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Abstract

Tree induction and logistic regression are two standard� o��the�shelf methods
for building models for classi�cation� We present a large�scale experimental
comparison of logistic regression and tree induction� assessing classi�cation ac�
curacy and the quality of rankings based on class�membership probabilities� We
use a learning�curve analysis to examine the relationship of these measures to
the size of the training set� The results of the study show several remarkable
things� ��	 Contrary to prior observations� logistic regression does not generally
outperform tree induction� �
	 More speci�cally� and not surprisingly� logistic
regression is better for smaller training sets and tree induction for larger data
sets� Importantly� this often holds for training sets drawn from the same do�
main �i�e�� the learning curves cross	� so conclusions about induction�algorithm
superiority on a given domain must be based on an analysis of the learning
curves� ��	 Contrary to conventional wisdom� tree induction is e�ective at pro�
ducing probability�based rankings� although apparently comparatively less so
for a given training�set size than at making classi�cations� Finally� ��	 the do�
mains on which tree induction and logistic regression are ultimately preferable
can be characterized surprisingly well by a simple measure of signal�to�noise
ratio�

� Introduction

In this paper we show that combiningmassive experimental comparison of learn�
ing algorithms with the examination of learning curves can lead to new insights
into the relative performance of learning algorithms� We also show that by
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comparing algorithm performance on larger data sets we see behavioral charac�
teristics that would be overlooked when comparing algorithms on smaller data
sets �such as most in the UCI repository	�

More speci�cally� we examine several dozen large� two�class data sets� rang�
ing from roughly one thousand examples to two million examples� We assess
performance based on classi�cation accuracy� and based on the area under the
ROC curve �which measures the ability of a classi�cation model to score cases
by likelihood of class membership	� We compare two basic algorithm types �lo�
gistic regression and tree induction	� including variants that attempt to address
the algorithms
 shortcomings�

We selected these particular algorithms for several reasons� First� they are
popular �tree induction with machine learning researchers� logistic regression
with statisticians and econometricians	� Second� they all can produce class�
probability estimates� Third� they typically are competitive o� the shelf �i�e��
they usually perform relatively well with no parameter tuning	�� O��the�shelf
methods are especially useful for non�experts� and also can be used reliably as
learning components in larger systems� For example� a Bayesian network learner
has a di�erent probability learning subtask at each node� manual parameter
tuning for each is infeasible� so automatic �push�button	 techniques typically
are used �Friedman and Goldszmidt� ����	�

Finally� we selected these methods because of a di�erence of opinion that
seems to be manifest �traditionally	 between the statistics community and the
machine learning community� Although it is changing in both communities�
machine learning researchers and practitioners have preferred nonparametric
methods such as tree induction� while statisticians have preferred parametric
methods such as logistic regression�

Note� interestingly� that until recently few machine learning research papers
considered logistic regression in comparative studies� C��� �Quinlan� ����	 is
the typical benchmark learning algorithm� However� the study by Lim� Loh�
and Shih �
���	 shows that on UCI data sets� logistic regression beats C��� in
terms of classi�cation accuracy� We investigate this phenomenon carefully� and
our results suggest that this is due� at least in part� to the small size of the UCI
data sets� When applied to larger data sets� learning methods based on C���
usually are more accurate�

Our investigation has three related goals�

�� To compare the broad classes of tree induction and logistic regression� The
literature contains various anecdotal and small�scale comparisons of these
two approaches� but no systematic investigation that includes several very
large data sets�


� To compare� on the same footing and on large data sets� di�erent variants
of these two families� including Laplace �smoothing� of probability estima�
tion trees� model selection applied to logistic regression� biased ��ridge�	

�In fact� logistic regression has been shown to be extremely competitivewith other learning
methods �Lim� Loh� and Shih� ������ as we discuss in detail�






logistic regression� and bagging applied to both methods�

�� To compare the learning curves of the di�erent types of algorithm� in
order to explore the relationship between training�set size and induction
algorithm� Learning curves allow us to see patterns �when they exist	
that depend on training�set size and that are common across di�erent
data sets�

From the ultimate learning�curve analysis we can draw several conclusions�

� Logistic regression performs better� generally and relatively speaking� for
smaller data sets and tree induction performs better for larger data sets�

� This relationship holds �often	 even for data sets drawn from the same
domain�that is� the learning curves cross� Therefore� drawing conclusions
about one algorithm being better than another for a particular domain is
questionable without an examination of the learning curves�

� Tree�based probability estimationmodels often outperform logistic regres�
sion for producing probability�based rankings �for which logistic regression
is the statistical method of choice	� especially for larger data sets�

� The domains on which each type of algorithm performs better can be char�
acterized remarkably consistently by a measure of signal�to�noise ratio�

The rest of the paper is structured as follows� First we give some background
information for context� Then we describe the algorithms and their variants that
we will consider� We then describe the basic experimental setup� including the
data sets that we will use� the evaluation metrics� the method of learning curve
analysis� and the particular implementations of the learning algorithms� Next
we present the results of two sets of experiments� done individually on the two
classes of algorithms� to assess the sensitivity of performance to the algorithm
variants �and therefore the necessity of these variants	� We use this analysis to
select a subset of the methods for the �nal analysis� We then present the �nal
analysis� comparing across the algorithm families� across di�erent data sets� and
across di�erent training�set sizes�

The upshot of the analysis is that there seem to be clear conditions under
which each family is preferable� Tree induction is preferable for larger training�
set sizes with lower noise levels� Logistic regression is preferable for smaller
training�set sizes and for higher noise levels� We were surprised that the re�
lationship is so clear� given that we do not know of its having been reported
previously in the literature� However� it �ts well with our basic knowledge �and
assumptions	 about tree induction and logistic regression� We discuss this and
further implications at the close of the paper�
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� Background

The machine learning literature contains many studies comparing the perfor�
mance of di�erent inductive algorithms� or algorithm variants� on various bench�
mark data sets� The purpose of these studies typically is ��	 to investigate which
algorithms are better generally� or �
	 to demonstrate that a particular modi��
cation to an algorithm improves its performance� For example� Lim� Loh� and
Shih �
���	 present a comprehensive study of this sort� showing the di�erences
in accuracy� running time� and model complexity of several dozen algorithms on
several dozen data sets�

Papers such as this seldom consider carefully the size of the data sets to
which the algorithms are being applied� Does the relative performance of the
di�erent learning methods depend on the size of the data set�

As we describe in detail below� learning curves compare the generalization
performance �e�g�� classi�cation accuracy	 obtained by an induction algorithm
as a function of training�set size� More than a decade ago in machine learning
research� the examination of learning curves was commonplace �see� for example�
Kibler and Langley� ����	� but usually on single data sets �notable exceptions
being the study by Shavlik� Mooney� and Towell �����	 and the work of Catlett
�����		� Now learning curves are presented only rarely in comparisons of learn�
ing algorithms��

The few cases that exist draw con�icting conclusions� with respect to our
goals� Domingos and Pazzani �����	 compare classi�cation�accuracy learning
curves of naive Bayes and the C���rules rule learner �Quinlan� ����	� On
synthetic data� they show that naive Bayes performs better for smaller train�
ing sets and C���rules performs better for larger training sets �the learning
curves cross	� They discuss that this can be explained by considering the dif�
ferent bias�variance pro�les of the algorithms for classi�cation �zero�one loss	�
Roughly speaking�� variance plays a more critical role than estimation bias
when considering classi�cation accuracy� For smaller data sets� naive Bayes has
a substantial advantage over tree or rule induction in terms of variance� They
show that this is the case even when �by their construction	 the rule learning
algorithm has no bias� As expected� as larger training sets reduce variance�
C���rules approaches perfect classi�cation� Brain and Webb �����	 perform
a similar bias�variance analysis of C��� and naive Bayes� They do not examine
whether the curves cross� but do show on four UCI data sets that variance is re�
duced consistently with more data� but bias is not� These results do not directly
examine logistic regression� but the bias�variance arguments do apply� logistic
regression� a linear model� should have higher bias but lower variance than tree
induction� Therefore� one would expect that their learning curves might cross�

However� the results of Domingos and Pazzani were generated from synthetic
data where the rule learner had no bias� Would we see such behavior on real�
world domains� Kohavi �����	 shows classi�cation�accuracy learning curves of

�Learning curves also are found in the statistical literature �Flury and Schmid� ���	� and
in the neural network literature �Cortes et al�� ���	��

�Please see the detailed treatment by Friedman ����
��
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tree induction �using C���	 and of naive Bayes for nine UCI data sets� With
only one exception� either naive Bayes or tree induction dominates �i�e�� the
performance of one or the other is superior consistently for all training�set
sizes	� Furthermore� by examining the curves� Kohavi concludes that �In most
cases� it is clear that even with much more data� the learning curves will not
cross� �pp� 
���
��	�

We are aware of only one learning�curve analysis that compares logistic re�
gression and tree induction� Harris�Jones and Haines �����	 compare them on
two business data sets� one real and one synthetic� For these data the learning
curves cross� suggesting �as they observe	 that logistic regression is preferable for
smaller data sets and tree induction for larger data sets� Our results generally
support this conclusion�

� Algorithms for the analysis of binary data

We now describe tree induction and logistic regression in more detail� including
several variants examined in this paper� The particular implementations used
are described in detail in Section ����

��� Tree induction for classi�cation and probability esti�

mation

The terms �decision tree� and �classi�cation tree� are used interchangeably in
the literature� We will use �classi�cation tree� here� in order that we can distin�
guish between trees intended to produce classi�cations� and those intended to
produce estimations of class probability ��probability estimation trees�	� When
we are talking about the building of these trees� which for our purposes is es�
sentially the same for classi�cation and probability estimation� we will simply
say �tree induction��

