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Abstract

We propose a new hypothesis testing method for multi-predictor regressions with finite

samples, where the dependent variable is regressed on lagged variables that are autore-

gressive. It is based on the augmented regression method (ARM ; Amihud and Hurvich

(2004)), which produces reduced-bias coefficients and is easy to implement. The method’s

usefulness is demonstrated by simulations and by an empirical example, where stock re-

turns are predicted by dividend yield and by bond yield spread. For single-predictor

regressions, we show that the ARM outperforms bootstrapping and that the ARM per-

forms better than Lewellen’s (2003) method in many situations.

Keywords : Augmented Regression Method (ARM); Bootstrapping; Hypothesis Test-

ing.



I Introduction

In a class of predictive regressions analyzed by Stambaugh (1999), a variable is regressed

on the lagged value of a predictor variable, which is autoregressive with errors that are

correlated with the errors of the regression model. Stambaugh (1999) shows that in fi-

nite samples, the estimated predictive slope coefficient is biased, leading to the incorrect

conclusions that the lagged variable has predictive power while in fact it does not. Stam-

baugh (1999) derives the bias expression which is later used in empirical studies to obtain

a reduced-bias point estimate of the predictive coefficient.

For hypothesis testing in predictive regressions, three methods have been employed:

(1) bootstrapping, used by Kothari and Shanken (1997); (2) testing under an assump-

tion that the autoregressive coefficient is almost 1.0, setting it to be, for example, 0.9999

(Lewellen (2003)); and (3) a method to derive the standard error of the estimated predic-

tive coefficient following an augmented regression method (ARM), in which the predictive

regression is estimated using the predictor variable and its bias-adjusted autoregressive

residual (Amihud and Hurvich (2004)). Hitherto, the performance of these testing meth-

ods has not been fully evaluated.

The first task of this paper is to compare the performance of these three methods of

hypothesis testing in terms of the size and power of the test. We find through simulations

that the ARM performs quite well. The actual size under the ARM is considerably closer

to the nominal size (the ordinary 1%, 5% and 10%) than the size under the other two

methods. Method (2) produces accurate size only if the true autoregressive coefficient
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has the assumed value, but the size becomes inaccurate if there is even a very small

difference between the two in two-sided tests. The ARM also has better power than the

bootstrapping method.

For multi-predictor regressions, there hitherto exists no feasible method of hypothesis

testing. Amihud and Hurvich (2004) propose a reduced-bias estimator of the predictive

coefficients, based on ARM . In this paper, we propose a new method for hypothesis

testing in multi-predictor regressions, which can be viewed as an extension of the hypoth-

esis testing method proposed for the single-predictor regressions, whose performance is

evaluated in the first part of the paper.

The second task of this paper is to propose a convenient new method of hypothesis

testing in multi-predictor regressions, and to examine its performance. We first present

the theory underlying the proposed method, and then we perform simulations to compare

the size under this method with the nominal size. While the differences between the

actual and nominal sizes are not as small as in the single-predictor model, they are still

reasonably small. Still, our ARM is the only one available for estimation and hypothesis

testing in general multi -predictor regressions.

Alternatively, there is a local-to-unity asymptotic approach to the predictive regression

problem, which allows for a more general error structure, including short-run dynamics

(the predictor model is AR(p) rather than AR(1)) and non-normality. Campbell and Yogo

(2004) develop a feasible Q-statistic under the local-to-unity framework. A simple pretest

is also suggested to determine whether the conventional t-test gives correct inference.

Maynard and Shimotsu (2004) suggest a new covariance-based test of orthogonality in the
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case where the predictors have roots close to or equal to unity. The asymptotic properties

are derived and simulations are performed against various reasonable alternatives. Kernel

estimation is used for estimation. Our paper, instead, focuses on finite-sample properties,

under the normality assumption, for estimation methods that do not require the use of

kernel methods.

Our paper proceeds as follows. In Section II, we discuss hypothesis testing for single-

predictor regressions using three methods: bootstrapping, Lewellen’s (2003) method and

the ARM . Their performance is compared by simulations. An empirical example is

studied using the three methods, which yield different conclusions. Section III describes

hypothesis testing in the multi-predictor case, based on a newly proposed estimator of the

covariance matrix of the estimated slope coefficients. Both individual and joint tests are

suggested and investigated. Again simulations and empirical data analysis are performed

to demonstrate the methodology. We present our conclusions in Section IV. Proofs of the

theoretical results are presented in the Appendix, Section V.

II Single-Variable Predictive Regression

Consider a single-variable predictive regression model (following Stambaugh (1999)), where

a scalar time series {yt}n
t=1 is to be predicted from a scalar first-order autoregressive

(AR(1)) time series {xt}n−1
t=0 . The model is,

yt = α + βxt−1 + ut , (1)

xt = θ + ρxt−1 + vt , (2)
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where the errors (ut, vt) are each serially independent and identically distributed as bi-

variate normal: 


ut

vt


 iid∼ N(0, Σ) , Σ =




σ2
u σuv

σuv σ2
v


 .

The autoregressive coefficient ρ of {xt} satisfies the constraint |ρ| < 1, to ensure

stationary of {xt}. Stambaugh (1999) shows that if σuv 6= 0, the ordinary least squares

(OLS) estimator β̂ based on a finite sample is biased: E(β̂ − β) = φE(ρ̂ − ρ), where

φ = σuv/σ
2
v .

In applications that followed, researchers estimate β as β̂s = β̂ + (σ̂ûv̂/σ̂
2
v̂)(1 + 3ρ̂)/n,

where hat indicates an OLS estimated parameter or variable, and E(ρ̂− ρ) is estimated

by (1 + 3ρ̂)/n following Kendall (1954).

Hypothesis testing for this model can be performed by several existing methods. The

methods we discuss here are the bootstrapping method applied by Kothari and Shanken

(1997), Lewellen’s (2003) method and the Amihud-Hurvich (2004) method. In what

follows, we describe each method and then compare their performances.

A Hypothesis Testing in Single Variable Predictive Regression

A.1 Bootstrapping (BS)

The estimation of the standard error of the predictive coefficient by bootstrapping has

been used by Nelson and Kim (1993), Kothari and Shanken (1997) and Baker and Stein

(2003). We consider both nonparametric and parametric bootstrapping.
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For the nonparametric bootstrapping procedure (BSN), we follow the version in

Kothari and Shanken (1997), which is briefly summarized as follows:

1) Given the time series {yt, xt}, model (1) and (2) are estimated by OLS to get

estimated parameters, α̂, β̂, θ̂ and ρ̂, as well as the residuals {ût}, {v̂t}.

2) The estimated parameters are corrected for bias using,

ρ̂A =
nρ̂ + 1

n− 3

β̂A = β̂ + (
σ̂ûv̂

σ̂2
v̂

)(
1 + 3ρ̂A

n
)

where n is the sample size.

3) Given β̂A, ρ̂A, α̂, θ̂ and {yt, xt}, calculate the residuals {ûA,t}, {v̂A,t} using equations

(1) and (2).

4) The testing of the null hypothesis H0 : β = β0 is performed by calculating the

empirical p-value (tail area) for the observed β̂A, based on the simulated null distribution.

Thus we need to simulate a number of replications, and for each one construct a corre-

sponding estimated value β̂∗A, in order to obtain the empirical bootstrap distribution for

β̂∗A.

Each bootstrap replication is constructed by fixing the first observation x0 (from the

data) and constructing {y∗t , x∗t} iteratively using simulated data generated by the parame-

ter β0 (the hypothesized value), the estimates ρ̂A, α̂ and θ̂ and equations (1) and (2). The

simulated residuals (u∗t , v
∗
t ) are selected randomly with replacement from all possible pairs
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of (ûA,t, v̂A,t) obtained in Step (3). The bootstrap replication is denoted by {y∗t , x∗t}n
t=0.

1

5) Using the bootstrap replication {y∗t , x∗t}, repeat Steps (1) and (2), obtaining the

corrected slope estimate β̂∗A. Repeat Step (4) M times (we use M=2500, as in Kothari

and Shanken (1997)), fixing β0 and the starting observation x0. We obtain M values of

β̂∗A for the given data set, from which we generate the empirical bootstrap distribution of

β̂∗A.

