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Abstract

We study the impact on asset prices of illiquidity associated with
search and bargaining in an economy in which agents can trade only
when they find each other. Marketmakers’ prices are higher and bid-
ask spreads are lower if investors can find each other more easily.
Prices become Walrasian as investors’ or marketmakers’ search inten-
sities get large. Endogenizing search intensities yields natural welfare
implications. Information can fail to be revealed through trading when
search is difficult.
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1 Introduction

In some markets, an investor who wants to sell an asset must search for a
buyer, incurring opportunity or other costs until a buyer is found. When two
counterparties meet, their bilateral relationship is inherently strategic. Prices
are set through a bargaining process that reflects each investor’s alternatives
to immediate trade. The buyer, in particular, considers the costs that he will
eventually incur when he wants to sell, and so on for all future owners.
We build a dynamic asset-pricing model that captures these features. We

study allocations, prices between investors, and marketmakers’ bid and ask
prices. We show how these equlibrium properties depend on investors’ search
abilities, marketmaker accessibility, and bargaining powers. We determine
the search intensities that marketmakers choose, and derive the associated
welfare implications of investment in marketmaking. Further, we show how
search frictions may prevent information from being revealed through trad-
ing.
Our model of search is a variant of the coconuts model of Diamond (1982).

A continuum of investors contact each other, independently, at some mean
intensity λ, a parameter reflecting search ability. Similarly, marketmakers
contact agents at some intensity ρ, a parameter reflecting dealer availability.
When agents meet they bargain over the terms of trade. Gains from trade
arise from heterogeneous discount rates, or from heterogeneous costs or ben-
efits of holding assets. For example, an agent with a high discount rate or
with costs of holding assets may be viewed as one in financial distress. The
search-and-bargaining structure of our trading model is similar to that of the
monetary model of Trejos and Wright (1995); our objectives and results are
different.
Some of the research on the impact of transactions costs on asset pric-

ing, for example by Amihud and Mendelson (1986), Constantinides (1986),
Vayanos (1998), and Huang (1998), concentrate on exogenously specified
trading costs. The endogenous impact of asymmetric information on trad-
ing costs and asset prices has been addressed by Wang (1993) and Gârleanu
and Pedersen (2000). We complement this literature with an analytically
tractable framework for asset pricing in the presence of search and bargain-
ing.
While abstract, we view the theory of asset pricing, brokerage activity,

and spreads presented here as helpful and empirically relevant (although
by no means complete) for many off-exchange bilateral-trade markets in
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which one does not anticipate immediate identification of counterparties with
whom there are likely gains from trade. These may include certain over-the-
counter (OTC) markets such as those for mortgage-backed securities, corpo-
rate bonds, emerging-market debt, bank loans, and certain OTC derivatives,
among others.
Although we do not address some of the salient features of real-estate

markets, especially heterogeneous preferences over multi-dimensional asset
quality, we believe that we do capture some of the impact on real-estate values
of the roles of search and bargaining, the relative impatience of investors for
liquidity and of their outside options for trade, and the role and profitability
of brokers.
Duffie, Gârleanu, and Pedersen (2001) use this modeling framework to

characterize the impact on asset prices and securities lending fees of the
common institution by which would-be shortsellers must locate lenders of
securities before being able to sell short. Difficulties in locating lenders of
shares can allow for dramatic price “imperfections,” as, for example, in the
case of the spinoff of Palm, Incorporated, documented by Lamont and Thaler
(2001).
We show that our model specializes in a specific way to the standard

general-equilibrium paradigm as bilateral trade becomes increasingly active,
under conditions to be described, extending a chain of results by Rubinstein
and Wolinsky (1985), Gale (1987), Gale (1986a), Gale (1986b), and McLen-
nan and Sonnenschein (1991), in a manner explained later in our paper.
Thus, “standard” asset-pricing theory is not excluded, but rather is found at
the end of the spectrum of increasingly “active” markets.
Market frictions have been used to explain the existence and behavior

