakdown of models fit using robust smoothers would be very informative

to the data analyst.

Appendix

Proof of Proposition 1. We prove the proposition by contradiction. Since we are considering
the finite sample breakdown point, we assume that the design matrix, X is known, its
entries are bounded, and that it is in general position (all p+1 X p+ 1 submatrices have full
rank). We assume that after a design matrix is suitably contaminated, the maximal bias of
the (weighted) ¢;-regression is infinite but the maximal bias of its constant term remains

bounded. In other words, we assume that we are in a situation in which (weighted) ¢;—
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regression breaks down but its constant term does not. We show that the above assumption
is a contradiction.

It is well-known that an £;-regression estimate is an exact fit to some p+ 1 observations.
Let B; C N, |B1| =p+1, and r (Xp,) = p+1 (i.e., B; is a subset of p+1 indexes of rows of

X such that these rows of X are of full rank). Denote the (weighted) £;-regression estimate

for data (X,y) as B = ngyBl. Assume that the vector of the dependent variable y is

contaminated by some vector g € R", i.e., g = (g1,..., gn)T, multiplied by some positive

constant 0. Further assume that as 0 — oo
IX5lyB, — X5 (yB, +08) | = o0

where B, is defined similarly to B, in the sense that it is the set of indexes of rows of X such
that it defines the optimal /;—estimate of the regression problem with contaminated data.

In other words, the contamination vector g has caused the (weighted) ¢;-regression estimate

~ B ~

to break down. Let By = be the estimate of the constant term based upon 3 = Xginl, i.e.
1

based upon the rows of X defined by the set of indexes B;. Let (Xg}) be the first row

of the matrix (ng). Assume that Bg has not broken down even though B has, i.e., there

exists some K > 0 such that
~ By ~ By 1 1 1 1
1607 = 5™l =1l (X5)) yan — (X5L) (e +08)ll = K <o

as 0 — oo. This implies that



In order that fy does not break down, (6) must hold for every g € R" and for every
associated By C N where |By] =p+ 1 and 7 (Xp,) and B defines an optimal ¢;—estimate

to some contaminated data set. There are (at most) 7' = ( candidates for a (weighted)

n
p+1)
£1-regression estimator. In the case where the design matrix is in general position, there are

exactly T' candidates. Let By, be the kth subset of indexes of rows of X, where k =1,...,T.

In order to show that ,go will indeed break down it suffices to show that there exists some

go € R” such that

1
(X5.) g0 #0 fork=1,..T. )

1
However, as long as (Xg; ) does not consist of only zeros, gy as in (7) exists. Since
k

1
(Xg; ) is a row of an inverse of a matrix, it cannot consist of only zeros, and therefore
k

there exists a case in which ,go breaks down where B does as well.
We note that contamination need not have the form described above. However, since
the breakdown point is a worst case measure and we have shown that under a particular

structure of contamination, Jy breaks down when 3 does, the proposition follows. 0
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Figure 1: Local maximum resistant proportion values for nearest neighbor local linear £;—
regression. Top plot refers to uniform design density, middle plot refers to Gaussian design
density, and bottom plot refers to exponential design density. The solid line refers to using
a tricube kernel and the dotted line refers to using a uniform kernel.
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Figure 2: Local maximum resistant proportion values for fixed bandwidth local linear £;—
and LTS/LMS regression. Top plot refers to uniform design density, middle plot refers to
Gaussian design density, and bottom plot refers to exponential design density. The solid
line refers to £; using a tricube kernel, the dotted line refers to using a uniform kernel, and
the dashed line refers to local LT'S/LMS.
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Figure 3: Local maximum resistant number values for fixed bandwidth local linear ¢;—
regression. Top plot refers to uniform design density, middle plot refers to Gaussian design
density, and bottom plot refers to exponential design density. The solid line refers to ¢;
using a tricube kernel, the dotted line refers to using a uniform kernel, and the dashed line
refers to local LT'S/LMS.
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Figure 4: Local regression estimates for clean synthetic data. Top plot refers to nonrobust
(solid line) and robust (dotted line) versions of loess, along with true curve (dashed line),
middle plot refers to local ¢1—estimation based on tricube kernel (solid line) and uniform
kernel (dashed line) and one-step M—estimate based on tricube kernel (dotted line), and
bottom plot refers to local LTS estimation (solid line) and one-step M-estimate (dotted
line).
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Figure 5: Local regression estimates for synthetic data with three outliers. Plots and curves
are as in Figure 4.
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Figure 6: Local regression estimates for synthetic data with six outliers. Plots and curves
are as in Figure 4.
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Figure 7: Local regression estimates for synthetic data with nine outliers. Plots and curves
are as in Figure 4.

Loess estimates

0.5

-1.5

0.0 0.2 0.4 0.6 0.8 1.0

Least absolute value estimates

05

-0.5

-1.5

0.0 0.2 0.4 0.6 0.8 1.0

LTS estimates

0.5

-0.5

-1.5

0.0 0.2 0.4 0.6 0.8 1.0

37



Figure 8: Local regression estimates for synthetic data with four outliers. Plots and curves
are as in Figure 4.
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Figure 9: Local regression estimates for synthetic data with nonuniform design and two
outliers. Plots and curves are as in Figure 4.
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Figure 10: Local regression estimates for calibration data. Top plot refers to nonrobust
(solid line) and robust (dotted line) versions of loess, middle plot refers to local ¢;—estimation
based on tricube (solid line) and uniform (dashed line) kernels, and bottom plot refers to
local LTS estimation based on 50% breakdown (solid line) and 10% breakdown (dotted
line).
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Figure 11: Local £;—estimate for calibration data, after having curve smoothed using local
least squares estimate.
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