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Abstract 

This paper studies the joint distribution of tick by tick returns and durations between trades. 

Returns are decomposed into changes in full information prices and microstructure noise, but the 

noise is modeled in accordance with various models of market microstructure allowing rich 

correlation structures both with the efficient price and over time.  The full information price has 

time varying volatility which depends upon the arrival time of trades.  The paper aims at three 

contributions: First, the noise is modeled to allow asymmetric information, inventory and order 

processing costs, and delayed quote setting.  Second, the response to the trade arrival times allows 

trade durations to be informative on future volatility.  Third, the estimated state space models can 

act as a laboratory to examine various non-parametric approaches to realized volatility estimation.  

Both simulated and actual data can be compared across methods and the accuracy and efficiency 

assessed as long as the parameteric model is viewed as a sufficiently accurate representation. We 

apply the above model to 10 NYSE stock transactions data series with varying transaction rates. It 

appears that contemporaneous duration has little effect on the volatility per trade after 

conditioning on the past, which means average per second volatility is inversely related to the 

duration between trades. Microstructure noise is found to be informative about the unobserved 

efficient price, and the informational component explains 45% of the total variation of the 

microstructure noise.   

                                                 
* Previously titled “Forecasting Volatility Using Tick by Tick Data”. 
1 Department of Finance, Stern School of Business, New York University 
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I. Introduction 

High frequency data on asset prices offers the prospect of more accurate measures and forecasts 

of volatility. In theory, (add citation)2, realized volatility computed from the highest possible 

frequency data should provide both a consistent and efficient estimator for integrated volatility. 

However, standard market microstructure theories suggest that theoretically ideal circumstances 

are not likely to be satisfied in the real world. For Instance, the transaction price is likely 

“contaminated” by so called “microstructure noise”. Thus a volatility estimator that does not 

account for this noise may be biased. This problem is most serious in high-frequency data since 

the volatility of true price usually shrinks with the time interval, while the volatility of noise 

components such as the bid-ask spread usually does not (Yacine Ait-Sahalia (2003)). Thus in 

practice, researchers use moderate-frequency data to estimate volatility. This practice, although 

inefficient, is at least unbiased.  The goal of this paper is to apply standard microstructure theory 

to understand the properties of the “noise” and then build a parametric model to obtain a noise-

free volatility estimator using tick by tick data.  This estimator will be much more efficient, if it is 

correctly specified, and can serve as a benchmark to evaluate the wide range of non-parametric 

methods that have been developed.   

Existing market microstructure models usually distinguish between the transaction price and the 

fair market price based on perfect information. The difference between the two is often given the 

name of “microstructure noise”. However, such noise may not just be useless noise. It may reveal 

something about the underlying fundamental. For example, under the classical microstructure 

asymmetric information model (eg. Glosten and Milgrom(1985) and Kyle (1985)), the market 

makers post regret-free prices. Investors trade at prices that are fair market value based on public 

information. In this model then, “noise” is not pure noise. Rather it reflects the private 

information that is not yet priced. The noise is gradually incorporated into the transaction price as 
                                                 
2 Andersen and Bollerslev (1998). Merton (1980) 
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more and more informed trading enters the market. Therefore “noise” conveys some information 

about the underlying efficient price. Furthermore, noise can be auto-correlated if there is 

sequential informed trading; this again suggests that it may contain useful information. 

In other microstructure models such as Amihud and Mendelsohn(1986), transaction prices differ 

from the full information price because market makers accumulate excess or depleted inventories 

which temporarily depress or raise prices.  In other models such as Roll(1984), order processing 

costs drive a wedge between transaction prices and full information prices. 

Whether the microstructure noise conveys information and exhibits correlation properties is 

ultimately an empirical question. We write down an empirical model of microstructure noise. Our 

empirical specification is general enough to encompass most of the sources of noise that have 

been studied in the literature (Stoll (1989), Huang and Stoll (1997)). In particular, we include two 

components of microstructure noise. The first component is fixed noise potentially due to order 

processing cost or inventory control by dealers.   The second component is time-varying noise 

that is correlated with change of the efficient price, which may come from asymmetric 

information or stale quotes. The two noise processes are allowed to be self auto-correlated.  We 

use Kalman Filtering techniques to estimate the model. To help identification, we specify 

different variance structures for the informational and the non-informational innovations.  

Another reason why using high frequency data to estimate volatility may improve efficiency is 

that tick by tick data preserve duration information between transactions. . If information causes 

trading, then non-trading and price should be jointly determined by the amount of news in the 

market3. Hence they are probably correlated. This observation motivates us to model volatility of 

efficient price innovation as a function of duration. The autoregressive conditional duration 

                                                 
3 Diamond and Verrecchia (1987), Admati and Pfleiderer (1988) and Easley and O'Hara (1992) 
have written theoretical models that have implications on how news and transaction frequency are 
related. 
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model (ACD) proposed by Engle and Russell (1998), which focuses on time elapsed between 

trades, forms the framework for incorporating duration information into the analysis of 

irregularly-spaced high frequency data. In this paper, we model the joint density of the marked 

point process of durations and tick by tick returns. This paper extends the ACD/UHF-GARCH 

framework proposed by Engle (2000). First, we model the duration variable as an ACD process 

that could potentially depend on past returns. Then, we model the conditional volatility of the 

efficient price change as a function of previous-day and recent trade information as well as the 

duration since the last trade. Once we specify (1) the distribution of duration conditional on past 

information (return and duration) and (2) the distribution of return conditional on current duration 

and past information, we can then obtain the joint distribution of return and duration. Proceeding 

thus, we can forecast return volatility during any arbitrary length of time using simulation. 

 

Our paper aims to make three contributions. First, we model the noise by allowing most of the 

important statistical features emphasized in the microstructure literature.  The noise has general 

autocorrelation and is allowed to be correlated in arbitrary fashion with the innovation in the 

efficient price.  The efficient price innovation is itself allowed to have time varying volatility.  

Our paper finds that microstructure noise is time dependent and is informative about unobserved 

efficient price change. On average, the informational component accounts for 45% of the total 

variation of microstructure noise. One notion that distinct our paper from the current realized 

volatility literature is that most of the current studies assume microstructure noise to be 

uncorrelated with the underlying efficient price. Under such assumption, noise is always “pure” 

noise, and they simply add to the volatility estimator, therefore an volatility estimator without 

adjusting the noise is always upward biased. In contrast, our model recognize the possibility of 

negative correlation between noise and private information suggested by the adverse selection 

model, so a realized volatility estimator of the efficient price change that does not account of 
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microstructure noise can be either upward or downward biased, depending on the correlation 

structure of the microstructure noise.  

 

Second, our paper studies extensively on how one important attribute of trades – durations 

between trades - reflects the underlying information. The current literature pays little attention to 

the duration between trades. For example, in the standard Brownian Motion framework, the 

volatility of price increases linearly in time. This is based on the assumption that trades take place 

at the process independent of information. In contrast, our model allows for volatility to depend 

on duration nonlinearly and treats the degree of nonlinearity as a parameter to be estimated.  We 

find that volatility per trade increases less than linearly in duration, consistent with the “no news 

no trade” prediction by Easley and O’Hara (1987). Moreover, for most infrequently traded stocks, 

duration has little effect on tick by tick volatility, implying a shorter memory in tick time rather 

than "wall clock" time. Each trade bears the same amount of information, and the total amount of 

information determines the number of transactions. We also find that the nonlinear properties of 

duration-volatility relationship is not changed even if another important attributed of trades – 

sizes of trades – is incorporated into the model. 

