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Abstract

We solve the problem of an investor who chooses which assets’ payoffs to acquire

information about before making an investment decision. Investors specialize because

information has increasing returns: As an investor learns more about an asset, it

becomes less risky and more desirable to hold; as he holds more of the asset, the value

of information about it increases. Investors hold some fraction of their assets in a well-

diversified fund, about which they learn nothing, and hold the other fraction in a small

set of highly-correlated assets that they specialize in learning about. In equilibrium,

ex-ante identical investors acquire different information. Information is a strategic

substitute because assets that many investors learn about have low expected returns.

The theory can explain the empirical evidence that individual investors hold part of

their equity portfolio in diversified mutual funds and the rest in a small number of

highly-correlated assets. While such portfolios may appear under-diversified, they are

optimal for investors who face constraints on how much information they can acquire.
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Standard portfolio theory tells an investor how to allocate a fixed amount of wealth

across assets. Before they form portfolios, investors face an equally important decision:

which assets to research. This model tells an investor how to allocate a fixed capacity to

observe information about future asset payoffs. Considering joint information and investment

strategies explains why investor portfolios are more concentrated than standard portfolio

theory would predict.

When deciding how to allocate their capacity, investors can choose to observe noisy signals

about a large number of assets or to specialize and observe more precise information about

a few assets. Once they choose to learn about a particular asset, but before they observe

their chosen signal, risk-averse investors expect to hold more of that asset in their portfolio,

because they prefer to hold assets that they are informed about. As asset holdings rise,

returns to information increase; one signal applied to one share generates less profit than

the same signal applied to many shares. Specialization arises because the more an investor

holds of an asset, the more valuable it is to learn about that asset; but the more an investor

learns about the asset, the more valuable that asset is to hold.

The interaction of the information choice and the asset portfolio problem creates a trade-

off between diversification and specialization through learning. The result is that investors

hold some fraction of their assets in a diversified fund, about which they learn nothing,

and hold the other fraction in a small set of highly-correlated assets that they specialize in

learning about. In equilibrium, ex-ante identical investors specialize in different risks. Assets

that many investors learn about command a lower risk premium. This makes it optimal for

different investors to research different assets.

The force behind specialization is a general one: increasing returns to information. Rad-

ner and Stiglitz (1984) show that the value of information increases as more of it is obtained,

while Wilson (1975) developed the related idea that information value is increasing in a firm’s

scale of operation. These basic economic insights re-emerge in a setting where the choice

is not the quantity of information, but its allocation across assets. Examining information

choice in the context of a portfolio problem tells us what investors should specialize in and

how specialization and diversification trade-off. Embedding this choice in a general equi-

librium model tells us how investors’ learning choices interact and how aggregate learning

affects asset prices.

Starting with identical prior beliefs, investors can obtain additional signals about what
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the realizations of future asset payoffs will be. Information is not required to hold an asset (as

in Merton, 1987); rather it is a tool to reduce the conditional variance of the asset’s payoff.

Because we focus on the allocation of information, rather than the quantity chosen, we endow

investors with a fixed budget of signal precision to allocate across assets. This budget, which

we call capacity, is quantified as an increase in the generalized precision of posterior beliefs

about asset payoffs, relative to prior beliefs. After allocating capacity, the investor observes

signals drawn from a distribution whose precision he has chosen. Conditional on these

signals, he solves a standard CARA-normal portfolio problem. We examine the predictions

of this model in both partial equilibrium and general equilibrium settings.

Section 2 analyzes a partial equilibrium model where the investor takes asset prices as

given. When asset returns are uncorrelated, the investor chooses to learn about one asset.

Because a piece of information is most profitable when it is applied to many shares, the

investor allocates her capacity to the asset with the highest squared Sharpe ratio, the asset

she is likely to hold most of. She invests in a diversified portfolio and adds to that a “learning

portfolio” consisting of a single asset. When asset payoffs are correlated, the investor learns

about a single risk factor instead of a single asset. Her “learning portfolio” contains assets

in proportion to their covariance with the risk factor. In both cases, it is optimal for the

investor with zero information capacity to hold a diversified portfolio; our theory collapses

to the standard model. As the investor’s information capacity increases, holding a perfectly

diversified portfolio is still feasible, but no longer optimal.

Specialization arises because of the interaction of the information and portfolio choice

problems, not because of the form of the information constraint. Even with a learning

technology that exhibits decreasing marginal returns, specialization, though moderated, still

persists. With a small amount of capacity, investors fully specialize in learning about one

risk. Given sufficient information capacity, the investor will learn about more than one risk

factor (section 2.3). The increase and then decrease in the marginal value of information is

similar to Keppo, Moscarini and Smith’s (2005) more general learning results.

Section 3 investigates a general equilibrium model where a continuum of investors in-

teract (as in Admati, 1985). Endogenous prices act as an additional source of information:

they are a noisy signal of what other investors know. While agents still have an incentive

to specialize in one risk factor, they also have an incentive to specialize in a different risk

factor from the ones other agents are learning about: Learning is a strategic substitute.
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When ex-ante identical investors choose to learn about different risk factors, they end up

holding different concentrated asset portfolios. Asset returns in our model are described by

the CAPM that would hold if each investor had the average of all investors’ signal preci-

sions. By characterizing the aggregate allocation of capacity, we can determine what this

heterogeneous-information CAPM predicts for the cross-section of asset prices. When an

asset’s value is correlated with large, high-return risk factors, its price should be higher than

the standard CAPM predicts. Finally, section 4 connects the theory with traditional theories

of institutional portfolio management.

Recent empirical research confirms the predictions of our theory. Many individuals hold

under-diversified portfolios of common stock, in addition to a well-diversified mutual fund.

The median retail investor at a large on-line brokerage company holds only 2.6 stocks (Barber

and Odean, 2001). These portfolios of directly-held equity not only contain too few stocks,

but the stocks they contain are positively correlated (Goetzman and Kumar, 2003). But

directly-held equities are only 40% of the median household’s portfolio; the remaining 60%

is in stock and bond mutual funds (Polkovnichenko 2003). Using Swedish data on investors’

complete wealth portfolio, Massa and Simonov (2003) document similar facts. They rule out

the explanation that this concentration optimally hedges labor income risk.

If investors concentrate their portfolios because they have informational advantages, then

concentrated portfolios should outperform diversified ones (corollary 3). In contrast, if trans-

action costs or behavioral biases are responsible, then concentrated portfolios should offer no

advantage. Ivkovic, Sialm, Weisbenner (2004) find that concentrated investors outperform

diversified ones by as much as 3% per year. This excess return is even higher for investments

in local stocks, where natural informational asymmetries are most likely to be present (see

also Coval and Moskowitz, 1999; Massa and Simonov, 2003; Ivkovic and Weisbenner, 2005).

Likewise, mutual funds with a higher concentration of assets by industry outperform diver-

sified funds (Kacperczyk, Sialm and Zheng, 2004). If some investors have higher capacity

than others, they should consistently earn higher returns. Indeed, the top 10% most suc-

cessful investors do consistently earn higher excess returns (Coval, Hirshleifer and Shumway,

2002), as do institutional investors with degrees from more selective universities (Chevalier

and Ellison, 1999). Finally, if asymmetric information exists in the market, then investors

who learn from prices should outperform investors who buy and hold a market index. Using

CRSP data (1927-2000), Biais, Bossaerts and Spatt (2004) show that price-contingent strate-
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gies generate annual returns (Sharpe ratios) that are 3% (16.5%) higher than the indexing

strategy. These results highlight the economic importance of asymmetric information and

help to rationalize the multi-billion dollar financial management industry.

Why is it relevant to consider information constraints when information has never been

so abundant and so much investment is professionally managed? It is true that the internet,

discount brokers, and real time price quotes give individual investors unparalleled access

to financial information. By one estimate, on-line investors have access to 3 billion bits of

information for free and 280 billion bits for sale.1 But, it is precisely because information

is overwhelming that capacity constraints on the ability to process that information have

become more relevant. Psychologists have long known about human limitations on infor-

mation absorption (e.g. Miller, 1956; Just and Carpenter, 1992). While individuals can

avoid processing information by paying a mutual fund manager, even fund managers must

decide which stocks to follow, which reports to read and what research to do. The model

could be reinterpreted as solving the fund manager’s problem. We return to this idea in the

conclusion.

Many theories in economics and finance have predictions that depend crucially on what

information agents have. This information is usually treated as an endowment. By asking

what information rational agents would want to acquire, predictions contingent on infor-

mation sets can be turned into more general predictions. This paper provides a tractable

framework and set of tools for analyzing optimal information choices and incorporating those

choices into commonly-used models of portfolio composition and asset pricing.

1 Setup

This is a static model which we break up into 3-periods. In period 1, the investor chooses the

variance of signals about asset payoffs. That choice is constrained by information capacity,

which bounds the total precision of the signals, and by principal components analysis, which

limits the linear combinations of signals the investor can choose and keeps the problem

tractable. In period 2, the investor observes signals and then chooses what assets to purchase.

