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Abstract
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setting, we develop an algorithm to value PSD obligations allowing for
general payment profiles, and obtain closed-form pricing formulas in
important special cases, including step-up bonds. Moreover, we pro-
vide a criterion to compare different PSD obligations in terms of their
efficiency. In particular, we find that step-up bonds lead to earlier de-
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1 Introduction

This paper studies performance-sensitive debt (PSD), the class of debt obli-
gations whose interest payments depend on some measure of the borrower’s
performance. For instance, step-up bonds compensate for credit rating
downgrades with higher interest rates and for credit rating upgrades with
lower interest rates.1 Performance pricing loans, a large fraction of com-
mercial loans, also tie their interest rates to some measure of the borrower’s
credit quality.2

PSD obligations, including step-up bonds and performance pricing loans,
compensate debtholders for changes in the borrower’s credit risk. Practi-
tioners have not yet reached any consensus on the likely effects of these
risk-compensating PSD schemes. While proponents laud their high yields
and low volatility (some even finding them “too generous”3), critics argue
that risk-compensating PSD schemes generate a vicious circle by increasing
the burden of debt service during financial strains, harming the issuer even
more and, eventually, harming investors.4 Underlying this disagreement is
the lack of a theoretical model to value PSD and to assess the effect of issu-
ing PSD rather than standard debt. This latter difficulty can be formalized
as follows: for a given amount of debt raised, risk-compensating PSD results
in paying higher interest than standard debt in times of low performance
and lower interest in times of high performance. It is unclear, then, between
lighter debt burden in times of high performance and the increased payment
strains in times of low performance, which type of debt is more desirable.

Our goal is to build a valuation model for PSD, and to investigate how
different types of PSD affect the timing of default and the equity value of
the issuing firm.

We develop a pricing algorithm allowing, tractably, for general payment
profiles. We show that the equity value associated with PSD satisfies an
ordinary differential equation with a boundary condition corresponding to
zero value at default, and a “smooth-pasting” condition. We obtain closed-
form pricing of PSD in important special cases, including step-up bonds.

Building on our valuation model, we find that risk-compensating PSD
schemes have an overall negative effect on the issuing firm. In particular,

1Step-up bonds exceed $100bn for both US- and European-based issuers (see Lando
and Mortensen (2003) and “Step lightly,” CFO Magazine (January 2001).

2These loans represent over 70% of commercial loans (see Asquith, Beatty, and Weber
(2002)).

3“The price of protection,” Credit Magazine (September 1st, 2002)
4“Credit ratings can harm your wealth,” Investment Adviser (December 9th, 2002).
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issuing risk-compensating PSD leads to earlier default and, consequently,
lowers the market value of the issuing firm’s equity, holding constant the
amount of cash raised by the obligation.

Our results also have implications for the behavior of credit-rating agen-
cies. In trying to avoid the “credit-cliff dynamic” rating agencies are some-
times reluctant to downgrade distressed firms with PSD obligations in their
capital structure.5 This reluctance generates distortions between actual and
theoretical ratings, affecting the reliability of credit rating agencies.

Models of the valuation of risky debt can be divided into two classes.
The first class treats a firm’s liabilities as contingent claims on its underlying
assets, and bankruptcy as an endogenous decision of the firm. This class
includes Black and Cox (1976), Fischer, Heinkel, and Zechner (1989), Leland
(1994), Leland and Toft (1996) and Duffie and Lando (2001). In the second
class of models, bankruptcy is not an endogenous decision of the firm. There
is either an exogenous default boundary for the firm’s assets (see Merton
(1974) and Longstaff and Schwartz (1995)), or an exogenous process for the
timing of bankruptcy, as described in Jarrow and Turnbull (1995), Jarrow,
Lando, and Turnbull (1997) and Duffie and Singleton (1999).

Das and Tufano (1996), Acharya, Das, and Sundaram (2002), Houwel-
ing, Mentink, and Vorst (2003) and Lando and Mortensen (2003) obtain
pricing formulas for credit-sensitive notes using the second class of models
of the valuation of risky debt. Since they examine only an exogenous default
process, the effect of performance-sensitive debt on the default time is not
apparent in their models.

In order to capture this effect, we build on Leland (1994), in whose model
the firm’s shareholders choose the default time that maximizes the equity
value of the firm. The bankruptcy results in a loss of a fraction of the firm’s
assets, but there are no other market imperfections such as adverse selection
or moral hazard. Instead of a fixed-coupon consol bond, we consider debt
obligations in which the interest rate is linked to some performance measure
of the borrower. Performance-sensitive debt is thus fully characterized in
this setting by some C : Π 7→ R+ that maps a performance measure π to
the interest rate C(π) charged on the debt. Typical performance measures
are credit ratings and financial ratios such as debt-to-earnings, leverage, or
interest coverage.

For PSD obligations C and D that are based on the same performance
measure, we say that C is more risk-compensating than D if C − D is non-
increasing and non-constant. We prove that if C and D raise the same

5See Standard & Poor’s (2001).
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amount of cash, and if C is more risk-compensating than D, then C is less
efficient than D, in the sense that C induces an earlier default time, which
means a higher present value of bankruptcy costs, and thus reduces the
initial market value of the issuing equity. In particular, a PSD obligation that
charges a higher interest rate when the company’s performance deteriorates
is less efficient than a debt obligation with a fixed interest rate of the same
market value. The most efficient PSD is the least risk-compensating that
can be considered as debt for tax purposes. This result is robust as we allow
the cash flow to be a general diffusion process.

Thus, the trade-off between the opposite effects of the more risk com-
pensating scheme – higher coupons in times of low performance and lower
coupons in times of high performance – is systematically resolved in favor of
the less risk-compensating debt.6 We propose the following interpretation
for this result. At the time of default decision, the more risk-compensating
PSD requires higher interest payments, increasing the firm’s losses. Al-
though it is possible that this PSD may impose a lighter debt burden in
the future, the current situation puts a higher weight on the equity holders’
decision, and makes it less attractive for them to continue running the firm.

Our paper suggests that in the absence of market frictions other than
bankruptcy costs, PSD obligations that charge higher interest rates in times
of poor performance are inferior to PSD obligations that reduce interest
payments when the firm is financially distressed. In practice, both forms
of PSD are observed. Although most debt obligations with explicit perfor-
mance pricing provisions are of the first type, some debt obligations reduce
debt payments when the firm performs poorly. For example, catastrophe
bonds, usually issued by insurance companies, promise coupons that are
contractually reduced in case total losses in the insurance industry are above
a pre-specified threshold. Very often renegotiation of bank loans7 leads to
lower interest payments when the firm is financially distressed, which in fact
is implicit performance pricing. Asquith, Gertner, and Scharfstein (1994)
and James (1995) provide evidence that debt renegotiation may loosen fi-
nancial constraints on firms.

Empirical research on structural models of corporate bond pricing in-

6This result is somewhat related to the finding by Hillion and Vermaelen (2004) that the
issuance of floating-priced convertibles is followed by significant negative abnormal returns.
They point out that the design of floating-priced convertibles encourages speculative short-
selling by the convertible holders that can hurt the equity holders. In this paper, we are
not considering convertibles or market speculation.

7Hackbarth, Hennessy, and Leland (2005) study renegotiation of bank loans in a setting
with endogenous default.
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cludes Anderson and Sundaresan (2000), Huang and Huang (2003), and
Eom, Helwege, and Huang (2004). These papers use the existing structural
models of corporate bond pricing with endogenous default, in which the
coupon payment on the debt is assumed to be constant throughout the life
of the firm. In practice, however, firms rarely have such a simple debt pro-
file. Our paper provides an algorithm and closed–form pricing formulas that
are suitable to empirical analysis of debt with an interest rate that varies
with the performance of the firm. More importantly, since a combination of
PSD obligations is also a PSD obligation, our model provides a framework
to analyze more complex capital structures that are combinations of various
issues of PSD and fixed–coupon debt.

