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Optimal Exercise of Executive Stock Options and
Implications for Firm Cost

Abstract

The cost of executive stock options to shareholders has become a focus of attention in ¯nance
and accounting. The di±culty is that the value of these options depends on the exercise policies
of the executives. Because these options are nontransferable, the usual theory does not apply. We
analyze the optimal exercise policy for a general utility-maximizing executive and indicate when
the policy is characterized by a critical stock price boundary. We provide a counterexample in
which the executive exercises at low and high stock prices but not in between. We show how the
policy varies with risk aversion, wealth, and volatility and explore implications for option value.
For example, option value can decline as volatility rises.



With the explosive growth of executive stock options in corporate compensation, the cost

of these options to shareholders has become a focus of attention in finance and accounting.

Recent regulation requiring firms to recognize option expense after 2005 has intensified the

demand for suitable valuation methods. The difficulty is that the value of these options

depends crucially on the exercise policies of the option holders, but, because these options

are nontransferable, the usual theory does not apply.

In the case of an ordinary call, the holder can sell the option at any time, so his goal is

presumably to maximize the option’s present value. The value-maximizing exercise policy

in a Black-Scholes world has been researched extensively (see Merton (1973), Van Moerbeke

(1976), Roll (1977), Geske (1979), Whaley (1981), Kim (1990)). It calls for exercising the

option once the stock price rises above a critical level. This critical level is increasing in

the riskless rate, the stock return volatility, and the time remaining to maturity, and it is

decreasing in the dividend rate, with no early exercise if the dividend rate is zero.

By contrast, the holder of an executive stock option must bear the risk of the option

payoff, so simply maximizing the option’s present value is generally not optimal. Indeed,

evidence indicates that executives systematically exercise options on non-dividend paying

stocks well before expiration. The executive presumably chooses an option exercise policy as

part of a greater utility maximization problem that includes other decisions, such as portfolio

and consumption choice and managerial strategy.

This paper studies the optimal exercise policy for an executive stock option under simple

but appealing assumptions about the executive’s choice set. We analyze the optimal exercise

policy for a general utility-maximizing executive and indicate when the policy is characterized

by a critical stock price boundary. We provide a counterexample in which the executive

exercises at low and high stock prices but not in between. We show how the policy varies

with risk aversion, wealth, and volatility, and explore implications for option value. For

example, we provide conditions under which the continuation region is larger the greater

executive risk aversion and outside wealth, and the lower the stock dividend rate. On the

other hand, the size of the continuation region is not monotonic in stock volatility, and option

cost to shareholders can actually decline as volatility rises.

The intuition that the need for diversification can lead an executive to sacrifice some op-

tion value by exercising it early is well understood in the literature, but explicit theory of the

optimal exercise of ESOs is still developing. Huddart (1994), Marcus and Kulatilaka (1994),

and Carpenter (1998) build binomial models of the utility-maximizing exercise decision with

exogenous assumptions about how non-option wealth is invested. Detemple and Sundaresan

(1999) extend these to allow for simultaneous option exercise and portfolio choice decisions.

These papers establish the economic approach to ESO valuation, focusing on the optimality
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of early exercise (and the fact that this makes ESOs worth less than their Black-Scholes

value), rather than an in-depth analysis of the exercise policy itself. In a continuous-time

framework, Ingersoll (2006) develops a subjective option valuation methodology, assuming

the option is a marginal component of the executive’s portfolio. More recently, several pa-

pers have solved versions of the problem we describe here for the case of constant absolute

risk averse utility, where the optimal exercise policy is independent of the executive’s wealth.

Leung and Sircar (2006) solve the finite horizon problem, and include the risk of job termi-

nation and the possibility of partial option exercise. Kadam, Lakner, and Srinivasan (2003)

model the optimal exercise policy for an infinite horizon option, but the model links the man-

ager’s consumption date to the option exercise date, which can distort the exercise decision,

even in the absence of trading restrictions. Similarly, Henderson (2004) models the optimal

exercise policy for an infinite horizon real option, and links the manager’s consumption date

to the option exercise date, but uses a specialized utility function so that this link does not

distort the exercise policy.