1Barber and Odean (2001) cite this estimate from Inna Okounkova at Scrudder Kemper. Downloading
daily open, high, low, close and volume data for 10,000 stocks over a period of 5 years amounts to 63 million
bits of information.
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In period 3, he receives the asset payoffs and realizes his utility. Signal choices and portfolio

choices in this setting are circular: What an agent wants to learn depends on what he thinks

he will invest in and what he wants to invest in depends on what he has learned. To ensure

that beliefs and actions are consistent, we use backwards induction. We first solve the period

2 portfolio problem for arbitrary beliefs. Then, we substitute the solution to that problem

in to the period 1 information optimization problem.

The vector of unknown asset payoffs f ∼ N (µ, Σ) is what the investor will devote capacity

to learning about. After learning, the investor will have posterior beliefs about asset payoffs:

f ∼ N(µ̂, Σ̂). Let r be the risk-free return and q and p are Nx1 vectors of the number of

shares the investor chooses to hold and the asset prices. Following Admati (1985), we call

fi − rpi the excess return on asset i. Investors have mean-variance utility with absolute risk

aversion parameter ρ:

U = E
[
q′(f − pr)− ρ

2
q′Σ̂q

∣∣∣ µ
]
. (1)

Mean-variance utility arises in settings where agents have negative exponential utility

and face normally distributed payoffs.2 It has the advantage of allowing a tractable solution

to an equilibrium model. It treats learned information and prior information as equivalent.

This investor chooses information that maximizes his expected utility at the time when he

must make his portfolio decision. When choosing what to learn, our investor asks himself,

“When I invest, what information would I most like to know?”

Period-2 investment problem Let µ̂ and Σ̂ be the mean and variance of payoffs, con-

ditional on all information known to the investor in period 2. The optimal portfolio q?

is

q? =
1

ρ
Σ̂−1(µ̂− pr). (2)

The model does not rule out short sales: q? < 0 when µ̂ − pr < 0. Any remaining initial

wealth is invested in the risk-free asset.

Substituting the optimal portfolio choice into (1) delivers the utility that results from

having any beliefs µ̂, Σ̂ and investing optimally. The period-1 problem is choosing a signal

2It is equivalent to U = E [− log (E [exp (−ρq′(f − pr)) |µ̂, µ]) |µ]. This formulation of utility is related
to Epstein and Zin’s (1989) preference for early resolution of uncertainty and Hansen and Sargent’s (2004)
models of risk-sensitive control.
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distribution to maximize this expected payoff:

U = E

[
1

2
(µ̂− pr)′Σ̂−1(µ̂− pr)|µ

]
(3)

Period-1 learning problem At time 1, the investor chooses how to allocate his informa-

tion capacity by choosing a normal distribution from which he will draw an N × 1 signal

about asset payoffs.3 At time 2, the investor will combine his signal η ∼ N(f, Ση) and his

prior belief µ ∼ N(f, Σ), using Bayes’ law. His posterior belief about the asset payoff f has

a mean

µ̂ ≡ E[f |µ, η] =
(
Σ−1 + Σ−1

η

)−1 (
Σ−1µ + Σ−1

η η
)

(4)

and a variance that is a harmonic mean of the prior and signal variances:

Σ̂ ≡ V [f |µ, η] =
(
Σ−1 + Σ−1

η

)−1
. (5)

These are the conditional mean and variance that agents use to form their portfolios in

period 2. Since every signal variance has a unique posterior belief variance associated with

it, we can economize on notation and optimize over posterior belief variance Σ̂ directly.

Prior (unconditional) variances and covariances are not random; they are given. Posterior

(conditional) variances are also not random; they are choice variables that summarize the

investor’s optimal information decision.

In period 1, posterior means are random: (µ̂ − pr) ∼ N(µ − pr, VER), where VER ≡
V ar[µ̂−pr|µ]. Inside the expectation of equation (3) is a non-central χ2-distributed random

variable. The solution is to maximize

maxΣ̂

1

2
Tr(Σ̂−1VER) +

1

2
(µ− pr)′Σ̂−1(µ− pr). (6)

There are 2 constraints governing how the investor can choose his signals. The first

constraint the capacity constraint. The work on information acquisition with one risky asset

quantified information as the ratio of variances of prior and posterior beliefs (Verrecchia,

1982). The more information a signal contains, the more the posterior variance of the asset

falls below the prior variance, and the more information capacity is required to observe the

3Choosing normal signals is optimal. When an objective is quadratic, normal distributions maximize the
entropy over all distributions with a given variance (see Cover and Thomas (1991), Chapter 10).
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signal. We generalize the metric to an multi-signal setting by calling capacity the ratio of the

generalized prior variance to the generalized posterior variance, where generalized variance

refers to the determinant of the variance-covariance matrix.

1

2

[
log(|Σ|)− log(|Σ̂|)

]
≤ K (7)

The amount of capacity K bounds the reduction in uncertainty of payoffs due to the knowl-

edge of the signal η.4

This capacity constraint is one possible description of a learning technology. We think it

is a relevant constraint because it is a commonly-used distance measure in econometrics (a log

likelihood ratio) and in statistics (a Kullback-Liebler distance5); it is equivalent to a bound

on entropy reduction, which has a long history in information theory as a quantity measure

for information (Shannon 19486); it can be re-interpreted as a constraint on the length of

the binary code needed to describe signals; it is a measure of information complexity (Cover

and Thomas 1991); and it has been previously used in economics (Sims 2003) and finance

(Peng 2004) to model limited mental processing ability.7

That having been said, this particular formulation of the learning technology is not cru-

cial for the results. Our capacity constraint is simply a way to describe a feasible set of

learning possibilities that is rich enough to analyze the trade-off between diversification and

specialization in learning. One alternative is to endow an investor with a fixed number of

signals with equal precision, and let him choose how many signals to apply to each asset.

Section 2.1 shows that this technology also generates specialization. Section 2.3 considers a

second alternative learning technology, one with decreasing returns. The incentive to special-

ize persists, but is moderated. Finally, while studying the extensive margin of information

4To see the role of the signal, the capacity constraint can be restated as a bound on the precision Σ−1
η of

signals η: 1/2 log
(|Σ−1

η Σ + I|) ≤ K.
5In statistics, this distance is used as a measure of how difficult it is to distinguish one distribution from

another.
6In information theory, capacity is the standard measure of information: the reduction in entropy. For

an n-dimensional multivariate normal, with variance-covariance matrix V , entropy is 1
2 log ((2πe)n|V |). Like

variance, entropy is a measure of uncertainty about a variable. It is a stock; capacity is its flow. Capacity K
is the maximum amount by which entropy can be reduced; for normal variables, it is one-half the difference
between the logs of the determinants of the prior and posterior variances.

7This setting is distinct from Peng (2004) because Peng’s representative investor must hold all the assets
for the market to clear; there is no portfolio choice. In contrast, the focus of our paper is on the interaction
of asset portfolio and information choices.
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acquisition is interesting, adding a cost for capacity won’t change the nature of the capac-

ity allocation decision. For every cost, there is an amount of capacity K that produces an

identical result. In sum, because the increasing returns to specialization show up in the

objective, through the endogenous portfolio choice, a broad class of learning technologies

preserve specialization.

The second constraint is that the variance-covariance matrix of the signals must be

positive semi-definite.

Ση positive semi-definite (8)

Without this constraint, the investor could increase uncertainty about one variable in order

to obtain a more precise signal about another, without violating the capacity constraint.

Ruling out increasing uncertainty implies that investors cannot forget nor see signals with

negative information content.

Learning about correlated risks When asset payoffs co-vary, learning about one asset’s

payoff is informative about others. To keep track of what is being learned about, we study

synthetic assets that are linear combinations of underlying assets, and that do not co-vary

with each other. These synthetic assets are principal components, or risk factors. The coeffi-

cients of these linear combinations are given by an eigen-decomposition. This decomposition

splits the prior variance-covariance matrix Σ into a diagonal eigenvalue matrix Λ, and an

eigenvector matrix Γ: Σ = ΓΛΓ′. The Λi’s are the variances of each risk factor i. The ith

column of Γ (denoted by Γi) gives the loadings of each asset on the ith risk factor.

Investors obtain signals about the payoffs of risk factors (f ′Γi). Studying principal compo-

nent risks is a well-established idea in the portfolio literature (Ross, 1976). Nothing prevents

an investor from learning about many risks. The only thing this rules out is signals with

correlated information about risks that are independent. For example, if one risk factor rep-

resented oil price risk and another represented rain-related risk, an investor cannot observe a

linear combination of future oil prices and rainfall. Since rain and oil prices are independent,

events that cause joint movements in rain and oil do not occur. We assume that the investor

cannot choose to learn about zero-probability events. He can learn about rainfall and oil

price risk only by acquiring a signal about each. While the key results, specialization and

strategic substitutability, hold for any given set of orthogonal risk factors, this particular
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decomposition keeps the problem tractable. Investors will have posterior beliefs with the

same eigenvectors as their prior beliefs (Σ̂ = ΓΛ̂Γ′), but with lower weights Λ̂i on some risks

they chose to learn about. The decrease in risk factor variance Λi − Λ̂i captures how much

an investor learned about that risk.