The remainder of the paper is organized as follows. In Section 2, we
illustrate several applications. In Section 3, we present the general model
and formalize the notion of PSD. Section 4 analyzes the case of asset-based
PSD obligations, demonstrating their relative efficiency. In section 5, we
explicitly derive the valuation of step-up and linear PSD obligations. Section
6 discusses different performance measures used in practice, and solves for
the case of ratings-based PSD. Section 7 discusses the implications of our
results for rating agencies policy. Section 8 talks about reasons that may
explain the existence of risk-compensating PSD. Section 9 concludes.

2 Applications of PSD

This section describes PSD obligations that arise in practice. Some types
of PSD obligations, such as credit-sensitive notes, performance-pricing loans
and catastrophe bonds, have explicit performance-pricing provisions. Other
types of PSD obligations are implicitly performance-dependent because the
terms of the debt are subject to renegotiation or are the result of an optimal
dynamic capital strategy.

Credit-sensitive notes. A credit-sensitive note, sometimes called a step-
up bond, pays an interest rate that is contractually linked with the credit
rating of the borrower.

First issued in the late 1980s, credit-sensitive notes have recently expe-
rienced an upsurge, specially among European telecommunications compa-
nies.8

8Houweling, Mentink, and Vorst (2003) and Lando and Mortensen (2003) study the
pricing of the recent European telecommunications step-up bonds.
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Performance-pricing loans. Performance-pricing loans explicitly tie their
interest to some pre-specified performance measure of the borrower. Typi-
cal performance measures used for this purpose are credit ratings and such
financial ratios as debt-to-earnings, leverage, and interest coverage.

In an analysis of the Loan Pricing Corporation Database, Asquith, Beatty,
and Weber (2002) found that the proportion of lending agreements includ-
ing performance pricing provisions covered by this database increased from
40% in 1994 to over 70% in 1998.

Put-call provisions. Suppose a debt issue has provisions allowing the
lending bank to put the debt back to the issuer when some performance
measure drops below a contractual threshold. When such a provision is
triggered, the lending bank often renegotiates the initial terms of the loan
in effect, increasing the interest rate.

The borrower may be given an option to call the loan when its credit
quality improves. This permits the borrower to refinance the debt at lower
interest rates after good performance. The outcome of these forms of op-
tionality is effectively PSD.

Reset bonds. A reset bond, sometimes called a payment-in-kind (PIK)
bond, has an interest rate that is adjusted periodically so that the market
value of the bond is the same as its principal. In some cases the new interest
rate is determined by an auction. The associated coupon rate C is thus
decreasing with the credit quality of the borrower and a reset bond is, in
effect, a form of PSD. Default in the junk-bond market may be induced by
the rise in coupon payments of reset bonds.9

Short-term debt. The simplest case of PSD is short-term debt, such as
commercial paper, since the coupon rate rises and falls continuously with
the credit quality of the borrower. Myers (1977) argues that short-term debt
may be used to mitigate agency costs. In Diamond (1991), risky firms do
not issue short-term debt in order to avoid early liquidation. Guedes and
Opler (1996) provide empirical evidence supporting both claims.

Catastrophe bonds. Catastrophe (CAT) bonds, usually issued by insur-
ance companies, promise coupons that are reduced in case total losses in the
insurance industry are above a pre-specified threshold.10

9“The Junk-Bond Time Bombs Could Go Off,” Business Week (April 9th, 1990).
10See Fitch IBCA (2001) for a survey of the market for CAT bonds.
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Dynamic capital structure. In a setting with taxes and bankruptcy
costs, the optimal amount of debt outstanding varies with asset level. When
the asset level increases, for example, issuers are better off issuing more
debt, since this gives them higher tax benefits. On the other hand, when
the asset level decreases, debt reductions are optimal, ignoring transaction
costs, as they reduce the present value of bankruptcy costs. The net effect,
under some conditions, is PSD. This setting is studied in Goldstein, Ju, and
Leland (1998).

3 The General Model

We begin by specifying a general model. Further assumptions will be added
in later sections. We consider a generalization of the optimal liquidation
models of Fischer, Heinkel, and Zechner (1989) and Leland (1994).11

A firm generates cash flows at the rate δt, at each time t. We assume
that δ is a diffusion defined by

dδt = µδ(δt)dt + σδ(δt)dBt, (1)

where µδ and σδ satisfy the classic assumptions for the existence of a unique
strong solution12 to (1) on a fixed probability space (Ω,F , P ) with the infor-
mation filtration (Ft) generated by the standard Brownian motion B. For
simplicity, we assume that all agents are risk-neutral. There is a constant
risk-free interest rate r, with µδ < r − ε for some positive constant ε. The
market value At at time t of the future cash flows of the firm is then

At = Et

[∫ ∞

t

e−r(s−t) δs ds

]
< ∞ (2)

where Et denotes the Ft-conditional expectation. By the Markov property,
At only depends on {δ}s≤t through δt. Specifically, there exists a smooth
function A : R → R such that At = A(δt), which implies that {At}t≥0 is a
diffusion:

dAt = µ(At)dt + σ(At)dBt. (3)

For the sake of ulterior computations, we assume

11While these models consider the case of geometric Brownian motion and a consol
bond, we consider here a general diffusion model and performance–sensitive debt.

12A sufficient conditions is that µδ and σδ be continuous and bounded. See for example
Karatzas and Shreve (1991).

6



Condition 1 µ and σ are smooth and bounded and σ is coercive.13

Since Et [δs] is increasing14 in δt, At(·) is increasing in δt, which implies
the existence of a continuous inverse function δ : R → R such that δt = δ(At).

We consider a performance measure represented by an Ft-adapted stochas-
tic process (πt)0≤t<∞ taking values in a totally ordered, topological space
Π. In general, πt can be any statistic that measures the firm’s ability and
willingness to serve its debt obligations in the future. Financial ratios and
credit ratings are among commonly used performance measures.

A performance-sensitive debt (PSD) obligation is a claim on the firm that
promises a non-negative payment rate that may vary with the performance
measure of the firm. Formally, a PSD obligation C( · ) is a measurable
function C : Π → R, such that the firm pays C (πt) to the debtholders at
time t.15 For example, the consol bond of Leland (1994) is a degenerate case
of PSD. The reader should note that, while our earlier sections dealt mostly
with “risk-compensating” PSD (that pay higher coupons when performance
worsens), our definition encompasses more general kinds of PSD. It is also
worth noting that C represents the total debt payment. If the firm has a
complex capital structure which includes various issues of PSD obligations
and also fixed coupon debt, then C (πt) is the sum of the payments for each
of the firm’s obligations at time t given the performance16 πt. In other
words, a combination of PSD obligations is a PSD obligation.

Given a PSD obligation C, the firm’s optimal liquidation problem is to
choose a default time τ̂ to maximize its initial equity value W C

0 , given the

13In the one-dimensional case, coerciveness is equivalent to the existence of a real number
σ
¯

such that 0 < σ
¯
≤ σ. Throughout, smoothness means continuous differentiability.

14Et [δs] is increasing in δt because, given any path of the underlying Brownian motion,
the trajectory of the cash flow process starting at point δ′t > δt will be always above the
trajectory of the cash flow process starting at δt.

15We are considering perpetual debt, which is a standard simplifying assumption for
the endogenous default framework. See, for example, Leland (1994). However, our model
can be extended to the case of finite average debt maturity, if we assume that debt is
continuously retired at par at a constant fractional rate. See Leland (1998) for more on
this approach.

16If different PSD obligations issued by the firm depend on different performance mea-
sures, the total debt payment by the firm can be represented as PSD that depends on a
single performance measure. This is possible because, as we will see later, any relevant
performance measure can be described by the current asset level and the asset level at
which the firm goes bankrupt.
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debt structure C. That is,

W C
0 ≡ sup

bτ∈T

E

[∫
bτ

0
e−rt[δt − (1 − θ)C (πt)] dt

]
, (4)

where T is the set of Ft stopping times and θ is the corporate tax rate on
earnings. If τ∗ is the optimal liquidation time, then the market value of the
equity at time t < τ∗ is

W C
t = Et

[∫ τ∗

t

e−r(s−t)[δs − (1 − θ)C (πs)] ds

]
. (5)

Analogously, the market value UC
t of the PSD obligation C at time t is

UC
t ≡ Et

[∫ τ∗

t

e−r(s−t)C (πs) ds

]

+ Et

[
e−r(τ∗−t) (Aτ∗ − ρ(Aτ∗))

]
, (6)

where ρ (.) defines the portion of the asset value lost at bankruptcy. We
assume that ρ is an increasing function such that 0 ≤ ρ(x) ≤ x for all x ≥ 0.
If δt is lower than (1− θ)C(πt), equity holders have a net negative dividend
rate.17 Equity holders will continue to operate a firm with negative dividend
rate if the firm’s prospects are good enough to compensate for the temporary
losses.