of marketmakers. For example, marketmakers’ bid and ask prices have been
explained by inventory considerations (Garman (1976), Amihud and Mendel-
son (1980), and Ho and Stoll (1981)), and by adverse selection arising from
asymmetric information (Bagehot (1971), Glosten and Milgrom (1985), and
Kyle (1985)). In our model, bid and ask prices are set in light of search
frictions. We consider differences between the behavior of monopolistic and
of competing marketmakers. Gehrig (1993) and Yavaş (1996) consider mo-
nopolistic marketmaking in one-period models in which investors may search
for each other. We find, however, that the dynamics of our setting are im-
portant in determining agents’ bargaining positions, and thus asset prices,
bid-ask spreads, and investments in market-making capacity.
Marketmakers’ bid and ask prices depend on investors’ reservation val-
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ues, which reflect the accessibility of marketmakers as well as investors’ own
abilities to find counterparties. Indeed, we show that marketmakers’ bid-ask
spreads approach zero as investors’ search frictions become negligible. The
experimental results of Lamoureux and Schnitzlein (1997) support this in-
tuition. Gehrig (1993) and Yavaş (1996) have already shown in one-period
models that bid-ask spreads decline with increasing investor search.
In our model, despite the bilateral nature of bargaining between a mar-

ketmaker and an investor, marketmakers are effectively in competition with
each other over order flow, given the option of investors to search for bet-
ter terms. Thus, Walrasian equilibria obtain in the limit as marketmakers’
contact intensities become large, provided that marketmakers do not have
total bargaining power. In contrast, an increase in the search intensity of a
monopolistic marketmaker actually leads to wider spreads, due to the wors-
ening of the investors’ outside options, through a reduction in the number of
agents with whom there are trading gains.
Studying endogenous search in labor markets, Mortensen (1982) and Ho-

sios (1990) find that agents may choose inefficient search levels because they
do not internalize the gains from trade realized by future trading partners.1

We consider marketmakers’ choices of search intensity, and the social effi-
ciency of these choices. A monopolistic marketmaker imposes a negative
externality on investors because his intermediation renders less valuable the
opportunity of investors to trade directly with each other. A monopolistic
marketmaker thus provides a higher than socially efficient level of interme-
diation. Competitive marketmakers may provide even more intermediation,
as they do not take into account how their search intensities affect the equi-
librium allocation of assets among investors.
If investors may have asymmetric information about future dividends

and can observe prices, then prices may reveal all or part of the private
information through a rational-expectations equilibrium (Grossman (1981)
and Grossman and Stiglitz (1980)). In a setting related to ours, with bar-
gaining and asymmetric information, Wolinsky (1990) constructs a steady-
state partially-revealing equlibrium.2 Introducing asymmetric information,
we provide a simple example in which investors are sufficiently anxious to
arrive at a bargain that they trade at “pooling prices” that reveal no infor-
mation at all.

1Moen (1997) shows that search markets can be efficient under certain conditions.
2See also Serrano and Yosha (1993) and Serrano and Yosha (1996).
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Potential extensions of our model might allow for endogenous fluctuation
in the population of, and ease of identification of, active buyers, due to
feedback effects between asset returns and the creditworthiness of investors.

2 Trade among Investors

This section introduces an economy in which agents can trade only when they
meet each other. Transaction prices are determined through bargaining. We
compare allocations and prices to those prevailing in a perfect Walrasian
market. Later, in Section 3, we introduce marketmakers.

2.1 Model

We fix a probability space (Ω,F , P r) and a filtration {Ft : t ≥ 0} of sub-
σ-algebras satisfying the usual conditions, as defined by Protter (1990), rep-
resenting the resolution over time of information commonly available to in-
vestors. (Asymmetric information is briefly considered later in the paper.)
A single non-storable consumption good is used as a numeraire. A single

asset pays a strictly positive progressively-measurable dividend process X.
For simplicity, we suppose a constant conditional expected dividend growth

rate of c, so that, for any times t and s > t, we have Et(Xs) = Xte
c(s−t),

where Et denotes expectation conditional on the information Ft available
at time t. This includes such traditional examples as geometric Brownian
dividends, or a consol bond, for which Xt = 1 for all t.
Each agent is risk-neutral and infinitely lived, with a time-preference

type, “high” or “low,” described by a two-state Markov chain. A high-type
agent has a high rate rh of time preference.