The sequence of events is summarized in figure 1.

time 1 time 2 time 3 

Information Σ 
chosen             

f ~ N(µ,Σ)              
µ ~ N( µ, Σ − Σ) 

Signals η realized.            
New belief µ formed.       
Asset shares (q)             
chosen                       

f ~ N(µ,Σ) 

Payoff f 
realized 

^ ^ ^  ^ 

^ ^ 

Figure 1: Sequence of events in partial equilibrium model

A solution to the investor’s problem is a choice of the eigenvalues of Σ̂ that maximizes

(6) subject to (7) and (8), and portfolio positions that satisfy (2).

2 Partial Equilibrium Results

2.1 Independent Assets

To gain intuition, it is helpful to first consider a simple case with N assets whose payoff

variance-covariance matrix Σ is diagonal. Choosing signals with the same principal compo-

nents as asset payoffs implies that signals are independent as well. The next section will

generalize the problem to correlated assets.

When investors takes prices as given, VER = var[µ̂|µ] = Σ − Σ̂. Define the ratio of

posterior to prior precisions of an asset i: yi ≡ Σ̂−1
ii

Σ−1
ii

. We can rewrite the problem in equation

(6) as

max{y1,··· ,yN}
1

2
{−N +

N∑
i=1

yi +
N∑

i=1

θ2
i yi}. (9)

s.t.

N∏
i=1

yi = exp(2K)
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yi ≥ 1, ∀i

where θ2
i is the prior squared Sharpe ratio of asset i: θ2

i ≡ (µi−pir)
2

Σii
. The first constraint

results from (7) and the fact that the determinant of a diagonal matrix is the product of the

diagonal entries. The second constraint uses (8), (5) and the fact that a diagonal matrix is

positive semi-definite if and only if all its elements are non-negative.

The key feature of the learning problem (9) is that it is linear in precision yi. It is the

linearity of the objective that delivers a corner solution. The corner solution is to increase

precision on the risk factor with the highest weight (θ2
i ), as much as possible. This solution

would arise from a wide range of learning constraints. One example would be a constraint

on the sum of the posterior or signal precisions. This is equivalent to endowing an investor

with a fixed number of signals of equal precision, and letting him choose how many signals

to apply to each asset. Increasing returns to learning is not a result that is specific to the

entropy constraint.

Proposition 1. The optimal information portfolio with N independent assets uses all ca-

pacity to learn about one asset, the asset with the highest squared Sharpe ratio θ2
i = (µi −

pir)
2Σ−1

ii .

Proof is in appendix A.1. Consider the problem of sequentially assigning units of capacity

that can reduce the variance of an asset’s payoff from Σii to Σ̂ii = (1 − ε)Σii. The greatest

utility gain is obtained by assigning the first unit of capacity to the asset with the highest

value of (µi − pir)
2Σ−1

ii . The value of assigning the next unit of capacity to asset i is then

even greater: (µi−pir)
2Σ̂−1

ii > (µi−pir)
2Σ−1

ii . The value of assigning each subsequent unit of

capacity to i rises higher and higher, while the value of assigning capacity to all other assets

remains the same. Therefore, the optimal choice of posterior variance is Σ̂ii = e−2KΣii, and

Σ̂jj = Σjj for all j 6= i.

The value of learning about an asset is indexed by its squared Sharpe ratio (µi−pir)
2Σ−1

ii .

Another way to express the same quantity is as the product of two components: (µi − pir)

and (µi − pir)/Σii, which is ρE[qi] for an investor who has zero capacity. An investor wants

to learn about an asset that has (i) high expected excess returns (µi− pir), and (ii) features

prominently in his portfolio. The fact that an investor wants to invest all capacity in one

asset comes from the anticipation of his future portfolio position E[q]. The more shares of an

asset he expects to hold, the more valuable information about those shares is, and the higher
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the index value he assigns to learning about the asset. But, as he learns more about the

asset, the amount he expects to hold E[qi] = (µi − pir)/(ρΣ̂ii) rises. As he learns, devoting

capacity to the same asset becomes more and more valuable. This is the increasing return

to learning.

How does this learning strategy affect the investor’s portfolio? For the assets that the

investor does not learn about, the number of shares does not change. For the asset he does

learn about, the expected number of shares increases by E[qlearn] = 1
ρΣii

(µi − pir)(e
2K − 1).

Call the portfolio of shares that the investor would hold if he had zero-capacity and could

not learn, qdiv. This is the benchmark portfolio predicted by the standard CARA-normal

model. Since it contains no signals, it is not random: E[qdiv] = qdiv. The portfolio of an

investor with positive capacity is the sum of qdiv and the component due to learning, qlearn,

(plus his position in the risk free asset).

Proposition 2. As long as there is at least one asset for which (µ − pr) 6= 0, then when

capacity rises, the expected fraction of the optimal portfolio consisting of fully-diversified

assets (|qdiv|/(|qdiv|+ |E[qlearn]|) falls.

Proof : As capacity (K) increases from zero, the zero-capacity portfolio qdiv is, by

definition, unchanged. As long as there is an asset s.t. (µi − pir) 6= 0, then proposi-

tion 1 tells us that an investor will learn about an asset i? s.t. (µi? − pi?r) 6= 0. The

only quantity that changes in K is the expected amount of asset i? held due to learning:

|E[qlearn
i? ]| = 1

ρΣi?i?
|µi? − pi?r|(e2K − 1). Since µi? − pi?r 6= 0, |E[qlearn

i? ]| is strictly increasing

in K. ¤
Only expected portfolio holdings can be predicted. Since actual signal realizations and

therefore posterior beliefs µ̂ are random variables, the true portfolio chosen in period 2 could

be either larger or smaller in absolute value, than it would have been without the signal.

But, for any given belief about payoffs µ̂i, having more capacity to reduce the variance of

that belief Σ̂ii, makes the investor take a larger position in the asset |qi|.
This result can be easily restated in terms of the more familiar value-weighted fraction of

shares in the learning and diversified funds. As long as the expected excess return and price

for the learning asset i are positive, then the expected value-weighted fraction of shares held

in the diversified portfolio falls. This is the sense in which learning and diversification trade

off.
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Corollary 3. An investor who optimally chooses a less diversified portfolio earns a higher

expected return than an investor who chooses a more diversified portfolio.

Proof in appendix A.2. Proposition 2 tells us that investors who have high information

capacities K choose highly under-diversified portfolios. Such investors makes more informed

investment choices and obtain a higher expected profit. The reason is that these investors

achieve a higher correlation between asset payoffs and portfolio shares. This prediction

is corroborated by the findings of Ivokovic, Sialm, and Weisbenner (2004) and Kacperczyk,

Sialm, and Zheng (2004), that under-diversified portfolios significantly outperform diversified

ones.

Data Example with Independent Assets
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Figure 2: Under-Diversification and the Increasing Returns to Learning: Uncorrelated As-
sets.

We illustrate the portfolio composition with a simple numerical example. Figure 2 il-

lustrates the case of three uncorrelated S&P 500 assets.8 The monthly excess returns on

AT&T, Chevron, and JP Morgan were nearly orthogonal in the sample period. Chevron

had the highest Sharpe ratio (.58 annualized). When faced with the mean excess returns

and the covariance matrix of returns of three assets, an investor with zero information ca-

pacity would hold an optimally diversified portfolio, consisting of 28% AT&T, 48% Chevron,

8Monthly return data runs from November 1986 and December 2003 (206 observations). Excess returns
are constructed by subtracting the return on a 1-month T-bill.
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and 24% JP Morgan (‘diversified portfolio’). When given some information capacity, the

investor specializes in learning about Chevron. (K = .5 here, which allows the investor to

reduce the standard deviation of one asset by 39%.) The ‘learning fund’ is fully invested

in Chevron. As a result, the total portfolio is under-diversified: 15% AT&T, 72% Chevron,

and 13% JP Morgan.

2.2 Correlated assets

When assets are correlated, signals about individual asset payoffs are no longer principal

components. Instead, principal components are linear combinations of asset payoffs with

weights on each asset given by an eigenvector of Σ. Rather than choose how to reduce the

risk of independent assets, investors choose how to reduce the variance of these independent

risk factors. The factors could represent risks such as business cycle risk, pharmaceutical

industry risk, or idiosyncratic risk. The variance of each risk factor is given by its eigenvalue

(Λii). After transforming assets into independent risk factors, the results for independent

assets can be restated for the correlated assets case.

When an investor learns about principal components, his posterior belief variance Σ̂

has the same eigenvectors (Γ) as Σ. Therefore, the investor’s choice is over the diagonal

eigenvalue matrix Λ̂, where Σ̂ = ΓΛ̂Γ′. Equivalently, the investor chooses the precision

ratios of the risk factors i, yi, which we redefine as yi ≡ Λ̂−1
ii

Λ−1
ii

. The investor solves problem

(9), where the prior squared Sharpe ratios θ2
i now refer to risk factors: θ2

i ≡ ((µ−pr)′Γi)
2

Λii
.

The capacity constraint still takes the form
∏N

i=1 yi = exp(2K) because the determinant of

ΣΣ̂−1 is the product of its eigenvalues ΛiiΛ̂
−1
ii and because Σ and Σ̂ share eigenvectors Γ.

The no-negative learning constraint, which requires Σ − Σ̂ to be positive semi-definite, or

equivalently that all its eigenvalues are non-negative becomes yi ≥ 1.