We would like for this paper to be comprehensible to both machine learning
researchers and to statisticians� so we will describe both tree induction and
logistic regression in detail� A reader knowledgeable in either area can safely
skip the �basic� material�

����� Basic tree induction

Classi�cation�tree learning algorithms are greedy� �recursive partitioning� pro�
cedures� They begin by searching for the single predictor variable x�� that best
partitions the training data �as determined by some measure	� This �rst se�
lected predictor� x�� � is the root of the learned classi�cation tree� Once x�� is
selected� the training data are partitioned into subsets satisfying the values of
the variable� Therefore� if x�� is a binary variable� the training data will be
partitioned into two subsets�

The classi�cation�tree learning algorithm proceeds recursively� applying the
same procedure to each subset of the partition� The result is a tree of predictor
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variables� each splitting the data further� Di�erent algorithms use di�erent
criteria to evaluate the quality of the splits produced by various predictors�
Usually� the splits are evaluated by some measure of the �purity� of the resultant
subsets� in terms of the outcomes� For example� consider the case of binary
predictors and binary outcome� a maximally impure split would result in two
subsets� each with the same ratio of the contained examples having y � � and
having y � �� On the other hand� a pure split would result in two subsets� one
having all y � � examples and the other having all y � � examples�

Di�erent classi�cation�tree learning algorithms also use di�erent criteria for
stopping growth� The most straightforward method is to stop when the subsets
are pure� On noisy� real�world data� this often leads to very large trees� so
often other stopping criteria are included �e�g�� stop if one child subset would
have fewer than a predetermined number of examples� or stop if a statistical
hypothesis test cannot conclude that there is a signi�cant di�erence between
the subsets and the parent set	� The data subsets produced by the �nal splits
are called the leaves of the classi�cation tree� More accurately� the leaves are
de�ned intensionally by the conjunction of conditions along the path from the
root to the leaf� For example� if binary predictors de�ning the nodes of the
tree are numbered by a �depth��rst	 pre�order traversal� and predictor values
are ordered numerically� the �rst leaf would be de�ned by the logical formula�
�x�� � �	 � �x�� � �	 � � � � � �x�d � �	� where d is the depth of the tree along
this path�

An alternative method for controlling tree size is to prune the classi�cation
tree� Pruning involves starting at the leaves� and working upward toward the
root �by convention� classi�cation trees grow downward	� repeatedly asking the
question� should the subtree rooted at this node be replaced by a leaf� As might
be expected� there is a wide variety of pruning algorithms� One of the most
common approaches is �reduced�error pruning�� which replaces a subtree with
a leaf if the subtree does not improve accuracy �Quinlan� ����	� Assessments
of improvement are done on the training set� or on a subset of the training data
held out specially for this purpose�

Classi�cations also are produced by the resultant classi�cation tree in a
recursive manner� A new example is compared to x�� � at the root of the tree�
depending on the value of this predictor in the example� it is passed to the
subtree rooted at the corresponding node� This procedure recurses until the
example is passed to a leaf node� At this point a decision must be made as to
the classi�cation to assign to the example� Typically� the example is predicted
to belong to the most prevalent class in the subset of the training data de�ned
by the leaf� It is useful to note that the logical formulae de�ned by the leaves
of the tree form a mutually exclusive partition of the example space� Thus� the
classi�cation procedure also can be considered as the determination of which
leaf formula applies to the new example �and the subsequent assignment of the
appropriate class label	�
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����� Laplace�corrected probability estimation trees �PETs�

A straightforward method of producing an estimate of the probability of class
membership from a classi�cation tree is to use the frequency of the class at
the corresponding leaf� resulting in a probability estimation tree �PET	� For
example� if the leaf matching a new example contains p positive examples and n
negative examples� then the frequency�based estimate would predict the prob�
ability of membership in the positive class to be p

p�n
�

It has been noted �see� for example� the discussion by Provost and Domingos�

���	 that frequency�based estimates of class�membership probability� com�
puted from classi�cation�tree leaves� are not always accurate� One reason for
this is that the tree�growing algorithm searches for ever�more pure leaves� This
search process tends to produce overly extreme probability estimates� This is
especially the case for leaves covering few training examples�

To produce better class�probability estimates� �smoothing� can be used at
the leaves� A detailed investigation of smoothing methods is beyond the scope
of this paper� However� the use of �Laplace� smoothing has been shown to be
particularly e�ective� and is quite simple�

Speci�cally� consider the following potential problem with the frequency�
based method of probability estimation� What if a leaf covers only �ve training
instances� all of which are of the positive class� Is it reasonable to use a prob�
ability estimator that gives an estimate of ��� ����	 that subsequent instances
matching the leaf
s conditions also will be positive� Perhaps �ve instances is
not enough evidence for such a strong statement�

The so�called Laplace estimate �or Laplace correction� or Laplace smooth�
ing	 works as follows �described for the general case of C classes	� Assume there
are p examples of the class in question at a leaf� N total examples� and C total
classes� The frequency�based estimate presented above calculates the estimated
probability as p

N
� The Laplace estimate calculates the estimated probability as

p��

N�C
� Thus� while the frequency estimate yields a probability of ��� from the

p � �� N � � leaf� for a two�class problem the Laplace estimate yields a prob�
ability of ���

���
� ����� The Laplace correction can be viewed as a form of

Bayesian estimation of the expected parameters of a multinomial distribution
using a Dirichlet prior �Buntine� ����	� It e�ectively incorporates a prior prob�
ability of �

C
for each class �note that with zero examples the probability of each

class is �

C
	� This may or may not be desirable for a speci�c problem� however�

practitioners have found the Laplace correction worthwhile� To our knowledge�
the Laplace correction was introduced in machine learning by Niblett �����	�
Clark and Boswell �����	 incorporated it into the CN
 rule learner� and its use
is now widespread� The Laplace correction �and variants	 has been used for
tree learning by some researchers and practitioners �Pazzani et al�� ����� Brad�
ford et al�� ����� Provost� Fawcett� and Kohavi� ����� Bauer and Kohavi� �����
Danyluk and Provost� 
���	� but others still use frequency�based estimates�
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����� PETs and pruning

If we
re going to compare tree induction to logistic regression using their prob�
ability estimates� we also have to consider the e�ect of pruning� In particular�
the pruning stage typically tries to �nd a small� high�accuracy tree� The prob�
lem for PETs is that pruning removes both of two types of distinctions made
by the classi�cation tree� �i	 false distinctions�those that were found simply
because of �over�tting� idiosyncrasies of the training data set� where removal
is desirable� and �ii	 distinctions that indeed generalize �e�g�� entropy in fact
is reduced	� and in fact will improve class probability estimation� but do not
improve accuracy� where removal is undesirable� This is discussed in detail by
Provost and Domingos �
���	� who also show that pruning indeed can substan�
tially reduce the quality of the probability estimates� When inducing PETs� we
therefore will consider unpruned trees with Laplace smoothing�

����� Bagging

It is well known that trees su�er from high variability� in the sense that small
changes in the data can lead to large changes in the tree�and� potentially�
corresponding changes in probability estimates �and therefore in class labels	�
Bagging �bootstrap aggregating	 was introduced by Breiman �����	 to address
this problem� and has been shown to work well often in practice �Bauer and
Kohavi� ����	� Bagging produces an ensemble classi�er by selecting B di�er�
ent training data sets using bootstrap sampling �Efron and Tibshirani� ����	
�sampling N data points with replacement from a set of N total data points	�
Models are induced from each of the B training sets� For classi�cation� the
prediction is taken to be the majority �plurality	 vote of the B models�

We use a variant of bagging that applies to class probability estimation as
well as classi�cation� Speci�cally� to produce an estimated probability of class
membership� the probability estimates from the B models are averaged� For
classi�cation� the class with the highest estimated membership probability is
chosen�

��� Logistic regression

����� Basic multiple logistic regression

The standard statistical approach to modeling binary data is logistic regression�
Logistic regression is a member of the class of generalized linear models� a broad
set of models designed to generalize the usual linear model to target variables
of many di�erent types �McCullagh and Nelder� ����� Hosmer and Lemeshow�

���	� The usual �least squares	 linear model hypothesizes that an observed
target value yi is normally distributed� with mean

E�yi	 � �� � ��x�i � � � �� �pxpi ��	

and variance ��� That is� the model speci�es an appropriate distribution for yi
�in this case� the normal	 and the way that the predictors relate to the mean of
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yi �in this case� the linear relationship ��		�
Generalized linear models generalize this by separating model speci�cation

into three parts� which allows the data analyst the �exibility to change the
speci�cation to be appropriate for the data at hand� the distribution of the ith
example of the target variable yi �the random component	� the way that the
predicting variables combine to relate to the level of yi �the systematic compo�
nent	� and the connection between the random and systematic components �the
link function	� The random component requires that the distribution of yi come
from the exponential family� with density function

f�y� �� �	 � expf�y� � b��	��a��	 � c�y� �	g�

for speci�ed functions a��	� b��	� and c��	� The parameter � is called the canonical
parameter� and is related to the level of y� while � is a dispersion �variance	
parameter� For the standard linear model� f is the normal �Gaussian	 density
with � � � and � � ��� The systematic component speci�es that the predictor
variables relate to the level of y as a linear combination the predictor values�

	i � �� � ��x�i � � � �� �pxpi

�a linear predictor	� The link function then relates 	 to the mean of y� �� being
the function g such that g��	 � 	 �for the standard linear model 	 � � � �	�

To train the model� the parameters of the generalized linear model are esti�
mated using the method of maximum likelihood� in particular� the parameters
are chosen to maximize the log�likelihood function