6) Rank these M values of β̂∗A and decide whether to reject the null hypothesis by

comparing β̂A to the bootstrap distribution of β̂∗A. For example, in a two-sided nominal

size α test of H0 : β = β0 against Ha : β 6= β0, reject the null hypothesis if β̂A is smaller

than the (α/2) quantile or larger than the 1− (α/2) quantile of β̂∗A. Similar calculations

are done for the one-sided test of H0 : β = β0 against Ha : β > β0.

7) We examine the performance of these bootstrap tests over 1500 simulated data sets

{yt, xt}.

The parametric bootstrapping procedure2 is similar to the nonparametric one, except

that in Step (4), the bootstrap errors (u∗t , v
∗
t ) are simulated from a bivariate normal

distribution with covariance matrix estimated from {ûA,t, v̂A,t}. As for the first observation

x0, two alternative methods (referred as parametric-fixed (BSPf ) and parametric-random

(BSPr) bootstrapping hereafter) can be used: either fix x0 from the data or draw it

randomly from its estimated distribution N
[

θ̂
1−ρ̂A

, V̂ ar(v̂A)
1−(ρ̂A)2

]
. Here, a technical problem

arises: if ρ is close to 1, the Kendall (1954) correction could lead to |ρ̂A| > 1, and the

1The two intercepts α̂ and θ̂ are not corrected because they have no effect on the bias of β̂.
2This procedure is used by Polk, Thompson and Vuolteenaho (2004).
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corresponding variance would be negative. In this case, x0 is set to be the estimated mean

value: θ̂
1−ρ̂A

.

A.2 Lewellen’s Method (L)

Lewellen (2003) proposes a hypothesis testing method based on the empirical observation

that the autoregressive coefficient ρ is very close to unity in some financial time series.

Assuming ρ ≈ 1 (e.g., 0.9999), an upper bound for the bias in β̂ is estimated and the

one-sided hypothesis test based on the corresponding bias-corrected version of β̂ may be

regarded as conservative. Lewellen demonstrates the improvement in the power of the

test under the assumption ρ ≈ 1. The following is a brief description of the method.

1) Perform OLS regression using equations (1) and (2) to get estimated parameters

β̂ and ρ̂ and residual series {ût} and {v̂t}.

2) Set ρ at some fixed value ρset, for example, 0.9999.

3) Calculate φ̂ = σ̂ûv̂

σ̂2
v̂

=
∑n

t=1 ûtv̂t∑n
t=1 v̂2

t
. Then the bias-corrected estimated predictive coeffi-

cient is β̂L = β̂ − φ̂(ρ̂− ρset).

4) Estimate the variance of β̂L by σ̂2
ŵ(X ′X)−1

(2,2), where ŵ is the residual from a regres-

sion of ût on v̂t and σ̂2
ŵ = ( 1

n−3

∑n
t=1 ŵ2

t ), the first column of X is a vector of ones, and

the second column of X is (x0, ..., xn−1)
′.

5) Using β̂L and the square root of its estimated variance, the t-statistic is calculated

and used for hypothesis testing.

7



This methodology performs well in a one-sided test for the monthly time series ana-

lyzed in Lewellen’s (2003) paper, which have ρ̂ close to 0.9999.

A.3 A Modified Lewellen Method (LM)

As we see in the simulations later, Lewellen’s method performs well when the true value

of ρ is near unity, as assumed. The question is whether one can assume a value for ρset

which depends on the data instead of setting it to be 0.9999. A modified Lewellen method

is therefore proposed here by first setting ρset = ρ̂c = (1/n + 3/n2) + (1 + 3/n + 9/n2)ρ̂,

a bias-corrected estimator of ρ (see Amihud and Hurvich (2004)), and using Lewellen’s

method thereafter.

A.4 Augmented Regression Method (ARM)

Hypothesis testing based on the augmented regression, proposed by Amihud and Hurvich

(2004)3, is briefly summarized as follows,

1) The augmented regression model can be written as: yt = α+βxt−1 +φvt +et, where

{et} is independent of both {vt} and {xt}. Clearly, by comparing with formula (1), we

obtain: ut = φvt + et, where φ = σuv/σv2 .

2) Perform an OLS regression of xt on xt−1 to obtain θ̂ and ρ̂. Then compute the

bias-corrected estimate of ρ,

ρ̂c = (1/n + 3/n2) + (1 + 3/n + 9/n2)ρ̂.

3See also Amihud (2002) for use of this method.
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3) Calculate proxies {vc
t}n

t=1 for the autoregressive errors {vt}n
t=1 using θ̂ and ρ̂c in

equation (2), that is, vc
t = xt − θ̂ − ρ̂cxt−1.

4) Obtain the bias-corrected estimators β̂c and φ̂c as the coefficients in an OLS re-

gression of yt on xt−1 and vc
t , respectively, together with a constant.

5) The estimated standard error for β̂c is,

ŜE
c
(β̂c) =

√
{φ̂c}2V̂ ar(ρ̂c) + {ŜE(β̂c)}2

where V̂ ar(ρ̂c) = (1 + 3/n + 9/n2)2V̂ ar(ρ̂), V̂ ar(ρ̂) is obtained from the OLS regression

in Step (2), and {ŜE(β̂c)}2 is the estimated variance of β̂c in the OLS regression in Step

(4). Finally, perform an ordinary t-test based on β̂c and ŜE
c
(β̂c).

B Simulations and Comparisons

The performance of these hypothesis testing methods is investigated and compared in a

simulation study, using 1500 simulated replications (data sets) from the model (1) and

(2). The parameter values used in the simulation study are estimated values obtained

from an actual data set, the predictive regression of the quarterly market return (NY SE

value-weighted) on lagged earning-price ratio (Section II.C below). We use the values

of the estimated parameters β̂c, φ̂c and ρ̂c as if they were the true parameter values.

The sample size is n = 154, and these parameter values are β = 0.1329, ρ = 0.9821 and

φ = −3.28. We construct ut = φvt+et, where {vt} and {et} are mutually independent i.i.d.

normal random variables whose standard deviations are 0.02046 and 0.04017, respectively.

The results are summarized in Table 1. One-sided (that is, right-tailed) and two-sided
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hypothesis tests are performed at nominal significance levels 1%, 5% and 10%. In all

cases, the null hypothesis is H0 : β = 0.1329.

INSERT TABLE 1 HERE

B.1 Bootstrapping (BS)

Using the procedure described in II.A.1, we generate 1500 simulated data sets. For each

data set, bootstrapping gives the empirical distribution for β̂∗A under H0, based on 2500

bootstrap replications.

As shown in Panel A of Table 1, for hypothesis testing with nominal sizes of 1%,

5% and 10%, the resulting one-sided tests have actual sizes close to 10%, 15% and 20%

for three bootstrapping procedures: nonparametric (BSN), parametric-fixed (BSPf ) and

parametric-random (BSPr). The resulting sizes for the corresponding two-sided tests are

even bigger. These large distortions in test size imply that the null hypothesis is rejected

much more often than it should be.

B.2 Lewellen’s Method (L)

In Panel A of Table 1, we used ρset = 0.9821, (the true simulation parameter), as well as

the values 0.9721, 0.99, 0.999 and 0.9999.

When ρset is the true parameter value, 0.9821, the resulting observed test sizes natu-

rally equal the nominal sizes, for both the one-sided and two-sided tests4. However, this

4The differences between the sizes in the simulations and the nominal sizes are due to simulation
errors.
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test is infeasible since the researcher does not know the true parameter value. When ρset

differs even slightly from the true parameter value, the performance of Lewellen’s tests is

weaker.

For the one-sided test, the test sizes are conservative, as pointed out by Lewellen,

which implies that the null is rejected less than implied by the nominal size of the Type I

error. The size distortion in Lewellen’s (2003) test are large for the two-sided test. When

ρset is 0.99, 0.999 and 0.9999, the observed test sizes become, respectively, 2.4%, 11.5%

and 13.3% for the nominal 1% test; 9.9%, 26.5% and 29.0% for the nominal 5% test and

16.4%, 38.5% and 40.9% for the nominal 10% test. This means that the null is rejected

too often even when the true ρ is only slightly smaller than the assumed ρ. Clearly,

the performance of Lewellen’s hypothesis testing depends on the assumed value for ρset

relative to the true ρ. In general, the size distortion increases monotonically and quite

steeply in |ρset − ρ|.5 But, if ρset < 0.9821 (0.9721 is used here), Lewellen’s test inflates

the size.