4 Asset-Based PSD

In all the applications of PSD listed in Section 2, the interest rate charged
to the borrower depends on the borrower’s credit quality. Since the market
value A of assets is a time-homogeneous Markov process, the current asset
level At is the only state variable in our model, and any measure of the
borrower’s earnings prospect at time t is determined solely by At.

Therefore, it is natural to consider the asset level At as a performance
measure. An asset-based PSD is a PSD whose coupon rate depends only
on the current asset level. Specifically, an asset-based PSD is a measurable
function C : R+ → R, under which the firm pays coupons at rate C (At) at
time t. Using this definition, we derive valuation and efficiency results for
asset-based PSD.

17Limited liability is satisfied if the negative dividend rate is funded by dilution, for
example through share purchase rights issued to current shareholders at the current val-
uation.
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4.1 Valuation

Given an asset-based PSD, the initial value of the equity is:18

W (A0) ≡ sup
bτ∈T

E

[∫
bτ

0
e−rt [δ(At) − (1 − θ)C (At)] dt

]

.

The Markov property and time homogeneity imply that there exist asset
levels AB and AH with AB < A0 < AH , such that an optimal default
time of the firm is of the form τ∗ = min(τ(AB), τ(AH )), where τ(x) ≡
inf {t : At = x}. Even though the existence of an upper asset boundary AH

above which the firm would default is mathematically possible, we exclude
this unnatural possibility with the following condition.

Condition 2 There exist levels x
¯

< x̄ and a positive constant c
¯

such that

1. (1 − θ)C(x) ≥ δ(x) if and only if x ≤ x̄.

2. (1 − θ)C(x) ≥ δ(x) + c
¯

for x ≤ x
¯
.

The first part of Condition 2 states that for asset levels higher than x̄, the
cash flow rate is higher than the coupon payment rate. It can be easily veri-
fied that, under this condition, AH = +∞, so that the optimal default time
simplifies to τ∗ = τ(AB). Therefore, the equity holders’ optimal problem
can be expressed without loss of generality as:

W (x) = sup
y<x

W̃ (x, y), (7)

where

W̃ (x, y) ≡ Ex

[∫ τ(y)

0
e−rt [δ(At) − (1 − θ)C(At)] dt

]
.

The second part of Condition 2 ensures that the company will default at
some positive asset level. In order to derive an ordinary differential equation
(ODE) for W , we impose the following condition on C:

Condition 3 The PSD obligation C is such that:

1. There exist non-negative constants k1 and k2 that satisfy

0 ≤ (1 − θ)C(y) ≤ k1 + k2y.

18Throughout this section, we omit the superscript C and the subscript 0 whenever
there is no ambiguity.
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2. C is right continuous on [0,∞) and has left limits on (0,∞).

Using the strong Markov property of {At}t≥0,

W̃ (x, y) = f(x) − ξ(x, y)f(y) (8)

where19 for x > y,
ξ(x, y) = Ex[e−τ(y)],

and

f(x) = Ex

[∫ ∞

0
e−rt [δ(At) − (1 − θ)C(At)] dt

]
.

The next lemma shows that, under Condition 2, the default triggering level
AB is strictly positive.

Lemma 1 Under Condition 2, there exists a level x̃ such that any optimal
default time τ satisfies τ ≤ τ(x̃) almost surely.

An important consequence of Lemma 1 is that default occurs with positive
probability. Our next theorem characterizes the solution of the optimal
stopping problem (7).

Theorem 1 If a PSD C satisfies Conditions 1–3, the following statements
are equivalent:

1. AB is an optimal default triggering level:

W (x) = Ex

[∫ τ(AB)

0
e−r(s−t)[δ(As) − (1 − θ)C (As)] ds

]

.

2. W (x) and AB satisfy:

(i) AB ∈ (0, x̄).

(ii) W is continuously differentiable and W ′ is bounded and left and
right differentiable.

(iii) W vanishes on [0, AB ] and satisfies the following ODE at any
point of continuity of C:

1

2
σ2(x)W ′′(x)+µ(x)W ′(x)−rW (x)+δ(x)−(1−θ)C(x) = 0. (9)

19Previous assumptions on µ and σ imply that ξ is well-defined, continuous, increasing
in y and less that 1 (see Karatzas and Shreve (1991)).
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A proof is given in the Appendix.20

The continuous differentiability of W and the fact that W is 0 on [0, AB ]
imply that W ′(AB) = 0, which is known as the smooth-pasting condition.
Theorem 1 provides a method for solving the firm’s optimal liquidation
problem. The proposed algorithm is the following

1. Determine the set of continuously differentiable functions that solve
ODE (9) at every continuity point of C. It can be shown that any
element of this set can be represented with two parameters,21 say L1

and L2.

2. Determine AB , L1, and L2 using the following conditions:

a. W (AB) = 0.
b. W ′ is bounded.
c. W ′(AB) = 0.
d. AB ∈ (0, x̄).

We interpret (a) as the boundary condition on the solution at the point AB

of the ODE. Condition (b) says that W ′(x) remains bounded as x → +∞
and constitutes the second boundary condition on the solution of the ODE.
The smooth-pasting condition (c) is interpreted as the first order optimiza-
tion condition that defines the optimal bankruptcy boundary. Condition (d)
verifies that condition 2.(i) of Theorem 1 is satisfied.

Now that we know how to price the equity associated with PSD, we can
also price the PSD itself. Using the fact that the sum of the equity value,
the PSD value, and the expected losses resulting from the bankruptcy is the
sum of the asset level and the present value of the tax benefits, we obtain
the PSD pricing formula:

U (At) =
1

1 − θ
[At − W (At) − [ρ(AB) + θ(AB − ρ(AB))] ξ(At, AB)] .

20The Appendix also gives two separate equations involving the right and left derivatives
of W ′ at discontinuity points of C (cf. equations (28) and (29)).

21In fact, we really consider here solutions of coupled equations (28) and (29), which
boil down to the ODE (9) at any continuity point of C. One can easily check that the set
of solutions of the coupled equations is still a two-dimensional vector space.
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Figure 1: C is more risk-compensating than D

4.2 The Relative Efficiency of Asset-Based PSD

In this subsection, we study the relative efficiency of alternative asset-based
PSD. Specifically, we derive a partial order, by “efficiency,” among alterna-
tive PSD issues that raise the same amount of cash. We need the following
definitions and condition, that we state in terms of a general performance
measure π. These will also be used in Section 6.2 for the case of credit
ratings.

Definition 1 (Relative Efficiency). Let C and D be PSD that raise the
same funds, UC

0 = UD
0 . We say that C is less efficient than D if it deter-

mines a lower equity price, that is, if W C
0 < W D

0 .

Definition 2 (Risk Compensating). Let C and D be PSD issues based on
the same performance measure. We say that C is more risk-compensating
than D if C − D is a non-increasing, not constant function.

Figure 1 illustrates the “risk-compensating” concept.

Condition 4 (Efficiency Domain). A PSD issue C is said to be in its ef-
ficiency domain if, for any constant α > 0, we have UC−α

0 < UC
0 , where

C − α denotes a PSD issue that pays C (At) − α at time t.

Condition 4 means that it is not possible to raise the same amount of
cash as C by a constant downward shift in its coupon rate. For example,
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a bond paying a fixed coupon rate c raises an increasing amount of cash
as c increases, until c reaches a point at which the loss due to precipitated
default dominates the gain due to the increase of coupon payment (as in
Figure 2). The forms of PSD that we consider are in their efficiency domain,
for otherwise efficiency in the sense of Definition 1 can be trivially improved
by uniformly reducing the interest rate paid.