Proposition 4. The optimal information portfolio with N correlated assets uses all capac-

ity to learn about one linear combination of asset payoffs. The linear combination coeffi-

cients are given by the eigenvector Γi, with the highest factor squared Sharpe ratio θ2
i =

((µ− pr)′Γi)
2 Λ−1

ii .

The proof follows immediately from proposition 1 and the new definition of yi and θ2
i .

There are two components of this result. The first component tells us how the investor
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initially ranks learning about each risk factor Γi. The second tells us that he specializes

completely in whatever risk factor he ranks first. What direction an investor decides to learn

in is determined by the magnitude of the expected return on the risk factor Γ′i(µ− pr) and

by ρ times the expected holding of that risk factor: ρΓ′iE[q]. The fact that the investor

wants to devote all capacity to learning about one risk factor comes from increasing returns.

As the investor learns more about Γi, the investor expects to hold more of that risk factor:

Γ′iE[q] grows. As he expects to hold more of the risk factor, the value of learning more about

it rises.

What does this result mean for portfolio allocation? The investor will hold shares of each

asset given by 1
ρ
(ΓΛ̂Γ′)−1(µ̂−pr). Again, this portfolio can be decomposed into the diversified

benchmark portfolio that an investor with no capacity would hold qdiv = 1
ρ
(ΓΛΓ′)−1(µ̂− pr),

and the number of extra shares of assets that will be held due to learning,

qlearn =
e2K − 1

ρΛii

ΓiΓ
′
i(µ̂− pr)

where i is the factor the agent optimally learns about. This learning portfolio puts more

weight on assets in proportion to how correlated they are with the risk factor that the

investor is learning about. Since the ‘learning’ assets are highly correlated with a common

risk factor, they are also highly correlated with each other. As K grows, the expected

weight on this highly-correlated component of the portfolio rises exponentially. As learning

increases, diversification falls.

Data Example with Correlated Assets

Figure 3 illustrates the case of correlated assets. It adds to the three uncorrelated assets

described above a fourth asset, Cisco. Cisco has a low correlation with Chevron (-.008) and

with JP Morgan (.068), but a high correlation with AT&T (.296). Cisco has a much higher

Sharpe ratio than the other three firms. When offered these four assets, an investor with

zero information capacity would hold an optimally diversified portfolio, consisting of -1%

AT&T, 39% Chevron, 13% JP Morgan, and 49% Cisco (‘diversification fund’). When given

some information capacity (K is still .5 here), the investor learns about Cisco, the most

valuable asset to learn about, but also about AT&T. The reason is that both Cisco and

AT&T load positively on the most valuable risk factor (correlations .96 and .27 respectively).
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Figure 3: Under-Diversification and the Increasing Returns to Learning: Correlated Assets.

The ‘learning fund’ is invested for 75% in Cisco and 21% in AT&T. As a result of the

specialization in learning, the total portfolio is under-diversified: 10% AT&T, 19% Chevron,

9% JP Morgan, and 62% Cisco. The new optimal portfolio has a variance (conditioning

on past public information) that is 25% higher than the diversified portfolio variance; it is

under-diversified.

2.3 Un-Learnable Risk and Decreasing Returns to Learning

In the previous results, investors never diversify their information because learning substi-

tutes for diversification. As learning increases and risk falls, the value of diversification falls

as well. With un-learnable risk, there is some risk that learning cannot eliminate, but di-

versification can. This risk revives some benefits to diversification and makes high-capacity

investors learn about multiple risk factors. Adding un-learnable risk is also a way of in-

troducing decreasing returns to learning. A capacity constraint that embodies decreasing

returns to specialization still does not restore full diversification. This reinforces the point

that specialization is driven by the increasing returns property of information, not the form

of the capacity constraint.

Un-learnable risk increases information portfolio diversification because it makes the

returns to learning bounded. When all risk is learnable and capacity approaches infinity, the

payoff variance of some portfolio approaches zero, an arbitrage arises, and profit becomes
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infinite. Un-learnable risk imposes a finite, maximum benefit to learning. To reduce an

asset’s learnable payoff variance to near zero costs an unbounded amount of information

capacity and yields only a finite benefit. Therefore, learning an arbitrarily large amount

about a single asset is never optimal.

To examine the effects of un-learnable risk, consider the following model. The investor’s

preferences, the sequence of events, and the optimal period-2 portfolio remains unchanged.

The period-1 choice of signal distributions is constrained by the fact that of the total variance

in the prior beliefs Σ, αΣ is un-learnable, and only (1 − α)Σ can be learned (0 < α < 1).9

The new period-1 problem is to maximize (6) subject to a constraints on the reduction in

entropy of the learnable component of asset payoffs. This constraint is formulated so that

eliminating all learnable risk (reducing Σ̂ to αΣ) requires infinite capacity. When Σ̂ = Σ,

the investor is not learning anything, and no capacity is required.

log(|Σ− αΣ|)− log(|Σ̂− αΣ|) ≤ 2K (10)

Rewrite this constraint in terms of the precision ratios yi ≡ Λ̂−1
ii

Λ−1
ii

:

−
N∑

i=1

log(y−1
i − α) + log(1− α) ≤ 2K. (11)

The no-negative learning constraint is as before: yi ≥ 1 ∀i.
As in the case with learnable risk, we solve the problem by considering separately the

eigenvalues Λ̂ and eigenvectors Γ of the posterior variance matrix Σ̂. Following the steps

outlined in the proof of proposition 4, we obtain a first-order condition with respect to yi.

It describes an interior solution to the maximization problem.

(1 + θ2
i ) = ξ

1

yi − αy2
i

− φi, (12)

where ξ is the Lagrange multiplier on (11), and φi is the Lagrange multiplier on yi ≥ 1. The

left hand side is the marginal benefit of learning about risk factor i, the right hand side is

the marginal cost. Taking a second derivative confirms that a solution to (12) is a maximum

in the region yi > 1
2α

.

9For every result, except proposition 8, α can be a matrix where every element is 0 < αij < 1.
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Proposition 5. When there is un-learnable risk, the number of risk factors that the investor

learns about is an increasing step function of K

Corollary 6. When there is un-learnable risk and asset payoffs are independent, the number

of assets held in the ‘learning fund,’ qlearn, is an increasing step function of capacity K

Proofs are in appendix A.3.

The reason for learning about additional assets can be seen by examining the marginal

benefit and the marginal cost of learning for an asset where yi > 1 (φi = 0). The marginal

benefit is constant at 1+ θ2
i . The marginal cost is convex in yi; it first declines until yi = 1

2α
,

and then increases. As the investor learns more and yi increases, the marginal cost decreases.

Increasing returns to scale in learning are still present. However, as yi surpasses 1
2α

, the

marginal cost starts to increase. In the limit, as yi approaches 1
α
, and the investor gets closer

to learning all the learnable risk, the marginal cost approaches infinity. Therefore, there is

some finite cutoff level of yi such that when the investor reaches this level of learning for

asset i, he begins to allocate some capacity to another risk factor. In the case of independent

assets, allocating capacity to another risk factor means learning about another asset. This

means that another asset is included in the investor’s learning fund.

Proposition 7. When there is un-learnable risk and there is some asset i with non-zero

expected excess return (µi − pir) 6= 0, then, as capacity rises, the fraction of the expected

optimal portfolio consisting of fully-diversified assets (|qdiv|/(|qdiv|+ |E[qlearn]|) falls.

Proof is in appendix A.4.

Just as in the case where all risk is learnable, when the investor learns more about an

asset, he expects to hold a larger position in that asset. Since the zero-capacity portfolio

qdiv does not change as capacity increases and more shares are held in the learning portfolio,

the fraction of the expected portfolio that is diversified falls.

Proposition 8. When there is un-learnable risk and capacity is infinite, the expected learning

portfolio is fully diversified: limk→∞ E[qlearn] =
(

1
α
− 1

)
qdiv.

Proof : An agent with an infinite capacity would eliminate all learnable risk, setting Λ̂ =

αΛ, which implies Σ̂ = αΣ. In this limit, the learning fund is E[qlearn] = 1
ρ

(
1
α
− 1

)
Σ−1(µ−

pr), a scaled-up copy of the diversified mutual fund. ¤
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Putting the results together tells us that as capacity increases, diversification falls, and

then rises again. An agent with zero capacity holds only the diversified fund. An agent with

infinite capacity holds a perfectly diversified learning fund. In between the two perfectly

diversified extremes, the investor with positive, finite capacity to learn is optimally under-

diversified.

3 Equilibrium Information and Investment Choices

In general equilibrium, an investor must consider the information acquisition and investment

strategies of other investors. Information is a strategic substitute in this setting: Investors

want to learn about assets that others are not learning about. In equilibrium, this means

that ex-ante identical investors will choose to observe different signals and will hold different

assets. When all risk is learnable, the nature of the solution to the individuals problem does

not change. After accounting for the actions that other agents will take and how these will

affect asset prices, an investor chooses one risk factor and concentrates all his capacity on

learning about that one factor. We begin by describing modifications to the setup.