For our suggestion of a modified Lewellen’s method (LM), where ρset = ρ̂c, the observed

test sizes at nominal 1%, 5% and 10% levels are 11.5%, 20.1% and 25.2% for the one-sided

test and 23.1%, 37.0% and 45.4% for the two-sided test. This occurs because using the

estimated ρ̂c as the true value ignores the variability of ρ̂c, reducing the standard error

and thus rejecting the null too often.

5A detailed set of simulation results of this statement is available upon request.
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B.3 Augmented Regression Method (ARM)

For the same simulated data sets, we constructed the augmented regression estimate β̂c

and its standard error, based on the procedure described in section II.A.4, and then

carried out hypothesis testing using a t-test. The results are indicated by tARM . Both

one-sided and two-sided tests produce observed sizes with reasonably small distortions.

For the one-sided test, the observed sizes are almost equal to the nominal sizes. The

somewhat inferior results for the two-sided tests are presumably due to asymmetry in the

distribution of β̂c.

B.4 Power Comparison

Table 1, Panel B shows the power for the bootstrapping (BS), the augmented regression

method (ARM) and Lewellen’s method (L). The power is calculated by simulating model

(1) and (2) for several values of β, centered around the true value of 0.1329.

Ideally, for the one-sided test, where the null hypothesis is β = β0 = 0.1329 and the

alternative to the null is β > β0, the power of the test should be zero if β < β0 = 0.1329.

At the true β = 0.1329, the power should equal the nominal size, and for β > 0.1329 the

power of the test should rise steeply to 1.0. We see that the actual power of the ARM

t-test is much closer to the ideal pattern than the power of the bootstrap test.

For the two-sided test, the ideal pattern for the power function is as follows: at

β = β0 = 0.1329, the power should equal the nominal size, and for β 6= β0 = 0.1329, it

should rise steeply to 1. We see that the ARM test generally outperforms the bootstrap
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test. It has similar power as the bootstrapping method when β < β0, and much higher

power when β > β0. As noted above, the observed size at β = β0 = 0.1329 is far more

accurate for the ARM test than for the bootstrap test.

The power of Lewellen’s test depends on ρset and it always rises quickly to 1 because

ρ is assumed to be known with certainty, which leads to a small standard error of β̂L

(the ARM accounts for the uncertainty about ρ̂c). For the one-sided test, if ρset is larger

than the true ρ, the test outperforms the ARM with smaller size and better power. But

if ρset is smaller than the true ρ, Lewellen’s test is severely oversized. For the two-sided

Lewellen’s test, even a small difference (in either direction) between ρset and the true

parameter value leads to inflation of the size. Of course, if ρset were equal to the true

parameter value, then both the size and power would be excellent, but this scenario is

infeasible because the researcher does not have foreknowledge of the true value of ρ.

B.5 Summary of the Three Methods of Hypothesis Testing

The ARM outperforms bootstrapping under all nominal sizes studied for both one-sided

and two-sided tests. The superiority of the ARM holds for both size and power.

In evaluating Lewellen’s (2003) method, comparing his t-test to the one based on the

ARM , we observe the following. The numerator of Lewellen’s t-statistic, the estimated

β̂L using ρset ≈ 1 is smaller than β̂c (or the true β) if the product φ̂(ρ̂c − ρset) > 0;

the denominator provides an estimated standard error that is smaller than that of β̂c

because Lewellen’s method assumes that ρ is known with certainty (being equal to ρset)
6.

6Proof is available upon request.
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Under a right-tailed test, the resulting size turns out to be smaller than the nominal size,

which may be satisfactory to a researcher wishing to consider whether {xt} has predictive

power. In addition, Lewellen’s test has better power than that of the ARM , perhaps

due to the smaller assumed standard error of β̂L under Lewellen’s method, although in a

range immediately straddling the β under the null hypothesis, the ARM has better power.

However, if φ̂(ρ̂c − ρset) < 0, β̂L is larger than β̂c or the true β and the denominator is

still smaller than ŜE
c
(β̂c), leading to an over rejection of the null hypothesis. This can

happen when ρset = 0.9721 (see Table 1, Panel A) or when ρset = 0.9999 and φ̂ > 0.

In general, Lewellen’s test works very well for right-tailed test if φ̂(ρ̂c− ρset) > 0. But

the ARM outperforms it in a right-tailed test if φ̂(ρ̂c − ρset) < 0, and in all left-tailed

tests for ρ > 0.7 The ARM also outperforms Lewellen’s method in two-sided tests. In

addition, the ARM offers a unified approach to both estimation and testing: it provides

a method for estimating β and its estimated standard error when ρ is unknown. This

standard error can then be used in a t-test. Lewellen’s (2003) method separates the testing

and the estimation processes. It uses ρset to calculate a conservatively-estimated β̂L and

its standard error to test the hypothesis that β > constant. If the null is rejected, the

estimation of β can be done by the use of an adjusted estimate of ρ from {xt}.
7If the AR process of xt is such that ρ < 0, other conditions apply for right-tailed tests to provide

good performance under Lewellen’s method.
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C Empirical Illustration

We illustrate the three methods of hypothesis testing by the predictive effect of lagged

earning-price ratio, EPt−1, on RMV Wt, the value-weighted market return of NY SE

stocks. The time period is from the third quarter of 1963, when the earning-price ratio

data became available, to the fourth quarter of 2001, total of 154 quarters.8 RMV Wt,

the quarterly return, is regressed on EPt−1, the earning-price ratio in the last month of

the preceding quarter. Results are presented in Table 2.

INSERT TABLE 2 HERE

OLS regressions of equations (1) and (2) give significant estimators at 5% level for

both one- and two-sided tests: β̂ = 0.2169 and ρ̂ = 0.9565. But we know that both β̂

and ρ̂ are biased, according to Stambaugh (1999) and Kendall (1954). Indeed, we obtain

β̂A = 0.1328 and β̂c = 0.1329.

C.1 Bootstrapping (BS)

Using the procedure described in Section II.A.1, we set the null hypothesis at β0 = 0 and

run 2500 iterations. Overall, 2500 values of β̂∗A under the null hypothesis are generated

for each bootstrapping procedure. For all three procedures (nonparametric, parametric-

fix and parametric-random), the mean of β̂∗A is negative. The empirical p-value for the

observed β̂A = 0.1328 is 0.000 for all procedures and for both one-sided and two-sided

tests. All three bootstrapping procedures reject the null hypothesis and show a highly

8Data on EP is kindly obtained from J. Lewellen.
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significant predictive power of lagged EP on RMV W .

C.2 Lewellen’s Method (L)

The hypothesis testing for β gives t-statistics of 1.674 (p-value=0.048, one-sided) if ρset =

0.999, and 1.610 (p-value=0.055, one-sided) if ρset = 0.9999 (Recall that ρ̂c = 0.9821).

Again, we observe that the test results are sensitive to the assumed ρset. For the one-sided

test, lagged EP is a significant predictor of RMV W at 5% level if ρset = 0.999, but it is

insignificance if ρset = 0.9999.

C.3 Augmented Regression Method (ARM)

The augmented regression gives ρ̂c = 0.9821 and β̂c = 0.1329 with ŜE
c
(β̂c) = 0.09102.

The t-statistics for β̂c is 1.460, meaning that the null hypothesis is not rejected at 5%

level for either the one-sided or two-sided test. That is, lagged EP has no significant

predictive power for RMV W . This conclusion does not depend on any foreknowledge of

the autoregressive coefficient of the predictive variable and it does not require intensive

calculation.
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III Multi-Predictor Regression

We propose a hypothesis testing procedure in multi-predictor regression. This comple-

ments the model estimation procedure for the multi-predictor case proposed in Amihud

and Hurvich (2004, Section 4), based on the Multiple Augmented Regression Method

(mARM).