3 A low-type agent has a time
preference rate rl ≤ rh. The switching intensity of low to high is λu; the
switching intensity from high to low is λd.
In order to illustrate certain concepts, we also suppose that high-type

agents lose a fraction δ ≥ 0 of any asset cash flows. Of the inequalities
3A discount-rate process r is predictable, with

∫ T
0
|r(t)| dt < ∞ almost surely. A

cumulative consumption process is a finite-variation process C with the property that

E
[∫∞
0
exp
(∫ t
0
−r(s) ds

)
(dC+(s) + dC−(s))

]
<∞, where C can be decomposed as C =

C+ − C−, with C+ and C− increasing adapted processes. Consumption processes are
ranked by an agent with discount rate r according to the utility function that assigns to

each cumulative consumption process C the utility E
[∫∞
0 exp

(∫ t
0 −r(s) ds

)
dC(t)

]
.
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rl ≤ rh and δ ≥ 0, at least one is strict, setting up strict gains from trade.
For a transversality-like condition, we assume that c < rl.
A fraction s of investors are initially endowed with one unit of the asset.

Investors can hold at most one unit of the asset and cannot shortsell. Because
agents have linear utility, we can restrict attention to equilibria in which, at
any given time and state of the world, an agent holds either 0 or 1 unit of
the asset. Hence, the full set of agent types is T = {ho, hn, lo, ln}, with the
letters “h” and “l” designating the agent’s time-preference state, as above,
and with “o” or “n” indicating whether the agent owns the asset or not,
respectively.
We suppose that there is a “continuum” (a non-atomic finite measure

space) of agents, and let µσ(t) denote the fraction at time t of agents of type
σ ∈ T . Agent’s time-preference type processes are pair-wise independent,
setting up a later application of the law of large numbers.
Because the fractions of each type of agent add to 1 at any time t,

µho(t) + µhn(t) + µlo(t) + µln(t) = 1. (1)

Because the total fraction of agents owning an asset is s,

µho(t) + µlo(t) = s. (2)

Any two agents are free to trade the asset whenever they meet, for a
mutually agreeable number of units of current consumption. (The determi-
nation of the terms of trade is to be addressed later.) Agents meet, however,
only at random times, in a manner idealized as follows. At the event times of
a Poisson process with some intensity parameter λ, an agent contacts some
other agent, chosen at random. The exponential inter-contact-time distribu-
tion is natural, as it would arise from Bernoulli (independent success-failure)
trials at contact, with a probability of λ∆ of successful contact during a
contact-time interval of length ∆, in the limit as ∆ goes to zero.
Because, conditional on a contact, the agent chosen for contact is drawn

at random, “equally likely,” the probability of contacting an agent who is
a member of a set of agents of mass µ is µ. We suppose that the contact
processes of agents are pair-wise independent, and appeal informally to the
law of large numbers (see Footnote 7), under which, for a set of agents of
current mass µA(t), contact is made with another group of agents of current
mass µB(t) continually at the total current rate 2λµA(t)µB(t). Our random-
matching formulation and appeal to the law of large numbers is typical of the
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recent monetary literature (for instance, Trejos and Wright (1995) and ref-
erences therein).4 We also suppose that random switches in time-preference
types are independent of the matching processes.
An alternative to our informal appeal to the law of large numbers is to

construct a sequence of random-matching economies with increasingly large
finite populations, and to treat our results in the form of limits of equilibria,
which seems an unappealing distraction from our main goal.

2.2 Dynamic Bargaining Equilibrium

In this section we compute explicitly the allocations and prices in a dynamic
bargaining equilibrium.
In equilibrium, trades are between high-type (impatient to consume) asset

owners and low-type non-owners. When these agents meet, they bargain over
the price. An agent’s bargaining position depends on his outside option,
which in turn depends on the mass of other counterparties, both now and in
the future. In deriving the equilibrium, we rely on the insight from bargaining
theory that trade happens instantly.5 This allows us to derive a dynamic
bargaining equilibrium in two steps. First, we derive the equilibrium masses
of the different investor types. Second, we compute agents’ value functions
and transaction prices (taking as given the masses).
The rate of change of the mass µho(t) of high-type owners is

µ̇ho(t) = −2λµln(t)µho(t)− λdµho(t) + λuµlo(t). (3)

The first term reflects the fact that agents of type ln contact those of type ho
at a total rate of λµln(t)µho(t), while agents of type ho contact those of type
ln at the same total rate λµln(t)µho(t). At both of these types of encounters,
the agent of type ho becomes one of type hn. This implies a total rate of
reduction of mass due to these encounters of 2λµln(t)µho(t). The last two

4More generally, if search intensities vary across agents, with agent x having contact
intensity λ(x), then, under regularity conditions for random matching, contact between
a subset A of agents and a subset B of agents would occur continually at the total rate
µ(B)

∫
A
λ(x)µ(dx) + µ(A)

∫
B
λ(x)µ(dx), where µ is the measure on the space of agents.