3.1 Equilibrium Model

There is now a continuum of investors, indexed by j ∈ [0, 1]. Preferences, payoffs, and

timing are identical to the model described in section 1. The risk-free rate is still fixed. There

are two additional assumptions required to model agents’ strategic interactions. First, the

per capita supply of the risky asset is x̄ + x, a constant plus a random (n × 1) vector with

known mean and variance, and zero covariance across assets: x ∼ N(0, σ2
xI). The reason for

having a risky asset supply is to create some noise in the price level that prevents investors

from being able to perfectly infer the private information of others. Without this noise,

there would be no private information, and no incentive to learn. We interpret this extra

source of randomness in prices as due to liquidity or life-cycle needs of traders.10 It could

also represent errors that agents make when trying to invert prices.

Second, when investors draw their noisy asset payoff signals from the distributions that

they have chosen, we assume that these draws are independent. This assumption corresponds

10See Biais, Bossaerts and Spatt 2003 for an interpretation in terms of risky non-tradeable endowments.
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to a decentralized view of information transmission. The truth is being sent to all investors.

But each observes that truth after it has been transmitted through his own limited-capacity

channel, which adds independent noise to the signal. The independent noise can also be

thought of as an error that each investor adds when he interprets his information. We believe

that this is the relevant physical constraint that humans are facing when trying to process

financial information (Sims 2003). An alternative view of information transmission is that

it is a centralized process. A news agency gets a noisy signal of the truth and transmits that

signal through noiseless channels to all of us. We revisit the idea of centralized information

processing in the conclusion.

Asset prices p are determined by market clearing. Prices are set such that the sum of

investors’ demands for each asset equals its supply. In vector notation:

∫ 1

0

Σ̂−1
j (µ̂j − pr)dj = x̄ + x (13)

3.2 Individual’s Asset Allocation in Equilibrium

As before, we work backwards, starting with the optimal portfolio decision. In period 2,

investors have three pieces of information that they must aggregate to form their expectation

of the assets’ payoffs: their prior beliefs (common across agents), their signals (draws from

distributions chosen in period 1), and the equilibrium asset price.

Proposition 9. Asset prices are a linear function of the asset payoff and the unexpected

component of asset supply.

p =
1

r
(A + Bf + Cx)

This price can be expressed as a function of the posterior mean and variance of the ’average’

investor:

p =
1

r

(
µ̂a − ρΣ̂a(x̄ + x)

)

where the average posterior mean is µ̂a =
∫ 1

0
µ̂jdj and the ’average’ posterior variance is a

harmonic mean of all investors’ variances Σ̂a =
(∫ 1

0
Σ̂−1

j dj
)−1

.

Proof is in appendix A.5, along with the formulas for A, B and C.

If prices take this form, then the mean and variance of the asset payoff, conditional on

prices are E[f |p] = B−1(rp − A) and V [f |p] = σ2
xB

−1CC ′B−1′ ≡ Σp. Then, the posterior
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belief about the asset payoff f , conditional on prior belief µ ∼ N(f, Σ), signal η ∼ N(f, Ση),

and prices, can be expressed using standard Bayesian updating formulas. It is

µ̂ ≡ E[f |µ, η, p] =
(
Σ−1 + Σ−1

η + Σ−1
p

)−1 (
Σ−1µ + Σ−1

η η + Σ−1
p B−1(rp− A)

)
(14)

with variance that is a harmonic mean of the three signal variances.

Σ̂ ≡ V [f |µ, η, p] =
(
Σ−1 + Σ−1

η + Σ−1
p

)−1
. (15)

These are the conditional mean and variance that agents use to form their portfolios in

period 2. Given a posterior belief about the asset’s payoff and variance of that belief, we

can compute the period 2 expected utility of the agent. Optimal portfolios and expected

utility are the same as in the partial equilibrium problem (equations 2 and 3). Only the

conditioning information changes.

3.3 Individual’s Information Capacity Allocation in Equilibrium

In period 1, the investor chooses a covariance matrix for his posterior beliefs Σ̂, just as in the

partial equilibrium problem. The difference is that the time-2 expected excess return (µ̂−pr)

conditional on µ is now a normally distributed variable at time 1 with mean (I − B)µ − A

and variance VER ≡ Σ− Σ̂ + BΣB′ + CC ′σ2
x − 2ΣB′:

maxΣ̂

{
1

2
Tr(Σ̂−1VER) +

1

2
((I −B)µ− A)′Σ̂−1((I −B)µ− A)

}
. (16)

Just as in the partial equilibrium problem, the choice of the covariance matrix of the

posterior belief Σ̂ is subject to two constraints. The constraints are formally the same as in

section 1, but require re-interpretation. The first constraint is that the total information the

investor sees cannot reduce entropy by more than his capacity K. Being a constraint on the

distance between the posterior belief variance Σ̂ and the prior belief variance Σ, it assumes

that investors use capacity to extract payoff relevant information both from private signals η

and from prices. Some capacity must be devoted to price discovery; the remaining capacity

can be optimally allocated to signals.11 The second constraint is the equivalent of (8). This

11In the partial equilibrium problem the capacity constraint on signals was log
(|I + ΣΣ−1

η |) ≤ 2K; in the
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no-negative learning constraint prevents investors from forgetting information that is either

contained in priors or in prices.

Σ̃− Σ̂ positive semi-definite (17)

where Σ̃ = V [f |µ, p] = (Σ−1 +Σ−1
p )−1 is what the conditional variance of asset payoffs would

be if the agent observed no private signals, but only learned through the price level.

The sequence of events is as in the partial equilibrium problem, except that at time 2,

prices p are revealed, in addition to private signals η.

As in partial equilibrium, learning about principal components of asset payoffs implies

that prior and posterior variances have the same eigenvectors. This allows us to recast the

problem in terms of eigenvalues. Recall the definitions of the precision ratios of the risk

factors relative to the prior variance matrix: yi ≡ Λ̂−1
ii

Λ−1
ii

and the prior squared Sharpe ratio of

risk factor i:

θ2
i ≡

E[Γ′i(f − pr)]

V ar[Γ′if ]
=

(((I −B)µ− A)′Γi)
2

Λii

. (18)

The problem can be written as:

max{y1,··· ,yN}
1

2
{−N +

N∑
i=1

Xiyi +
N∑

i=1

θ2
i yi}. (19)

s.t.

N∏
i=1

yi = exp(2K)

yi ≥ Λ̃−1
ii

Λ−1
ii

, ∀i

where Xi measures the magnitude of the exploitable pricing errors in risk factor i. If an

investor becomes informed, his valuation of an asset, based on his private information, will

deviate from the realized price. We call this deviation an ‘exploitable pricing error’. Xi

measures the period-1 expected squared pricing error.

Appendix A.7 shows that exploitable pricing errors depend on how much asset prices are

general equilibrium setting it becomes log
(|I + ΣΣ−1

η + ΣΣ−1
p |) ≤ 2K.
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affected by true payoffs (fundamentals) and by asset supply shocks:

Xi = (1− ΛB,i)
2 + Λ2

C,iσ
2
x (20)

The first term shows that pricing errors increase when prices are less reflective of true payoffs.

ΛBi is the weight of the ith risk factor’s true payoff on the factor’s price. It is the ith eigenvalue

of the matrix B in proposition 9. When ΛBi is small, (1−ΛBi)
2 is large, prices don’t co-vary

much with investors’ posterior beliefs µ̂. A low covariance makes exploitable pricing errors

Xi large. For example, if a well-informed investor sees a low price and knows that the true

payoffs are likely to be high, he can exploit this by buying the asset. The uninformed investor,

on the other hand, knows little about the true payoff and cannot exploit this difference.

The second term shows that pricing errors increase when prices are more reflective of

supply shocks. ΛCi is the weight of the ith risk factor’s supply shock on the factor’s price. It

is the ith eigenvalue of the matrix C in proposition 9. When ΛCi is high, (ΛCi)
2 is high, Xi

is high. Supply shocks create noise in prices that is exploitable by a well informed investor.

For example, if such investor sees a low price and knows it is due to a high supply shock, he

can exploit this by buying the asset. The uninformed investor, on the other hand, attributes

this low price to fundamentals.

Proposition 10. In general equilibrium with a continuum of investors, each investor’s op-

timal information portfolio uses all capacity to learn about one linear combination of asset

payoffs. The linear combination weights are given by the eigenvector Γi associated with the

highest value of the squared Sharpe ratio plus exploitable pricing error: θ2
i + Xi.

Proof in appendix A.6.

The most valuable risk factor to learn about has (i) a high expected return Γ′iE[f − pr],

(ii) a large expected portfolio share Γ′iE[q], and (iii) a large exploitable pricing error. The

size of exploitable pricing errors is determined by the fraction of investors who learn about

risk factor i. This is a new effect that shows up in general equilibrium only.

Learning is a strategic substitute. The more precise the posterior beliefs of the average

investor about risk factor i, the less valuable it is to learn about. Let Ψ be the average of

agents’ signal precision matrices Ψ =
∫ 1

0
Σ−1

ηj dj, where Σηj is the variance-covariance matrix

of the signals that agent j observes. Let ΛΨi be the eigenvalue of Ψ corresponding to the ith

risk factor.
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Proposition 11. There is strategic substitutability in learning: (Xi + θ2
i ) is a strictly de-

creasing, monotonic function of ΛΨi.