L �
nX
i��

�
yi�i � b��i	

ai��	
� c�yi� �	

�
�

A particularly simple form of the generalized linear model� with desirable theo�
retical properties� occurs when the link function satis�es g��	 � �� This link is
called the canonical link�

Consider now the binary ����	 target variable y of interest here� The ap�
propriate random component for a target variable of this type is the binomial
distribution� Since y takes on only the values � or �� the form of the binomial
is particularly simple here� P �yi � �	 � pi� and P �yi � �	 � �� pi� with yi and
yj independent of each other for i �� j� implying random component

f�yi� pi	 � pyii �� � pi	
��yi �

The canonical link for the binomial distribution is the logistic link�

	i � ln

�
pi

�� pi

�
� �� � ��x�i � � � �� �pxpi� �
	

The term pi����pi	 represents the odds of observing � versus �� so the logistic
regression model hypothesizes a linear model for the log�odds� Equation �
	 is
equivalent to
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pi �
exp��� � ��x�i � � � �� �pxpi	

� � exp��� � ��x�i � � � �� �pxpi	
� ��	

Equation ��	 implies an intuitively appealing S�shaped curve for probabili�
ties� This guarantees estimated probabilities in the interval ��� �	� and is con�
sistent with the idea that the e�ect of a predictor on P �y � �	 is larger when
the estimated probability is near �� than when it is near � or �� The parameter
estimates 	� maximize the log�likelihood

L �
nX
i��

�yi lnpi � �� � yi	 ln��� pi	�� ��	

where pi is based on ��	� Substituting 	� into ��	 gives estimates of pi � P �yi �
�	� Logistic regression also can be used for classi�cation by assigning an ob�
servation to group � if  p is greater than some cuto� �for example� ��� although
other cuto�s might be more sensible in some circumstances	�

A reader from an Arti�cial Intelligence background might consider logistic
regression to be a degenerate �single�node	 neural network� a linear combination
of the predictor variables� run through a sigmoid function� and for classi�cation
the resultant score would be compared to a threshold�

����� Ridge logistic regression

It is well known that linear regression models� including logistic linear regression
models� become unstable when they include many predictor variables relative to
the sample size� This translates into poor predictions when the model is applied
to new data� There are two general approaches to addressing this problem� �i	
adjusting the regression estimates� reducing variance but increasing bias� or �ii	
using a variable selection method �in statistical parlance� a �model selection�
method	 that attempts to identify the important variables in a model �with only
the important variables used in the analysis	�

Regression estimates are typically adjusted by shrinking the correlation ma�
trix of the predictor variables towards a �xed point by adding a constant 

�the ridge parameter	 to the diagonal elements of the matrix� reducing ill�
conditioning of the matrix� and thereby improving the stability of the estimate�
The method was introduced in the context of least squares regression by Hoerl
and Kennard �����	� and was adapted to logistic regression by le Cessie and van
Houwelingen ����
	� Hoerl� Kennard� and Baldwin �����	 proposed an auto�
matic method of choosing 
 based on Bayesian arguments that can be adapted
to the logistic regression framework� Taken together� the ridge logistic estimate
is calculated in the following way�

�� Fit the logistic regression model using maximum likelihood� leading to the
estimate 	�� De�ne

 �sj �
 �j
sj
� j � �� � � � � p�

��



where sj is the standard deviation of the values in the training data for

the jth predictor� Let 	�� equal 	� with the intercept  �� omitted�


� Construct the Pearson X� statistic based on the training data�

X� �
NX
i��

�yi �  pi	
�

 pi���  pi	
�

�� De�ne


 �

�
p

N � p� �

�
X�Pp

j���
 �sj 	

�
�

�� Let Z be the N � �p � �	 matrix of centered and scaled predictors� with

zj �
xj �Xj

sj
�

Let ! � Z�V Z� where V is diag� pi�� �  pi	�� the N � N diagonal matrix
with ith diagonal element  pi���  pi	�

Then the ridge logistic regression estimate equals �  �R� � 	�
R	� where

	�R � �! � diag�

		��!	��

and

 �R� �  �� �

pX
j��

�  ��j �
 �Rj 	Xj �

����� Variable selection for logistic regression

Variable selection methods attempt to balance the goodness�of��t of a model
with considerations of parsimony� This requires a measure that explicitly quan�
ti�es this balance� Akaike �����	 proposed AIC for this purpose based on
information considerations� Using this method� the �best� model among the
set of models being considered minimizes

AIC � �
�maximized log�likelihood	� 
�number of parameters	�

More complex models result in a greater maximized log�likelihood� but at the
cost of more parameters� so minimizing AIC attempts to �nd a model that
�ts well� but is not overly complex� In the logistic regression framework the
maximized log�likelihood is L from ��	� while the number of parameters in the
model is p � �� the number of predictors in the model plus the intercept�

In theory one could look at all possible logistic regression models to �nd
the one with minimalAIC value� but this becomes computationally prohibitive
when p is large� A more feasible alternative is to use a stepwise procedure� where
candidate models are based on adding or removing a term from the current
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�best� model� The stepwise method we use is based on the stepAIC function
of Venables and Ripley �����	� The starting candidate model is based on using
all of the predictors� Subsequent models are based on omitting a variable from
the current candidate model or adding a variable that is not in the model� with
the choice based on minimizing AIC� The �nal model is found when adding or
omitting a variable does not reduce AIC further� Note that this is not the same
as controlling a stepwise procedure on the basis of the statistical signi�cance of
a coe"cient for a variable �either already in the model or not in the model	�
since AIC is based on an informationmeasure� not a frequentist tail probability�

����� Bagging logistic regression models

Bagging has been applied widely to machine learning techniques� but it has
rarely been applied to statistical tools such as logistic regression� This is not
unreasonable� since bagging is designed to address high variability of a method�
and logistic regression models �for example	 are generally muchmore stable than
those produced by machine learning tools like tree induction� Still� that does
not mean that bagging cannot be applied to methods like logistic regression�
and for completeness we include bagged logistic regression in our set of variants
of logistic regression� Application to logistic regression is straightforward� and
parallels application to probability trees� That is� one creates B random sub�
samples with replacement from the original data set and estimates for each of
them the logistic model� The prediction for an observation is the mean of the
B predictions� More details are given in Section ����


� Experimental setup

As mentioned above� the fundamental analytical tool that we will use is the
learning curve� Learning curves represent the generalization performance of the
models produced by a learning algorithm� as a function of the size of the training
set� Figure � shows two typical learning curves� For smaller training�set sizes
the curves are steep� but the increase in accuracy lessens for larger training�
set sizes� Often for very large training�set sizes this standard representation
obscures small� but non�trivial� gains� Therefore to visualize the curves we will
use two transformations� First we will use a log scale on the horizontal axis�
Second� we will start the graph at the accuracy of the smallest training�set size
�rather than at zero	� The transformation of the learning curves in Figure � is
shown in Figure 
�

We produce learning curves based on �� data sets� We now describe these
data sets� the measures of error we use �for the vertical axes of the learning
curve plots	� the technical details of how learning curves are produced� and the
implementations of the learning algorithms and variants�
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��� Data sets

The �� data sets in this study were selected to help achieve our goal of exam�
ining learning curves for tree induction and logistic regression� for the tasks of
classi�cation and ranking by probability of class membership� In order to get
learning curves of a reasonable length� each data set was required to have at
least ��� observations� To this end� we chose many of the larger data sets from
the UCI data repository �Blake and Merz� 
���	 and from other learning repos�
itories� We selected data data drawn from real domains and avoided synthetic
data� The rest were obtained from practitioners with real classi�cation tasks
with large data sets� The appendix gives source details for all the data sets�

We only considered tasks of binary classi�cation� which facilitates the use of
logistic regression and allows us to compute the area under the ROC curve� de�
scribed below� which we rely on heavily in the analysis� Some of the two�class
data sets are constructed from data sets originally having more classes� For
example� the Letter�A data set and the Letter�V data set are constructed by
taking the UCI letter data set� and using as the positive class instances of the
letter �a� or instances of vowels� Finally� because of problems encountered with
some of the learning programs� and the arbitrariness of workarounds� we avoided
missing data for numerical variables� If missing values occured in nominal val�
ues we coded them explicitly� C��� has a special facility to deal with missing
values� coded as ���� In order to keep logistic regression and tree induction com�
parable� we choose a di�erent code and modeled missing values explicitly as a
nominal value� Only two data sets contained missing numerical data �Downsize
and Firmreputation	� In those cases we excluded rows or imputed the missing
value using the mean for the column� For a more detailed explanation see the
appendix�

Table � shows the speci�cation of the �� data sets used in this study� includ�
ing the maximum training size� the number of variables� the number of nominal
variables� the total number of parameters �� for a continuous variable� number
of nominal values minus one� for each nominal variable	� and the classi�cation
prior �the proportion of positive class instances in the training set	�

��� Evaluation metrics

We compare performance using two evaluation metrics� First� we use classi�ca�
tion accuracy �equivalently� undi�erentiated error rate	� the number of correct
predictions on the test data divided by the number of test data instances� This
is the standard comparison metric used in studies of classi�er induction in the
machine learning literature�

Classi�cation accuracy obviously is not an appropriate evaluation criterion
for all classi�cation tasks �Provost� Fawcett� and Kohavi� ����	� For this work
we also want to evaluate and compare di�erent methods with respect to their
estimates of class probabilities� One alternative to classi�cation accuracy is
to use ROC �Receiver Operating Characteristic	 analysis �Swets� ����	� which
compares visually the classi�ers
 performance across the entire range of proba�
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Table �� Data sets