 

Third,  our paper can serve as a benchmark or laboratory for examining the widely used models 

of realized volatility such as  Andersen, Bollerslev, Diebold and … (citation Zhang, Mykland and 

Ait-Sahalia (2003)), Hansen and Lunde (2006), Russell and Bandi() .  By generating simulated 

tick by tick data with a well specified model and corresponding measure of realized volatility, it 

is straight forward to examine various methods for handling data and estimating realized 

volatility.   The accuracy and efficiency of different methods can be compared.  In following this 

procedure, we find some important distinctions between the methods. 
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In terms of econometric modeling, the paper that is most closely related to ours is the one by 

Frijns and Schotman (2005), where the authors study price discovery in tick time. They also use 

state-space models for incorporating microstructure noise into the price processes and treat the 

volatility of return as a nonlinear function of duration multiplying the volatility of the innovation. 

However, there are several distinctions between the two papers. First, the two papers try to 

answer different questions, Frijns and Schotman study the information share from different 

markets, so quote data are used, while our paper models volatility for transaction prices. Second, 

volatility was not a focus of the other paper, so it is assumed constant other than the effect from 

duration. Our paper builds a more elaborate model of volatility which incorporates long term and 

short term persistence of volatility as well as the time of day effect. Third, our specification for 

microstructure noise is more general than Frijns and Schotman's paper, so it is able to encompass 

a wide range of theoretical microstructure models. And finally, the stocks that are studied in our 

paper are traded on NYSE, while they use NASDAQ stocks; since the two markets have very 

different trading mechanisms as well as investor composition, the price-trading intensity 

relationship could be different. 

Comments on microstructure empirical literature that empirically estimate the impact of 

asymmetric information on security prices. (Hasbrouck (1988), Harris( 1990), Glosten & Harris 

(1988)).  

 The rest of the paper is organized as follows: Section two summarizes the properties of 

microstructure noise implied by the theoretical literature; Section three lays out the econometric 

models of the joint distribution of returns and durations and microstructure noise. Section four 

applies the model to a sample of NYSE stocks. Section five discusses implications of the results 

on the realized volatility estimation. Section six discusses the volume’s effect on volatility and 

durations,  and Section seven concludes. 

 6



II. Microstructure Noise 

Our paper assumes a typical price generating mechanism. Specifically, we assume an auction-

dealer mechanism in which  market specialists quote bid and ask prices at which  they are willing 

to trade, and orders are executed at either the bid or the ask.   In this paper, we consider the fair 

value of the stock conditioning on all available information (public as well as private) as the 

efficient price (denoted by ). Strong form of the efficient market hypothesis implies that is a 

martingale process. Transaction price can often stray from the full information fair market price. 

First, the market maker usually holds some opinions about the fundamental value of the stock. 

However, she may not be willing to transact at the price level equal to this belief because of order 

processing cost or inventory control needs. Instead, she will ask for a price concession for both 

incoming buy and sell orders, making the observed transaction price different from the market 

maker’s estimate of the efficient price. Second, even if the market maker is willing to buy and sell 

at her belief of the efficient price, her estimate of the efficient price may very well be different 

from the estimate of another market participant possessing private information. We define 

microstructure noise as the difference between the transaction price and the efficient price. In 

particular, let

tm tm

tp be the transaction price and be the microstructure noise, thentu t t tp m u= + . 

Usually the observed price cannot deviate too much from the fundamental price, so is assumed 

to be stationary. However, various sources of friction will impose different structures on . It is 

difficult to point out which of these sources are observable and whether there is a dominant one.  

The section summarizes various types of frictions suggested in the literature. Understanding them 

will help to shed the light on properties of the various frictions and also the microstructure noise 

structure in our model.  

tu

tu

1. Roll Model (1984) 
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In this model, the only market friction is the order processing cost of the market maker. In 

particular,  

 t t tp m cq= +  

where c is the cost of processing the order, and  is the trading direction. =1 if a trade is 

initiated by a buy order and =-1 if a trade comes from a sell order. The Roll model assumes 

that orders randomly bounce between bid and ask quotes, i.e.  is an i.i.d. process.  

tq tq

tq

tq

2. Stale Prices 

Although it is rare cases in nowadays trading systems, theoretically if the operational systems 

are relatively slow compared with the speed of order submission, trades may occur relative to a 

stale price.  

 1t t tp m cq−= +  

Again  is i.i.d. noise as in the Roll model. It follows that  tq

. ( )t t t tp m cq m= + −∆  

In this case the microstructure noise is still i.i.d., but is (negatively) correlated with the 

innovation of efficient price.  

3. Lagged Adjustment 

The beliefs about the efficient prices are given by a martingale. But transaction prices adjust to 

beliefs gradually. 

1 1( ) (1 )t t t t t t 1p p m p m pα α α− −= + − = + − −  
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It is easy to show that 1
( 1) (

1 (1 )t t t tp m m m
L

)α
α −

−
= + −

− −
, therefore the microstructure noise 

follows an AR (1) process and is perfectly correlated with the efficient price change. 

4. Inventory Control 

The market makers' objective is to maintain an *I  inventory through the adjustment of 

bid and ask quotes; therefore their inventory level will follow a mean-reverting process. 

Let tI be inventory at time t, and suppose some fraction of inventory imbalance can be 

liquidated each period, then 1* ( *)t tI I I I tγ ε−− = − + , where γ is between 0 and 1. tI can 

be viewed as the accumulation of trading directions of market orders , 

i.e. .The observed price is again 

tq

(1 ) tL I q− = t tt tp m cq= + . It then follows that 

1
1t t

Lp m c
L tεγ

⎛ ⎞−
= + ⎜ ⎟−⎝ ⎠

 

The above model implies that the noise is a noninvertible ARMA process with no permanent 

effect on prices. 

5. Asymmetric Information 

This model follows the intuition in Glosten and Milgrom(1985) and Glosten and Harris (1988). 

The evolution of the full information efficient price is given by 1t tm m tω−= + . The increments 

to the efficient prices are driven by (i) new public information which are not associated with 

trading (denoted by tε ), and (ii) private information that is partially reflected by the order flow 

(iii) private information that is uncorrelated with current order flow tq tη . In 

particular, 1( ( | ))t t t t tq E q q tω λ η−= − + +ε t, where ,  and t tq η ε are uncorrelated. In the 

 9



Glosten and Milgrom (1985) adverse selection model, the market maker put up a regret free 

price tp , which equals the post-trade expected value of the stock conditional upon public 

information and the order flow information . To make the effect of asymmetric information 

on price process clearer, we omit any transitory microstructure effect such as inventory or order 

processing cost. Let 

tq

tI be the market maker’s information set at time t, which includes any 

public information tε  and order flow information  tq

 1 1( | ) ( ( | ))t t t t t t t t tp E m I m q E q q m tλ ε η− −= = + − + = −  

It can be easily seen that the microstructure noise is time independent but is negatively correlated 

with the increment to the efficient prices. 

6. Asymmetric Information and Autocorrelated Order Flow 

Madhavan, Richardson and Roomans (1997) build a structured model for both asymmetric 

information and auto-correlated order flow. The full information efficient price is the same as 

in the asymmetric information case above.  Beside the permanent impact of order flow on 

prices through adverse selection model, there is also a temporary effect of order flow on prices. 

Note we do not include the additional source of noise of tp capturing the effect of stochastic 

rounding errors induced by price discreteness or possibly time-varying returns.  follows a 

Markov process where

tq

1t tq q tρ ξ−= + . In particular, the observed transaction price is given by 

( | )
1

t
t t t t t tp E m I cq m c

L
ξη
ρ

= + = − +
−

 

The equation can be reorganized into  
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[ ]1 ( )
1t t t tp m a bL e

L
ω

ρ
= + +

−
+  

 Where
2 2

2 2 2 2

( ) ( )
( ) ( ) ( )

t t

t t t

c E Ea
E E E
λ ξ η

λ ξ ε η
−

=
+ +

, 
2

2 2 2 2

( )
( ) ( ) ( )

t

t t

Eb
E E E

ρ η

tλ ξ ε η
=

+ +
and 

1 1t t t t t te c a bξ η ρη ω ω− −= − + − −  

It can be shown that follows an MA(1) process and it is uncorrelated with te tω . Therefore, the 

model implies both time dependence of the noise and price noise correlation. One thing to 

notice is that the correlation between microstructure noise and innovation of efficient price can 

be either positive or negative depending on the relative magnitude of private information 

2( )tE η  and temporary price impact of order flow c. The correlation is negative if the private 

information not yet revealed by current order flow is relatively bigger and positive otherwise. 