Proof is in appendix A.7. When other investors learn more about a risk factor, the size

of its exploitable pricing errors and its expected return fall.

The substitutability result is crucial to preventing diversification in general equilibrium.

Because of substitutability, investors want to learn about risk factors that other investors

are not learning about. If learning were a strategic complement, investors would want to

specialize in learning about the same risk factor. This would make information symmetric:

All investors would face the same payoff variance. As a result, they would all want to hold

a lot of the risk factor they learn about. Since markets must clear, and investors each have

an equal benefit of holding the asset they specialized in, they end up holding an equal share

of the supply in expectation. Full diversification would arise.

3.4 Aggregate Information Portfolios and Asset Prices

The previous section characterized the optimal information and asset allocation for an indi-

vidual investor. This section describes how these choices aggregate across investors.

Aggregate Information Allocation In equilibrium, ex-ante identical investors may learn

about different risk factors and hold heterogenous portfolios, but they will get the same

expected utility from learning about any of the risk factors that the economy learns about.

The reason they choose to specialize in different risk factors is because learning is a strategic

substitute.

Proposition 12. The number of risk factors that the economy learns about is weakly in-

creasing in economies’ aggregate capacity K.

Proof in appendix A.8. How much investors learn about an asset is summarized by the

aggregate precision of beliefs Σ̂−1
a . Manipulating the price in proposition 9 tells us that as

long as assets are in positive net supply (x̄ > 0), the increase in information about an asset

(fall in Σ̂a) will cause its expected return to fall:

E[f − pr] = ρΣ̂ax̄. (21)
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A reduction in expected return makes assets less valuable to learn about (lower θ2
i in

proposition 10). When more agents learn about a factor, the expected return on the assets

that load heavily on that factor falls. This makes that factor less desirable to learn about.
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Figure 4: Aggregate allocation of information capacity for low, medium, and high-capacity
investors.

The equilibrium information allocations follow a cutoff rule. Consider a thought exper-

iment where all investors have the same capacity and we let them sequentially choose how

to allocate it. The first investor learns about the risk factor that is most valuable when no

other learning takes place. This is the risk factor with the highest learning index, the sum of

its squared Sharpe ratio (θ2
i ) and ρ2σ2

xΛii. This is the same risk factor as the one the partial

equilibrium investor would learn about for σ2
x = 0. Subsequent investors will continue to

allocate their capacity to factor i until the value of learning about risk factor i has dropped

sufficiently that it equals the value of learning about the next most valuable risk factor l.

This cutoff is when capacity K = K1 in figure 4. Then, some investors will find it beneficial

to learn about risk factor l. The proportions of investors that learn about i and about l is

such that all investors remain indifferent. The reason that the first risk factor becomes grad-
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ually less valuable to learn about is that, as more investors become informed about it, Λ̂−1
ai

increases, thereby reducing both Xi (proposition 11) and θ2
i , the latter through a decrease

in expected return (equation 21). Subsequent investors will continue to allocate capacity to

these two risk factors, until all investors become indifferent between learning about i, l and

some third risk factor (where K = K2 in figure 4). This process continues until all capacity

is allocated. This type of result is referred to as ‘water-filling’ in the information theory

literature.

Asset Holdings in Equilibrium The cross-section of asset holdings is fully pinned down

by the cross-section of information allocation. The mapping is as described in proposition 2.

Each investor holds a diversified portfolio, plus a learning portfolio. The diversified portfolio

needs to be adjusted for learning from prices. The learning portfolio contains assets in

proportion to the one risk factor he learns about.

Atomless Investors and Limits to Arbitrage We assumed that there is a continuum of

atomless investors, who by definition, cannot impact asset prices. This turns out to matter

for equilibrium learning strategies because it makes the returns to learning unbounded. An

as investor learns more about an asset, he can take larger and larger positions in that asset

to fully exploit what he has learned, without worrying about his information being revealed

through the price level. In contrast, an investor that is large in the market will move the

asset price level when he trades. If he tries to exploit very precise information by taking

large asset positions, his impact on the market price will partially reveal what he knows.

This diminishes the value of his information and re-introduces decreasing returns to learning

about a single risk factor. In figure 4, the investor is filling a bin on his own. For example,

his capacity may exceed cutoff K1.

Similar to the case where some risk is not learnable (section 2.3), giving investors some

mass in the market will make them want to specialize for low levels of capacity, but broaden

their learning to multiple factors as capacity increases. In order to analyze a setting where

large capacity investors interact, we need to model investors who consider the effect of their

own learning on the price level. This question is beyond the scope of the current paper. In

the conclusion, we return to the idea of modeling large portfolio managers.
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3.5 Cross-Section of Asset Returns

An APT Representation of Asset Prices Our theory revives an old arbitrage-free

pricing theory practice of using the principal components of the asset payoff matrix as priced

risk factors (Ross 1976). We can rewrite the risk premium on an asset i as the sum of its

loading on each principal component k times the equilibrium risk premium of that principal

component:

E[fi − rpi] =
n∑

k=1

Γik (Γ′kE[f − rp])

The equilibrium risk premium of factor k can be rewritten, using equation (21) and the

result that Γ̂ = Γ, as:

Γ′kE[f − rp] = ρΛ̂akΓ
′
kx̄. (22)

The equilibrium risk premium depends on (i) the risk aversion of the economy ρ, (ii) the

supply of the risk factor Γ̃′kx̄, and most importantly (iii) on the weight Λ̂ak, the eigenvalues

of aggregate variance matrix Σ̂a. This weight measures how much the economy learns about

risk factor k. A risk factor that the economy does not learn about has weight Λ̂ak = Λ̃k. A

risk factor that the economy learns about has a weight Λ̂ak < Λ̃k. In other words, as more

agents learn about risk factor k, Λ̂ak decreases.

Our theory has sharp predictions for which risk factors are learned about in equilibrium.

Their risk premia are lower. An asset that loads heavily on those risk factors has a low risk

premium.

A CAPM Representation of Asset Prices The equilibrium asset prices and returns are

equivalent to the prices and returns that would arise in a representative agent economy. That

representative agent is endowed with the belief that payoffs f are normally distributed with

mean Ea[f ] and covariance Σ̂a: the heterogeneously informed investors’ arithmetic average

mean and harmonic average covariance (see equations 26 and 25 in appendix A.5). In our

model with heterogenous information and partially revealing prices, a version of the Capital

Asset Pricing Model holds.

Proposition 13. If the market payoff is defined as fm =
∑N

k=1(x̄+xk)fk, the market return

is rm = fm∑N
k=1(x̄+xk)pk

, and the return on i is ri = fi

pi
, then the equilibrium price of asset i can
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be expressed as

pi =
1

r
(Ea[fi]− ρCova[fi, fm]) . (23)

The equilibrium return is

Ea[ri]− r =
Cova[ri, rm]

V ara[rm]
(Ea[rm]− r) ≡ βi

a(Ea[rm]− r). (24)

The proposition, similar to Lintner (1969), states that the equilibrium expected return on

a security is proportional to its beta and to the market price of risk expressed in beta units of

a representative agent. Without a theory of information acquisition, this pricing relationship

is not testable. The information of the representative agent used in equations (23) and (24)

cannot be observed by an econometrician or deduced from prices. Our contribution is to

predict the information set of the representative agent.

Incorporating our results into the CAPM (equation 24) can explain why a public-information

based CAPM under-prices large assets. In their seminal paper, Fama and French (1992) show

that large firms offer lower average returns than small firms for a given beta. The standard

CAPM fails to explain the cross-section of size portfolio returns because the beta for large

(small) firms is ‘too high’ (‘too low’) to account for the return difference. This beta is based

on public (prior) information. When investors can learn, the true risk of an asset depends

on its ‘learning beta’ βi
a, which is based on public information and private information in-

vestors have chosen to learn. Combining equations (18), (21), and proposition 10, the value

of learning about risk factor i is given by ρ2
(

Λ̂a
ii

Λii

)
(Γ′ix̄)2Λ̂a

ii+Xi. Learning value is increasing

in the size of the risk factor (Γ′ix̄). If large assets load heavily on these large risk factors,

the representative investor will be well-informed about large assets. This lowers the condi-

tional covariance of large assets with the market, not because it reduces the correlation, but

because it reduces the conditional variance of the asset’s return. Our findings suggest that

any assets that load heavily on the largest principal components should have returns that

are lower than the standard CAPM predicts.
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4 Institutional Portfolio Management

While the paper’s original motivation was the composition of individual investor portfolios,

the model also dictates optimal allocations of research and financial resources for institutions.

Through the lens of our theory, we see a specialized fund, such as a hedge fund or ‘alpha-fund,’

as an optimally under-diversified component of an institution’s portfolio. Their investment

strategy is to hold assets along one risk dimension in order to exploit the increasing returns

to learning.

Optimal portfolio management is a long-standing issue in the mutual fund literature. In

the seminal paper by Treynor and Black (1973, henceforth TB), security analysts can analyze

only a limited number of stocks. It departs from the efficient markets hypothesis by assuming

that individual portfolio managers can exploit mis-pricing to make abnormal returns. The

security analyst estimates the alpha of a security k as αk = rk − r− β′i(r
div − r)− εk, where

rdiv represents diversified portfolio returns and εk is idiosyncratic risk, with variance σ2(εk).