Theorem 2 Suppose C and D both are asset-based PSD, satisfying UC
0 =

UD
0 and Conditions 1–4. If C is more risk-compensating than D, then C is

less efficient than D.

A proof of the theorem is given in the appendix.

The above result is supported by the following intuition. Equity holders
decide to declare bankruptcy when coupon payments become too high com-
pared to dividends. At this time, the firm pays higher interest rates with C
than with D and, while there is a possibility that the situation be reversed in
the future, the urgency of the current situation increases the firm’s incentive
to declare bankruptcy.

This intuition can be further illustrated by the opposite, extreme exam-
ple of a bond paying a coupon rate equal to the dividend rate C(At) = δ(At).
This coupon rate decreases to zero as the asset level goes to zero. The coupon
payments never exceed the dividends, so the firm never goes bankrupt. Such
a bond transfers all the value of the firm to debtholders, and, if it could qual-
ify as “debt” for tax purposes, would reduce tax payments to zero since the
tax benefit resulting from coupon payments is equal to the tax on the div-
idends. Equity holders could decide to buy all of the debt, in which case
this bond allows them to receive all of their dividends in the form of coupon
payments.

Corollary 1 Let C be a PSD issue satisfying Conditions 1–4. If C is non-
increasing and not constant, it is less efficient than the fixed-interest PSD
issue raising the same amount of cash and verifying Condition 4. If C is
non-decreasing and not constant, it is more efficient than any fixed-interest
PSD issue raising the same amount of cash.

The result suggests that, in many settings, the issuer would choose the least
risk-compensating form of debt that qualifies as “debt” for tax treatment.

The following numerical example compares “one-step” PSD issues C that
raise the same amount M , in the class CM of PSD defined by

13



 
 
 
 

 

 

 

F
u
n
d
s

ra
is

ed
b
y

fi
x
ed

-c
o
u
p
o
n

d
eb

t
U

c
(A

0
)

Fixed coupon c

c̄

Figure 2: A fixed-coupon bond is in its efficiency domain if c ∈ [0, c̄].

C (At) =

{
C1, At ≥ G2

C2, At < G2
,

such that C2 ≥ C1 and UC(A0) = M .
We assume that the asset is a geometric Brownian motion with param-

eters µ = 0.01, σ = 0.1, and that ρ(x) = 0.25x, θ = 0, r = 0.03, A0 = 100,
G2 = 80, and M = 50, and that M can be raised by issuing a bond that
promises to pay a fixed coupon rate of 2. To see the inefficiency of step-
up bonds, we compute for one-step PSD issues in CM the present value of
bankruptcy losses, which is by definition

Q (C) ≡ 0.25E
[
e−rτ(AC

B)AC
B

]
= 0.25AC

B

(
A0

AC
B

)−γ1

,

where22 γ1 =
m +

√
m2 + 2rσ2

σ2
and m = µ − σ2

2 . According to Definition

2, (C1, C2) is more risk-compensating than (C ′
1, C

′
2) if C2 − C1 > C ′

2 − C ′
1.

Figure 3 shows the relationship between the present value of bankruptcy
losses and the degree of risk-compensation (C2 − C1) associated with the
PSD. One can see that the fixed-coupon PSD results in a bankruptcy cost
of 2.8, while being worth 50. On the other hand, as the difference (C2 − C1)
rises, the bankruptcy cost climbs quickly.

22See Section 5
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Figure 3: Present value of bankruptcy costs when we increase the size of the
step.

5 Examples of Asset-Based PSD

In this section, we solve our model explicitly for two important cases: step-
up and linear PSD. Step-up PSD is more likely to be seen in practice, while
linear PSD has a convenient pricing formula. Throughout this section, we
assume that the asset process is a geometric Brownian motion with drift µ
and volatility σ2. This implies that δ(x) = (r − µ)x, and that ξ(x, y) =
(

x
y

)−γ1

, where γ1 =
m +

√
m2 + 2rσ2

σ2
and m = µ − σ2

2 .

5.1 Step-Up PSD

Step-up performance-sensitive debt is defined as a PSD obligation whose
coupon payment is a non-increasing step function of the asset level. For a
decreasing sequence {Gi}I+1

i=1 of asset levels such that G1 = +∞ and GI+1 =
AB , the coupon rate of a step-up PSD obligation can be represented as

C (At) = C̄i whenever At ∈ [Gi+1, Gi), (10)

where {C̄i}I
i=1 is an increasing sequence of constant coupon rates. With this

coupon structure, the general solution of the ODE (9) is
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W (x) =

{
0, x ≤ AB ,

L
(1)
i x−γ1 + L

(2)
i x−γ2 + x − (1−θ)C̄i

r
, Gi+1 ≤ x ≤ Gi ,

(11)

for i = 2, . . . , I +1, where γ1 =
m +

√
m2 + 2rσ2

σ2
, γ2 =

m −
√

m2 + 2rσ2

σ2
,

m = µ− σ2

2
, and where L

(1)
i and L

(2)
i are constants to be determined shortly.

According to Theorem 1,
W (AB) = 0 (12)

and
W ′ (AB) = 0 , (13)

and W (·) is continuously differentiable. In particular, for i = 2, . . . , I,

W (Gi−) = W (Gi+) , W ′ (Gi−) = W ′ (Gi+) . (14)

Because the market value of equity is non-negative and cannot exceed the
asset value23,

L
(2)
1 = 0. (15)

The system (12)-(15) has 2I + 1 equations with 2I + 1 unknowns (L
(j)
i ,

j ∈ {1, 2}, i ∈ {1, . . . , I}, and AB). Substituting (11) into (12)-(15) and
solving gives

L
(1)
I =

(γ2 + 1) AB − γ2
c2
r

(γ1 − γ2) A−γ1

B

, (16)

L
(2)
I =

− (γ1 + 1) AB + γ1
c2
r

(γ1 − γ2) A−γ2

B

, (17)

L
(1)
j = L

(1)
I +

γ2

(γ1 − γ2)r

I−1∑

i=j

ci+1 − ci

G−γ1

i+1

, j = 2, . . . , I , (18)

L
(2)
j = L

(2)
I − γ1

(γ1 − γ2)r

I−1∑

i=j

ci+1 − ci

G−γ2

i+1

, j = 2, . . . , I , (19)

0 = − (γ1 + 1) AB +
γ1

r

(

cI −
I−1∑

i=1

(ci+1 − ci)

(
AB

Gi+1

)−γ2

)

, (20)

23Since γ1 > 0 and γ2 < 0, the term L2
Kx−γ2 would necessarily dominate the other

terms in the equation (11) violating the inequality 0 ≤ W (x) ≤ x, unless L2
1 = 0.
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where, for convenience, we let ci ≡ (1 − θ)C̄i.
Although we do not have an explicit solution for these parameters, equa-

tions (16)-(19) express L
(i)
j as a function of AB , which in turn solves (20).

We can verify that (20) has a unique solution on the interval
(
0, ÂB

)
,24

where ÂB ≡ γ1cI/(r (γ1 + 1)) is the default-triggering level of assets for a
consol bond with the fixed-coupon rate cI .

5.2 Linear PSD

Next, we consider the coupon scheme given by

C (x) = β0 − β1x ,

with β0 > 0.
Applying Theorem 1, the corresponding equity value is

W (x) = λ

(
x − AB

(
x

Ab

)−γ1

)
− β0

r

(
1 −

(
x

AB

)−γ1

)
, (21)

and the optimal bankruptcy boundary is

AB =
γ1β0

λ (1 + γ1) r
,

where λ = r−µ+β1

r−µ
.

When β1 = 0, formula (21) for W corresponds to the fixed coupon case
with C = β0. As expected, W is increasing in β1 due to the reduction in
the coupon rate.

24Since γ1 ∈ (0,∞) and γ2 ∈ (−∞, 0), the left-hand side of (20) converges to
γ1

r
cI > 0

as AB goes to 0, and equals −γ1

r

PI−1

i=1
(ci+1 − ci)

„
AB

Gi+1

«−γ2

< 0 for AB = bAB, where

bAB ≡ γ1cI

r (γ1 + 1)
.