We assume that the predictor variables constitute a p-dimensional vector time se-

ries {xt} which follows a stationary Gaussian vector autoregressive V AR(1) model. The

overall model is given for t = 1, . . . , n by

yt = α + β′xt−1 + ut,

xt = Θ + Φxt−1 + vt,

where we define (p× 1) vectors,

xt =




x1t

...

xpt




, Θ =




Θ1

...

Θp




, β =




β1

...

βp




, vt =




v1t

...

vpt




,

and a (p× p) matrix9,

Φ =




Φ11 · · · Φ1p

...
. . .

...

Φp1 · · · Φpp




,

The quantities yt, α and ut are scalars. The vectors (ut, v
′
t)
′ are i.i.d. multivariate

normal with mean zero. We allow ut and v′t to be contemporaneously correlated and

9For a diagonal Φ, Amihud and Hurvich (2004) propose a simpler hypothesis testing method which is
similar to the single-predictor testing method.
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assume that the absolute values of the eigenvalues of Φ are all less than 1 to ensure

stationarity of {xt}.

As shown in Amihud and Hurvich (2004), there exists a (p×1) vector φ and a sequence

{et}n
t=1 such that

ut = φ′vt + et

and we can write,

yt = α + β′xt−1 + φ′vt + et, (3)

where {et} are i.i.d. normal random variables with mean zero, and is independent of both

{vt} and {xt}, V ar(ut) = σ2
u, Cov(vt) = Σv, V ar(et) = σ2

e = σ2
u − φ′Σvφ.

If the true {vt} is used in the above regression (model (3)), the OLS estimate of β is

unbiased. Since {vt} is unknown, it is substituted by the proxy {vc
t}, the residuals from

a fitted V AR(1) model for {xt}, using a bias-correction method that produces a reduced-

bias estimation of β. Amihud and Hurvich (2004) propose a bias-corrected estimator of

the matrix Φ using a bias expression due to Nicholls and Pope (1988). The procedure is

briefly summarized as follows:

1) Use the Nicholls and Pope (1988) expression for the bias of the OLS estimator Φ̂,

E[Φ̂− Φ] = −b/n + O(n−3/2) ,

where,

b = Σv


(I − Φ′)−1 + Φ′(I − Φ′2)−1 +

∑

λ∈Spec(Φ′)

λ(I − λΦ′)−1


 Σ−1

x ,
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I is a p × p identity matrix, Σx = Cov(xt), the symbol λ denotes an eigenvalue of Φ′

and the notation λ ∈ Spec(Φ′) means that the sum is for all p eigenvalues of Φ′ with each

term repeated as many times as the multiplicity of λ. We estimate the bias b iteratively

by repeatedly plugging in preliminary estimates of Φ and Σv.
10

2) The preliminary estimator of Σv is obtained as the sample covariance matrix of the

residuals (xt − Θ̂ − Φ̂xt−1), if Φ̂ has all its eigenvalues smaller than 1 (Θ̂ and Φ̂ are the

OLS estimator of the respective matrices). Otherwise, the Yule-Walker estimator, which

is guaranteed to satisfy the stationarity condition, is used,

Φ̂Y W =

[
n∑

t=1

(xt − x∗)(xt−1 − x∗)′
][

n∑
t=0

(xt − x∗)(xt − x∗)′
]−1

where x∗ = 1
n+1

∑n
t=0 xt.

3) The bias b is estimated iteratively. In the kth iteration, Φ̂(k−1) and Σ̂
(k−1)
v , which

are the results from the previous iteration, are used to construct b̂(k). Then, b̂(k) is used

to calculate Φ̂(k+1) = Φ̂k + b̂(k)/n and Σ̂
(k+1)
v from the residuals of xt using Φ̂(k+1). This

iteration process terminates if either the current Φ̂(k) corresponds to a non-stationary

model or a preset maximum of K (in our case, K=10) iterations is reached. We obtain

from the last iteration Φ̂c = Φ̂ + b̂/n.

4) The corrected residual series {vc
t} is constructed using,

vc
t = xt − (Θ̂c + Φ̂cxt−1) , t = 1, . . . , n ,

10Empirically, we find that the difference for the estimated bias b using iterative or non-iterative
estimation is small. Therefore, the theoretical covariance matrix of b is well approximated with one
iteration.
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where Θ̂c = x̄t − Φ̂cx̄t−1, the bar indicating sample mean.11

The bias-corrected parameter estimates are α̂c, β̂c, and φ̂c, the OLS estimators from

the augmented regression of yt on a constant, all xj,t−1 and vc
j,t (j = 1, . . . , p), respectively.

A Estimation of Cov[β̂c]

For hypothesis testing in the multiple predictor case, we need a low-bias estimator of

the covariance matrix, Cov[β̂c]. We cannot use the estimated OLS covariance matrix

from the augmented regression, as there is no theoretical justification for this, and indeed

our simulations indicate that it produces extremely inaccurate results. We thus use the

following result, for constructing an estimator of Cov[β̂c].

Lemma 1

E[(β̂c − β)(β̂c − β)′] = E[(Φ̂c − Φ)′(φφ′)(Φ̂c − Φ)] + E[B] (4)

where β̂c is the reduced-bias estimator of β obtained from the mARM , φ is defined in the

multi-predictor model (3), Φ̂c is any estimator of Φ based on x0, . . . , xn, p is the number

of predictors and B is a symmetric (p× p) matrix given by

B =




(
∑n

t=1 r1tet)2

(
∑n

t=1 r2
1t)

2 · · · (
∑n

t=1 r1tet)(
∑n

s=1 rpses)

(
∑n

t=1 r2
1t)(

∑n
s=1 r2

ps)

...
. . .

...
(
∑n

t=1 rptet)(
∑n

s=1 r1ses)

(
∑n

t=1 r2
pt)(

∑n
s=1 r2

1s)
· · · (

∑n
t=1 rptet)2

(
∑n

t=1 r2
pt)

2


 .

Here, rjt (j = 1, . . . , p) are the residuals from an OLS regression of the j′th entry of xt−1

on all other (p − 1) entries of xt−1 as well as all p entries of vc
t and an intercept, with

vc
t = xt − Φ̂cxt−1 − Θ̂.

11The OLS estimator Θ̂ can be used without correction because the bias of β̂c only depends on Φ̂, but
then α̂c is biased.
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Proof: See appendix.

Lemma 2

E[Bi,j] = σ2
eE

[ ∑n
t=1 ritrjt∑n

t=1 r2
it

∑n
t=1 r2

jt

]
, i, j = 1, . . . , p (5)

E[Bj,j] = E
[
ŜE(β̂c

j )
]
, j = 1, . . . , p (6)

where B, β̂c
j and rjt are defined in Lemma 1, σ2

e is the variance of et in Equation (3),

ŜE(β̂c
j ) is the estimated standard error of β̂c

j from the augmented OLS regression of yt on

x1,t−1, . . ., xp,t−1 and vc
1t, . . ., vc

pt with intercept: ŜE(β̂c
j ) = σ̂2

e∑n
t=1 r2

jt
, where σ̂2

e is the OLS

estimate of σ2
e .

Proof: See appendix.

A feasible approximation for Cov[β̂c] is proposed in the next section.

B Implementation

In the implementation, we make the approximation that E(b̂) is b, which is reasonable

since Φ̂c is a low-bias estimator of Φ. Then, we can approximate Cov[β̂c] by E[(β̂c −
β)(β̂c−β)′] and approximate E[(Φ̂c−Φ)′(φφ′)(Φ̂c−Φ)] by Cov[(Φ̂c)′φ] (see equation (4)).