III. Econometric Model 

Suppose we want to use tick by tick data to forecast the volatility of returns over the next certain 

period of time T. Let be the ith return over the period, and be the time of the ith trade. The 

duration for return  is 

ir it

ir 1i i id t t −= − .Then the T-period return is simply where n is the 

stopping time such that the cumulative duration is bigger than T for the first time. If we assume 

that  is i.i.d. and independent of n (Ross (1996)), then we can simply apply Wald's theorem to 

obtain the forecasted volatility of T-period return given all past 

information , . 

1
1

n
i ir
−
=Σ

ir

0F 1
1 0 0 1 0var( | ) ( 1| ) ( |n

i ir F E n F Var r F−
=Σ = − )

However, the characteristics of the financial markets complicate the problem in at least two levels. 

First, the observed high frequency returns will be serially correlated for the reason implied by the 

microstructure theory. Second, news arrival process and trading frequency could be inter-
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dependent, thus the stopping time n and returns may not be independent. Therefore the 

forecasting problem depends on the joint distribution of durations and tick by tick returns. 

Following Engle (2000), we specify the joint distribution in two steps: first we model the 

distribution of current duration conditional on information about past returns and durations under 

the ACD framework; then we model the distribution of current trade return conditional on past 

information as well as its contemporaneous duration.  

1. ACD model for duration 

We use ACD model proposed by Engle and Russell (1998) for the conditional distribution of 

duration, in particular 

 , , , 1( | )t i t i t i id E d F ξ−=  (3.1) 

 

where iξ ~iid with E(ξ)=1. The expected duration has both deterministic and stochastic 

components. One important deterministic component is time of day effect, which can be 

formulated as a multiplicative function to the stochastic part.  

The stochastic component of the conditional distribution adapts a GARCH process which could 

potentially depend on past returns. 

  (3.2) , , 1 1 , 1 1
ˆ ˆ( ) |t i t i d j j t i j j j i j j j i jd p d qα ψ− = − = − = −Ψ = +Σ +Σ +Σ |rγ

where is the seasonally adjusted duration. d̂

We use Generalized Gamma as the distribution of innovation term iξ  , i.e. 

 
( )1 exp

( )
( )

aam am
i

i

a
f

mξ

λ ξ λξ
ξ

−
i

⎡ ⎤−⎣ ⎦=
Γ

 (3.3) 
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The generalized Gamma reduces to Weibull when m=1, to the two-parameter Gamma distribution 

when α=1, and to the Exponential model when α=m=1. 

2. Return distribution conditional on current duration and past information 

In this section, we propose a parametric model for the distribution of returns conditional on its 

contemporaneous duration and past information. There are two issues mainly considered: first, 

how to extract information about the unobserved underlying efficient price process from the 

observed trading prices. Second, how duration should enter the conditional density. 

In our paper, we model return as a continuous variable, but in reality, prices change by tick size, 

so return should be a discrete variable. The discreteness of return is most significant before 1997 

when tick size is 1/8 of a dollar and most of the price changes are just one or two tick sizes. 

However, since January 2001, the tick size has been reduced to a penny, so modeling return as a 

continuous variable should be less of a problem. 

Following the convention in the literature, we model the observed log price ,t ip  for the ith trade 

at date t as the sum of the efficient price and a microstructure noise . In particular, ,t im ,t iu

 , ,t i t i t i,p m u= +  (3.4) 

The efficient price follows a martingale  

 , , 1 ( , )t i t i t i im m ωσ ω−= +  (3.5) 

where iω follows an i.i.d standard normal distribution.  
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( , )t i iωσ ω  reflects new information incorporated in the efficient price from the ith trade on date t. 

The volatility of the efficient price innovation ( , )t iωσ can be time-varying and is captured by 4 

components in our model as following: 

 ( , ) , , ,t i t t i t i t ih s g d δ
ωσ =  (3.6) 

th is the forecasted daily volatility from information up to date t-1, which captures a relatively 

long term effect (past several days' information); is the time of day effect of ith trade at date t; 

is the forecasted volatility for the ith return conditional on information up to (i-1)th trade of 

date t, which captures the short term effect (past several trades) on volatility; is the duration 

from (i-1)th to ith transaction measured in the fraction of a day, and finally δ is the parameter 

governing the speed of information arrivals. δ is bigger than/equal to/smaller than 1 if information 

is incorporated faster/equal/slower than linearly in time.  

,t is

,t ig

,t id

There is tremendous flexibility in modeling the first 3 components of volatility. For example, for 

the daily volatility h, one can use the implied daily volatility from the options market, or one can 

use a GARCH type of volatility; in modeling the time of day effect s, one can use a spline 

function or a step function of time. In our paper, we use GARCH processes for both daily 

volatility and tick volatility, and an exponential spline function for daily seasonal effect. The 

detailed specifications are the following4:  

 2
1 2 1 3t th c c h c r 1t− −= + +  (3.7) 

                                                 
4 To make the model identifiable, we impose several parameter restrictions: , 

. 

2( ) var( )t tE h r=

, ,( ( ) ) 1t i t iE s d δ =
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2

, 1
, , 1

, 1 , 1

t i
t i t i

t t i t i

r
g g

h s d δρ β α −
−

− −

= + +  (3.8) 

 6 0
, 0 ,1

exp( ( ) )t i j t i jj
s cs cs τ τ +

=
= ⋅ −∑  (3.9) 

 

where denotes the daily return for date t-1. 1tr −

We next move on to the model for microstructure noise . The previous section has shed light 

on some characteristics of the noise. First, it should be stationary since the observed price is most 

likely to be co-integrated with the underlying efficient price. Second, it should be allowed to 

correlate with the efficient price change due to asymmetric information or lagged price 

adjustments. Third, it could be auto-correlated but it may not have a finite moving average 

representation. Based on these arguments, we make the following assumption for the 

microstructure noise. There are two components of the noise variable. One is correlated with the 

innovation of efficient price. We call it “informational component” since it carries some 

information about the underlying price process. The other part, which we call “non-

informational” component, is mostly due to transaction cost or inventory control and hence is 

independent of the efficient price. We allow time-dependency in both components. In particular, 

we model them as two ARMA processes and use the Akaike Information Criterion to pick the 

orders for the processes.  