One can verify that the left-hand side is a strictly decreasing function of AB. Here, bAB is
the default-triggering level of assets for a consol bond with fixed-coupon cI . Our step-up
PSD pays several different coupon rates, and all of them are greater than or equal to cI .
Therefore, AB should be no greater than bAB, and (20) has a unique solution for AB on

the interval
“
0, bAB

”
.
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6 Performance Measures

Earlier, we derived valuation formulas and an inefficiency theorem for PSD
obligations whose coupon payments are determined by the asset level of
the firm. Since, in our model, At incorporates all information about future
earnings of the firm, the asset level is the natural choice for a performance
measure.

In practice, however, PSD contracts are usually written in terms of other
performance measures such as credit ratings and financial ratios. In this
section, we explicitly consider the valuation and relative efficiency of PSD
obligations based on these other performance measures.

6.1 General Performance Measures

We assume that performance measures reflect the borrower’s capacity and
willingness to repay the debt. With µ and σ given, the borrower’s asset level
At and chosen default triggering boundary AB fully determine its default
characteristics at any time t. Since AB is not directly observed by outsiders,
the performance measure πt is a function π̄(At, ÃB), where ÃB is the per-
ceived default triggering level of assets. Although we do not make explicit
use of this condition, it is natural to assume that π̄(·, ·) is nondecreasing in
At and nonincreasing in ÃB .

A PSD obligation C therefore pays the coupon C(πt) = C(π̄(At, ÃB)).
The Markov structure and the time homogeneity of the setting imply that
any optimal default time of the firm can be simplified to a default triggering
boundary hitting time τ(AB) (still imposing Condition 2). In this setting,
a consistency problem arises, as the default triggering level chosen by the
firm may depend on the perceived default triggering level. With y denoting
the actual default triggering level of the firm, the value of the equity is

W̃ (x, y, ÃB) = Ex

[∫ τ(y)

0
e−rt

[
δt(At) − (1 − θ)C(π̄(At, ÃB))

]
dt

]
.

Knowing that the firm seeks to maximize the value of the equity, the ratings
agency therefore chooses an ÃB that solves the fixed point equation:

AB ∈ arg max
y≤x

W̃ (x, y,AB). (22)

This equation may have one or several solutions, or no solution at all. To
avoid ambiguity, we impose the following condition.
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Condition 5 There exists a unique positive solution of equation (22).

Given Condition 5, the coupon rate paid by the PSD obligation at time
t is C(π̄(At, AB)). Since AB does not change over time, this PSD, which is
defined under performance measure π, is equivalent to an asset-based PSD
C̃, defined by C̃ (At) ≡ C(π̄(At, AB)). Equation (22) implies that C and
C̃ have the same optimal default boundary AB . Hence, provided that C̃
satisfies Conditions 2,3, and 4, we can compare C in terms of efficiency with
asset-based PSD obligations that satisfy the same conditions by applying
Theorem 2. In particular, if C̃ (At) is a nonincreasing non-negative function,
then a fixed-coupon bond with the same market value is more efficient than
C.

If π can take a finite number of values, then C̃ (At) satisfies Conditions
2 and 3. Thus, we have proven the following theorem.

Theorem 3 Suppose that a performance measure π can take only a finite
number of values, and that a PSD C is nonincreasing and nonnegative.
Suppose Conditions 4 and 5 are satisfied. Then, a fixed-coupon PSD D that
satisfies Condition 4, and has the same market value as C (UC

0 = UD
0 ), is

more efficient than C.

6.2 Ratings-based PSD

Here we consider I different credit ratings, 1, . . . , I, with 1 the highest
(“Aaa” in Moody’s ranking) and I the lowest (“C” in Moody’s ranking).
We let Rt denote the issuer’s credit rating at time t. We say that C ∈ R

I

is a ratings-based PSD obligation if it pays interest at the rate Ci whenever
Rt = i, with Ci+1 ≥ Ci > 0, for i in {1, . . . , I − 1}. Thus, a ratings-based
PSD is more risk-compensating than a fixed coupon PSD.

We say that an accurate rating agency is one whose credit ratings are a
function of the probability of default over a given time horizon T . Naturally,
higher ratings correspond to lower default probabilities.

The default time for a ratings-based PSD is a stopping time of the form
τ(AB) = inf{s : As ≤ AB}, for some AB . Therefore, the current asset
level At is a sufficient statistic for P (τ(AB) ≤ T | Ft), for any T ≥ t. A
rating policy is thus given by some G : R 7→ R

I+1 that maps a default
boundary AB into rating transition thresholds, such that Rt = i whenever
At ∈ [Gi+1(AB), Gi(AB)). In our setting, this policy has the form25

G(AB) = AB g, (23)

25Since At is a geometric Brownian motion, its first passage time distribution is an
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where g ∈ R
I is such that g1 = +∞, gI+1 = 1, and gi ≥ gi+1.

The results developed for step-up PSD can be applied to ratings-based
PSD. In particular, the maximum-equity-valuation problem (4) is solved by
τ(AB) = inf{s : As ≤ AB}, where AB solves equation (20).

Plugging (23) into (20), we obtain

AB =
γ1

(γ1 + 1)r
Ĉ, (24)

where

Ĉ =
I∑

i=1

[(
1

gi+1

)−γ2

−
(

1

gi

)−γ2

]
ci,

and ci = (1 − θ)Ci. We note that the ratings-based PSD issue C has the
same default boundary AB as that of a fixed-coupon bond paying coupons
at the rate Ĉ.

Plugging (24) into (16)-(19), (11), and (6), we obtain closed-form ex-
pressions for the market value W of equity and the market value U of debt
for any ratings-based PSD obligation.

We now derive the inefficiency theorem for the case of ratings-based PSD.
We keep the same definitions as in Section 4, except that the performance
measure now corresponds to credit ratings, and not asset levels.

Theorem 4 Suppose C and D are ratings-based PSD, satisfying UC
0 = UD

0

and Condition 4. If C is more risk-compensating than D, then C is less
efficient than D.

The proof of the theorem is given in the Appendix.

Corollary 2 Let C be a ratings-based PSD issue satisfying Conditions 2,3,
and 4. If C is not constant, it is less efficient than any fixed-interest PSD
issue raising the same amount of cash and satisfying Condition 3.

inverse Gaussian:

P (τ (AB) ≤ T | Ft) = 1 − Φ

„
m(T − t) − x

σ
√

T − t

«
+ e

2mx

σ2 Φ

„
x + m(T − t)

σ
√

T − t

«
,

where, x = ln
“

AB

At

”
, m = µ − 1

2
σ2, At is the current level of assets and Φ is the normal

cumulative distribution function. Since P (τ (AB) ≤ T | Ft) depends on At only through
AB

At
, we have the linearity of G( · ).
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7 Rating Agency Policy

Credit ratings differ from other measures because of the circularity issues
that are imposed. In a ratings-based PSD obligation, the rating determines
the coupon rate, which affects the optimal default decision of the issuer.
This, in turn, influences the rating. We have so far assumed that rating
agencies are accurate, in the sense that they assign credit ratings according
to the probability of default over a time horizon T . In this section, we
discuss what can happen when credit-rating agencies fail to account for the
effect of credit-rating changes on the firm’s financial standing.

Only after recent deteriorations in credit qualities of several major com-
panies did rating agencies begin to worry about the unintended adverse
effects of rating triggers.26 Even after several incidences of default and cas-
cading downgrades related to ratings-based PSD, it is not difficult to find
examples of reluctance by rating agencies to incorporate the negative con-
sequences of ratings-based PSD into credit ratings.27 The following passage
is from Standard & Poor’s (2001):

(. . .) How is the vulnerability of rating triggers reflected all
along in a company’s ratings? Ironically, it typically is not a
rating determinant, given the circularity issues that would be
posed. To lower a rating because we might lower it makes little
sense – specially if that action would trip the trigger!

Another reason that rating triggers may not be incorporated into credit
ratings is that often, due to confidentiality constraints, they are not publicly
disclosed by the issuer. Some steps have already been taken to punish issuers
who refuse to provide information about their rating triggers, although there
is still no legal procedure to enforce disclosure.28

We say that an agency is unresponsive if, when assigning credit ratings,
it ignores the adverse effects of rating triggers on the liquidation of the firm.