Note that the left-hand side of equation (4) is not Cov[β̂c] = E
[(

β̂c−E(β̂c)
)(

β̂c−E(β̂c)
)′]

because β̂c is a biased estimator of β (although the bias of β̂c is much smaller than that
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of β̂). We use the following feasible estimate12 of Cov[β̂c],

Ĉov
c
[β̂c] = Ĉov[(Φ̂)′φ̂] + Ê[B]

where Ĉov[(Φ̂)′φ̂] and Ê[B] are estimates of Cov[(Φ̂)′φ̂] and E[B], corresponding to the

formulas,

V̂ ar
c
[β̂c

j ] =

p∑
i=1

(φ̂c
i)

2V̂ ar[Φ̂ij]+

p∑
i=1

p∑

k 6=i

2φ̂c
i φ̂

c
kĈov[Φ̂ij, Φ̂kj]+

[
ŜE(β̂c

j )
]2

, (j = 1, . . . , p) (7)

Ĉov
c
[β̂c

i , β̂
c
j ] =

p∑

k=1

p∑

l=1

φ̂c
kφ̂

c
l Ĉov(Φ̂ki, Φ̂lj) +

σ̂2
e(

∑n
t=1 ritrjt)

(
∑n

t=1 r2
it)(

∑n
t=1 r2

jt)
, (i, j = 1, . . . , p) (8)

(Equation (7) is a special case of (8) for i = j). Here, {φ̂c
k}p

k=1 are the estimated coefficients

of vc
j,t(j = 1, . . . , p) in the multi-predictor augmented regression of yt on all xj,t−1(j =

1, . . . , p) and vc
j,t(j = 1, . . . , p), vc

t = xt − Θ̂c − Φ̂cxt−1, which are shown by Amihud

and Hurvich (2004, Lemma 4) to be unbiased,
(
Φ̂c is the reduced-bias V AR(1) coefficient

matrix estimated with iterations based on the bias expression due to Nicholls-Pope (1988),

as proposed in Amihud and Hurvich (2004)
)
, σ̂2

e is the estimated variance of the error

et in this regression: σ̂2
e = RSS

n−(2p+1)
, where RSS is the residual sum of squares of the

augmented regression, Φ̂ is the estimated coefficient matrix of the V AR(1) regression of

xt, obtained by SUR estimation, V̂ ar(Φ̂ij) and Ĉov(Φ̂ki, Φ̂lj) are the estimated variance

and covariance of the coefficients from SUR estimation, {rjt}n
t=1 for (j = 1, . . . , p) are the

residuals as defined in Lemma 1.

12It is possible to estimate cov[(Φ̂c)′φ̂] instead of cov[(Φ̂)′φ̂], where Φ̂c is derived from the Nicholls and
Pope (1988) correction formula using a Taylor-expansion (delta method) and the estimated variance-
covariance matrix of Φ̂. But using cov[(Φ̂)′φ̂] to calculate cov[(Φ̂c)′φ̂] greatly simplifies the calculation
and it is seen in the simulations that the results are still reliable. Therefore we treat φ̂ as if it were
constant and use the estimated variance-covariance matrix of Φ̂ from the seemingly unrelated regression
(SUR) method.
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It is worth noting that for testing the significance of each βj, j = 1, . . . , p, formula (7)

is sufficient. It uses estimates that are directly obtained from most standard statistical

software. Formula (8) is necessary for joint tests of all βj’s.

The following is a summary of the procedure for an example of a two-predictor model.

1) Do SUR of xt on xt−1 to obtain Φ̂ and Cov(Φ̂) which is used in (7) and (8). Use Φ̂

to construct a reduced-bias estimator Φ̂c using Nicholls and Pope’s (1988) bias expression

with iterations (see Amihud and Hurvich (2004, Section 4.2)).

2) Construct the bivariate corrected residual series vc
t = yt − Θ̂ − Φ̂cxt−1. Denote

vc
t = (vc

1,t, v
c
2,t)

′ and xt = (x1,t, x2,t)
′.

3) Obtain β̂c
1 and β̂c

2 as the coefficients of x1,t−1 and x2,t−1 in a regression of yt on

x1,t−1, x2,t−1, vc
1,t and vc

2,t, with intercept. This regression also produces φ̂c
1 and φ̂c

2 as the

coefficients of vc
1,t and vc

2,t, and it produces the (2 × 2) covariance matrix Ĉov[β̂c] whose

diagonal elements are used in (7).

4) Apply formula (7) to get V̂ ar
c
[β̂c

1], V̂ ar
c
[β̂c

2] whose squared root values are used for

the hypothesis testing of β1 and β2.

5) For the joint test of both β1 and β2, calculate {r1t}, the residual from a regression

of x1t on x2t and vc
1,t, vc

2,t, and {r2t} accordingly, then apply formula (8).
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C Hypothesis Testing

Having both β̂c and an estimate of its covariance matrix, we can proceed to hypothesis

testing.

In the mARM , individual tests for each predictive variable with H0 : βj = 0 against

Ha : βj > 0 (one-sided test), or Ha : βj 6= 0 (two-sided test) are performed by using

the standard t-statistics, calculated from β̂c
j and V̂ ar

c
[β̂c

j ]. For the joint test of H0 : all

βj = 0, j = (1, ..., p) against Ha : at least one βj 6= 0, j = (1, ..., p), the standard Wald

test is used, employing the matrix Ĉov
c
[β̂c].

D Simulations

D.1 Estimation of Cov[β̂c]

To access the performance of our suggested method, we do simulations for a two-predictor

case with non-diagonal Φ matrix. β̂c is estimated as in Amihud and Hurvich (2004, Section

5.2.2). In these simulations, we estimate the covariance matrix of β̂c, by (7) and (8), and

use it in hypothesis testing.

INSERT TABLE 3 HERE

Table 3 presents results for two cases of non-diagonal AR(1) parameter matrix Φ.

Case 1:

Φ1 =




.80 .1

.1 .85


 ,
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Case 2:

Φ2 =




.80 .1

.1 .94


 ,

all with

Σv =




2 1

1 2


 .

For all processes, we generated 1500 simulated replications.

In setting the parameter values of Φ we note that in general, the closer the largest

absolute eigenvalue of Φ is to 1, the more nearly non-stationary is the multiple V AR(1)

model. Here, the largest absolute eigenvalues of cases 1 and 2 are 0.928 and 0.992,

respectively. Case 2 is purposely chosen to study a case that is close to non-stationarity.

We observe first that the OLS estimated standard errors from the augmented regres-

sion ŜE(β̂c
1) and ŜE(β̂c

2), are much smaller than the true standard deviations of β̂c
1 and

β̂c
2. As expected, φ̂c

1 and φ̂c
2 are unbiased (true parameter values are φ = (80, 80)) in all

cases here.

Noting that the true parameter values are (β1, β2) = (0, 0). OLS regression gives

biased average estimates of 6.47 and 8.24 for β̂1 and β̂2 for Φ1 and n = 50. The mARM

greatly reduces the average bias to 0.97 and 1.88, respectively. For Φ2, the OLS bias is

greater and also the reduced bias under the mARM is larger, which shows the effect of

the near unit root. As expected, when the sample size increases to 200, on average both

OLS and the mARM generate much smaller bias, but mARM is still much better: the

averages of β̂1 and β̂2 are 1.24 and 2.13 using OLS, while they are -0.23 and 0.41 using

mARM—much closer to 0.
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Now consider the covariance estimation for β̂c
1 and β̂c

2. Under Φ1 with n = 50 and

n=200, ŜE
c
(β̂c

1) is 17.086 and 7.804, respectively, which are close to the actual standard

deviations of 18.221 and 7.915: the relative errors are only 6.2% and 1.4%. For Φ2, where

the V AR(1) process is close to non-stationary, the relative errors are 5.3% and 1.6%. For

β2, the respective errors under Φ1 are 8.4% and 0.2% and for Φ2, they are 14.4% and

6.8%. The estimates Ĉov
c
[β̂c

1, β̂
c
2], which are used for the joint test, are also quite close to

the actual Cov[β̂c
1, β̂

c
2].

Finally, note that φ̂c
1 and φ̂c

2 are unbiased, as expected.

D.2 Hypothesis Testing and its Performance

We now examine the test sizes that are obtained by our method, using the model described

above. The nominal sizes are 1%, 5% and 10% and the sample sizes are 50 or 200.

We present both individual and joint hypothesis tests based on mARM with the

covariance matrix estimated using the method described in section III.A. Both one- and

two-sided tests are performed for both the individual-coefficient test, based on t1 and

t2 for the respective coefficients β1 and β2, and we also present the joint Wald test. To

evaluate the tests performance, we compare our results with the corresponding tests based

on OLS regression of yt on x1,t−1 and x2,t−1 with intercept. But in OLS, the coefficients

are highly biased. Given the performance of the bootstrap method in the single-predictor

case, we do not study it in the multi -predictor case.