The optimal portfolio tilts away from the diversified one, towards securities with a high

‘information ratio’: αk/σ
2(εk).

12

TB and our paper both recognize the fundamental trade-off between diversification and

specialization. However, the theories differ along several dimensions. First, ours is an equi-

librium pricing model. There is no irrational mis-pricing. A TB regression in our model

will produce α’s that capture public information already impounded in prices. If a portfolio

manager followed the TB strategy, and purchased stocks with a positive (public) information

ratio, his stocks would have prices that were depressed by privately informed investors’ bad

news. Our theory suggests another notion of α: Investors demand different risk premia for

the same asset because they have an individual-specific α, arising from private information.

Second, while TB allow investors to analyze a fixed set of securities, we examine the

choice of what to learn. As in our model, TB investors who learn about an asset’s α want

to take a large position in that asset. But the feedback mechanism, where taking that large

position makes an investor want to learn more about the asset, is unique to our setting.

12By defining qdiv as the zero-capacity portfolio, we avoid a non-uniqueness problem of TB’s portfolio
decomposition. To understand the non-uniqueness, suppose that the optimal diversified portfolio contains
shares of asset 1 and 2 in the ratio of 1 to 2. The market (asset supply) is 2 shares of each asset. The asset
supply can be decomposed into one share of the diversified portfolio, plus one share of asset 1 in the learning
portfolio, or alternatively into 2 shares of the diversified portfolio and two shares sold short of asset 2.
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5 Conclusion

Most theories of portfolio allocation and asset pricing take investors’ information as given.

Investigating optimal information choice has the potential to yield valuable insights into

many portfolio and asset pricing puzzles. When investors can choose what information to

acquire, given a fixed information capacity, they optimally devote all capacity to learning

about one risk factor. When some risk is not learnable, they learn about a small number

of risk factors. Since risk-averse investors prefer to take larger positions in assets they are

better-informed about, high-capacity investors hold larger ‘learning portfolios’, causing their

total portfolio to be less diversified. In equilibrium, investors specialize in different assets

from other investors. Ex-ante identical agents may optimally hold different portfolios.

The model has new cross-sectional asset pricing predictions. Assets that many investors

learn about command lower risk premia, than standard asset pricing models predict. These

assets are ones that co-vary with the largest principal components.

While this model has focussed on a static information allocation problem, it could be

extended along many dimensions. The quantity of information could be endogenized with a

capacity production function. A model of dynamic information choice, incorporating recent

advances in the dynamics of information value (Bernhardt and Taub, 2005), could be used

to explain the persistence and turnover of investor portfolio holdings and time variation in

expected asset returns. Finally, analyzing a market for information capacity could answer

questions about the organization of the portfolio management industry.

A natural question to pose in this setting is: “Why can’t an investor delegate his portfolio

management to someone who processes information for many investors?” If a manager were

to sell information, information resale would undermine their profits. To avoid this problem,

they should manage investors’ portfolios directly. If information capacity is costly, then

managers maximize profit by each specializing in a different risk factor. Whether an investor’s

portfolio will also be concentrated hinges on how portfolio managers set prices. Suppose that

the fee is a fixed fraction of assets under management. This linear pricing scheme would

undermine incentives to specialize. In this paper, individuals held concentrated portfolios

because of increasing returns to information: investors could apply any signal to many

shares of an asset, at no extra cost. But if they pay per share of asset, they will invest

in many funds and diversify. However, such a linear pricing scheme is not a competitive
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equilibrium. Offering quantity discounts induces more investment in a fund. The additional

investment reduces the fund manager’s per-share cost and allows him to compete linear-price

suppliers out of the market. Quantity discounts make investing small amounts in many funds

costly. Competitive pricing of portfolio management services forces investors to internalize

increasing returns to specialization; optimal under-diversification reappears.

A theory of information choice in financial markets is vital to understanding or justifying

the active portfolio management industry. While a formal analysis of the industry and its

effect on investor portfolios is left for future work, understanding an individual’s information

choice problem is a necessary first step.
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A Appendix

A.1 Proof of Proposition 1

Consider a deviation from this solution that would allocate some capacity to another asset j, s.t. Σ̂jj =

(1− ε)Σjj . Keeping total capacity constant implies that Σ̂ii must be increased by a factor of 1/(1− ε). This

deviation produces a net utility change

(µj − pjr)2Σ−1
jj ((1− ε)− 1) + (µi − pir)2Σ−1

ii (1− (1− ε))

Since i is the asset for which (µi − pir)2Σ−1
ii > (µj − pjr)2Σ−1

jj , for all j 6= i, the net utility change from the

deviation is negative. ¤

A.2 Proof of Corollary 3

Proposition 2 shows that an investor optimally chooses a portfolio with a low level of diversification, meaning

a low (|qdiv|/(|qdiv|+ |qlearn|), if and only if he has a higher information capacity. What remains to be shown

is that a higher information capacity entails a higher expected profit: E[q′(f − rp)].

The portfolio weights q can be decomposed into qdiv, the zero-capacity portfolio and qlearn
i = 1

ρΣii
(µ̂i −

pir)(e2K − 1). The profit from the diversified portfolio E[qdiv′(f − rp)] does not vary in the information

capacity K. The profit from the learning portfolio is E
[

1
ρΣii

(µ̂i − pir)(e2K − 1)(fi − rpi)
]
. This is increasing

in K if E[(µ̂i − pir)(fi − rpi)] > 0. Since the difference between fi and µ̂i is a mean-zero, orthogonal

expectation error,

E[(µ̂i − pir)(fi − rpi)] = E[(µ̂i − pir)2] + 0 > 0.

¤
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A.3 Proof of Proposition 5

Proof: An investor learns about a risk factor whenever the marginal benefit of allocating the first increment

of capacity to that risk factor 1+ θ2
i exceeds its marginal cost: ξ 1

yi(1−αyi)
−φi. K enters this inequality only

through the Lagrange multiplier ξ, the shadow cost of capacity. When an investor learns about asset i, the

no-negative learning constraint is no longer binding and φi = 0. For each risk factor i, there is a cutoff value

ξ?
i = yi(1− αyi)

(
1 + θ2

i

)
where marginal benefit and cost are equal. For all ξ < ξ?

i , the marginal benefit is

greater than the marginal cost and the investor will learn about risk factor i. We know from the proof of

proposition 7 that ∂ξ/∂K ≤ 0. Therefore, the number of factors i for which ξ < ξ?
i must be an increasing

step function in K. ¤

Proof of Corollary 6

Proof: From the proof of proposition 2, we know that a non-zero quantity of an asset is held in the learning

fund whenever the investor learns about the asset and the expected excess return is not equal to zero. Getting

a signal from a continuous distribution that implies a zero excess return is a zero probability event. Since

asset payoffs are independent, each risk factor corresponds to one and only one asset. Proposition 5 shows

that when capacity increases, the number of risk factors learned about rises. Thus the number of assets

learned about rises, and the number of different assets held in the learning fund rises. ¤

A.4 Proof of Proposition 7

Proof: The diversified portfolio qdiv is what the investor would hold with zero capacity. It does not change as

capacity rises. When K rises, the absolute value of E[qlearn] = 1
ρ (Σ̂−1−Σ−1)(µ−pr) is affected only through

Σ̂. How K affects Σ̂ can be seen in the first-order condition; it enters through the Lagrange multiplier ξ.

Solving for (yi − αy2
i ) from equation (12) and substituting it into the capacity constraint (11) yields an

expression for the multiplier N log(ξ) =
∑N

i=1

(
2 log(yi) + log(1 + θ2

i + φi)
)

+ log(1 − α) − 2K, which is

decreasing in K. Applying the implicit function theorem to the first-order condition (12), we get ∂yi

∂K ≥ 0,

for every risk factor i, with strict inequality for those risk factors that are learned about. Since {yi} are the

eigenvalues of Σ̂−1Σ, and Σ is a constant, ∂yi

∂K ≥ 0 implies that each element of the eigenvalue matrix Λ̂−1

of Σ̂−1 = ΓΛ̂−1Γ′, weakly rises with K. As a result, ∂|E[qlearn]|
∂K ≥ 0, with strict inequality for the risk factors

that the investor learns about. ¤
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A.5 Proof of Proposition 9

From Admati (1985), we know that equilibrium price takes the form rp = A + Bf + Cx where

A =
(

Σ−1 +
1

ρ2σ2
x

Ψ′Ψ + Ψ
)−1 (

Σ−1µ− ρx̄
)
,

B =
(

Σ−1 +
1

ρ2σ2
x

Ψ′Ψ + Ψ
)−1 (

Ψ +
1

ρ2σ2
x

Ψ′Ψ
)

,

C = −
(

Σ−1 +
1

ρ2σ2
x

Ψ′Ψ + Ψ
)−1 (

ρI +
1

ρσ2
x

Ψ′
)

.