,t iu

 
1 2

1

1 2

1 2

0 1 1
, ( , )

1 1

... 1 ...
1 ... 1 ...

q q
q

t i t i i ip
p p

L L B L B L
u

L L A L A Lω

θ θ θ
2q

pσ ω
φ φ
+ + + + + +

= +
− − − − − −

η  (3.10) 

where iη ~i.i.d. normal (0, Ω), and E ( i iη ω ) =0 
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To insure identification of the model, we assume that there are no common roots between 

 and1

10 1 ... 0q
qz zθ θ θ+ + + = 1

111 ... 0p
pz zφ φ− − − = , same is true for 

 and . 2

211 ... 0p
pA z A z− − − = 2

211 ... 0q
qB z B z+ + + =

Lastly, since we are interested in the distribution of returns, we take the first difference of both 

sides of equation (3.4) to express everything in terms of returns. Let be the observed return for 

transaction i at date t, then  

,t ir

1 2

1 2

1 2

1 2

, , , 1 ( , ) ,

1 1
0 1 1 1 1

( , )
1 1

(1 )

... 1 ...
1 ... 1 ...

t i t i t i t i i t i

r q
r

t i i ip p
p p

r p p L u

L L B L B L
L L A L A L

ω

ω
q

σ ω

θ θ θ
σ ω η

φ φ

−

− +
− +

= − = + −

+ + + + + +
= +

− − − − − −

% % % % %      (3.11) 

where , 1 1 1max( 1, 2)r p q= + + 0 0 1 1 0 1 2 2 11 ,  ,  ...2θ θ θ θ θ φ θ θ θ φ= + = − − = − −% % %  and 

 1 1 2 2 1( 1),  ( )...B B B B B= − = −% %

Model (3.4)-(3.11) can be estimated using the Kalman Filter technique. Appendix A shows the 

specification of the state space model and its equivalency to the structured model.  

The specification of the model for microstructure noise U is general enough to 

incorporate a majority of the market microstructure theories; however it comes at a cost 

of large number of parameters to be estimated. In particular, U is a combination of 2 

independent unobserved ARMA processes, which may raise concerns that they cannot be 

identified from a single time series of returns r. We follow the idea of Hamilton (1985) to 

prove that the model is identified based on the implicit restrictions that are imposed on 

the ARMA representation of . The key reason why the 2 processes can be disentangled 

in our model is that the informational component of U has time varying volatility and the 

ir
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non-informational component's volatility is constant over time. This assumption is not 

only crucial for the identification of the model, but also economically sensible.  The proof 

of identification is in appendix B.  

IV. Application: Estimating Volatility Using Tick by Tick Data 

1. Data 

This section applies the model to transaction data from TAQ database. We randomly pick 10 

stocks traded on NYSE with different trading frequencies. The sample period is from Jan, 2003 to 

May, 2003. All trades before 9:30 AM or after 4:00pm are discarded. To take out the overnight 

duration effect, the first trade after 9:30 for each day is excluded. For transactions that happen at 

the same time, we take the transaction size weighted price as the price for that time and remove 

all zero durations. To filter out data errors, we exclude observations where the difference between 

price and mid-quote is larger than 1/3 of mid-quote since extremely large magnitude returns for a 

single trade are very unlikely. Finally, we only include observations whose correction indicator 

variable has the value of 0 or 1. Returns are calculated by the first difference of logged prices. 

Returns are measured in units of basis points and duration in seconds. We use the daily holding 

period return from CRSP to estimate the daily GARCH process .  th

[Insert Table 1] 

Table1 reports the summary statistics of the datasets. The first column of the table gives the 

number of observations during the sample period for each stock. Our sample ranges from 

relatively illiquid stocks to fairly liquid ones. The most illiquid stock in our sample is Cedar Fair 

LP(FUN), a company owns and operate amusement and water parks in the unite states, with 110 

trades per day on average; the most liquid stock is IBM, which trades more than 4000 times a day. 

The mean of the durations is always less than its standard deviation, suggesting over-dispersion 

 17



relative to an exponential distribution; thus a Weibull or a generalized gamma distribution might 

give better fit for the data. Lastly, the means of returns of the stocks are all very close to zero 

relative to their standard deviations, so we force all the returns to have 0 means in our empirical 

estimation.  

2. Parameter Estimation 

The measures that we are mostly interested in this paper are the dependence of tick volatility on 

duration δ, and how much microstructure noise contaminates the efficient price. These results 

shed light on existing microstructure theory and time series modeling for high frequency data, 

which we will discuss in more detail in the next section. 

Although the other parameters are equally indispensable for the model, they either have been 

studied in great detail in other papers, such as parameters in the ACD model, or they are mainly 

statistical instruments for better fitting the data, among them are the time of day effect and daily 

volatility h. Therefore, we will only report the full set of estimation results for one of the 

companies—ASL to discuss the general properties of the model. 

[Insert Figure 1 and Figure 2] 

First, the seasonality patterns of duration and volatility are plotted in Figures 1 and 2. Two spline 

functions are used to adjust for the daily seasonality of duration and volatility respectively. We 

apply a linear spline function to adjust for the time of day effect for duration, and an exponential 

linear spline for tick by tick volatility, with nodes set on each hour. Figure 1 is the nonparametric 

estimate of the daily pattern for duration, which shows a clear inverted "U" shape similar to Engle 

and Russell (1998), suggesting that the trading frequency is higher at the beginning and toward 

the end of each day. Figure 2 shows the daily pattern of volatility of return. Tick by tick volatility 
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also shows a "U" shape, suggesting the stock tends to be more volatile at the beginning and 

toward the end of the day even in tick time. 

[Insert Table 2 and Table 3] 

Parameter estimates for the ACD model are presented in table 2, while parameter estimates for 

the Kalman Filter model are in table 3. First, we find that ACD (3, 1) fits the duration data 

satisfactorily: the residual from the model has a mean insignificantly different from 1. (P-value 

=0.9888), and the Ljung-Box statistics show that the autocorrelation and partial autocorrelation 

until the 15th lag are all insignificant. Both estimators for a and m in (3.3) are significantly 

different from 1, suggesting generalized gamma is a better fit than exponential distribution in 

order to capture the over-dispersion in durations. Figure 3 graphically tests the goodness of fit of 

the generalized gamma model for duration. The probability plot of standardized duration falls 

narrowly along the line, suggesting generalized gamma is a reasonable distributional assumption 

for duration. 

[Insert Figure 3] 

For the Kalman Filter model of returns, we use AIC and Likelihood ratio tests to determine how 

many ARMA terms should be included for the two components of microstructure noise. Both 

informational and non-informational components have significant loadings on microstructure 

noise, suggesting multiple sources for bid-ask spread. The model chosen is an white noise process 

for the informational component and an ARMA (1,1) process for the non-informational 

component. On the one hand, microstructure noise is correlated with the efficient price innovation 

for the reason of asymmetric information or lagged price adjustment; on the other hand, 

transaction cost and inventory control by dealer bring an independent component to the bid-ask 

spread. 
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V. Implication for Realized Volatility Estimation 

1. Information from Duration 

Our model examines the dependence of tick by tick volatility of the efficient price innovation on 

duration between trades, which is summarized by parameter δ. δ with a value of 1 suggests that 

news is incorporated into price linearly in time, which translates to volatility over a fixed interval 

is independent of number of trades. This is consistent with the standard assumption that price 

follows an unobserved continuous process with a Brownian motion innovation, and the 

transaction take places as if it is a random draws  of the underlying price process, with sampling 

frequency uncorrelated with whether there is information or not. If this is the case, then 

forecasting of the volatility over the next trade is just the forecasted duration till the next trade 

times the expected per-second volatility.  

[Insert Table 4] 

Appealing as it looks, however, our estimation results do not support the above assumption. Table 

4 summarizes the estimated δ for each dataset. All the data give estimates of δ significantly less 

than 1. In fact, 6 out of 10 estimates are insignificantly different from 0. This suggests that tick-

time stationarity is a better description for high frequency financial data than stationarity in wall-

clock time. In other words, tick by tick volatility might have a shorter memory than volatility over 

a fixed time interval, therefore it is more appropriate to build a parsimonious model on tick by 

tick data. In order to forecast volatility over a certain period, one can use tick by tick data to 

forecast the number of trades in that period.  If tick by tick volatility is relatively stable, the 

higher is the number of trades, the higher the total volatility will be. Note this will give an 

additional reason for volatility to be time varying, which traditional, equally spaced time series 

models, tend to ignore. Therefore, taking into account trading frequency will render a more 
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efficient forecast of volatility, especially when the forecasting horizon is not tremendously larger 

than the average duration between trades. 