The results are summarized in Table 4: t1, t2 are two individual t-tests with superscript
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”one” and ”two”, referring to the one-sided and two-sided tests. ”Wald” is the joint Wald

test. We observe the following results from the simulations:

INSERT TABLE 4 HERE

For the individual tests of each coefficient β1 and β2, the sizes under mARM tests are

uniformly better—closer to nominal—than the simple OLS-based tests. The testing sizes

are fairly accurate for our method when the largest absolute eigenvalue of Φ is not too

close to 1, and also, naturally, when the sample size is larger.

In the joint hypothesis testing of both β1 and β2 being non-zero, we find again that

the mARM -based test improves on the OLS based test. And again, the sizes are closer

to nominal when the largest absolute eigenvalue of matrix Φ is not too close to 1, and of

course when n is larger.

E Empirical Illustration

We illustrate multiple hypothesis testing on actual data: predicting RMV W , the value-

weighted market return of NY SE stocks, by DIV Y , the dividend yield and by SPREAD,

yield spread between 3-month treasure bills and BAA bonds (this combines the term

spread and the default spread, used in earlier studies). Data are quarterly from 02/1963

to 04/2001, and n=155. Both DIV Yt, and SPREADt are of the last month of quarter

t. This analysis is intended to demonstrate our proposed hypothesis testing methodology

for multi -predictor regression, rather than to draw any economic conclusions.

We first examine the parameter matrix Φ of the regressors in the vector autoregressive
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process V AR(1) in a system of equations,

DIV Yt = Φ10 + Φ11DIVt−1 + Φ12SPREADt−1 + v1,t

SPREADt = Φ20 + Φ21DIVt−1 + Φ22SPREADt−1 + v2,t

where v1,t and v2,t are the errors that are serially independent (as obtained from the

Durbin-Watson statistics, 1.8066 for v̂c
1,t and 2.0896 for v̂c

2,t). We obtain Φ̂11 = 0.972,

Φ̂22 = 0.829, Φ̂12 = −0.039 and Φ̂21 = 0.103. The Φ12 entry in the covariance matrix Φ is

significantly non-zero (Φ21 is insignificant), which is further confirmed by using Nicholls

and Pope’s (1988) bias correction as well as by the delta method mentioned in footnote

(8).13 Hence we need to estimate the bivariate augmented regression using the method

for non-diagonal Φ matrix.14 The eigenvalues of this matrix after using the Nicholls-Pope

(1988) method are 0.969 and 0.870.

The augmented regression is,

RMV Wt = β0 + β1DIV Yt−1 + β2SPREADt−1 + φ1v
c
DIV Y,t + φ2v

c
SPREAD,t,

where {vc
DIV Y,t} and {vc

SPREAD,t} are the residuals obtained from the bivariate estimation

procedure after using Nicholls and Pope (1988) correction for matrix Φ. The estimation

results of this augmented regression are presented in Table 5, Panel A. The OLS regression

gives β̂1 = 1.2041 and β̂2 = 0.8092. Both coefficients are significant at 5% level using the

t-statistics.

INSERT TABLE 5 HERE

13Detailed results from the delta method are available upon request.
14If Φ is diagonal, Amihud and Hurvich (2004) presents a simple method of estimating the augmented

regression.
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However, the OLS predictive regression coefficients β̂ and the corresponding test

statistics are biased in finite samples since we find that the unbiased estimated coeffi-

cients φ are nonzero: φ̂c
1 = −23.854 and φ̂c

2 = −0.507.

Using the multi-predictor mARM , we obtain the reduced-bias coefficients β̂c
1 = 0.8273,

about 70% of β̂1 and β̂c
2 = 0.7229, about 90% of β̂2. With the reduced-bias standard

errors, both coefficients turn out to be not significant at the 5% level two-sided test. β̂1

is not even significant at the 5% level one-sided test. By these results, neither DIV Y nor

SPREAD have significant predictive effect on the value-weighted market return on the

NY SE stocks.

In the joint test, OLS again rejects the null, suggesting that at least one of the

predictors has the predictive power, while mARM -based test dose not detect significant

evidence against the null hypothesis of no effect. The conclusion is consistent with that

from the individual coefficient tests.

IV Concluding Remarks

In this paper, we examine predictive regression models where one variable is predicted by

other variables that are first-order autocorrelated. We make two contributions:

1) We compare two hypothesis testing methods in single-predictor regression — boot-

strapping and Lewellen’s method (2003) — with testing based on the augmented regres-

sion method (ARM). The results show that ARM -based testing outperforms the other

two in most cases, producing more accurate test size and good power. Our method is
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outperformed by Lewellen’s, which assumes some big ρset, only in right-tailed tests with

φ̂(ρ̂c − ρset) > 0. The advantages of the ARM -based testing over other two methods are

demonstrated by simulations and an empirical illustration.

2) We propose a convenient new method to estimate the covariance matrix of the

estimated predictive coefficients β̂c in multi-predictor regressions and evaluate its per-

formance, using both simulations and an empirical illustration. The individual t-tests,

especially the one-sided test, perform well in terms of controlling testing sizes and are

more accurate than the simple OLS-based test. Our method also enables joint testing

of all predictive coefficients using the Wald test which also produces more accurate size

than the benchmark OLS based method. The advantage is greater when the sample size

is small and/or the coefficient matrix Φ of the regressors vector autoregressive model has

eigenvalues close to unit root.
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V Appendix

A Proof of Lemma 1

We can write

yt = α̃ + {β′ + φ′(Φ̂c − Φ)}xt−1 + φ′vc
t + et , (9)

where α̃ = α + φ′(Θ̂c − Θ) is a constant with respect to t. Next, define the p × 1

vectors {rt}n
t=1 by rt = (r1t, . . . , rpt)

′ where for j = 1, . . . n, {rjt}n
t=1 is the (row) vector of

residuals from a 2p−1-variable OLS regression of the j’th entry of xt−1 on all other entries

of xt−1 as well as all p entries of vc
t and an intercept. Correspondingly, define {r̃t}n

t=1 by

r̃t = (r1t/Σ r2
1t, . . . , rpt/Σ r2

pt )′ and write xt = (x1t, . . . , xpt)
′, and vc

t = (vc
1t, . . . , v

c
pt)

′. It

follows that

β̂c =
n∑

t=1

r̃tyt , (10)

and for all j, k ∈ {1, . . . , p} with j 6= k,

n∑
t=1

r̃jt =
n∑

t=1

r̃jt xk,t−1 =
n∑

t=1

r̃jt v
c
jt =

n∑
t=1

r̃jt v
c
kt = 0 , (11)

and
n∑

t=1

r̃jt xj,t−1 =
n∑

t=1

r̃jt rjt = 1 . (12)

Substituting yt from (9) in (10) and using (11) and (12) yields

β̂c = β + (Φ̂c − Φ)′φ +
n∑

t=1

r̃tet . (13)

The Lemma now follows, since et has mean 0 and is independent of r̃t and Φ̂c. ¤
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B Proof of Lemma 2

The matrix B is defined as in Lemma 1,

B =




(
∑n

t=1 r1tet)2

(
∑n

t=1 r2
1t)

2 · · · (
∑n

t=1 r1tet)(
∑n

s=1 rpses)

(
∑n

t=1 r2
1t)(

∑n
s=1 r2

ps)

...
. . .

...

(
∑n

t=1 rptet)(
∑n

s=1 r1ses)

(
∑n

t=1 r2
pt)(

∑n
s=1 r2

1s)
· · · (

∑n
t=1 rptet)2

(
∑n

t=1 r2
pt)

2




First, we show the independence between {et} and {rjt}.

Because vc
t = xt − Θ̂ − Φ̂c and Θ̂, Φ̂c are all functions of xt, all entries of vc

t must be

functions of xt. But et is independent of xt and vt, so et must be independent of vc
t and

therefore independent of rit or rjt for any i, j = 1, . . . , p. Recall that et has mean zero.