A number of papers model option value using exogenous specifications of the exercise

policy. Jennergren and Näslund (1993), Carr and Linetsky (2000), and Cvitanić, Wiener,

and Zapatero (2004) derive analytic formulas for option value assuming exogenously specified

exercise boundaries and forfeiture rates. Hull and White (2004) propose a binomial model

in which exercise occurs when the stock price reaches an exogenously specified multiple of

the stock price and forfeiture occurs at an exogenous rate. Rubinstein (1995) and Cuny and

Jorion (1995) also compute option value under exogenous assumptions about the timing of

exercise.

Other authors have focused on the executive’s private valuation of the option using

certainty equivalents rather than on the market value of the option from the viewpoint of

shareholders. These include Lambert, Larcker, and Verrecchia (1991), Hall and Murphy

(2002), Cai and Vijh (2005), and Miao and Wang (2005).

1 General framework

This section lays out the general model of the executive’s optimal exercise problem and

defines the resulting option cost to shareholders.

1.1 General formulation of the executive’s problem

In the general version of the problem we consider, the executive has n finite-lived options

with strike price K and expiration date T
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and additional wealth that can be invested subject to a prohibition on short sales of the

stock. The investment set includes riskless bonds with constant riskless rate r, the underlying

stock with price St, and a market portfolio with price Mt. These prices satisfy

dSt

St

= (λ− δ) dt + σ dBt , (1)

dMt

Mt

= µ dt + σm dBt , (2)

where Bt is a standard two-dimensional Brownian motion on a probability space equipped

with the natural filtration and σ and σm are two-dimensional row vectors. The stock return

volatility, σ, the stock dividend rate δ, and the mean and volatility of the market return,

µ and σm are constant, and the mean stock return λ is equal to the normal return for the

stock given its correlation with the market,

λ = r +
σσ′m
||σm||2

(µ− r) . (3)

In particular, in the absence of the option, an optimal portfolio would contain no stock

position beyond what is implicitly included in the market portfolio.

The executive simultaneously chooses an option exercise time τ , which is a stopping

time of the filtration generated by the Brownian motion, and an investment strategy in the

market and the stock, πt ≡ (πm
t , πs

t ) satisfying E
∫ T
t=0 ||πt||2 dt < ∞. His goal is to maximize

the expected utility of time T wealth:

max
{τ≤T,πm,πs≥0}

E{V (Wτ + n(Sτ −K)+, τ)} (4)

subject to

dWt = rWt dt + πm
t ((µ− r) dt + σm dBt) + πs

t ((λ− r) dt + σ dBt) , (5)

where

V (Wt, t) ≡ max
πm

Et{U(WT )} s.t. dWu = rWu du + πm
u ((µ− r) du + σm dBu) , (6)

and the utility function U is strictly increasing, strictly concave, and twice continuously

differentiable.

This formulation entails a number of simplifications. The executive’s portfolio does not

include a position in restricted shares of stock (see Kaul, Liu, and Longstaff (2003) for a
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model of portfolio choice with restricted stock). It allows only for a single block exercise

of the option, although the executive would probably prefer to exercise the options at a

stochastic rate over time. The model also considers only a single grant of options when

in practice, executives are granted new ten-year options every year and typically build up

large inventories of options with different strikes and expiration dates. It would be useful to

understand which options are most attractive to exercise first and how the anticipation of

future grants of options and other forms of compensation affects current exercise decisions.

In addition, the model does not account for any control the executive has over the underlying

stock price process through the exertion of effort and through project and leverage choices;

these choices may interact with the exercise decision. Despite these simplifications, we believe

this formulation captures the essence of the executive stock option problem.

Intuition suggests that the optimal outside position in the stock in problem (4) is πs ≡ 0,

however this remains to be proved. The example in Evans, Henderson, and Hobson (2005)

shows that results from traditional portfolio theory may fail to hold in the presence of an

optimal stopping problem.

If the optimal investment policy πt and the indirect utility function V satisfy, respectively,

linear and polynomial growth conditions in W and S, then Theorem 3.1.8 of Krylov (1980)

implies that the value function for the executive’s problem,

f(Wt, St, t) ≡ max
{t≤τ≤T,πm,πs≥0}

Et{V (Wτ + n(Sτ −K)+, τ)} (7)

subject to

dWu = rWu dt + πm
u ((µ− r) du + σm dBu) + πs

u((λ− r) du + σ dBu) , (8)

is continuous and satisfies f(Wt, St, t) ≥ V (Wτ + n(Sτ − K)+, τ) and f(WT , ST , T ) =

U(WT + n(ST −K)+).