We suppose, for purpose of illustration, that a firm having a fixed-coupon
note C refinances its outstanding debt by issuing a ratings-based PSD obli-
gation D. Figure 4 plots the accurate agency policy G( · ), which is obtained
from (23), and equity holders’ optimal default strategies AC

B( · ) and AD
B ( · ),

which are obtained from (20). Points 1 and 5 in the figure yield the solu-
tion to (22) before and after the refinancing of the debt takes place. With

26See Moody’s (2001) and Standard & Poor’s (2001).
27Moody’s adopted a more critical view of ratings trigger after recent default events.

See Moody’s (2001).
28See Moody’s (2002).
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Figure 4: Rationalizing the credit cliff dynamic.

an accurate rating agency, issuance of ratings-based PSD obligations thus
triggers a chain reaction that ceases only when it reaches point 5. This
chain reaction, which we call the credit-cliff dynamic, might induce a dras-
tic downgrade or even immediate default if AC

B > A0.
By ignoring the effects of ratings triggers, an unresponsive rating agency

may avoid the perverse effects associated with the credit-cliff dynamic. In
the context of figure 4, an unresponsive rating agency would interrupt the
chain reaction at point 2, leading to a lower optimal default boundary than
with an accurate rating agency.

One would then be tempted to say that the outcome of a ratings-based
PSD with an unresponsive rating agency is superior to the one with an ac-
curate one. We claim that this is not necessarily true. With unresponsive
rating agencies, credit ratings do not reflect true probabilities of default and
are thus less informative. Moreover, firms may be tempted to issue more
risk-compensating ratings-based PSD, compensating for the unresponsive-
ness of rating agencies.

8 Additional Discussion

Even though our main result is that more risk-compensating PSD obliga-
tions lead to higher inefficiency, companies do issue these obligations in
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practice. In order to understand why this is the case, one could introduce
market frictions such as adverse selection, moral hazard, contracting costs,
or incomplete markets. Since these would complicate the model, we confine
ourselves to an intuitive discussion of these issues.

Performance-sensitive debt may be used to solve the adverse selection
problem, which arises because of information asymmetries at the time of
debt issuance. In order to see this, we assume there are two firms that
are identical except for their initial asset levels. That is, both firms’ future
cash flows are given by (1), but the “high” type has a higher initial level
of assets than the “low” type. Assuming that their initial levels of assets
are not observable by the market, the firm with the high assets may issue
risk-compensating PSD that pays a lower initial coupon but has a higher
associated bankruptcy boundary than that of the low-type firm that issued
the fixed coupon debt. A lower asset level means that the firm is closer
to bankruptcy. A further increase in the bankruptcy boundary would be
costlier for the low-type firm. As a result, the “low” type would not be
willing to pool with the “high” type. On the other hand, despite the ineffi-
ciencies related to the risk-compensating PSD, the “high” type firm benefits
overall from revealing its type by reducing its interest payments. Thus, the
inefficiency cost associated with the risk-compensating PSD could be viewed
as a signaling cost paid by the “high” type firm. Numerical examples sup-
port this intuition.

Moral hazard could also justify the use of risk-compensating PSD. A
scheme that punishes bad performance with higher interest rates could serve
as an additional incentive for the firm’s manager to exert effort. It could also
discourage the manager from undertaking inefficient investments. Tchistyi
(2005) shows that risk-compensating performance pricing can be part of an
optimal contract in a situation in which the manager of the firm can privately
divert the firm’s cash flows for his own consumption at the expense of outside
investors. demonstrate that rating triggers that force early payment of debt
can prevent asset substitution. However, Bhanot and Mello (2005) show
that rating triggers that increase coupon rates are in general inefficient in
preventing asset substitution.29

Contracting costs may be another reason for some types of PSD. When
the credit quality of the borrower changes, the issuer and the investors in
its debt often get involved in costly negotiation over the terms of the debt.
An increase in credit quality may prompt the borrower to seek refinancing

29Bhanot and Mello (2005) also demonstrate that rating triggers that force early pay-
ment of debt can prevent asset substitution.
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of its debt on better terms. Conversely, the lender may demand higher
interest payments in compensation for the deterioration in credit quality.
Some types of PSD may resolve the renegotiation problem by automatically
adjusting the interest rates.

Asquith, Beatty, and Weber (2002) and Beatty, Dichev, and Weber
(2002) indeed found empirical evidence that private debt contracts are more
likely to include performance pricing schemes that increase interest rates
in times of poor performance when agency costs associated with asymmet-
ric information, moral hazard, or recontracting costs are significant. They
also point out that risk-compensating performance pricing provisions are
especially popular in syndicated loans. Since monitoring of the firm may
be too costly for some lenders, the latter fact seems to be in line with the
hypothesis that risk-compensating performance pricing provisions are part
of a mechanism built into debt contracts that resolves agency problems and
makes the debt more liquid. Our paper, however, establishes that solving
these problems with PSD comes with a cost.

Our analysis suggests that if there is no agency problem, the optimal
PSD is the one that reduces interest payments when the firm is financially
distressed so that the firm is never forced into bankruptcy. The fact that
in practice debt is often renegotiated when the firm is in a poor financial
shape, and lenders are often willing to reduce the firm’s debt load in order
to save it from bankruptcy, is in agreement with our analysis. We interpret
this renegotiation as implicit performance pricing. If the borrower and the
lenders expect the debt renegotiation in the future, it will be reflected in
the current price of the firm’s debt and equity as if the debt were PSD with
lower interest rates in times of poor performance.

Nonetheless, debt contracts with explicit provisions that reduce the in-
terest rate in times of poor performance are very rare in practice. A possible
explanation for this is that those types of contracts seem to be very vulner-
able to moral hazard.30 For example, the firm’s owners may try to hide or
divert the firm’s cash flows in order to reduce the debt payments, or the man-
ager of the firm may not have enough incentives to work hard since higher
cash flows would also mean higher debt payments. Because of the potential
moral hazard problems it is not optimal to promise explicitly in a contract a
debt payment reduction in times of poor performance. Instead, the creditors

30PSD obligations that charge higher interest rates in times of poor performance are
also vulnerable to some moral hazard problems, but to a lesser extent. Enron, which had
issued debt obligations with rating triggers, systematically overstated its earnings partially
in order to avoid higher debt payments triggered by credit rating downgrades.
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can implicitly agree to reduce the debt payments31 if they believe that the
firm’s poor performance is caused purely by bad luck. Another reason why
performance pricing schemes that explicitly decrease interest rates in times
of poor performance and increase them in times of good performance are
not widespread is because they resemble equity and therefore might not be
recognized as debt for tax purposes.

We have so far assumed that all the agents in the economy are risk-
neutral. It is straightforward, however, to extend our results to the case
of risk-averse agents, in the absence of arbitrage (specifically, assuming the
existence of an equivalent martingale measure).

If markets are incomplete, performance-sensitive debt might be issued
to meet the demands of risk-averse investors, providing them with hedge
against credit deterioration of the firm. Our results suggest, however that
financial guarantors, rather than the debt issuing firms, should be providing
this kind of hedge.

Our inefficiency results hold for alternative definitions of financial dis-
tress. If we assume, for example, that default happens when assets do not
generate enough cash flow to meet current obligations,32 then it is easy to
see that a more risk-compensating PSD will lead to more inefficiency. In this
flow-based insolvency definition, however, shareholders declare bankruptcy
even though it may be still possible to issue additional equity to cover the
shortage.

9 Conclusion

In this paper, we analyze the properties of performance-sensitive debt using
an endogenous default model. Although many types of debt contracts are
performance-sensitive, they have received little attention in the literature.
Endogeneity of the firm’s default decision allows us to analyze the efficiency
of different types of PSD.

Our main finding is that, given the same initial funds raised by sale of
debt, more risk-compensating PSD leads to earlier default and consequently
lowers the market value of the issuing firm’s equity. An intuitive explanation
of this result is that higher interest payments from financially distressed
companies lead to higher losses, thus precipitating the default decision.

Catastrophe bonds, whose coupon rate is reduced automatically when

31Saving the firm from bankruptcy may be in the creditors’ best interests when the
firm’s liquidation value is sufficiently small.