Ψ is the average of agents’ signal precision matrices Ψ =
∫ 1

0
Σ−1

ηj dj, where Σηj is the variance-covariance

matrix of the signals that agent j observes.13

Using (15), note that
(
Σ−1 + 1

ρ2σ2
x
Ψ′Ψ + Ψ

)−1

= Σ̂a, the posterior variance for an investor with the

average of all investors’ posterior precisions:

Σ̂a ≡
(∫ 1

0

Σ̂−1
j dj

)−1

(25)

Note also that Σp ≡ σ2
xB−1CC ′B−1′ = ( 1

ρ2σ2
x
Ψ′Ψ)−1.

Then, the price equation can be rewritten as

rp = Σ̂a(Σ−1µ + Ψf + Σ−1
p (f − ρΨ−1x)− ρ(x̄− x)

Simple algebra reveals that (f − ρΨ−1x) = B−1(rp − A), the unbiased signal that agents observe from the

price level. From equation 4, we note that the first three terms are equal to the posterior mean of the

’average’ agent’s beliefs:

µ̂a ≡ Ea[fi] ≡
∫ 1

0

µ̂jdj (26)

Thus,

rp = µ̂a − ρΣ̂a(x̄ + x). (27)

The price level is increasing in the posterior belief of the average agent about the mean payoff, and decreasing

in risk aversion, the amount of risk the average agent bears, and the supply of the asset.¤
13The Lebesgue integral may not be well defined when {ηj} are processes of independent random variables

for a continuum of agents j, because realizations may not be measurable with respect to the joint space of
parameters and samples. Also, the sample function giving each agent’s individual shock may not be Lebesgue
measurable, and thus the fraction of agents associated with each shock may not be well defined. Making
independence compatible with joint measurability requires defining an enriched probability space, where the
one-way Fubini property holds. Then the exact law of large numbers is restored. See Hammond and Sun
(2003), and Duffie and Sun (2004) for recent solutions.
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A.6 Proof of Proposition 10

As long as Σ̂−1 and VER have the same eigenvectors as Σ, then the proof of the proposition follows immedi-

ately from the proof of proposition 4, where E[f−pr] is now based on prior beliefs (E[f−pr] = (I−B)µ−A),

instead of on (µ − pr). Sums, products and inverses of matrices with identical eigenvectors preserve those

eigenvectors. This tells us that Ψ can be rewritten as Ψ =
∫ 1

0
Γ−1′Λ−1

ηj Γ−1dj. Since eigenvector matrices

have the property that Γ−1 = Γ′, and defining Λ−1
ηa =

∫ 1

0
Λ−1

ηj dj, this is equivalent to Ψ = ΓΛηaΓ′. Because

Σp, Σ̂a, B, and C are result from a combination of sums, products and inverses of Σ and Ψ (see appendix

A.5), all have eigenvectors Γ. ¤

A.7 Proof of Proposition 11

Proof : Xi and θ2
i are both decreasing in Λψi. Thus, their sum is decreasing. We start by deriving the expres-

sion for Xi. The first part of the objective is Tr
(
Σ̂−1VER

)
, which we rewrite as Tr

(
Σ̂−1ΣΣ−1(VER + Σ̂− Σ̂)

)
.

This is Tr
(
Σ̂−1ΣΣ−1(VER + Σ̂)− I

)
or Tr

(
Σ̂−1ΣΣ−1(VER + Σ̂)

)
− N . The trace is the product of the

eigenvalues. Let yi, be the ratio of the precision of the posterior to the precision of the prior, i.e. it is the ith

eigenvalue of Σ̂−1Σ: yi ≡ Λ̂−1
ii Λii. Let Xi be the ith eigenvalue of Σ−1(VER + Σ̂). Then the ith eigenvalue

of the matrix inside the trace is yiXi, and Tr
(
Σ̂−1ΣΣ−1(VER + Σ̂)

)
=

∑N
i=1 Xiyi. This is because Σ, Σ̂, B

and C all share the same eigenvectors Γ.

The expression for Xi, the ith eigenvalue of Σ−1(VER + Σ̂), is:

Xi = Λ−1
ii

[
Λii

(
1 + Λ2

Bi − 2ΛBi

)
+ Λ2

Ciσ
2
x

]
,

where ΛBi and ΛCi are the ith eigenvalue of B and C respectively. Using the definition of B and Σ̂a, we

can rewrite B as I − Σ̂aΣ−1, which has eigenvalues ΛBi = 1 − Λ̂aiΛ−1
ii , where Λai is the ith eigenvalue of

Σ̂a. Also, using the definitions of B and C, we have C = −ρBΨ−1, and hence CC ′σ2
x = B

(
1

ρ2σ2
x
Ψ′Ψ

)−1

B′,

which in turn equals BΣpB
′. The ith eigenvalues of the matrix Σ−1CC ′σ2

x, Λ−1
ii Λ2

Ciσ
2
x, are thus equal to

Λ−1
ii Λ2

BiΛpi = Λ−1
ii (1− Λ̂aiΛ−1

ii )2Λpi. Now we can rewrite Xi as:

Xi =

(
Λ̂ai

Λii

)2

+
(

Λpi

Λii

) (
1− Λ̂ai

Λii

)2

.

An important property of Xi is that it is decreasing in the average signal precision of risk factor i, ΛΨi,

the ith eigenvector of Ψ. To ease the burden of notation, define a ≡ 1
ρ2σ2

x
, g ≡ Λ−1

ii , and x ≡ ΛΨi. To show

strict substitutability is to show ∂Xi

∂x < 0. We first recall that Λ−1
pi = ax2 and Λ̂−1

ai = g + ax2 + x. We can
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rewrite Xi in our new notation as:

Xi = g2(g + ax2 + x)−2 + ga−1x−2(ax2 + x)2(g + ax2 + x)−2,

= g(g + ax2 + x)−2[g + a−1 + 2x + ax2].

Taking a partial derivative with respect to x, we get:

∂Xi

∂x
= −2g(g + ax2 + x)−3[(g + a−1 + 2x + ax2)(2ax + 1)− (g + ax2 + x)(ax + 1)],

= −2g(g + ax2 + x)−3[a2x3 + 3ax2 + (3 + ag)x + a−1].

The partial derivative is strictly negative because g > 0, a > 0, x > 0, and hence the term in parentheses

and the term in brackets are strictly positive.

Using L’Hôpital’s rule, it is easy to show that limx→0Xi = 1+a−1g−1, which equals 1+ρ2σ2
xΛii. Because

of the new source of risk induced by noisy asset supply (σ2
x), Xi is strictly greater than 1 when nobody learns

about risk factor i (x = ΛΨi = 0). Note that this is consistent with Xi = 1 in partial equilibrium, where

prices we taken as given (σ2
x = 0).

We conclude by showing that θ2
i = (((I−B)µ−A)′Γi)2

Λii
is decreasing in Λψi. The denominator Λii is

exogenous. Using the formulas for A and B in appendix A.5, the expected return is ((I −B)µ−A) = ρΣ̂ax̄.

Thus, ((I − B)µ − A)′Γi = ρΛ̂a
i (Γ′ix̄). Since, Λ̂a

i = (Λ−1
i + 1

ρsσ2
x
Λ2

ψi + Λψi)−1, the expected return and its

square are decreasing in Λψi.

¤

A.8 Proof of Proposition 12

From proposition 10, we know that investors always allocate their capacity to the asset with the highest

value of (Γ′iE[f − pr])2(Λ̃i)−1. Begin by ordering risk factors by their learning index values when K = 0, s.t.

(Γ′iE[f − pr])2(Λ̃i)−1 ≥ (Γ′i+1E[f − pr])2(Λ̃i+1)−1. For small levels of K, capacity is allocated only to risk

factor 1 and to additional risk factors, only if their initial learning index value is equal to that of factor 1.

Investors will learn about any risk factor i only when that factor is as valuable to learn about as factor

1: (Γ′1E[f − pr])2(Λ̃1)−1 = (Γ′iE[f − pr])2(Λ̃i)−1. Is there some level of capacity Kj such that these two

index levels are equal? For any non-zero index, there must be. As K →∞, precision of beliefs about asset

1 becomes infinite: ψ11 → ∞. Equation 21, shows that, rp1 → µ, which implies that (Γ′1E[f − pr])2 → 0.

Since index values are non-negative, there is some Kj for each asset j s.t. ∀K > Kj , investors learn about

risk factor j. ¤
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A.9 Proof of Proposition 13

We can rewrite equation (27) for each asset i ∈ {1, 2, · · · , N} separately:

pi =
1
r

(
µ̂i

a − ρ

N∑

k=1

Cova[fi, fk](x̄ + xk)

)
,

=
1
r

(
µ̂i

a − ρCova[fi,

N∑

k=1

(x̄ + xk)fk]

)

where Cova[fi, fk] denotes the (i, k) element of Σ̂a. Using the definition of fm stated in the proposition, we

obtain the first equation mentioned in the proposition:

pi =
1
r

(Ea[fi]− ρCova[fi, fm]) . (28)

To rewrite this equilibrium price function in terms of returns divide both sides by the price. Denote the

return on security i by ri ≡ fi

pi
. Simple manipulation leads to:

Ea[ri]− r = ρCova[ri, fm]. (29)

This is true for each asset i, and hence also for asset m:

Ea[rm]− r = ρ pmCova[rm, rm]. (30)

Solving (30) for the risk aversion coefficient ρ, and substituting it into (29), we get the second equation in

the proposition.¤
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