Data set Max Training Variables Nominal Total Prior

Abalone 
��� � � � ���
Adult ����� �� � ��� ����
Ailerons ���� �
 � �
 ���
Bacteria �
��� �� � ��� ����
Bookbinder �
�� �� � �� ����
CalHous ����� �� � �� ���
CarEval ��
� � � 
� ���
Chess ���� �� �� �� ���
Coding ����� �� �� �� ���
Connects ���� 
� 
� �� ����
Contra ��
� � � 
� ����
Covertype 
����� �
 
 �� ���
Credit ��� �� � �� ���
Diabetes �
� � � � ����
DNA 
��� ��� ��� ��� ���
Downsize ��� �� � �� ����
Firm �
��� 
� � 
� ����
German ��� 
� �� �� ���
IntCensor ����� �
 � �� ����
IntPrivacy ����� �� �� �� ���

IntShopping �
��� �� �� �� ���
Insurance ���� �� 
 ��� ����
Intrusion 
����� �� � �� ���
Letter�A ����� �� � �� ����
Letter�V ����� �� � �� ���
Mailing ������ � � �� ����
Move 
��� �� �� �� ���
Mushroom ���� 

 

 ��� ���
Nurse ��
�� � � 
� ����
Optdigit ���� �� � �� ���
Pageblock ���� �� � �� ���
Patent �
����� � 
 ��� ����
Pendigit ��
�� �� � �� ���
Spam ���� �� � �� ���
Telecom �
��� �� � �� ���

Yeast �
�� � � � ���
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bilities� For a given binary classi�er that produces a score indicating likelihood
of class membership� its ROC curve depicts all possible tradeo�s between true�
positive rate �TP 	 and false�positive rate �FP 	� Speci�cally� any classi�cation
threshold on the score will classify correctly an expected percentage of truly
positive cases as being positive �TP 	 and will classify incorrectly an expected
percentage of negative examples as being positive �FP 	� The ROC curve plots
the observed TP versus FP for all possible classi�cation thresholds� Provost
and Fawcett �Provost and Fawcett� ����� ����	 describe how precise� objective
comparisons can be made with ROC analysis� However� for the purpose of this
study� we want to evaluate the class probability estimates generally rather than
under speci�c conditions or under ranges of conditions� In particular� we will
concentrate on how well the probability estimates can rank cases by their likeli�
hood of class membership� There are many applications where such ranking is
more appropriate than binary classi�cation�

Knowing nothing about the task for which they will be used� which prob�
abilities are generally better for ranking� In the standard machine learning
evaluation paradigm� the true class probability distributions are not known� In�
stead� a set of instances is available� labeled with the true class� and comparisons
are based on estimates of performance from these data� The Wilcoxon��Mann�
Whitney	 nonparametric test statistic is appropriate for this comparison �Hand�
����	� The Wilcoxon measures� for a particular classi�er� the probability that
a randomly chosen class � case will be assigned a higher class � probability
than a randomly chosen class � case� Therefore higher Wilcoxon score indicates
that the probability ranking is generally better �there may be speci�c condi�
tions under which the classi�er with a lower Wilcoxon score is preferable	� Note
that this evaluation side�steps the question of whether the probabilities are well
calibrated��

Another metric for comparing classi�ers across a wide range of conditions
is the area under the ROC curve �AUR	 �Bradley� ����	� AUR measures the
quality of an estimator
s classi�cation performance� averaged across all possible
probability thresholds� The AUR is equivalent to the Wilcoxon statistic �Hanley
and McNeil� ���
	� and is also essentially equivalent to the Gini coe"cient
�Hand� ����	� Therefore� for this work we will report the AUR when comparing
class probability estimators�

It is important to reiterate that AUR judges the relative quality of the entire
probability�based ranking� It may be the case that for a particular threshold
�e�g�� the top �� cases	 a model with a lower AUR in fact is desirable�

�An inherently good probability estimator can be skewed systematically� so that although
the probabilities are not accurate� they still rank cases equivalently� This would be the case�
for example� if the probabilities were squared� Such an estimator will receive a high Wilcoxon
score� A higher Wilcoxon score indicates that� with proper recalibration� the probabilities
of the estimator will be better� Probabilities can be recalibrated empirically� for example as
described by Sobehart et al� ������ and by Zadrozny and Elkan �������
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��� Learning Curves

In order to obtain a smooth learning curve with a maximum training size Nmax
and test size T we perform the following steps �� times and average the resulting
curves�

��	 Draw an initial sample Sall of size Nmax � T from the original data set�
�We choose the test size T to be between one�quarter and one�third of
the original size of the dataset�	

�
	 Split the set Sall randomly into a test set Stest of size T and keep the
remaining Nmax observations as a data pool Strain�source for training
samples�

��	 Set the initial training size N to approximately � times the number of
parameters in the logistic model�

��	 Sample a training set Strain with the current training size N fromStrain�source�

��	 Remove all data from the test set Stest that have nominal values that did
not appear in the training set� Logistic regression requires the test set to
contain only those nominal values that have seen been previously in the
training set� If the training sample did not contain the value �blue� for
the variable color� for example� logistic regression cannot estimate a para�
meter for this dummy variable and will produce an error message and stop
execution if a test example with color � �blue� appears� In comparison
C��� splits the example probabilistically� and sends weighted �partial	 ex�
amples to descendent nodes� for details see Quinlan �����	� We therefore
remove all test examples that have new nominal values from Stest and
create Stest�N for this particular N � The amount of data rejected in this

process depends on the distribution of nominal values� and the size of the
test and current training set� However� we usually lose less than ��# of
our test set�

��	 Train all models on the training set Strain and obtain their predictions for
the current test set Stest�N set� Calculate the various evaluation criteria

for all models�

��	 Repeat steps � to � for increasing training size N up to Nmax

All samples in the outlined procedure are drawn without replacement� After
repeating these steps �� times we have for each method and for each training�set
size �� observations of all evaluation criteria� The �nal learning curves of the
algorithms in the plots connect the means of the replicated evaluation criteria
values for each training�set size� We use the standard deviation of the replicated
value as a measure of the inherent variability of each evaluation criterion across
di�erent training sets of the same size� constructing error bars at each training�
set size representing � one standard deviation� In the evaluation we will consider
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two models as di�erent for a particular training�set size if the mean for neither
falls within the error bars of the other�

We train all models on the same training data in order to reduce variation
in the performance measures due to sampling of the training data� By the same
argument we also use the same test set for all di�erent training�set sizes �for
each of the ten learning curves	� as this decreases the variance and thereby
increases the smoothness of the learning curve�

It is important to note that since the evaluation criteria are based on a
randomly sampled test set� any time�related structure that is present in the data
is ignored in the evaluation� That is� none of the results reported here relate
to performance of these methods in a forecasting situation� where observations
from earlier points in time are used to predict values from later time periods�
Forcasting is a very di�erent situation from the one studied here� since in that
context the possibility of the underlying relationships in the population changing
over time is an important concern�

��� Implementation

����� Tree induction

To build classi�cation trees we used C��� �Quinlan� ����	 with the default pa�
rameter settings� To obtain probability estimates from these trees we used the
frequency scores at the leaves� Our second algorithm� C����PET �Probability
Estimation Tree	� uses C��� without pruning and estimates the probabilities as
Laplace�corrected frequency scores� as discussed in Section ����
� The third al�
gorithm in our comparison� BPET� performs a form of bagging �Breiman� ����	
using C���� Speci�cally� averaged�bagging estimates �� trees from �� bootstrap
subsamples of the training data and predicts the mean of the probabilities��

Details of the implementations are summarized in Table 
�

����� Logistic Regression

Logistic regression was performed using the SAS program PROC LOGISTIC�
A few of the data sets exhibited quasicomplete separation� in which there exists
a linear combination of the predictors ��x such that ��xi 	 � for all i where
yi � � and ��xi 
 � for all i where yi � �� with equality holding for at
least one observation with yi � � and at least one observation with yi � ��
In this situation a unique maximum likelihood estimate does not exist� since
the log�likelihood increases to a constant as at least one parameter becomes
in�nite� Quasicomplete separation is more common for smaller data sets� but
it also can occur when there are many qualitative predictors that have many
nominal values� as is sometimes the case here� SAS stops the likelihood iterations
prematurely with an error �ag when it identi�es quasicomplete separation �So�

�This is in contrast to standard bagging� for which votes are tallied from the ensemble
of models and the class with the majority�plurality is predicted� Averaged�bagging allows
us both to perform probability estimation and to perform classi
cation �thresholding the
estimates at �����
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Table 
� Implementation Details

Name Description of Probability Estimation
C��� Frequency estimates on pruned tree
C����PET Laplace corrected frequency estimates on unpruned tree
BPET ���fold averaged�bagging of Laplace corrected frequency es�

timates on unpruned tree
LR Multiple logistic regression
AIC Logistic regression with variable selection based on minimal

AIC
Ridge Ridge logistic regression
BLR ���fold averaged�bagging of ordinary logistic regression

����	� which leads to inferior performance� For this reason� for these data
sets the logistic regression models are �t using the glm�	 function of R �Ihaka
and Gentleman� ����	� since that package continues the maximum likelihood
iterations until the change in log�likelihood is below a preset tolerance level�

For bagged logistic regression� similarly to bagged tree induction� we used
�� subsamples with replacement of the same size as the original training set�
We estimated �� logistic regression models and took the mean of the probability
predictions on the test set of those �� models as the �nal probability prediction
for the test set� The issue of novel nominal values in the test set again creates
problems for bagged logistic regression� As was noted earlier� logistic regression
requires all levels of nominal variables that appear in the test set to have also
appeared in the training set� In order to guarantee this for each of the �� sub�
training sets� a base set was added to the �� sub�training sets� This base set
contains at least two observations containing each nominal value appearing in
the test set�

The variable selection variant and the ridge logistic regression were imple�
mented in R� Due to computational constraints such as memory limits� these
variants do not execute for very large data sets and so we can only report the
basic logistic regression for those cases� Details of the implementation are sum�
marized in Table 
�

� Variants of methods� Learning curve analysis

In this section we investigate the usefulness of the di�erent variants of the algo�
rithms discussed in Section �� We �rst focus on tree induction and then consider
logistic regression�
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��� Variants of tree induction

We compare the learning curves to examine the e�ects of pruning� the Laplace
correction� and bagging� Pruning was introduced �and improved upon	 in or�
der to increase the accuracy of unpruned classi�cation trees� Accuracy�based
pruning �as in C���	 can hurt probability estimation based on trees� because
it eliminates distinctions in estimates that would not a�ect classi�cation� For
example� two sibling leaves with probability estimates of ��� and ��� both would
yield a positive classi�cation� however� the di�erent scores may improve ranking
performance signi�cantly� The Laplace correction makes up for errors in scores
due to the smaller samples at the leaves of unpruned trees� and due to the overly
extreme bias in the probabilities� as discussed earlier� Bagging reduces variance�
which leads to estimation errors as well as classi�cation errors �Friedman� ����	�

The ability of Laplace correction and bagging to improve probability estima�
tion of induced trees has been noted previously� Bauer and Kohavi �����	 show
improvements using mean�squared error from the true ����	 class� Provost�
Fawcett� and Kohavi �����	 present ROC curves that show similar results� and
Provost and Domingos �
���	 show similar results using AUR� Our results are
consistent with expectations�

Pruning �C��
 versus PET�

For classi�cation accuracy� pruning	 improves the performance in ten cases �win�
tie�loss tally� ���
���	� However� the improvements are small in most cases� The
top plot of Figure � shows a typical case of accuracy learning curves �Spam data
set	�

The performance comparison of C��� and C����PET is systematically re�
versed for producing ranking scores �AUR	� The Laplace transformation�not�
pruning combination improves the AUR in twenty�two cases and is detrimental
in only two cases �IntPriv and IntCensor	 �win�tie�loss� 

��
�
	� The lower
plot of �gure � shows this reversal on the same data set �Spam	� Notice that�
in contrast to accuracy� the di�erence in AUR is considerable between C��� and
C����PET�

Bagging �BPET versus C��
�

Averaged�bagging often improves accuracy� sometimes substantially� The win�
tie�loss tally is ���
��� in favor of bagging over C���� In terms of producing
ranking scores �AUR	� BPET was never worse than C���� with a 
���
�� result�

Bagging �BPET versus C��
�PET�

The only di�erence between BPET and C����PET is the averaged�bagging�
Both use Laplace correction on unpruned trees� BPET dominates this com�
parison for both accuracy and probability estimation �������
 for accuracy and

�Recall that the Laplace correction will not change the classi
cation decision� so the only
di�erence between C	�� and C	���PET for classi
cation is pruning�
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performance of variants of probability estimation trees�
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������
 for AUR	� The two data sets where bagging hurts are Mailing and
Abalone� However� looking ahead� in both these cases tree induction did not
perform well compared to logistic regression�

Based on these results� for the comparison with logistic regression in Sec�
tion �� we will use two methods� C����PET �Laplace corrected and not pruned	
and BPET� Keep in mind that this may underrepresent C���
s performance
slightly when it comes to classi�cation accuracy� since with pruning regular
C��� typically is slightly better� However� the number of runs in Section � is
huge� Both for comparison and for computational practicability it is important
to limit the number of learning algorithms� Moreover� we report surprisingly
strong results for C��� below� so our choice here is conservative�

��� Variants of logistic regression

In this section we discuss the properties of the three variants of logistic regression
that we are considering�

Model selection using AIC sometimes results in improved performance rel�
ative to using the full logistic regression model� particularly for smaller sample
sizes� Evidence of this is seen� for example� in the Adult� Bacteria� Mailing�
Firm� German� Spam� and Telecom data sets� Figure �� which shows the logis�
tic regression accuracy learning curves for the Firm data set� gives a particularly
clear example� where the AIC learning curve is consistently higher than that for
ordinary logistic regression� and distinctly higher up to sample sizes of at least
����� Corresponding plots for AUR are similar� Model selection also can lead
to poorer performance� as it does in the CalHous� Coding� and Optdigit data
sets� However� as was noted earlier� AIC�based model selection is infeasible for
large data sets�


The story for ridge logistic regression is similar� but less successful� While
ridge logistic regression was occasionally e�ective for small samples �see� for
example� Figure �� which refers to the Intshop data set	� for the majority of
data sets using it resulted in similar or poorer performance compared to the
full regression� We will therefore not discuss it further� Note� however� that we
used one particular method of choosing the ridge parameter 
� perhaps some
other choice would have worked better� so our results should not be considered
a blanket dismissal of the idea of ridge logistic regression�

We also found� perhaps surprisingly at �rst� that bagging is systematically
detrimental to performance for logistic regression� In fact� in contrast to the
observation regarding bagging for trees� for logistic regression bagging seems
to shift the learning curve to the right$ Upon further consideration� this is
not surprising� Bagging trains individual models with substantially fewer data

�More speci
cally� implementation of the Venables and Ripley ������ AIC�based selector
is based on the package R� and use of this package becomes infeasible for very large data sets
There is an implementation for the package S�Plus� but this package is also not feasible for
massive data sets We know of no implementation for SAS�
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Figure �� Accuracy learning curves for Californian housing data set� illustrating
the negative impact of bagging on logistic regression performance�

�approximately ����n distinct original observations� where n is the training�
set size	� Therefore when the learning curve is steep� the individual models
will have considerably lower accuracies than the model learned from the whole
training set� In trees� this e�ect is more than compensated for by the variance
reduction� usually yielding a net improvement� However� logistic regression has
little variance� so all bagging does is to average the predictions of a set of poor
models �note that bagging does seem to result in a small improvement over the
accuracy produced with ��# of the data	�

In sum� our conclusion for logistic regression is quite di�erent from that for
tree induction �in the previous section	� For larger training�set sizes� which are
at issue in this paper� none of the variants improve considerably on the basic
algorithm� Indeed� bagging is detrimental� Therefore� for the following study
we only consider the basic algorithm� It should be noted� however� that this
decision has no e�ect on our conclusions concerning the relative e�ectiveness of
logistic regression and tree induction� since for the smaller data sets the ranking
of the basic logistic regression algorithm compared to tree induction is the same
as that of the variants of logistic regression�

One other general property of logistic regression learning curves is illustrated
well by Figure 
�the leveling o� of the curve as the size of the data set increases�
In virtually every example examined here� logistic regression learning curves
either had leveled o� at the right end� or were in the process of doing so� This
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is exactly what would be expected for any parametric model �including logistic
regression	� As the data set gets larger� eventually the parameters of the model
are estimated as accurately as they can be� with standard error �virtually	 zero�
At this point additional data will not change anything� and the learning curve
must level o��

� Di�erences between tree induction and logis	

tic regression� Learning curve analysis

We now present our main experimental analysis� We compare the learning
curve performance of the three chosen methods� C����PET �Laplace�corrected�
unpruned probability estimation tree	� BPET �bagged C����PET	� and multiple
logistic regression� as tools for building classi�cation models and models for
class probability estimation� Here and below� we are interested in comparing
the performance of tree induction with logistic regression� so we generally will
not di�erentiate in summary statements between BPET and PET� but just say
�C��� In the graphs we show the performance of all the methods�

Table � summarizes the results for our �� data sets� As indicated by the
�rst column� each row corresponds to a data set� The second column �Winner
AUR	 indicates which method gave the best AUR for the largest training set�
If the mean for one algorithm falls within the error bars for another� a draw
is declared �denoted �none�	� The next column �Winner Acc	 does the same
for classi�cation accuracy� The third column indicates the maximum AUR for
any method on this data set� We will explain this presently� The �nal column
summarizes the comparison of the learning curves� �X dominates� means that
a method of type X outperforms the other method for all training�set sizes� �X
crosses� indicates that a method of type X is not better for smaller training�set
sizes� but is better for larger training�set sizes� �Indistinguishable� means that
at the end of the learning curve with maximal training set we cannot identify
one method �logistic regression or a tree induction	 as the winner�

One data set �Adult	 is classi�ed as �Mixed�� In this case we found di�erent
results for Accuracy �C� crosses	 and AUR �LR dominates	� We will discuss
the reason and implications of this result more generally in Section ����

As described above� the area under the ROC curve �AUR	 is a measure
of how well a method can separate the instances of the di�erent classes� In
particular� if you rank the instances by the scores given by the model� the
better the ranking the larger the AUR� A randomly shu%ed ranking will give an
AUR of �near	 ���� A perfect ranking �perfectly separating the classes into two
groups	 gives an AUR of ���� Therefore� AUR can be considered an estimated
�signal�to�noise ratio�� with respect to the modeling methods available� If no
method does better than random �Max AUR � ���	� then for our purposes
there is no signal �and it doesn
t make sense to compare learning algorithms	�
If some method performs perfectly �Max AUR � ���	� then for our purposes
there is no noise� AUR is better than classi�cation accuracy for this purpose�
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Table �� Results of learning curve analyses�

Data set Winner AUR Winner Acc Max AUR Result

Nurse none none � Indistinguishable
Mushrooms none none � Indistinguishable
Optdigit none none ���� Indistinguishable
Letter�V C� C� ���� C� dominates
Letter�A C� C� ���� C� crosses
Intrusion C� C� ���� C� dominates
DNA C� C� ���� C� dominates
Covertype C� C� ���� C� crosses
Telecom C� C� ���� C� dominates
Pendigit C� C� ���� C� dominates
Pageblock C� C� ���� C� crosses
CarEval none C� ���� C� crosses
Spam C� C� ���� C� dominates
Chess C� C� ���� C� dominates
CalHous C� C� ���� C� crosses
Ailerons none C� ���� C� crosses
Firm LR LR ���� LR crosses
Credit C� C� ���� C� dominates
Adult LR C� ��� Mixed
Connects C� none ���� C� crosses
Move C� C� ���� C� dominates
Downsize C� C� ���� C� crosses
Coding C� C� ���� C� crosses
German LR LR ��� LR dominates
Diabetes LR LR ��� LR dominates
Bookbinder LR LR ��� LR crosses
Bacteria none C� ���� C� crosses
Yeast none none ���� Indistinguishable
Patent C� C� ���� C� crosses
Contra none none ���� Indistinguishable
IntShop LR LR ��� LR crosses
IntCensor LR LR ��� LR dominates
Insurance none none ��� Indistinguishable
IntPriv LR none ���� LR crosses
Mailing LR none ���� LR dominates
Abalone LR LR ���� LR dominates
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Figure �� AUR learning curves for Optdigit data set� illustrating situation where
all methods achieve high performance relatively quickly�

because it is comparable across data sets� For example� it is not a�ected by
the marginal ��prior�	 probability of class membership� A data set with �����#
positive examples should engender classi�cation accuracy of at least �����#�
but still might have an AUR � ��� �there is no signal to be modeled	� The data
sets in Table � are presented in order of decreasing Max AUR�the easiest at
the top� and the hardest at the bottom�

We have separated the results in Table � into three groups� indicated by
horizontal lines� The relative performance of the classi�ers appears to be fun�
damentally di�erent in each group�

The topmost group� comprising Mushroom� Nurse� and Optdigit� are three
situations where the signal�to�noise ratio is extremely high� All methods quickly
attain accuracy and AUR values over ���� and are indistinguishable� The learn�
ing curves for AUR for Optdigit are shown in Figure �� For purposes of com�
parison� these data sets are �too easy�� in the sense that all methods isolate
the structure completely� very quickly� Since these data sets do not provide
helpful information about di�erences in e�ectiveness between methods� we will
not consider them further�

Remarkably� the comparison of the methods for the rest of the data sets
can be characterized quite well by two aspects of the data� the level of noise
in the data� and the size of the data set� As just described� we measure the
level of noise using Max AUR� We split the measure to re�ect a high�low split�
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Figure �� Accuracy learning curves for Letter�V data set� illustrating situation
where C� dominates�

AUR 
 �� �lower signal�to�noise	 versus AUR � �� �higher signal�to�noise	�
The AUR split is re�ected in the lower� horizontal division in the table�

	�� Data with high signal
to
noise ratio

The higher signal�to�noise ratio situation �AUR � ��	 is clearly favorable for
the trees� Of the 
� high�signal data sets� in �� C� is clearly better in terms
of accuracy by the time the learning curve reaches its highest estimation point
�C�
s win�tie�loss record is ������	� In some cases the tree dominates from the
start� Letter�V is a good example of this situation� as shown in Figure ��

Here the logistic regression learning curve is initially slightly steeper than
that of the tree� but the logistic regression curve quickly levels o�� while the
tree keeps learning� achieving far higher accuracy than the logistic regression�
Move� Pendigit� and Spam are roughly similar�

In the other situations� logistic regression
s advantage for smaller data sets
extends further� so that it is clearly better for smaller data sets� but eventually
tree induction surpasses logistic regression both in terms of accuracy and AUR�
Ailerons� Coding� Covertype� and Letter�A provide good examples of this sit�
uation� The AUR curves for Covertype are shown in Figure �� Interestingly�
in all of these cases the crossover point is in the range of a training�set size
of ��������� observations� Thus� our results suggest that for higher signal�to�
noise situations� past a few thousand observations� it is unlikely that logistic
regression will outperform probability trees�
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Figure �� AUR learning curves for Covertype data set� illustrating situation
where logistic regression is initially a better performer� but trees eventually
dominate�

It is natural to ask whether there are clear di�erences between the dominat�
ing cases and the cases of crossing� We do not have a de�nitive answer� but it
seems to be a combination of two factors� First� how �linear� is the problem� If
there are few non�linearities and there is little noise� then logistic regression will
do well from the beginning �relative to the number of parameters� of course	�
tree induction needs more data to reach the necessary complexity� Second� it
simply depends on where you start looking� what is the smallest training�set
size in relation to the number of parameters� If you start with a relatively high
number� trees are likely to dominate�

Are there di�erences between the curves for classi�cation �accuracy	 and
probability rank ordering �AUR	 for this group of data sets� Table � shows that
logistic regression is a bit more competitive for AUR than for accuracy �AUR
win�tie�loss for C��� is ���
�
	� Generally� the shapes of the learning curves
with respect to accuracy and AUR for a given data set are similar� but the
accuracy curves are shifted to the left� C��� needs fewer data for classi�cation
than for probability estimation �again� not surprisingly	� Therefore� when the
C��� curve crosses the logistic regression curve� the crossover point for accuracy
comes at the same point or later than the crossover point for AUR� but not
earlier� An alternative view is that logistic regression apparently is better tuned
for probability ranking than it is for classi�cation� Given that the method
is speci�cally designed to model probabilities �with classi�cation as a possible
side�e�ect of that probability estimation	� this also is not surprising�
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Evidence of this can be seen in Adult� Ailerons� and Letter�A� where the
crossover point of the AUR learning curves has not been reached �although the
trajectories of the curves suggest that with more data the tree would eventually
become the winner	� The cases for Adult for both accuracy and AUR are shown
in Figure ���

	�� Data with low signal
to
noise ratio

The lower signal�to�noise ratio situation �AUR 
 ��	 is slightly more compli�
cated� Sometimes it is impossible to distinguish between the performances of
the methods� Examples of this �italicized in Table �	 include Contraception�
Insurance and Yeast� For these data sets it is di"cult to draw any conclusions�
in terms of either accuracy or AUR� since the curves tend to be within each
other
s error bars� Figure �� illustrates this for the Contra data set�

When the methods are distinguishable logistic regression is clearly the more
e�ective method� in terms of both accuracy and AUR� Ten data sets fall into
this category� Logistic regression
s win�tie�loss record here is ����� for AUR and
��
�
 for accuracy� Examples of this are Abalone� Bookbinder� Diabetes� and
the three Internet data sets �IntCensor� IntPrivacy� and IntShopping	� Figure �

shows this case for the IntCensor data set�

As was true in the higher signal�to�noise situation� logistic regression fares
better �comparatively	 with respect to AUR than with respect to accuracy�
This is re�ected in a more clear gap between logistic regression and the best
tree method in terms of AUR compared to accuracy� see� for example� the results
of IntPriv and the Mailing data where logistic regression wins for AUR� but not
for accuracy�

	�� The Impact of Data Set Size

The Patent data set is an intriguing case� which might be viewed as an exception�
In particular� although it falls into the low signal�to�noise category� C� is the
winner for accuracy and for AUR� This data set is by far the largest in the
study� and at an extremely large training data size the induced tree becomes
competitive and beats the logistic model� As shown in Figure ��� the curves
cross when the training sets contain half a million examples or more� This is
consistent with the common view that machine learning tools are better suited
for large data sets than statistical tools� but note that in this case �large� means
truly massive from the perspective of statistical analyses�

The impact of data�set size on these results is twofold� First� in this study
we use the maximum AUR as a proxy for the signal�to�noise ratio� However�
even with our large data sets� in almost no case did the AUR learning curve
level o� for tree induction� This suggests that we tend to underestimate the
signal�to�noise ratio�

The second impact of data�set size concerns conclusions about which method
is superior� We have �� cases where the curve for one method crosses the
other as the training�set size increases� and some of the mixed cases show that
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Figure ��� Accuracy and AUR learning curves for Adult data set� illustrating
the later crossover of the tree curves past the logistic regression curves for AUR
compared to accuracy�
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Figure ��� AUR learning curves for Contra data set� illustrating low signal�to�
noise and indistinguishable performance�

one method is dominated for small training size but later reaches the same
performance level� In all of those cases the conclusion about which method is
better would have been di�erent if only a smaller sample of the data had been
available�


 Discussion and Implications

These results show that considering training�set size in a comparison of classi�er
induction algorithms �i�e�� examining learning curves on large data sets	 can
help us to understand di�erences in performance� Let us consider the results
in the context of prior work� The most comprehensive experimental study of
the performance of induction algorithms �that we know of	 is described by
Lim� Loh� and Shih �
���	� They show that averaged over �
 data sets� logistic
regression out�performs C���� Speci�cally� the classi�cation error rate for logistic
regression is �# lower than that of C���� Additionally� logistic regression was
the second best algorithm in terms of consistently low error rates� it is not
signi�cantly di�erent from the minimum error rate �of the �� algorithms they
compare	 on �� of the �
 data sets� The only algorithm that fared better �����
	
was a complicated spline�based logistic regression that was extremely expensive
computationally� In comparison� C��� was the ��th best algorithm in these
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Figure �
� AUR learning curves for IntCensor data set� illustrating situation
where logistic regression dominates�

terms� not di�ering from the minimumerror rate on only seven of the data sets�
Our results clarify and augment the results of that study� In particular� Lim

et al� concentrate on UCI data sets without considering data�set size� Their
training�set sizes are relatively small� speci�cally� their average training�set
size is ��� �compare with an average of ����� at the right end of the learning
curves of the present study� median��
���	�� Although C��� would clearly win
a straight comparison over all the data sets in our study� examining the learning
curves shows that C��� often needs more data than logistic regression to achieve
its ultimate classi�cation accuracy�

This leads to a more general observation� that bears on many prior studies
by machine learning researchers comparing induction algorithms on �xed�size
training sets� In only �� of �� cases does one method dominate for the entire
learning curve �and therefore training�set size does not matter	� Thus� it is not
appropriate to conclude from a study with a single training�set size that one
algorithm is �better� �in terms of predictive performance	 than another for a
particular domain� Rather� such conclusions must be tempered by examining
whether the learning curves have reached plateaus� If not� one only can conclude
that for the particular training�set size used� one algorithm performs better than

�Furthermore� �� of their data sets were created by adding noise to the other ��� However�
from their analysis we can not conclude that this is the reason for the dominance of logistic
regression�
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Figure ��� AUR learning curves for the Patent data set� illustrating the situation
where tree induction surpasses logistic regression for extremely large training�
set sizes�

another�
In this study of two learning methods� each the de facto standard in statistics

or in machine learning� we can see clear criteria for when each algorithm is
preferable� C� for low�noise data and logistic regression for high�noise data�
Curiously� the two clear exceptions in the low signal�to�noise case �the cases
where C� beats logistic regression	� Patent and Bacteria� may not be exceptions
at all� it may simply be that we still do not have enough data to draw a �nal
conclusion� For both of these cases� the C� learning curves do not seem to be
leveling o� even at the largest training�set sizes� Figure �� shows this for the
Patent data set and Figure �� shows this for the Bacteria data set� In both
cases� given more training data� the maximum AUR may well exceed ���� in
other words� these data may actually fall into the high signal�to�noise category�
If that were so� the C��tie�LR record for accuracy for the high�signal data sets
would be 
������ and for the �large�enough	 low�signal data sets ��
���

Why is there a connection between relative performance and noise level�
At this point� we can only speculate� It seems safe to assume that the world
does not provide us solely with linear problems� Therefore� when noise is low�
the highly nonlinear nature of tree induction allows it to identify and exploit
complex structure that logistic regression misses� On the other hand� when
noise is high� the massive search performed by tree induction algorithms leads
them to identify noise as signal� resulting in a deterioration of performance� It
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Figure ��� AUR learning curves for Bacteria data set� The AUR of Bacteria has
already reached ���� and tree induction has not leveled o�� One could speculate
that BPET will achieve AUR�����

is a statistical truism that �All models are wrong� but some are useful� �Box�
����� p� 
�
	� this is particularly true when the data are too noisy to allow
identi�cation of the �correct� relationship� The general curve�crossing patterns
we see concur with prior simulation studies showing learned linear models out�
performing more complex learned models for small data sets� even when the
more complex models better represent the true concept to be learned �Flury
and Schmid� ����� Domingos and Pazzani� ����	�

A limitation of our study is that we used the default parameters of C����
For example� the ��m� parameter speci�es when to stop splitting� based on the
size of leaves� Quinlan �����	 notes that the default value may not be best
for noisy data� Therefore� one might speculate that with a better parameter
setting� C��� might be more competitive with logistic regression for the high�
noise data� Although the focus of this paper was the �o��the�shelf� algorithms�
we have experimented systematically with the ��m� parameter on a large� high�
noise data set �Mailing	� The results do not draw our current conclusions into
question�

How can these results be used by practitioners with data to analyze� The
results show convincingly that learning curves must be examined if experiments
are being run on a di�erent training�set size than that which will be used to pro�
duce the production models� For example� a practitioner typically experiments
on data samples to determine which learning methods to use� and then scales
up the analysis� These results show clearly that this practice can be misleading
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Figure ��� Accuracy learning curves for a hybrid model on the California Hous�
ing data set�

for many domains� if the relative shapes of the learning curves are not taken
into account as well�

We also believe that the signal�to�noise categorization can be useful� in cases
where one wants to reduce the computational burden of comparing learning
algorithms on large data�� In particular� consider the following strategy�

�� Run C����PET with the maximally feasible training�set size� For exam�
ple� use all the data available or all that will run well in main memory�
C��� typically is a very fast induction alternative �cf�� Lim� Loh� and Shih�

���	�


� If the resultant AUR is high ���� or greater	 continue to explore tree�based
�or other nonparametric	 options �e�g�� BPET� or methods that can deal
with more data than can �t in main memory �Provost and Kolluri� ����		�

�� If the resultant AUR is low� try logistic regression�

An alternative strategy is to build a hybrid model� Figure �� shows the
performance of tree induction on the California Housing data set� where tree
building takes the probability estimation from a logistic regression model as an
additional input variable� Note that the hybrid model tracks with each model

	For example� we found during this study that� depending on what package is being used�
logistic regression often takes an excessively long time to run� even on moderately large data
sets�
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in its region of dominance� In fact� around the crossing point� the hybrid model
is substantially better than either alternative�

Another limitation of this study is that by focusing on the AUR� we are only
examining probability ranking� not probability estimation� Logistic regression
could perform better in the latter task� since that is what the method is designed
for�

� Conclusion

We have used learning curves to study the e�ectiveness of tree induction and
logistic regression for classi�cation and probability ranking� In the paper
s in�
troduction we stated three related goals of our investigation� all involving the
comparison of tree induction and logistic regression� The results of the learn�
ing curve analysis have provided us with considerable insight into the relative
performance of the methods�

By using real data sets of very di�erent sizes� with di�erent levels of noise�
we have been able to identify several broad patterns in the performance of the
methods� In particular� we see that the highly nonlinear nature of trees allows
tree induction to exploit structure when the noise level in the data is low� On the
other hand� the smoothness �and resultant low variance	 of logistic regression
allows it to perform well when noise is high�

Within the logistic regression family� we see that once the training sets are
reasonably large� standard multiple logistic regression is remarkably robust� in
the sense that di�erent variants we tried do not improve performance �and bag�
ging hurts performance	� In contrast� within the tree induction family the di�er�
ent variants continue to make a di�erence across the entire range of training�set
sizes� bagging usually improves performance� pruning helps for classi�cation�
and not pruning plus Laplace smoothing helps for scoring���

We also have shown that examining learning curves is essential for compar�
isons of induction algorithms in machine learning� Without examining learning
curves� claims of superior performance on particular �domains� are question�
able at best� To emphasize this point� we calculated the C��tie�LR records
that would be achieved on this �same	 set of domains� if data�set sizes had been
chosen particularly well for each method� For accuracy� choosing well for C� we
can achieve a record of 

������ Choosing well for LR we can achieve a record
of �������� Similarly� for AUR� choosing well for C� we can achieve a record
of 
�����
� Choosing well for LR we can achieve a record of �������� There�
fore� it clearly is not appropriate� from simple studies with one data�set size �as
with most experimental comparisons	� to draw conclusions that one algorithm
is better than the other for the corresponding domains�

These results also call into question the practice of experimenting with
smaller data sets �for e"ciency reasons	 to choose the best learning algorithm�

�
On the other hand� the tree�learning program �C	��� that is� is remarkably robust when
it comes to running on di�erent data sets� The logistic regression packages require much more
hand�holding�
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and then �scaling up� the learning with the chosen algorithm� The apparent
superiority of one method over another for one particular sample size does not
necessarily carry over to larger samples �from the same domain	� Similarly� con�
clusions from experimental studies conducted with certain training�set�test�set
partitions �e�g�� two�thirds�one�third	 many not even generalize to the source
data set$ Consider Patent� as shown in Figure ���

A corollary observation is that tree�induction learning curves usually do not
plateau� even for very large data sets� Catlett �����	 concluded that learning
curves do not plateau� on several large�at�the�time data sets �the largest with
fewer than ���� ��� training examples	��� Provost and Kolluri �����	 suggest
that this conclusion should be revisited as the size of data sets that can be
processed �feasibly	 by learning algorithms increases� Our results provide a
contemporary reiteration of Catlett
s� On the other hand� our results seemingly
contradict conclusions or assumptions made in some prior work� For exam�
ple� Oates and Jensen �����	 conclude that classi�cation�tree learning curves
plateau� and Provost et al� �����	 replicate this �nding and use it as an assump�
tion of their sampling strategy� Technically� the criterion for a curve to have
reached a plateau in these studies is that there be less than a certain threshold
�one percent	 increase in accuracy from the accuracy with the largest data�set
size� however� the conclusion often is taken to mean that increases in accuracy
cease� Our results show clearly that this latter interpretation is not appropriate�

Finally� before undertaking this study� we had expected to see crossings in
curves�in particular� to see the tree induction
s relative performance improve
for larger training�set sizes� We had no idea we would �nd such a clean�cut
characterization of the performance of the learners in terms of the data sets

signal�to�noise ratios� Neither did we expect such clear evidence that the notion
of how large a data set is must take into account the noisiness of the data�
Looking forward� we believe that reviving the learning curve as an analytical
tool in machine learning research can lead to other important� perhaps surprising
insights�

Acknowledgments

We thank Batia Wiesenfeld� Rachelle Sampson� Naomi Gardberg� and all the
contributors to �and librarians of	 the UCI repository for providing data� We
also thank Tom Fawcett for writing and sharing the BPET software� Ross Quin�
lan for all his work on C���� Pedro Domingos for helpful discussions about induc�
ing probability estimation models� and IBM for a Faculty Partnership Award�
PROC LOGISTIC software is copyright� SAS Institute Inc� SAS and all other
SAS Institute Inc� product or service names are registered trademarks or trade�
marks of SAS Institute Inc�� Cary� NC� USA�

��Note that Catlett�s large data set was free of noise�

��



A Appendix� Data sets

Adult

This census income database was donated by Ron Kohavi to the UCI repository�
The task is to predict whether income exceeds &��K�yr based on census data�
We have selected a subset of �� variables with the main goal to reduce the
complexity of the problem but not with speci�c attention towards the predictive
power of a variable�

Ailerons

This data set addresses a control problem� namely �ying an F�� aircraft� The
attributes describe the status of the airplane� while the goal is to predict the
discretized control action on the aileron of the aircraft� This data set can be
obtained from the RT homepage at http���www�ncc�up�pt��ltorgo�RT�

Bacteria

This data set is extracted from a hospital information system in a municipal
hospital� which includes information about clinical environments� names of de�
tected bacteria� and characteristics of detected bacteria� This data was used in
the KDD Challenge 
��� at the Fourth Paci�c�Asia Conference on Knowledge
Discovery and Data Mining �PAKDD
���	 and was donated by Dr� Shusaku
Tsumoto from the Department of Medical Informatics� Shimane Medical Uni�
versity� We selected a subset of �� variables since most of the original ���
variables contained many missing data� and we predict whether bacteria were
found or not�

Bookbinder

This data set comes as an example with the Marketing Engineering Software
by G� Lilien and A� Rangaswamy �http���www�mktgeng�com	� The task is to
predict the choice of a customer based on previous shopping activity�

Californian Housing

This data can be found on the RT homepage by L� Torgo� The original task
is to predict the price of a house with a given speci�cation� We discretized the
output variable in to � &������ and 
 &������ to form a classi�cation task�

Car Evaluation

This UCI data set is special since it has for each possible combination of nominal
values of the variables �all six are categorical	 exactly one output� acceptable or
not acceptable� It was derived from a simple hierarchical decision model�

��



Chess

This is a UCI data set that represents chess end�games� It has six nominal
attributes and the classi�cation task is to predict whether the player won or did
not win�

Coding

The protein coding region �PCR	 data set �courtesy of Craven and Shavlik�
����	 contains DNA nucleotide sequences and their binary classi�cations �coding
or noncoding	� Each sequence has �� nucleotides with four di�erent values per
nucleotide� If the �� nucleotides represent � codons which are part of a known
protein� the sequence is labeled coding�

Connect

This data set was donated to the UCI collection by John Tromp� The task is to
classify from legal ��ply positions of a connect�� game whether the player wins
or loses� We excluded the �rd class of draw from the original data set as well as
nominal variables with fewer than �� instances for any of their values�

Contraception

This data set is a subset of the ���� National Indonesia Contraceptive Preva�
lence Survey and is available from the UCI collection� The subjects are married
women who were either not pregnant or did not know if they were pregnant
at the time of interview� The problem is to predict the current contraceptive
method choice �no use or use	 of a woman based on her demographic and so�
cioeconomic characteristics�

Covertype

This is one of the largest UCI classi�cation data sets with originally more than
������� observations� The data were donated by Jock A� Blackard and Colorado
State University� The goal is to classify the forest cover type �tree type	 based
on cartographic variables� We keep only the two main classes of the original
seven tree types in our sample� Spruce�Fir and Lodgepole Pine� which together
accounted for ��# of the data�

Credit

This data set was donated by J�R� Quinlan and can be obtained from the UCI
repository or from the StatLog project under the name Australian Credit Ap�
proval� The goal is to predict credit approval� There is no detailed information
about the meaning of the input variables available� all attribute names and val�
ues have been changed to meaningless symbols to protect con�dentiality of the
data�

��



Mailing�KDD Cup ��

This data set was used in the ���� KDD Cup and is available from UCI� The
objective of the analysis is to identify response to a fundraising campaign by a
nonpro�t organization� For our study we selected a preprocessed subset of nine
demographic and historical response variables based on the reports of the Cup
winners�

Diabetes

This data set was used in the StatLog project and can be found at
http���www�liacc�up�pt�ML�statlog�data sets�html� The task is to pre�
dict whether a patient tests positive for diabetes based on eight personal and
clinical variables�

DNA

This data set was originally called Splice and is part of the UCI Molecular
Biology data set� The goal is to classify a sequence of �� nucleotides as boundary
elements or nonboundary� There are two types of boundary elements� donors
and acceptors which we combined for our classi�cation goal into one category�
The �� nucleotides are coded as � binary dummies for the � possible nucleotides�

Downsize

This data set was created for a study by Wiesenfeld� Brockner� and Martin
�����	 on the perception of fairness in organizational downsizing� We use a
subset of �� questions about the perceived procedural justice of the downsizing
with response levels from ��� ��very little� to �a great deal�	 to predict the
response of general job satisfaction� The predictors are treated as numerical
variables� Records with more than three missing values where excluded� For up
to three missing values per record we substituted the mean of the record� based
on the observation that there was a high correlation between the variables�

Firm Reputation

The data set from the RQGold 
��� survey was sponsored by the Reputation In�
stitute and conducted by Harris International �Fombrun� Gardberg� and Sever�

���	� The classi�cation task is to predict whether the response to the overall
reputation rating of a company is greater than � given a scale from � �equals
�very bad� reputation	 to � �equals �very good� reputation	� As independent
variables we used the responses to �� questions that classi�ed the company in
terms of innovation� competitiveness� pro�tability and so on� Those variables
were on a ��� scale from �Does not describe the company� to �Describes the
company very well�� As was the case for the Downsize data� we treated the vari�
ables as numerical and replaced up to three missing values by the observation
mean�
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German Credit

This StatLog data set is similar to the Credit data set� where a classi�cation of
credit approval is based on personal information� banking information� purpose
of credit� and previous credit�

Insurance

The Insurance Company Benchmark was used in the CoIL 
��� Challenge and
contains information on customers of an insurance company� The data consists
of �� variables and includes product usage data and socio�demographic data
derived from geographic codes� The classi�cation task is to predict whether a
customer would be interested in buying a caravan insurance policy�

Internet Censor

This data was derived from parts of a survey conducted by the Graphics and
Visualization Unit at Georgia Tech from October �� to November ��� ����� The
full details of the survey are available at
http���www�cc�gatech�edu�gvu�user surveys�survey���������� The task
is to predict the subject
s position on Internet censorship based on personal
information and political position�

Internet Privacy

This data set comes from the same survey as Internet Censor but from a di�erent
section with focus on use of personal data provided by the visitor of a site for
personalization and direct marketing�

Internet Shop

This is another data set derived from the ���� Internet survey from GVU� The
focus of this section was the willingness to use online shopping based on browsing
behavior and general use of the Internet for information� news� �nancial services�

Intrusion
KDD Cup ��

This data set was used for The Third International Knowledge Discovery and
Data Mining Tools Competition� and is available from the UCI repository� The
competition task was to classify computer connection into the internal system
into bad connections� called intrusions or attacks� and normal connections�

Letter�A

The objective of this UCI data set is to identify one �A	 of the 
� capital letters
in the English alphabet based on �� mathematically derived features of the
digital image�
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Letter�V

This is the same data set as Letter�A but now the task is to identify vowels�

Move

This data set was originally used by William Cohen at AT'T� The task is to
classify video game moves as random or not random� A more detailed descrip�
tion is given by Cohen �����	�

Mushrooms

This UCI data set classi�es mushrooms into de�nitely edible or potentially poi�
sonous by combining the original three classes of de�nitely poisonous� unknown
edibility and not recommended into potentially poisonous� The independent
variables are mushroom features such as color� size� and shape�

Nurse

The Nursery data set was derived from a hierarchical decision model originally
developed to rank applications for nursery schools based on occupation of par�
ents and child
s nursery� family structure and �nancial standing� and social and
health picture of the family� The data are available from the UCI repository�

Optdigit

The UCI optical digit recognition data were modi�ed to a binary classi�cation
task by categorizing the output as � or other� The data are based on normalized
bitmaps of hand written digits�

Pageblock

The problem in this UCI data set consists of classifying all the blocks of the
page layout of a document that has been detected by a segmentation process�
Originally the problem had �ve classes� text� pictures� graphic� horizontal� and
vertical lines� The binary classi�cation task is to distinguish between text and
nontext sections based on heights� length and area of the block� and measures
of the distribution of black pixels�

Patent

This data set is the most complex and with two million observations the largest
one used for this study� The data are issued by the U�S� Patent and Trademark
O"ce to Micropatent� It contains the information from the front page of every
patent granted since ����� We selected a subset of the available variables�
year� country origin� number of assignees� U�S� classi�cation code� and number
of US references� To reduce the complexity we grouped the country of origin
into six categories� U�S�� Europe� Canada� Australia� Japan and Other� The
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classi�cation task is to predict whether this patent has received international
references�

Pendigit

This UCI data set is similar to the Optdigit data� The goal is to classify hand�
written digits as � or not � based on sampled x and y input coordinates from a
pressure sensitive table�

Spam

This collection of e�mails is also part of the UCI collection� The goal is to build
a spam �lter that identi�es spam mail like advertisements� chain letters and
pornography based on features like� frequent words� consecutive capital letters�
total number of capital letters and so on�

Telecom

This is a commercial application described in Weiss and Indurkhya �����	� The
data describe a telecommunication problem and can be found at
http���www�cs�su�oz�au��nitin� They are also available from the RT home�
page� In order to obtain a classi�cation task we discretized the continuous out�
put into class � for y � � and class � for y 	 �� All independent variables are
continuous and there is no further information available�

Yeast

This UCI data set was donated by Paul Horton and the task is to predict
the cellular localization sites of proteins based on eight continuous variables
from various biomolecular models and an access number to the SWISS�PORT
database�
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