32This setting is studied in Kim, Ramaswamy, and Sundaresan (1993).
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the insurance company experiences hardship due to a high volume of in-
surance claims, are an example of “more” efficient debt. In addition, many
bank loans are often renegotiated, resulting in lower debt payments when
the borrower is in poor financial condition. Those loans can be interpreted
as implicit PSD, which is more efficient than fixed interest rate debt. The
majority of debt obligations with explicit performance pricing provisions,
however, have inefficient step–up features. This leads us to believe that
inefficient PSD is used to solve agency problems arising from existing mar-
ket imperfections, such as adverse selection, moral hazard, and contracting
costs.

In addition, we develop a convenient method of valuing different type of
PSD, which involves solving an ordinary differential equation with a bound-
ary condition corresponding to zero value at default and a “smooth-pasting”
condition. We obtain closed-form expressions for the equity prices associated
with step-up, linear and ratings-based PSD.

We also discuss the policy of credit-rating agencies. Inconsistent rating of
PSD can generate a credit-cliff dynamic, as well as hurt market participants
by providing misleading information about default risks.

10 Appendix

Proof of Lemma 1. The proof is based on the following claim:

Claim: There exists a level x̃ such that ∀x ≤ x̃, W (x) = sup
τ

W (x, τ) = 0.

Proof. From Condition 2, there exist positive constants x
¯

and c
¯

such that
(1 − θ)C(x) > δ(x) + c

¯
for all x ≤ x

¯
. Let Ξ = sup

τ
W (x

¯
, τ) < ∞. For any

stopping time τ and x < x
¯
,

W (x, τ) = Ex

[
1τ<τ(x

¯
)

∫ τ

0
e−rt (δ(At) − (1 − θ)C(At)) dt

]
+

Ex

[
1τ>τ(x

¯
)

∫ τ

0
e−rt (δ(At) − (1 − θ)C(At)) dt

]

≤ − c
¯
r
Ex[
(
1 − e−rτ

)
1τ<τ(x

¯
)] +

Ex

{[
− c

¯
r

(
1 − e−rτ(x

¯
)
)

+ ξ(x, x
¯
)Ξ
]
1τ>τ(x

¯
)

}
.

Let x∗ > 0 be the unique solution (in x) of −c
r̄

(
1 − e−rτ(x

¯
)
)
+ ξ(x, x

¯
)Ξ = 0.

Since ξ is nondecreasing in x, we have for all x ≤ x̃ = x
¯
∧ x∗, W (x, τ) ≤
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−c
r̄
E[(1 − e−rτ ) 1τ<τ(x̃)] ≤ 0, the optimum W (x, τ) = 0 being reached for

τ ≡ 0. This claim proves that, starting from any level x and for any stopping
time τ , the stopping time τ− = τ ∧ τ(x̃) is at least as good as τ . In other
words, we can restrict ourselves, in our search for optimality, to the set of
stopping times T̃ = {τ s.t. τ ≤ τ(x̃)}.

Proof of Theorem 1. First we prove the necessary conditions, then the
sufficient conditions.

1. The proof of the necessary conditions is based a series of lemmas:

Lemma 2 Under Conditions 1–3, f is continuously differentiable and f ′ is
bounded and left and right differentiable. Moreover, f satisfies the following
equations:

1
2σ2(x)f ′′

l (x) + µ(x)f ′(x) − rf(x) + δ(x) − (1 − θ)Cl(x) = 0
1
2σ2(x)f ′′

r (x) + µ(x)f ′(x) − rf(x) + δ(x) − (1 − θ)C(x) = 0
, (25)

where f ′′
l (x) (resp. f ′′

r (x)) is the left (resp. right) derivative of f ′ at x, and
Cl(x) is the left limit of C at x.

Proof From Condition 1, there exists a fundamental solution33 ζ(x, s, y, t)
with the same generator as {At}t≥0, such that for s < t,

Px,s[At ∈ B] =

∫

B

ζ(x, s, y, t)dy

for any Borel subset B of R and

1

2
σ2(x)

∂2ζ

∂x2
(x, s, y, t) + µ(x)

∂ζ

∂x
(x, s, y, t) +

∂ζ

∂s
(x, s, y, t) = 0. (26)

If C is continuous, letting φ(x) = δ(x) − (1 − θ)C(x), Friedman (1975) and
an application of the Fubini theorem imply that

f(x) =

∫

R

φ(y)

[∫ ∞

0
e−rtζ(x, 0, y, t)dt

]
dy,

which, by time homogeneity of {At}t≥0, implies that

f(x) =

∫

R

φ(y)

[∫ ∞

0
e−rtζ(x,−t, y, 0)dt

]
dy. (27)

33See Friedman (1975).
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When C is discontinuous, the second part of Condition 3 implies that there
is a countably finite number of discontinuities. A limit argument using ap-
proximating continuous functions then shows that (27) also holds in this
case. To derive an ODE when C is continuous, a straightforward differen-
tiation of (27) using (26) shows (25), which boils down to a single equation
at any continuity point. When C is discontinuous, differentiation applied
to all continuity points of C shows that (25) holds at such points, while
right and left limit arguments at discontinuity points show that (25) holds
at these points as well. The boundedness of f ′ comes from the boundedness
of ∂ζ

∂x
(x, v), proved in Friedman (1975), and the fact that µδ is uniformly

bounded away from r.

Corollary 3 W satisfies the following equations on [AB ,∞):

1

2
σ2(x)W ′′

l (x) + µ(x)W ′(x) − rW (x) + δ(x) − (1 − θ)Cl(x) = 0 (28)

1

2
σ2(x)W ′′

r (x) + µ(x)W ′(x) − rW (x) + δ(x) − (1 − θ)C(x) = 0, (29)

where W ′′
l (x) (resp. W ′′

r (x)) is the left (resp. right) derivative of W ′ at x,
and Cl(x) is the left limit of C at x. In particular, W solves ODE (9) at
any continuity point of C.

Proof From Lemma 2 and (8), Ŵ (x, y) is continuous with respect to y.
From Lemma 1, and compactness of [0, x] there exists a level AB > 0 such
that W (x) = Ŵ (x,AB). The proof is then straightforward from Lemma 2
and (8).

Corollary 4 W ′ is bounded on [0,∞)

Proof Straightforward, from (8) and the fact that f ′ is bounded on [0,∞).

Corollary 5 If a PSD obligation C satisfies Conditions 1–3, then W̃ (x, y)

is continuously differentiable in both components, and ∂W̃
∂x

is left and right
differentiable in x.

Proof This comes directly from the Lemma 2 and equation (8).

Lemma 3 If a PSD obligation C satisfies Conditions 1–3, then the optimal

default boundary AB verifies ∂W̃
∂x

(AB , AB) = 0.
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Proof From (7) and Lemma 1, it follows that AB satisfies ∂W̃
∂A

(x,AB) =

0. Moreover, we have for any y, W̃ (y, y) = 0 (since the firm defaults
immediately). Differentiating this last equation and using the fact that
∂W̃
∂x

(x,AB) = 0 yields ∂W̃
∂x

(AB , AB) = 0.

Combining equation (8), the above lemmas, and the fact that W (x) =
W̃ (x,AB) concludes the proof of all necessary conditions but one. It re-
mains to show that AB ≤ x̄, which is immediate since, for At > x

¯
, the cash

flow rate exceeds the coupon rate implying that it is never optimal to default
at this level.

2. The verification of the sufficient conditions is similar to the proof of
Proposition 2.1 in Duffie and Lando (2001). Define a stochastic process χt

as

χt = e−rtW (At) +

∫ t

0
e−rsφs ds ,

where for x > AB, W (x) is the solution of the ODE that satisfies all the
conditions listed in the theorem, and W (x) = 0 for x ≤ AḂ .