(need to be changed) δ with a value bigger/smaller than or equal to 0 can also shed light on 

microstructure theory about the trading behavior in the market. Trading intensity and trading 

volume are two sides of the same coin. Suppose informed traders receive private information 

about a stock.  They can either trade a few large blocks of securities or divide the large blocks 

into smaller sizes and quickly trade out their position. Easley and O'Hara (1987) model this trade 

size decision by informed traders. In their model, equilibrium can be either a separating or a 

pooling one. In the latter case, the informed follow a strategy of sometimes breaking up their 

trades so that they will reduce price impacts when trading with dealers. We argue that the trading 

behavior in pooling equilibrium provides one possible explanation of why δ is zero in most of our 

datasets. In such a case, the amount of information incorporated into prices in each trade is likely 

to stay stable given the constant trading volume. Therefore, the total amount of news that 

informed investors have will determine how many smaller trades they need to submit; in other 

words, trading intensity will be higher/lower when the total information is higher/lower. A 

separating equilibrium tends to be reached only when uninformed traders are willing to trade 

large quantities and when a market has a low probability of informed trading. These conditions 

can be hard to satisfy by small firms since their operations are more opaque and receive less 

attention from equity analysts. These firms are also traded less frequently. Table 4 shows that all 

firms with number of trades less than 200,000 have δ equal to either zero or a small negative 

number, while larger firms such as IBM and Boeing Airline have δ significantly bigger than zero. 

The finding that δ is negative for some firms is surprising and may be specific to the sample 

period. However, we provide one possible economic explanation: there may be uninformed 

positive feedback investors trying to follow the footsteps of informed traders, so for example, 

whenever good news comes, both the informed and uninformed investors submit buy orders, so 
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that information incorporation will be accelerated. If informed traders are aware of such trend 

chasing behavior by the uninformed, they would like to trade ahead of the uninformed. The 

bigger the news, the more aggressively the informed traders will submit their orders and more 

feedback traders will follow, and hence more news will be incorporated into price for a single 

trade. Therefore the duration between trades and volatility of tick returns will be negatively 

correlated. This is more likely to happen when the securities are believed to have a lot of private 

information, where uninformed traders are more likely to benefit from following the informed 

traders. Note the overall trading frequencies will be low for such firms since many uninformed 

traders will simply stay away from them. This is consistent with our findings that the two 

negative δ companies have relatively low numbers of trades.  

In contrast, more frequently traded securities render higher estimates of δ. In our sample, the most 

heavily traded stock--IBM also has the highest estimate of δ. δ with a value larger than 0 suggests 

that the trading intensity increases less than linearly with the amount of news, so that per trade 

volatility will be higher for longer durations. This tends to happen to large firms where 

uninformed investors dominate the informed. Investors often trade large firms' stocks for reasons 

other than the firms’ own news; for example, S & P component stock prices tend to move with S 

& P index closely, therefore investor trading intensity is less sensitive to the firm specific news. 

Note the above discussions are based on casual conjecture; more elaborate theoretical models 

capturing both the random occurrence of news events and investors' decision on trading intensity 

need to be built in order to make any final conclusion. But our empirical finding might provide 

some insights on how to build such a model. 

Finally, the finding that tick by tick volatility is homogenous of degree 0 to duration is coherent 

with several other empirical findings. First, using equally spaced data, Jones, Kaul and Lipson 

(1994) finds that "the positive volatility-volume relation actually reflects the positive relation 

between volatility and the number of transactions. Thus, it is the occurrence of transactions, per 

 22



se, and not their size, that generates volatility". This is consistent with our conjecture that 

informed investors tend to break down large block of trades into a sequence of smaller ones, and 

then information is absorbed into prices little by little at a roughly constant magnitude per trade. 

Engle and Russell (1998) find that low inter-trade duration is associated with high average 

volatility per second, and our results suggest that the two quantities tend to be inversely related. 

The negative association between instantaneous volatility and duration is also found in Renault 

and Werker (2005), and the magnitude of the negative coefficient is bigger for less liquid stocks, 

which corresponds to our findings that illiquid stocks tend to have smaller δ s. 

2. Implication of the Noise Structure on Nonparametric Estimators  

The general assumption of the variance structure of microstructure noise complicates the 

econometric techniques that are required to estimate the model. Given the existing simpler non-

parametric procedures that estimate realized volatility, we would like to know how well these 

simpler procedures perform in the true data generating process is more general than the 

assumptions that they are based on. We evaluate the performance of these methodologies in two 

ways: first we compare our estimator of volatility with theirs for the same set of data. However, 

our estimator should be a benchmark only if it is our model is correctly specified. In reality, it is 

unlikely that one cannot tell whether the unobserved price follows a particular process, so we run 

into a problem of not knowing the “true” target. One advantage of our fully specified parametric 

model is that we can generate the price and trade series assuming our model is the true data 

generating process, and evaluate the performance of various models on the simulated data. With 

the simulated data, we would know the true daily volatility of efficient price innovation. We then 

estimate the daily realized volatility using various exiting procedure. Therefore, in the second part, 

we evaluate the performance of various measures using the simulated data. 
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The most naïve way to estimate volatility using tick by tick data is simply adding up all the tick 

by tick squared returns. There are at least two sources of biases of such a measure. First, it 

ignores information of duration between trades. As pointed out by O’Hara (1995), when trading 

frequency is dependent on whether there is new information or not, variance computed from only 

transaction data is imparted an upward bias, no trading also bares information of the underlying 

price process, and therefore should be taken into accounted when estimate the “true” volatility. 

Second, as most of the realized volatility literatures are aware of, ignoring the microstructure 

noise will also render a bias of the volatility estimator. This problem is most serious with the tick 

by tick data since microstructure noise such as order processing cost does not shrink with time.  

[Insert Table 5] 

Table 5 summarizes the ratio average daily realized volatility computed from our model and the 

daily realized volatility computed from raw returns
2

( , )

,

( )
var( )

t i

t i

E
r
ωσ . We find a lot of variation in the 

ratio. In general, we find pretty high magnitude of bias, the degree of upward bias can be as high 

as 100% as in some of the stocks. The direction of bias can be both upward or downward, three 

out of ten cases render downward biased estimates, suggesting the iid assumption of the 

microstructure noise is not an accurate description of the data.   

[Insert Table 6] 

There have been several other methods trying to estimate the efficient price volatility out of the 

observed prices, therefore it will be interesting to see how our estimate compares to the existing 

ones. All of the previous measures are estimated using equally spaced data. Table 6 calculates the 

ratio between daily volatility of the efficient price change and the daily realized volatility. Four 

popular volatility estimates are compared in the table. The third column is the ratio when the Roll 

model is assumed. The column "30 minutes" computes the ratio between daily realized volatility 

 24



using data sampled at every 30 minutes and every tick. The column "HL" adapts the method 

introduced by Hansen and Lunde (2004) to compute the one day bias free realized volatility, and 

the last column is the first-best realized volatility measure in Zhang Mykland and Ait-Sahalia 

(2004). Our measure is shown to be highly correlated with the others, which are reported in the 

last row of Table 6. The 5 ratios vary because of different assumptions. On average, 30 minutes 

return gives the highest ratio and ZMA renders the lowest, and the ratio from our paper comes in 

between. Note, our measure conforms most closely with the Hansen and Lunde measure in terms 

of magnitude, which may be due to the fact that our assumptions on the microstructure noise are 

the closest to theirs. In their measure, although they do not allow for infinite moving average in 

the correlation structure for the noises, it seems their measure is not hurt much by this simplifying 

assumption even if we identify an AR structure for most of the stocks.  