1.2 Option cost to shareholders

The solution to the executive’s optimal exercise problem, that is, the optimal exercise policy

τ , defines the option payoff, (Sτ − K)+ that occurs at time τ . The cost of the option to

shareholders who can trade freely is the present value, or replication cost, of that payoff,

which can be represented as the risk-neutral expectation of its risklessly discounted value,

E∗{e−rτ (Sτ −K)+} , (9)
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where E∗ means the expectation is taken with respect to the probability measure under

which the expected returns on both the market and the stock are equal to the riskless rate.

Standard theory for tradeable options assumes the option holder chooses the exercise

policy to maximize the option’s present value, because when the option is tradeable, max-

imizing present value is consistent with maximizing expected utility. When the option is

nontransferable these objectives are different, and the utility-maximizing payoff typically

has a lower present value.

In addition, when the option is nontransferable, its value to the executive is different from

its present value or cost to shareholders. The value to the executive may be defined as the

amount of freely investable cash that would make the executive equally happy as having the

nontransferable option. Since the having the option present value tied up in the option can

be no better for the executive than having that value invested freely, the amount of freely

investable cash that would make the executive as happy as the having the option can be no

more than the option’s present value and is typically less. That discount in the executive’s

private valuation of the option relative to its cost to shareholders is the price shareholders

pay for any performance incentive benefits the option creates relative to cash compensation.

While the executive’s private valuation is an important consideration in the more general

problem of optimal contracting, our focus in this paper is on the option cost to shareholders.

2 Special case with outside wealth in riskless bonds

We start by analyzing the case in which the stock appreciates at the riskless rate,

dSt

St

= (r − δ) dt + σ dBt , (10)

and there is no other risky asset available. In this case, it is clear that after the executive

exercises the options, his optimal portfolio contains only riskless bonds, so

V (Wt, t) = U(Wte
r(T−t)) . (11)

Intuition suggests that even before the option is exercised, the executive’s optimal outside

portfolio contains no stock, since he would choose to short stock in the absence of a short

sale constraint. A sketch of a proof of this conjecture appears in the Appendix. We proceed

with the assumption that the outside wealth is invested in riskless bonds. The executive’s
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problem at each time t < T becomes

f(St, t) ≡ max
{t≤τ≤T}

Et{U(n(Sτ −K)+er(T−τ) + W )} , (12)

where the constant W is outside wealth at time T with W > nKerT and f : (0,∞) ×
[0, T ] → R is a continuous function satisfying f(St, t) ≥ U(n(St−K)+ +W ) and f(ST , T ) =

U(n(ST −K)+ + W ).

Note that

E[ sup
0≤t≤T

U(n(St −K)+er(T−t) + W )] = E[U( max
0≤t≤T

(n(St −K)+er(T−t) + W ))] (13)

≤ U(E[ max
0≤t≤T

(n(St −K)+er(T−t) + W )]) (14)

< ∞ , (15)

so Theorem D.12 of Karatzas and Shreve (1998) implies that an optimal exercise time is

τ ∗ ≡ inf{t ∈ [0, T ] : f(St, t) = U(n(St −K)+er(T−t) + W )} (16)

and the continuation region for the problem is

D ≡ {(s, t) ∈ (0,∞)× [0, T ] : f(s, t) > U(n(s−K)+er(T−t) + W )} . (17)

2.1 Existence of a critical stock price boundary

This section explores whether a single critical stock price boundary s̄(t) separates the contin-

uation region below from the exercise region above, as is the case for ordinary American calls.

This is often assumed to be true in executive stock option models with exogenously specified

exercise policies, however, it remains to be proved that the utility-maximizing policy has

this structure.

To formalize intuition about the various effects of waiting to exercise, let g(s, t) ≡ U(n(s−
K)+er(T−t) + W ) denote the payoff function for the optimal stopping problem and note that

on (K,∞)× [0, T ], g is C2,1 and Itô’s lemma implies that g has drift equal to H(St, t) where

H(s, t) ≡ U ′(h(s, t))(rK − δs)ner(T−t) +
1

2
U ′′(h(s, t))n2e2r(T−t)σ2s2 (18)

and h(s, t) ≡ n(s−K)er(T−t) + W is total time T wealth given exercise at time t and stock

price s. This expression shows that when the option is in the money, the effects of waiting

to exercise include the benefits of delaying payment of the strike price, the cost of losing
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dividends, and the cost of bearing stock price risk.