Since W is C1, an application of Itô’s formula leads to

dχt = e−rtd (At) dt + e−rtW ′ (At)σ(At)dBt, (30)

where

d (x) ≡ 1

2
W ′′ (x)σ2(x) + W ′ (x)µ(x) − rW (x) + φ(x).

Since by assumption W ′ is bounded, the second term is a martingale, and

since Ex

[∫∞

0

(
e−rtW ′(At)σ(At)

)2
dt
]

< ∞,
∫ t

0 e−rsW ′ (As) σAs dBs is a uni-

formly integrable martingale, which implies that Ex

[∫ τ

0 e−rsW ′ (As)σAs dBs

]
=

0 for any stopping time τ . By the assumptions of the theorem

φ (AB) ≤ 0. (31)

This inequality means that when the firm declares bankruptcy, its cash flow
δ = (r − x) AB is less than the coupon payment. It is easy to verify that the
drift of χt is never positive: d(x) vanishes for x > AB since W solves the
ODE, and negative for x < AB, because of the inequality (31) and W (x) = 0
for x < AB. Because of the non-positive drift, for any stopping time T ∈ T ,
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q0 ≥ E (χT ), meaning

W (A0) ≥ E




T∫

0

e−rsφs ds + e−rT W (AT )



 .

For the stopping time τ , we have

W (A0) = E




τ∫

0

e−rsφs ds



 ≥ E




T∫

0

e−rsφs ds



 ,

where the inequality follows from non-negativity of W . Therefore, the stop-
ping time τ maximizes the value of the equity.

Proof of Theorem 2. The proof is based on the following lemma:

Lemma 4 Let C and D be asset-based PSD satisfying Conditions 1–3, and
AC

B ≤ AD
B . If h ≡ C − D is not constant on [AD

B ,∞) and changes sign at
most once from positive to negative on [AD

B ,∞), then, W C
0 (x) > W D

0 (x) for
any starting asset level x ∈ (AC

B ,∞).

Proof Without loss of generality, we assume that the tax rate θ is zero.
First, assume that AC

B = AD
B = AB . Since h changes sign at most once

from positive to negative on [AB ,∞), there exist constants A1, A2 verifying
AB ≤ A1 ≤ A2 and such that h > 0 for A ∈ [AB , A1), h = 0 for A ∈ (A1, A2),
and h < 0 for A ∈ (A2,∞).34

We first consider the case where A1 = AB . Then necessarily A2 < ∞,
otherwise h would be constant on [AB ,∞). Thus, h is zero on [AB , A2) and
negative on (A2,∞). It is easy to verify that for any PSD C with initial
asset level x and defaulting boundary AB , we have

UC
0 (x) = Ex

[∫ τ(AB)

0
e−rsC(As) ds

]
+ (AB − ρ (AB))ξ(A0, AB). (32)

Since (A2,∞) has a positive measure, (32) implies that UD
0 (x) > UC

0 (x) for
all x ∈ (AB ,∞). Equation (6) then allows to conclude that W C

0 (x) > W D
0 (x)

for all x ∈ (AB ,∞).

34By convention [a,a) and (a,a) equal the empty set. The precise values at A1 and A2

are unimportant.
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Now we consider the case in which A1 > AB . Thus, h(AB) > 0. We will
first show that W C

0 (x) > W D
0 (x) for all x ∈ (AB , A1). From equations (28)

and (29), we have for H(x) ≡ W C
0 (x) − W D

0 (x):

1

2
H ′′

l (x)σ2(x) + H ′(x)µ(x) − rH(x) − hl(x) = 0 (33)

1

2
H ′′

r (x)σ2(x) + H ′(x)µ(x) − rH(x) − h(x) = 0, (34)

where H ′′
l (x) (resp. H ′′

r (x)) is the left (resp. right) derivative of H ′ at x,
and hl(x) is the left limit of h at x, which exists according to Condition 3
and Theorem 1. Also from Theorem 1, W i(AB) = 0 and (W i)′(AB) = 0 for
i = C,D. Therefore, H(AB) = H ′(AB) = 0. Since h(AB) > 0, it follows
from equation (34) that H ′′

r (AB) > 0. This implies that H ′(x) > 0 and
H(x) > 0 in a right neighborhood of AB . Precisely, there exists η > 0, such
that H ′(x) > 0 and H(x) > 0 for x ∈ (AB , AB + η). We will now prove by
contradiction that H ′(x) > 0 for all x ≤ A1. Letting y denote the first time
when H ′(y) = 0, we have necessarily H(y) > 0. From equation (33) and
the fact that h(y) ≥ 0 for y ≤ A1, it follows that H ′′

l (y) > 0, contradicting
the fact that y was the first time where H ′(y) = 0. Therefore, H ′(x) > 0
and H(x) > 0 on (AB , A1]. Last, we prove that H(x) > 0 on (A1,∞). By
definition of W C , W D, and AB , we have:

W C
0 (x) = EQ

x

[∫ τ∗

0
qt (δt − C (At)) dt

]

and

W D
0 (x) = EQ

x

[∫ τ∗

0
qt (δt − D (At)) dt

]

,

where qt = e−rt, τ∗ = τ(AB). Therefore,

H(x) = −EQ
x

[∫ τ∗

0
qth(At)dt

]

.

It follows that for any x > A1, we have, since τ(A1) < τ(AB) = τ∗ and∫ τ∗

0 =
∫ τ(A1)
0 +

∫ τ∗

τ(A1),

H(x) = −EQ
x

[∫ τ(A1)

0
qth(At)

]

+ EQ
x (e−rτ(Ah))H(A1).

Since h(.) is non-positive on (A1,∞) and we have seen that H(A1) > 0,
it follows that H(x) > 0 ∀x ∈ (AB ,∞), which concludes the proof of the
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lemma in the case AC
B = AD

B = AB . Now we consider the case where
AC

B < AD
B . Then, W C

0 (x) > 0 and W D
0 (x) = 0 for x ∈ (AC

B , AD
B ], whence

the claim holds trivially on this interval. The rest of the proof is identical
to the first part for x > AD

B .
From this lemma, we will first conclude the proof of the theorem in the

case of asset-based PSD. We proceed by contradiction. We assume first that
AC

B = AD
B = AB . Then, the pair (C,D) satisfies the conditions of the lemma,

which allows to conclude that W C
0 (x) > W D

0 (x) ∀x > AB . By formula (6),
we conclude in particular that for x = A0, UC

0 < UD
0 , which contradicts

the hypothesis of Theorem 1. We now assume that AC
B < AD

B . Then,
we can lower the value of the interests paid by D uniformly, proceeding
by translation: we consider the PSD Dε that pays the interest function
Dε = D − ε. Then, with the assumption that D is in the efficiency domain
of its translation class (Condition 4), we have UDε

0 < UD
0 = UC

0 . On the
other hand, since the interest payments are getting lower as ε increases,

there exists an ε0 > 0 such that A
Dε0+

B ≤ AC
B ≤ A

Dε0−

B . Moreover, since
h = C−D is non-increasing and not constant, so is hε ≡ C−Dε = C−D+ε.
In particular, hε is not constant and changes sign at most once. Since D
satisfies Conditions 2 and 3, it is easy to verify that so does Dε, ∀ε > 0.
Therefore, the pairs (C,Dε) with ε in a left neighborhood of ε0 satisfy the

hypothesis of the lemma, which implies that W C
0 (x) > W

Dε0

0 (x)35 for any
starting asset level x ∈ (AC

B ,∞). By (6), we conclude that UC
0 < UDε

0

for any ε in a right neighborhood of ε0, which contradicts the fact that
UDε

0 ≤ UD
0 = UC

0 for all ε > 0.
Proof of Theorem 4. The proof is based on the proof of Theorem 2. In
the case of ratings-based PSD obligations it is easy to see that Conditions 1–
3 are automatically satisfied. We suppose first that AC

B = AD
B . This implies

that G(AC
B) = G(AD

B ). From Lemma 4, UC
0 > UD

0 . This contradicts the
fact that UC

0 = UD
0 . Now suppose that AC

B < AD
B . Take ε > 0 such that

AC
B = ADε

B . Then G(AC
B) = G(ADε

B ) and Lemma 4 implies that UC
0 < UDε

0 .
Condition 2, on the other hand implies that UDε

0 < UD
0 = UC

0 and we have
a contradiction. Therefore AC

B > AD
B . Since UC

0 = UD
0 , the result follows

from (6).

35Here we use the fact that W Dε
0 (x) is continuous in ε, which is an easy consequence of

Corollary 5
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