Therefore,

E[Bi,j] = E
[
(

∑n
t=1 ritet∑n
t=1 r2

it

)(

∑n
s=1 rjses∑n
s=1 r2

js

)
]

= E
[∑n

t=1

∑n
s=1 ritrjsetes∑n

t=1 r2
it

∑n
s=1 r2

js

]
= E

[ ∑n
t=1 ritrjte

2
t∑n

t=1 r2
it

∑n
t=1 r2

jt

]

= E
[ ri1rj1e

2
1∑n

t=1 r2
it

∑n
t=1 r2

jt

]
+ . . . + E

[ rinrjne2
n∑n

t=1 r2
it

∑n
t=1 r2

jt

]

= E
[ ri1rj1∑n

t=1 r2
it

∑n
t=1 r2

jt

]
E[e2

1] + . . . + E
[ rinrjn∑n

t=1 r2
it

∑n
t=1 r2

jt

]
E[e2

n]

= E
[ ri1rj1∑n

t=1 r2
it

∑n
t=1 r2

jt

]
σ2

e + . . . + E
[ rinrjn∑n

t=1 r2
it

∑n
t=1 r2

jt

]
σ2

e

= σ2
eE

[ ∑n
t=1 ritrjt∑n

t=1 r2
it

∑n
t=1 r2

jt

]

which is formula (5).

As a special case, when i = j, formula (5) simplifies to,

E[Bj,j] = E
[
(

∑n
t=1 rjtet∑n
t=1 r2

jt

)2
]

= σ2
eE

[ 1∑n
t=1 r2

jt

]
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It remains to be shown that,

σ2
eE

[ 1∑n
t=1 r2

jt

]
= E

[ σ̂2
e∑n

t=1 r2
jt

]
(14)

Let H = X(X ′X)−1X ′ denote the hat matrix for the regression of yt on all xj,t−1 and

vc
jt, (j = 1, . . . , p), where X = [1n, x1,t−1, . . . , xp,t−1, v

c
1t, . . . , v

c
pt]. Let ε denote the residual

vector and e the error vector from this regression, so that ε = (I−H)y = (I−H)e, where

I denotes an n× n identity matrix. Conditionally on X, we have

n∑
t=1

ε2
t = e′(I −H)e ∼ σ2

eχ
2
n−(2p+1) ,

and since the random variable on the righthand side does not depend on X, the result is

true unconditionally as well. Thus,

σ̂2
e =

1

n− (2p + 1)

n∑
t=1

ε2
t

is an unbiased estimator of σ2
e , that is, E[σ̂2

e ] = σ2
e . Now, we have

E

[
σ̂2

e∑n
t=1 r2

jt

| X
]

= E

[
1

n− (2p + 1)

e′(I −H)e∑n
t=1 r2

jt

| X
]

=
( 1∑n

t=1 r2
jt

)( 1

n− (2p + 1)

)
E[σ2

eχ
2
n−(2p+1)]

= σ2
e

1∑n
t=1 r2

jt

.

Taking expectations of both sides and using the double expectation theorem yields formula

(14). Thus formula (6) is proved. ¤
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Table 1: Hypothesis Testing Using Various Methodologies

The tables compare the performances of hypothesis testing under bootstrapping methods

(nonparametric (BSN), parametric-fixed (BSPf ) and parametric-random (BSPr)),

the Lewellen’s (2003) method (L) under three assumed autoregressive coefficient

(ρset = 0.9721, 0.9821, 0.99, 0.999 or 0.9999), a modified Lewellen’s method (LM) and the

augmented regression method (ARM), all discussed in the section II.A.

Hypothesis testings performed are both one- and two-sided at sizes 1%, 5% and 10%.

Size is the the probability of the type I error.

The parameters are: ρ = 0.9821, β = 0.1329 and φ = −3.28, with n = 154, ut = φvt + et,

where {vt} and {et} are mutually independent i.i.d. normal random variables whose

standard deviation are, respectively, 0.02046 and 0.04017.

The null hypothesis is H0 : β = 0.1329. The alternative hypothesis is Ha : β > 0.1329 for

the one-sided test and Ha : β 6= 0.1329 for the two-sided test.

Panel A: Sizes for the various methods (The differences to the nominal sizes when

ρset = 0.9821 are due to the simulation errors).

size tARM BSN BSPf BSPr L(0.9721) L(0.9821) L(0.99) L(0.999) L(0.9999) LM

One-sided test

1% 0.7% 8.9% 11.6% 9.9% 6.7% 0.6% 0.1% 0.0% 0.0% 11.5%

5% 5.0% 13.7% 15.7% 13.0% 20.0% 4.9% 1.4% 0.1% 0.1% 20.1%

10% 10.1% 18.6% 21.0% 17.1% 30.2% 9.1% 2.8% 0.6% 0.5% 25.2%

Two-sided test

1% 2.0% 15.5% 18.3% 28.7% 4.5% 0.9% 2.4% 11.5% 13.3% 23.1%

5% 7.9% 26.2% 30.3% 41.7% 12.4% 4.7% 9.9% 26.5% 29.0% 37.0%

10% 13.9% 34.0% 38.5% 50.3% 20.9% 10.5% 16.4% 38.5% 40.9% 45.4%
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Table 2: Hypothesis Testing: Quarterly Stock Return Predicted by Lagged

Earning Price Ratio.

The models are,

RMV Wt = α + βEPt−1 + ut (1)

EPt = θ + ρEPt−1 + vt (2)

RMV W is the value-weighted NY SE quarterly stocks return, EP is the earning price

ratio on the last month of the quarter. The data are from 03/1963 to 04/2001, 154

observations.

Panel A: Ordinary least square (OLS) estimation.

Coefficient Estimated value t-statistics

β̂ 0.2169 2.4245

ρ̂ 0.9565 40.9069

Panel B: Bootstrapping (BS) methods (Section II.A.1). β̂A = 0.1328, and we generate

2500 β̂boot.

Procedure Mean Variance Maximum Minimum p-value

nonparametric BSN -1.16 0.53 0.26 -6.73 0.000

parametric-fixed BSPf -1.47 0.43 -0.38 -5.01 0.000

parametric-random BSPr -4.79 10.96 -0.50 -34.91 0.000

Panel C: The Lewellen’s method (Section II.A.2)

ρset Estimated β̂L t-statistic p-value (one-sided)

0.99 0.1069 2.3123 0.011

0.999 0.0774 1.6737 0.048

0.9999 0.0744 1.6098 0.055

Panel D: Under the augmented regression method:

RMV Wt = α + βEPt−1 + φvc
t + et

β̂c = 0.1329 with t = 1.460 (p-value=0.0732, one-sided), ρ̂c = 0.9821 and φ̂c = −3.28. vc
t

is obtained using model (2) and ρ̂c. 39



Table 3: Simulation Results: Parameter Estimates for a Two-predictor

Model

1500 replications from the two-predictor models.

yt = α + β′xt−1 + ut , (3)

xt = θ + Φxt−1 + vt . (4)

where β, xt, θ and vt are (2× 1) matrices. Φ is a (2× 2) matrix, i.e.

yt = α + β1x1,(t−1) + β2x2,(t−1) + ut ,




x1,t

x2,t


 =




θ1

θ2


 +




Φ11 Φ12

Φ21 Φ22







x1,(t−1)

x2,(t−1)


 +




v1t

v2t




Table 3 presents estimation results of the two-predictor model by OLS and SUR as

well as by the multi-predictor augmented regression method (mARM). The five-step

estimation procedure is described in Section III.B.

The parameters are: α = 0, β = (0, 0)′, Θ = (0, 0)′, ut = φ′vt + et, et is N(0, 1),

φ = (φ1, φ2)
′ = (−80,−80)′, vt is N(0, Σv). {et} and {vt} are mutually and serially inde-

pendent. n = 50 or 200.
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Two cases are considered for non-diagonal V AR(1) parameter matrices,

Φ1 =

(
.80 .1

.1 .85

)
,

and

Φ2 =

(
.80 .1

.1 .94

)
,

all with

Σv =

(
2 1

1 2

)
.