To better understand how the nonparametric estimators are affected by the properties of the 

microstructure noise, we run a simulation experiment. We simulate 10 pseudo companies, using 

the 10 sets of parameters estimated from the 10 companies in our datasets. On the one hand, 

simulation generated from the parameters estimated from the real-world data will make our study 

more likely to reflect cases in real life; on the other hand, with the simulated data, we can easily 

compute the true realized volatility and use it as a benchmark to evaluate other volatility 

estimators.  

[Insert Figure 4, 5 and 6] 

For each company, we simulate at least 100 days. The total number of data generated ranges from 

100,000 for the least frequently traded stock – FUN, to more than 4,000,000 for the most 

frequently traded stock – IBM. Several measures are used to compare the estimates with the true 

variance. First, we compute the average ratio of the estimate to the true daily volatility, this 

measure gauges overall biasedness of each estimate. Second, we calculate correlation between 
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estimated and true realized variance. As the true daily realized variance is time varying, we would 

like to have an estimator that gives a higher value when the true volatility during a day is also 

higher. The first two measures each reflect part of the story.  To summarize all the information 

into one measure, we use the root mean squared error (RMSE). The ratio, correlation and RMSE 

of each companies are plotted side by side in Figure 4, 5 and 6 respectively. As we can see, the 

roll measure performs the worst in terms of biasedness, the ratio between the estimate and true 

measure can as high as 200% for some stocks and as low as 50% for other stocks. The three other 

measures all give ratios fairly close to one. In contrast, roll’s model perform the best in terms of 

its correlation with the true measure, although the two-scale measure also performs consistently 

well with a correlation above 70% with the true measure. The RMSE in some sense combines the 

information of both ratio and correlation.  Again, the Roll measure exhibits large variation in 

performance, the 30 minutes realized volatility also performs not satisfactorily for some of the 

stocks. Both HL and ZMA measures beat 30 minutes measure. ZMA measure persistently 

performs well for all stocks.  

 [Insert Table 7] 

Since we have identified the whole structure of the microstructure noise, we are able to study its 

properties in more detail than the previous literature. We are particularly interested in two 

questions: first whether the noise is correlated with the information about the efficient price; and 

second how important is this informational component? In answering the first question, the first 

column in Table 5 shows the model of microstructure noise picked by AIC for each dataset: all 10 

stocks require both the informational components and non-informational to explain the noise. The 

relative importance of the informational components is given in the last column in Table 7. On 

average, the informational components explain 44.8% of the total variation of the microstructure 

noise. Our results conform with Stoll (1989) which uses a totally different approach based on 

serial correlation of transaction and quote prices. He analyzes NASDAQ stocks and concludes 
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that 43% of the spread is due to adverse selection, 10% is due to inventory cost and 47% is due to 

order processing costs.  However, Huang and Stoll (1997) use a more general model on 19 

actively traded NYSE stocks to conclude that 10% of the spread is due to adverse selection, 29% 

is due to inventory cost and 62% is due to order processing costs.  The magnitude difference 

between our measures and their measures are worth further investigation, but one thing to note is 

that their sample firms are more liquid than most of the firms in our sample.  

Figure 7 

VI. Volume’s effect on volatility 

Previous researches show that there are multiple attributes of trades that can help in the inference 

about private information. Among these attributes, the effect of the sizes of trades has been 

studied most extensively. Both theoretical and empirical studies have shown that trading volume 

has an impact on market makers’ inference about the stocks’ value (Easley and O’Hara (1987), 

citation). Since duration between trades and size of trades are both affected by underlying 

information, they are likely to be correlated. It is interesting to see how the inference about 

duration is affected when trading volume information is included.  

To incorporate volume information, we made a slight modification of the model for the 

innovation of efficient price. In particular, we add another multiplicative term to equation (3.6). 

The new specification is now ( , ) , , , 1 2( Large+ Medium)t i t t i t i t ih s g d a aδ
ωσ = . Large (Medium) is 

a dummy variable taking a value of one if the trade size is large (medium). Similar to duration, 

we first take out the time of day effect of trading volume. We then use trading volume 

information over the past month to determine whether the current trade is a large or small one.   A 

trade is a big (medium) one if it is larger than the 2/3 (between 1/3 and 2/3) of the trades over the 

past month.  
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[Insert Table 8] 

Table 8 reports the some of the key parameters of the new model. We find that including the 

volume information does help in terms of overall goodness of fit, both the log likelihood and 

AICC favors the new model. Consistent with the previous literature, we find that large trades 

have significantly higher impacts on efficient prices relative to median and small trades. In 

contrast, medium and small trades don’t differentiate between each other in terms of price impact. 

Finally, the inference about δ is not even when volume information is incorporated. All 10 stocks 

render a coefficient significantly smaller than one and size out of ten are insignificantly different 

from zero.   

VII. Conclusion 

The paper proposes an econometric model for the joint distribution of tick by tick return and 

duration, with microstructure noise explicitly filtered out. We can easily forecast volatility of 

returns over any arbitrary time interval through simulation using all the observations available. 

We take into account the dependence of returns on duration when forming the forecast, therefore 

avoiding the unnecessary efficiency loss from transforming the data into equally spaced ones. 

Interestingly, we find that for most of the data, tick by tick volatility is homogeneous of degree 

zero to duration, suggesting stationarity in transaction time. This has implications for both 

empirical modeling of high frequency data and theory on market microstructure. 

The specification for microstructure noise in our model is general enough to encompass most of 

the models from microstructure theory, and the estimation results suggest that both asymmetric 

information and fixed transaction cost are important resources for bid-ask spread. Moreover, 

transaction prices can be contaminated by the noise to a great extent, and the degree of such 

contamination varies from stock to stock. 
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One point we want to make clear is that modeling return conditional on duration does not mean 

that duration is an exogenous process set before price. In reality, trading frequency and volatility 

should be contemporaneously determined, our modeling of return as conditional distribution is 

only a strategy to obtain joint distributions. Equally interesting, one could also go from price 

process first, and model duration conditional on its contemporaneous return. And finally, a bi-

variate state space model for both return and duration could make the source of dependency 

between the two variables more specific. It would be interesting to compare the results from the 

three models, and see to what extent can duration and price be isolated. 
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Appendix 
     
Appendix A: Transform the Structured Model for Return to State Space Model 
 

We lay out the following state space model.  

 Let the state equation be: 
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where , 1 1 1max( 1, 2)p qκ = + +
1

0κφ = for 1 1pκ > , 
1

0κθ =% for 1 1( 1q )κ > + and 1 1pκ > , 
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Assuming normality of iω  and iη , we obtain the distribution of conditional 

on{
,t ir

}, 1 , , 1, ,t i t i t ir d d−
%% − , and therefore the parameters can be estimated using maximum likelihood 

method as in Hamilton (1994). 
Prove that equation (A.1)-(A.2) can be written in the form(3.11): 
Let ,j iχ be the jth entry of the vector iχ ,from Error! Reference source not found. we 
have  
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Plug 
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Similarly, let ,j iζ be the jth entry of the vector iζ , then from (A.1) we have 
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Expanding Equation (A.2) 
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Finally, Equation (3.11) can be obtained by plugging (A.4) and (A.5) into (A.6). 
 