Proposition 2.1 Suppose that H is nonincreasing in the stock price s. Then for each time

t ∈ [0, T ), if there is any stock price at which exercise is optimal, then there exists a critical

stock price s̄(t) such that it is optimal to exercise the option if and only if St ≥ s̄(t).

Proof Fix t ∈ [0, T ). Suppose (s1, t) is a continuation point. We show that if s2 < s1

then (s2, t) is also a continuation point. First note that it must be optimal to continue

holding the option if St ≤ K. Stopping then would guarantee a reward of U(W ), which is

less than the expected utility of continuing, for example, until the first time the stock price

rises to K + c, for some c > 0, or until expiration T .

So assume s1 > s2 > K. For u ≥ t, let S(i)
u denote the stock price process starting from

si at time t and note that S(1)
u > S(2)

u . Finally, let τ be the optimal stopping time given

St = s1. Since τ is a feasible strategy if St = s2,

f(s2, t)− f(s1, t) ≥ Et{U(n(S(2)
τ −K)+er(T−τ) + W )− U(n(S(1)

τ −K)+er(T−τ) + W )}

≥ Et{U(n(S(2)
τ −K)er(T−τ) + W )− U(n(S(1)

τ −K)er(T−τ) + W )}

= g(s2, t)− g(s1, t) + Et

∫ τ

t
(H(S(2)

u , u)−H(S(1)
u , u))du

≥ g(s2, t)− g(s1, t) . (19)

Therefore, f(s2, t)− g(s2, t) ≥ f(s1, t)− g(s1, t) > 0.

Remark The hypothesis is satisfied for constant relative risk averse utility functions

with relative risk aversion less than or equal to one. Similarly, in the value maximization

problem for an ordinary option, the second order term in H does not appear, the drift is

nonincreasing in the stock price, and it follows that it is optimal to exercise if and only if

the stock price has risen above a critical level. For executive stock options however, the risk

aversion of the option holder gives rise to the second order term, and the drift need no longer

be monotonic in the stock price.

Example with a split continuation region Figure 1 shows the optimal exercise policy

for utility function

U(W ) =
W 1−A

1− A
+ cW (20)

with A = 10, c = 0.0001, K = 1, T = 10, r = 0.05, σ = 30%, and δ = 0. The utility function

is strictly increasing and strictly concave. As the figure shows, the executive continues for low

and high stock prices, but exercises the option for intermediate stock prices. It is not clear,

however, how much valuation error would be created by erroneously assuming the existence

of a single critical exercise boundary. That would depend on how that single boundary was
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determined. In this example, if we ignore the presence of the upper boundary, the option

cost is 0.408 instead of the correct value of 0.432.

2.2 Dependence of the continuation region on the parameters

Understanding how executive stock option value varies with stock return volatility, executive

wealth, and other parameters requires an understanding of how these parameters affect the

exercise policy. With an ordinary American call option, the exercise boundary, or in other

words, the set of stock prices at which the option holder would continue at a given point

in time, is increasing with the stock volatility and the time to expiration and decreasing

with the dividend rate. With executive stock options, the dependence of the continuation

region on the parameters is less clear cut. This section describes how the continuation region

changes with executive risk aversion and wealth, the stock dividend rate, and the stock return

volatility.

2.2.1 Monotonicity with respect to risk aversion and wealth

Intuition suggests that less risk averse managers are likely to continue longer. Similarly,

one would expect that managers with decreasing absolute risk aversion will continue longer

if they have more nonoption wealth. The following results verify this intuition and hold

regardless of the actual shape of the continuation region.

Proposition 2.2 An executive with less absolute risk aversion has a larger continuation

region.