Φ1 has eigenvalues of 0.722 and 0.928, while Φ2 has eigenvalues of 0.748 and 0.992 (which

is close to the unit root).

In the table, β̂j and β̂c
j are the OLS and mARM -estimated coefficients, ŜE(β̂j) and

ŜE(β̂c
j ) are the corresponding estimated standard errors, Φ̂ij are the SUR-estimated

V AR(1) coefficients of {xt}, φ̂c
j is the estimated coefficient of vc

t,j from mARM (vc
t,j is

the bias-corrected residual of xt in the V AR(1) model), ŜE
c
(β̂c

j ) and Ĉov
c
(β̂c

i , β̂
c
j ) are the

corrected variance and covariance estimates of β̂c using (7) and (8), the actual standard

deviations of the corresponding estimates are denoted by Std.Dev., TrueCov is the true

covariance based on 1500 simulations.
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Table 3: Results for the two-predictor model (3) and (4)

(n=50) (n=200)

Φ1 Φ2 Φ1 Φ2

β̂1 6.46716 6.93237 1.24331 1.23748

ŜE(β̂1) 17.62317 17.51045 7.86316 7.83703

Std.Dev.(β̂1) 19.87061 19.62003 8.19269 8.25446

β̂c
1 0.96890 2.41613 -0.23136 0.01302

ŜE
c
(β̂c

1) 17.08633 16.97704 7.80397 7.77803

Std.Dev.(β̂c
1) 18.22078 17.92875 7.91485 7.90856

ŜE(β̂c
1) 0.0925 0.0930 0.0402 0.0402

β̂2 8.24193 10.17698 2.13111 2.61111

ŜE(β̂2) 16.12600 12.82955 6.95677 4.74827

Std.Dev.(β̂2) 18.36973 15.37440 7.13647 5.19485

β̂c
2 1.87715 3.03556 0.414517 0.71549

ŜE
c
(β̂c

2) 15.63476 12.43873 6.90440 4.71252

Std.Dev.(β̂c
2) 17.06413 14.53531 6.91680 5.05692

ŜE(β̂c
2) 0.0846 0.0684 0.0356 0.0244

φ̂c
1 -79.99782 -79.99842 -79.99776 -79.99771

φ̂c
2 -80.00081 -80.00023 -80.0025 -80.00249

Φ̂11 0.7110 0.7052 0.7799 0.7794

Φ̂21 0.1082 0.1081 0.1045 0.1052

Φ̂12 0.0939 0.0784 0.0981 0.0931

Φ̂22 0.7530 0.8344 0.8253 0.9142

Ĉov
c
(β̂c

1, β̂
c
2) -190.36825 -149.0707 -42.38445 -31.63200

TrueCov(β̂c
1, β̂

c
2) -191.11986 -144.61550 -39.95334 -31.19948
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Table 4: Simulation Results: Test Sizes for Two-predictor Model

The parameters are the same as in Table 3. 1500 replications from the double-predictor

models.

Test sizes are 1%, 5% and 10%. The sizes obtained from the multi-predictor augmented

regression method (mARM) is compared with the benchmark method: OLS. Two

sample sizes of n=50 and 200 are considered. Φ1 and Φ2 are the same as described in

Table 3.

t1 and t2 are the t-statistics for coefficients β1 and β2. Wald test is done based on the

estimated variance covariance matrix from either OLS or the augmented regression.

The superscript ”one” and ”two” are used for the one- and two-sided tests.
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Table 4: Results for the two-predictor model hypothesis testing

1) 1% test,

Test type Individual tests Joint test

tone
1 tone

2 ttwo
1 ttwo

2 Wald

OLS n=50 Φ1 4.0% 4.2% 2.7% 2.9% 4.1%

Φ2 4.0% 8.4% 2.8% 5.5% 7.5%

n=200 Φ1 1.7% 2.4% 1.3% 1.3% 1.7%

Φ2 1.9% 4.4% 1.5% 3.1% 4.7%

mARM n=50 Φ1 1.9% 1.6% 2.0% 2.0% 3.8%

Φ2 1.7% 3.5% 1.9% 2.6% 4.2%

n=200 Φ1 1.1% 1.1% 1.1% 0.7% 1.5%

Φ2 1.3% 1.9% 0.9% 1.7% 3.8%

2) 5% test,

Test type Individual tests Joint test

tone
1 tone

2 ttwo
1 ttwo

2 Wald

OLS n=50 Φ1 11.9% 15.3% 9.2% 10.6% 12.3%

Φ2 12.9% 23.3% 9.2% 16.1% 21.8%

n=200 Φ1 7.3% 8.9% 6.3% 6.1% 7.9%

Φ2 7.4% 14.6% 6.7% 9.7% 15.2%

mARM n=50 Φ1 6.6% 7.1% 6.9% 6.6% 9.9%

Φ2 6.9% 9.9% 6.1% 8.7% 10.8%

n=200 Φ1 4.8% 5.5% 6.1% 5.1% 7.0%

Φ2 5.1% 7.7% 6.0% 6.4% 10.9%
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3) 10% test,

Test type Individual tests Joint test

tone
1 tone

2 ttwo
1 ttwo

2 Wald

OLS n=50 Φ1 20.1% 25.1% 16.3% 18.8% 21.5%

Φ2 20.1% 33.4% 16.8% 25.1% 33.6%

n=200 Φ1 12.7% 16.3% 11.5% 12.0% 13.1%

Φ2 12.6% 24.3% 12.3% 16.7% 24.3%

mARM n=50 Φ1 11.0% 13.0% 12.1% 13.0% 16.3%

Φ2 12.6% 15.9% 12.1% 14.6% 17.7%

n=200 Φ1 9.1% 10.4% 10.5% 9.8% 13.1%

Φ2 9.3% 13.6% 11.0% 12.0% 17.5%
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Table 5: Hypothesis Testing of a Bivariate Model

The table presents results of the following models:

RMV Wt = α + β1DIV Yt−1 + β2SPREADt−1 + ut (5)




DIV Yt

SPREADt


 =




θ1

θ2


 +




Φ11 Φ12

Φ21 Φ22







DIV Yt−1

SPREADt−1


 +




v1t

v2t


 (6)

where RMV W is the value-weighted NY SE stocks return, DIV Y is the dividend yield

and SPREAD is the yield spread between annual yields of 3-month treasure bills and

BAA bonds. All data are in the percentages. Returns are quarterly, and the predictive

variables are observed on the last month of the lagged quarter. The period is 2/1963 -

4/2001.

The estimated predictive models are:

a) OLS predictive regression: following model (5).

b) Multi-predictor augmented regression method (mARM):

RMV Wt = α + β1DIV Y1,t−1) + β2SPREADt−1 + φ1v̂
c
DIV Y,t + φ2v̂

c
SPREAD,t + ut. (7)

The v̂c
DIV Y,t and vc

SPREAD,t are the residuals from the V AR(1) regression of DIV Yt and

SPREADt. They are calculated following the procedure described in the reduced-bias

method of Nicholls and Pope (1988). V̂ ar
c
(β̂c

1), V̂ ar
c
(β̂c

2) and Ĉov
c
(β̂c

1, β̂
c
2) are

calculated using the formula (7) and (8) in the paper, for both DIV Y and SPREAD.
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Estimate β̂ is obtained from OLS regressions of model described by (5). Estimate β̂c are

obtained from the regression of model described by (7).

In parentheses there are the standard errors of the estimated coefficients and [t] is the

corresponding t-statistic.

For individual tests of β1 and β2:

Model Coefficient DIV Yt−1 SPREADt−1

OLS β̂ 1.2041 0.8092

(ŜE[β̂]) [t] (0.5882) [2.05] (0.3845) [2.10]

mARM β̂c 0.8293 0.7231

(ŜE[β̂c]) [t] (0.2069) [4.01] (0.1351) [5.35]

(ŜE
c
[β̂c]) [t] (0.5838) [1.42] (0.3816) [1.89]

φ̂c -23.854 -0.507

For joint test of (β1, β2):

Estimated covariance

Model Ĉov(β̂c
1, β̂

c
2) Wald-statistics p-value

OLS -0.02262 9.58 0.008

mARM 0.00848 5.41 0.067
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