 
Appendix B: Identification of Parameters 
According to equation(3.10), the vector of parameters to be estimated in U is 
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ir

 

1 2

1 2

2 1

2 1

1 2

1 2

1 1

1 0 1

1 1

(1 ... )(1 ... )

(1 ... )(1 )( ... )

(1 ... )(1 )(1 ... )

p p
i p p i i

p q
p q

p q
p q

y L L A L A L

A L A L L L L

L L L B L B L

φ φ σ ω

θ θ θ σ

φ φ η

= − − − − − −

+ − − − − + + +

+ − − − − + + +

ω  
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Since the model is estimated based on the distribution assumption of the return series, we 

would be able to identify the parameters if there are no 2 sets of parameter values 

yielding the same moments of returns. From theorem E of Hannan (1971) as interpreted 

by Preston and Wall (1975), the auto-regressive coefficients of the observed return  can 

be estimated separately from the moving average terms if there are no common roots 

between the autoregressive and the 2 component of the moving average determinant 

polynomials (C1): 

ir

 

 

1 2

1 2

1 2 2 1

1 2 2 1

1 2

1 2

1 1

2
1 1 1 0 1

2
1 1

(1 ... )(1 ... ) 0

(1 ... )(1 ... ) (1 ... )(1 )( ... ) ( ) 0

(1 ... )(1 )(1 ... ) 0

p p
p p

p p p q
p p p q

p q
p q

z z A z A z

z z A z A z A z A z z z z E

z z z B z B z η

φ φ

φ φ θ θ θ σ

φ φ σ

− − − − − − =

⎡ ⎤− − − − − − + − − − − + + + =⎣ ⎦
− − − − + + + =

i

 

Since we assume that there is no common roots between 1

10 1 ... 0q
qz zθ θ θ+ + + = and 

, and between 1

111 ... 0p
pz zφ φ− − − = 2

211 ... 0q
qB z B z+ + + =  and 2

211 ... 0p
pA z A z− − − = , 

and all the roots are outside unit circle, the only situation that condition C1 is satisfied is 

that  and  has common roots. In this case, the 

model can be simplified until there are no common roots. 

1

111 ... 0p
pz zφ φ− − − = 2

211 ... 0p
pA z A z− − − =

The rest of the parameters can be identified by the variance and covariances of 

. Since 1( , ,..., )i iy y y− 0 iω and iη are independent, the conditional covariance between 

and at trade (i-1) is of the form iy i jy +

2

1 2( )
( )

i
i i i j j

i

E y y C D
E
σ
σ− + j= + ,where is a 

constant determined by the parameters 

jC

1 2 1

2
1 1 0,..., , ,..., , ,... , ( )p p qA A Eφ φ θ θ σ i⎡ ⎤⎣ ⎦  and jD  is a 

constant determined by 
1 2

2
1 1( ,... , ,... , )p qB B ηφ φ σ . The critical assumption that the efficient 
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price innovation has time-varying volatility while the uninformational component of the 

microstructure noise has a constant volatility helps to identify the model. To see this, 

will not be the same unless both 1(i i i jE y y− + ) jC and jD are the same. Hence there are 

max(p₁+p₂,p₂+q₁+1)+1 parameter restrictions for  

coming from [

( )1 1 2

2
1 0 1 ,[ ,..., , ,..., , ,... , ( )]p q p t iA A E ωφ φ θ θ σ

]jC  and (p₁+q₂+2) restrictions for 
1 2

2
1 1,... , ,..., ,p qB B ηφ φ σ⎡ ⎤⎣ ⎦ . Therefore,  are 

guaranteed with at least same number of equations as the number of parameters to be 

estimated. Construct f: mapping 1 1 2 22 max( , 1)q p p pR R+ + +→ 1 1q + +
( )1

2
0 ,,..., , ( )q t iE ωθ θ σ⎡ ⎤

⎣ ⎦  into 

 and g: 
1 2 2 10 1 max( , 1) 1, .., p p p qC C C + + + +⎡ ⎤⎦⎣

2 1 21 2q p qR R+ + +→ mapping 
2

2
1( ,..., , )qB B ησ  into 

. The Jacobian of f(.) and g(.) have full rank unless by some 

coincidence the different elements of parameters happen to obey particular exact 

numerical relations to one another. Therefore the parameters are generally identified. 

1 20 1 2, ,..., p qD D D + +⎡⎣ ⎤⎦

) iL

 

For instance, suppose the informational and non-informational components of the 

microstructure noise admits two independent MA(1) processes, 

0( ) (1i i iu L Bθ θ σ ω η= + + + , then the parameters are uniquely determined as 

1 2
0

0 1 2

C C
C C C

θ +
= −

+ +
, 2

0 1

C
C C C

θ = −
+ + 2

, 
2

2 0 1 2

0

(( )t
C C CE

C
σ + +

= 2
0Dησ

) , = , 2

0

DB
D

= − , 

. 0 1 2 0D D D+ + =

 

In a word, having ( , )t iωσ to be time-varying is a critical assumption to make the model 

identifiable. From its definition, the time-variability of ( , )t iωσ are due to 4 
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sources: , ,, , ,t t i t i t ih s g d ,
δ . Therefore, the model is identifiable as long as at least one of the 

sources preserves the time-varying property, which is very likely to hold and can be 

easily tested. 
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Ticker  
Number of 

Obs. 
Mean # of 
trades/day Average dur. Std. Dev. dur. Average ret. Std.Dev. ret. 

FUN 11280 110.59 213.6248 286.3584 0.1424 13.7352
RGR 13456 131.92 179.0769 265.6867 -0.0093 25.7334
CDI 14478 141.94 166.4223 267.1497 -0.0199 13.3400
WSO 15581 152.75 154.6483 232.5889 -0.0280 16.4393
OMM 16301 159.81 147.8363 283.8729 0.1958 24.7882
ASL 26973 233.65 89.3434 181.1853 0.0983 24.085
LUK 30038 294.49 80.2315 123.7295 0.0068 7.6016
CTX 218997 2126.18 11.0046 15.9803 0.0198 3.7429
BA 279900 2744.12 7.8862 10.5704 -0.0035 5.1970
IBM 419994 4117.59 5.7372 5.9587 0.0026 2.9096
Table 1: Summary Statistics for durations and returns for 10 randomly sampled stocks in TAQ database. 
Returns are measured in basis points and durations in seconds. The Sample period is from Jan, 2003 to 
May, 2003. All trades before 9:30 AM or after 4:00pm are discarded. The first trade after 9:30 for each day 
is also excluded.  
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Parameter Estimate Std.Error Prob.  

dα  2.8376 0.3626 0.0000  

1p  0.0215 0.0104 0.0384  

2p  0.9104 0.0077 0.0000  

3p  0.1167 0.0128 0.0000  

1q  0.0575 0.0072 0.0000  

1γ  -0.1147 0.0110 0.0000  

a 8.9291 1.4046 0.0000  
m 0.2073 0.0166 0.0000  
Statistics for Residual iξ    
Mean 1.0002   
Std. Dev 1.7319   
Ljung-Box 16.2839   
Prob. 0.3634   
Table 2: Parameter estimates of ACD model as in (3.1)-(3.3) for stock ASL. 
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Parameter Estimate Std. Error Prob. 

δ  0.0172 0.0227 0.4486
ρ  5.59E-07 1.65E-07 0.0007
α  0.0672 0.0138 0.0000
β  0.9080 0.0203 0.0000

0θ  0.1537 0.0416 0.0002

1A  -0.9356 0.1359 0.0000

1B  0.7898 0.1034 0.0000
Ω  0.0315 3.0351 0.9917
L 115826  
AIC 231689  
Table 3: Parameter Estimates for model (3.6)-(3.10) 