Proof If U1 and U2 are utility functions and U2 has everywhere less absolute risk aversion

than U1, then by Theorem 5 on page 40 of Ingersoll (1987),

U2(W ) = G(U1(W )) (21)

where the function G satisfies G′ > 0 and G′′ > 0. Now suppose a given state (s, t) is in the

continuation region with utility U1 and let τ be the optimal stopping time for U1. Let fi(s, t)

and gi(s, t) denote the value and payoff functions for the problem with utility Ui. Since τ is

feasible for the problem with U2,

f2(s, t)− g2(s, t) ≥ Et{U2(n(Sτ −K)+er(T−τ) + W )} − U2(n(St −K)+er(T−t) + W )

= Et{G(U1(n(Sτ −K)+er(T−τ) + W ))} −G(U1(n(St −K)+er(T−t) + W ))

≥ G(Et{U1(n(Sτ −K)+er(T−τ) + W )})−G(U1(n(St −K)+er(T−t) + W ))
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= G(f1(s, t))−G(g1(s, t))

> 0 (22)

Therefore, (s, t) is also in the continuation region for U2.

Corollary 2.1 If the executive has decreasing absolute risk aversion, then the continuation

region is larger with greater wealth.

Proof Let W2 > W1 and note that U(w + W2 − W1) = G(U(w)) for some function G

satisfying G′ > 0 and G′′ > 0.

Figures 2 and 3 illustrate these results and their implications for option value using

examples with constant relative risk averse utility. In all of the numerical examples, the

dividend rate is set to zero so that the only motive for early exercise is the ability to transfer

the option value to a more efficient portfolio, in this case, the riskless asset. In addition,

the number of options and initial stock price are each normalized to one. Even in examples

in which the coefficient of relative risk aversion, A, is greater than one, we find that the

continuation region is characterized by a single critical stock price boundary.

Figure 2 plots the exercise boundaries and option values for various levels of risk aversion.

The exercise boundary is a plot of the critical stock price s̄(t) vs. time t. The option value

labeled “ESO” is the present value or cost of the option under the executive’s exercise policy,

described by the boundary. Shown for comparison, the option value labeled “Max” is the

value of the option under the present value-maximizing policy, which in this zero-dividend

case is to hold the option to maturity. The figure shows that option cost to shareholders

is greater the less risk averse the executive. Figure 3 plots exercise boundaries and option

values for various levels of executive wealth. It shows that option cost to shareholders is

greater the wealthier the executive.

2.2.2 Monotonicity with respect to the dividend rate

This section shows that the executive’s continuation region is larger the smaller the dividend

rate on the stock, as is the case for an ordinary American option. Again, this result holds

regardless of the shape of the continuation region.

Proposition 2.3 The executive’s continuation region is larger the smaller the dividend rate

on the stock.

Proof Suppose a given state (s, t) is in the continuation when the dividend rate is δ1 and

let δ2 < δ1. Let f(s, t; δ) denote the value function and S
(δ)
t denote the stock price process
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when the dividend rate is δ. Let τ be the optimal stopping time for the problem with δ1.

Then, since τ is a feasible choice for the problem with δ2 and S(δ2)
τ /S

(δ2)
t > S(δ1)

τ /S
(δ1)
2 ,

f(s, t; δ2)− f(s, t; δ1) ≥ E{U(n(S(δ2)
τ −K)+er(T−τ) + W )−

U(n(S(δ1)
τ −K)+er(T1−τ) + W )|S(δ1)

t = S
(δ2)
t = s}

≥ 0 (23)

Therefore, f(s, t; δ2) ≥ f(s, t; δ1) > g(s, t) so (s, t) is in the continuation region for δ2.

2.2.3 Non-monotonicity with respect to the stock return volatility

A basic result in standard option pricing theory is that option value is increasing in volatil-

ity. This is also typically the case in executive stock option models with an exogenously

specified exercise boundary that does not change with volatility (see, for example, Cvitanić,

Wiener, and Zapatero (2004)). However, the utility-maximizing continuation region can

shrink considerably with volatility and this can lead to option value declining in volatility.

Figure 4 illustrates these effects using examples with constant relative risk averse utility

and a zero dividend rate. Again, in all examples, even those in which the coefficient of

relative risk aversion, A, is greater than one, the continuation region is characterized by a

single critical stock price boundary. Figure 4 plots the exercise boundaries and option values

for various levels of stock return volatility.

As volatility rises from 10% to 200%, the exercise boundary tends to fall first and then

rise slightly. This is shown most clearly in Figure 4a, with risk aversion coefficient A = 0.5.

The risk averse utility of the option payoff as a function of the stock price has both a convex

region and a concave region, so in principle, an increase in volatility could either lead the

executive to continue longer or exercise sooner. Apparently the concave portion dominates

at low levels of volatility, making the executive exercise sooner as volatility rises. At higher

levels of volatility, the convex portion seems to dominate and the boundary rises slightly.

Empirically, Bettis, Bizjak, and Lemmon (2005) find that options are exercised earlier at

higher volatility firms.

At the lower levels of risk aversion shown in Figures 4a and 4b, executive stock option

value is generally increasing in volatility. However, at the higher levels of risk aversion shown

in Figures 4c and 4d, executive stock option value is decreasing in volatility at low levels

of volatility. Here the negative effect on value of the drop in the boundary of offsets the

positive effect of extreme stock prices becoming more likely.
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3 Summary and Conclusions

This paper seeks to advance the theory of executive stock option valuation with an in-depth

study of the optimal exercise policy of a risk averse executive. Recent valuation models

for executive stock options set the exercise policy exogenously, assuming a single critical

stock price boundary. This paper shows that the optimal exercise policy need not be in

that form. However, when riskless bonds are the only investment available and the stock

underlying the option appreciates at the riskless rate, we provide a sufficient condition for

the existence of a single critical boundary. This condition is satisfied by constant relative

risk averse utility functions with risk aversion coefficient less than or equal to one and we

find no counterexamples among our numerical results for constant relative risk averse utility

functions with risk aversion coefficient greater than one.

We also prove that the continuation region is larger for executives with less absolute risk

aversion and larger for wealthier executives with decreasing absolute risk aversion, and these

results hold regardless of the exact shape of the continuation region. Our numerical examples

with constant relative risk aversion show that option cost to shareholders is increasing in

executive nonoption wealth and decreasing in executive risk aversion.

The examples also show how the exercise boundary and option value vary with volatility.

In contrast to results from standard option theory, or from executive stock option valuation

models with a fixed exercise boundary, executive stock option value can decline in stock

return volatility when increases in volatility cause the optimal exercise boundary to drop

sufficiently. These results underscore the importance of accurately characterizing the exercise

policy for option valuation.
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Appendix

Conjecture 1 When the stock appreciates at the riskless rate and there is no other risky

asset available, the executive’s optimal investment of outside wealth contains no long position

in the stock.

Sketch of proof Suppose that an optimal stopping time is

τ ∗ = inf{t ∈ [0, T ] : f(Wt, St, t) = V (Wt + n(St −K)+, t)} , (24)

the time of first exit from the continuation region

D ≡ {(w, s, t) ∈ (0,∞)× (0,∞)× [0, T ] : f(w, s, t) > V (w + n(s−K)+, t)} . (25)

We apply the duality methods of Karatzas and Shreve (1998) to show that zero is the optimal

constrained holding of stock for t < τ ∗. In particular, we construct a new market, in which

holding zero stock is the unconstrained optimum and then use it demonstrate that zero is

the optimal constrained stock holding in the original market.

The first step is to construct and characterize the pricing kernel for the new market. Let

Z(t) =
E{U ′(n(Sτ∗ −K)+er(T−τ∗) + W0e

rT )|Ft}
E{U ′(n(Sτ∗ −K)+er(T−τ∗) + W0erT )}

(26)

For t ≥ τ ∗, Z(t) = Z(τ ∗). For t < τ ∗, Z(t) is a function of the stock price and time,

Z(t) = z(St, t), because we have assumed that τ ∗ is the first exit time from the region D. If

z is smooth enough for an application of Itô’s lemma, then z satisfies

1

2
σ2S2zSS + rSzS + zt = 0 (27)

because Z is a martingale. Following Carr (2000), we differentiate with respect to S to obtain

a p.d.e. for z′(St, T ) ≡ zS(St, t),

1

2
σ2S2z′SS + (r + σ2)Sz′S + z′t = −rz′ , (28)

subject to the boundary condition

z′(Sτ∗ , τ
∗) =

1{Sτ∗>K}ner(T−τ∗)U ′′(n(Sτ∗ −K)+er(T−τ∗) + W0e
rT )