( , ) , , ,( )i t t t i t i t ih s g d δ
ωσ =  

2
, 1

, ,
, 1 , 1( )

t i
t i t i

t t i i t
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−
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Ticker # of obs δ ρ β α Ω
FUN 11280 -0.0226 4.9e-7 0.8068 0.0795 3.8944
  0.0155 7.5e-8 0.0215 0.0082 0.1279
RGR 13456 0.0039 1.2e-6 0.8366 0.0753 43.0901
  0.0203 2.0e-7 0.0237 0.0486 6.1572
CDI 14478 0.0220 1.1e-6 0.8833 0.0684 1.5000
  0.0565 5.6e-6 0.2947 0.1646 0.3857
WSO 15580 -0.0529 3.1e-7 0.9152 0.0624 0.7158
  0.0148 9.4e-8 0.0198 0.0059 0.0574
OMM 16301 -0.0049 5.4e-7 0.9034 0.0752 39.4885
  0.0450 2.1e-7 0.0222 0.0229 6.3608
ASL 23832 0.0172 5.6e-7 0.9080 0.0672 0.0315
  0.0227 1.7e-7 0.0203 0.0138 3.0351
LUK 30038 -0.0096 7.4e-8 0.9076 0.0573 0.0378
  0.1744 2.1e-7 0.0331 0.0107 2.1870
CTX 196920 0.1427 6.6e-8 0.9111 0.0349 0.5276
  0.0471 3.9e-8 0.0394 0.0098 0.0788
BA  279900 0.1040 9.0e-9 0.9690 0.0229 1.5894
  0.0276 7.0e-9 0.0110 0.0058 0.2331
IBM 419994 0.2480 6.6e-8 0.7030 0.1009 0.2649
  0.0940 2.6e-8 0.0399 0.0128 0.8586

Table 4: Estimates for selected parameters from the Kalman Filter model. δ is the volatility dependency on 
duration, ρ, α and β are parameters for tick by tick GARCH g. Ω is the variance for η. Robust standard 
errors are included in the squared brackets. Only the first 20000 observations are used in the estimation for 
companies BA, CTX and IBM because of the large sample size of these data. 
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Ticker  Model Picked for  ,t iU 2

( , )( )t iE ωσ  ,( )t iVar r
 

2
( , )

,

(
var( )

t i

t i

E
r
ωσ )

 

Upward 
bias 

FUN (1) (1,1)AR ARMAω η+  8808.375 17206.85 0.51 0.95
RGR (1) (1,1)MA ARMAω η+

 37807.98 78824.85 0.48 1.08
CDI (1)AR WNω η+  54325.92 22083.51 2.46 -0.59
WSO (1)MAη  33437.34 37181.00 0.90 0.11
OMM (1,1)ARMA WNω η+

 79652.77 85982.80 0.93 0.08
ASL (1,1)WN ARMAω η+  105050 125782.46 0.84 0.20
LUK (1) (1)AR ARω η+  15866.95 14111.86 1.12 -0.11
CTX (1) (1)AR MAω η+  30037.05 24244.75 1.24 -0.19
BA (1)ARη  49479.75 51161.27 0.97 0.03
IBM (1,1)AR WNω η+  20044.42 24847.91 0.81 0.24
Table 5: Microstructure noises. AIC and Likelihood ratio test are used to choose the best 
model. stands for AR(1) process for the information component in , means 

ARMA(1,1) model is picked for non-informational component. is the mean of conditional 

volatility for efficient price change. is the unconditional variance for tick returns. Upward bias is 

calculated as 

(1)ARω ,t iU (1,1)ARMAω

2
( , )( t iE ωσ )

,( )t iVar r

,
2

( , )

( )
1

( )
t i

t i

Var r
E ωσ

− . 
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Ticker 

2
1 ( , )

2
1 ,

( )
( )

n
i t i

n
i t i

E
E r

ωσ=
=

Σ

Σ
 Roll 30 minutes HL ZMA

FUN 0.51 0.8201 0.6861 0.7019 0.3863
RGR 0.48 0.7735 0.5856 0.5861 0.3846
CDI 2.46 1.1194 1.5233 1.4632 1.0377
WSO 0.90 0.8289 0.8583 0.8698 0.5789
OMM 0.93 0.8384 0.8243 0.8045 0.5493
ASL 0.84 0.8047 0.7434 0.7777 0.4411
LUK 1.12 0.9698 0.9612 1.0461 0.7682
CTX 1.24 0.9527 1.3914 1.2263 0.9749
BA 0.97 0.8188 0.4556 0.3623 0.6938
IBM 0.81 0.776 0.8506 0.8192 0.5798
Median 0.91 0.8245 0.8375 0.8118 0.5794
Correlation 

with our 
model   0.920411 0.858537 0.978308 0.758022

Table 6: Efficient volatility vs. realized volatility. The ratio between one day volatility of efficient price change 
and one day realized volatility calculated using all the tick data. The second column is the ratio from our model, 
the third column is the ratio calculated from Roll(1984) model. The column "30 minutes" computes the ratio 
between one day realized volatility using data sampled at every 30 minutes and every tick. The column "HL" 
adapts the method introduced by Hansen and Lunde (2004) to compute the one day biased free realized 
volatility, where the sample frequency is every 1 minutes and the autocorrelation adjustment is up to 10 
minutes. The last column computes the first-best realized volatility as in Zhang Mykland and Ait-Sahalia(2004), 
where sparse sampling is every 10 ticks. The last row reports the Pearson correlation between our measures and 
the other measures. 
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Ticker Var_Info Var_NonInfo Var_Info/(Var_Info+Var_nonInfo)
FUN 3.5738 23.1357 0.1338
RGR 55.0043 24.5987 0.6910
CDI 86.9459 0.0042 0.9999
WSO 1.7223 1.0748 0.6157
OMM 1.361 4.3896 0.2367
ASL 2.9086 5.0227 0.3667
LUK 4.4878 31.5427 0.1246
CTX 1.0597 0.9135 0.5370
BA 2.1149 4.8124 0.3053
IBM 0.0916 0.0812 0.5301
Median   0.4484
Table 7 : Informational  vs. Non-informational Components. 
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Ticker  Model δ Std. dev. Large Std. dev. Med Std.dev. -LogL AICc 
FUN        1 -0.0226 0.0155 42941 85919
   
    

        
   
    

        
   
    

       
   
    

        
   
    

        
   
    

        
   
    

        
   
   

       
   
   

        
  

2 -0.0204
 

 0.0166 0.1126 0.0540 0.0718 0.0671 42936 85908
     

RGR 1 0.0039 0.0203 59336 118708
2 0.0132
 

 0.0085 0.2825 0.0434 0.1473 0.0390 59306 118648
     

CDI 1 0.0220 0.0565 53053 106142
2 0.0252
 

 0.0139 0.2431 0.0959 0.0744 0.2115 53024 106083
     

WSO 1 -0.0529 0.0148 60287 120600
2 -0.0405 
 

0.0183 0.3486 0.0203 0.0067 0.0359 60175 120383
     

OMM 1 -0.0049 0.0450 70642 141311
2 -0.0070
 

 0.0351 0.1249 0.0979 0.0040 0.0437 70628 141289
     

ASL 1 0.0172 0.0227 115826 231689
2 0.0159
 

 0.0102 0.3521 0.0258 0.2372 0.0041 115716 231459
     

LUK 1 -0.0096 0.1744 89928 179892
2 -0.0026
 

 0.0167 0.5200 0.0262 0.2128 0.0500 89675 179387
     

CTX 1 0.1427 0.5000 56388 112812
2 0.1124 
 

0.0312 0.2648 0.1153 -0.1351 0.0657 56288 112611
      

BA 1 0.1040 0.0276 60895 121816
2 0.0987 
 

0.0269 0.0902 0.1400 -0.0602 0.1424 60876 121778
      

IBM 1 0.2480 0.0940 48432 96900
  2 0.1949 0.0744 0.3719 0.0698 0.0033 0.0619 48324 96679
Table 8 : Volume’s effect on volatility
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Figure 4 : Ratio of estimated volatility versus true  

0

0.5

1

1.5

2

2.5

Roll 30 Minutes HL ZMA

FUN
RGR
CDI
WSO
OMM
ASL
LUK
CTX
BA 
IBM

 47



 
Figure 5 : Correlation of estimated volatility to true 
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Figure 6 : RMSE standardised by daily efficient price volatility 
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Figure 7 : Impulse response function 
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