E{U ′(n(Sτ∗ −K)+er(T−τ∗) + W0erT )}
. (29)
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From equation (28), it follows that

z′(St, t) = E(1){erτ∗z′(Sτ∗ , τ
∗)|Ft} , (30)

where the expectation E(1) is taken with respect to the equivalent probability measure under

which the stock price appreciates at rate r + σ2. Therefore, z′(St, t) < 0 and thus the

diffusion coefficient of z is strictly negative. Therefore, the strictly positive martingale Z

can be represented as

Z(t) = Zν(t) ≡ e−
∫ t

0

ν(s)
σ

dB(s)− 1
2

∫ t

0
(

ν(s)
σ

)2 ds (31)

where ν(t) is a progressively measurable, square-integrable process that is strictly positive

for t < τ ∗.

Next, imagine a market in which the stock price appreciates at rate r + ν − δ instead of

merely r−δ as in equation (10). For any nonnegative portfolio process πs(t), the correspond-

ing wealth process W πs

ν (t) starting from initial wealth W0 and traded in a given ν-market

satisfies

dW πs

ν (t) = rW πs

ν (t) dt + πs(t)ν(t) dt + πsσ dBt , (32)

which implies

W πs

ν (t) ≥ W πs

(t) , (33)

that is, under any nonnegative trading strategy, wealth is at least as much in the ν-market

as it is in the original market. Now consider the optimal portfolio choice problem in the

ν-market without the non-negativity constraint on πs, which can be represented as

max
WT≥0

E{U(n(S(τ ∗)−K)+er(T−τ∗) + WT )} s.t. Ee−rT Zν(T )W (T ) ≤ W0 . (34)

The necessary and sufficient first-order condition for an optimal W (T ) is

U ′(n(S(τ ∗)−K)+er(T−τ∗) + W (T )) = γe−rT Zν(T )) (35)

where the positive constant γ is such that the budget constraint is met with equality. Rear-

ranging equation (26) for Zν(T ) yields

U ′(n(Sτ∗ −K)+er(T−τ∗) + W0e
rT ) = E{U ′(n(Sτ∗ −K)+er(T−τ∗) + W0e

rT )}Zν(T ) , (36)

which shows that W (T ) = W0e
rT is the optimal terminal outside wealth and thus πs(t) = 0

a.e. a.s. is the optimal portfolio strategy.

13



Finally, we show that πs(t) = 0 a.e. a.s. is also the optimal strategy for the constrained

problem in the original market. First note that πs(t) = 0 a.e. a.s. generates the same

expected utility in the original market as in the ν-market. Now suppose π′(t) is some other

nonnegative strategy. Since π′ is feasible for the unconstrained problem in the ν-market, it

can provide no greater expected utility than πs(t) = 0 in the ν-market. Suppose π′(t) is

not equal to zero a.e. a.s. Then from equation (32) it follows that π′ generates less wealth

and strictly less expected utility in the original market than in the ν-market. Therefore, in

the original market, π′ provides strictly less expected utility than πs(t) = 0 a.e. a.s. This

completes the sketch of the proof of the conjecture.
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Figure 1: Exercise Policy with Split Continuation Region
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Figure 2: Exercise Boundaries and Option Values for Various Levels of Risk Aversion

a. Wealth = 2, Volatility = 50%

b. Wealth = 0.5, Volatility = 50%
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Figure 2 cont'd: Exercise Boundaries and Option Values for Various Levels of Risk Aversion

c. Wealth = 2, Volatility = 100%

d. Wealth = 0.5, Volatility = 100%
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Figure 3: Exercise Boundaries and Option Values for Various Levels of Wealth

a. Risk aversion coefficient = 0.5, Volatility = 50%

b. Risk aversion coefficient = 2, Volatility = 50%
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Figure 3 cont'd: Exercise Boundaries and Option Values for Various Levels of Wealth

c. Risk aversion coefficient = 0.5, Volatility = 100%

d. Risk aversion coefficient = 2, Volatility = 100%
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Figure 4: Exercise Boundaries and Option Values for Various Levels of Stock Volatility

a. Risk aversion coefficient = 0.5

b. Risk aversion coefficient = 2
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Figure 4 cont'd: Exercise Boundaries and Option Values for Various Levels of Stock Volatility

c. Risk aversion coefficient = 4

d. Risk aversion coefficient = 10
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