5In general, bargaining leads to instant trade when agents do not have asymmetric
information. Otherwise there can be strategic delay. In our model, it does not matter
whether agents have private information about their own type for it is common knowledge
that a gain from trade arises only between between high-type asset owners and low-type
non-owners.
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terms reflect the migration of owners from high to low discount rates, and
from low to high discount rates, respectively.
The rate of change of µln is, likewise,

µ̇ln(t) = −2λµln(t)µho(t)− λuµln(t) + λdµhn(t). (4)

When agents of type ln and ho trade, they become of type lo and hn,
respectively, so

µ̇lo(t) = 2λµln(t)µho(t)− λuµlo(t) + λdµho(t) (5)

and

µ̇hn(t) = 2λµln(t)µho(t)− λdµhn(t) + λuµln(t). (6)

We note that Equations (1)–(4) imply Equations (5)–(6).
In most of the paper we focus on stationary equilibria, that is, equilibria

in which the masses are constant. In our welfare analysis, however, it is more
natural to take the initial masses as given, and, therefore, we develop some
results with any initial mass distribution. The following proposition asserts
the existence, uniqueness, and stability of the steady state.

Proposition 1 There is a unique constant solution µ = (µho, µhn, µlo, µln) ∈
[0, 1]4 to equations (1)–(6). From any initial condition µ(0) ∈ [0, 1]4 satisfy-
ing (1) and (2), the unique solution µ(t) to this system of equations converges
to µ as t→∞.

A particular agent’s type process {σt : −∞ < t < +∞} is, in steady-
state, a 4-state Markov chain with state-space T , and with constant switch-
ing intensities determined in the obvious way6 by the steady-state population
masses µ and the intensities λ, λu, and λd, and with a steady-state probabil-
ity distribution that is the same as the equilibrium constant cross-sectional
distribution µ of types characterized in Proposition 1.7

6For example, the transition intensity from state ho to state lo is λd, the transition
intensity from state ho to state hn is 2λµhn, and so on, for the 4× 3 switching intensities.
7 Intuitively, this follows from the law of large numbers. Formally, we use Theorem

C of Sun (2000) to construct our probability space (Ω,F , P r) and agent space [0, 1],
with an appropriate σ-algebra making Ω × [0, 1] into what Sun calls a “rich space,” with
the properties that: (i) for each individual agent in [0, 1], the agent’s type process is
indeed a Markov chain in T with the specified generator, (ii) the unconditional probability
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We now turn to the determination of transaction prices. We first conjec-
ture, and verify shortly, a natural steady-state equilibrium utility at time t
for remaining lifetime consumption for a particular agent that depends only
on the agent’s current type σt ∈ T and the current dividend rate Xt, so
that we may write V (Xt, σt) for this utility. Likewise, we conjecture that the
trade price at time t is of the form P (Xt) for some P : R+ → R+.
In order to calculate V and P , we consider a particular agent and a

particular time t, let τr denote the next (stopping) time at which that agent’s
time-preference type changes, let τm denote the next (stopping) time at which
a counterparty with gain from trade is met, and let τ = min{τr, τm}. Then,
by definition,

V (Xt, ho) = Et

[∫ τ
t

e−rh(u−t)(1− δ)Xu du+ e−rh(τr−t)V (Xτr , lo)1{τr<τm}

+e−rh(τm−t) (V (Xτm , hn) + P (Xτm)) 1{τr≥τm}

]

V (Xt, hn) = Et

[
e−rh(τr−t)V (Xτr , ln)

]
(7)

V (Xt, lo) = Et

[∫ τr
t

e−rl(u−t)Xu du+ e−rl(τr−t)V (Xτr , ho)
]

V (Xt, ln) = Et

[
e−rl(τr−t)V (Xτr , hn)1{τr<τm}+

e−rl(τm−t) (V (Xτm , lo)− P (Xτm)) 1{τr≥τm}
]
.

A low-type non-owner has a reservation value ∆Vl(Xt) = V (Xt, lo)−V (Xt, ln)
for buying the asset, and a high-type owner has a reservation value ∆Vh(Xt) =
V (Xt, ho)−V (Xt, hn) for selling the asset. The gain from trade between these
agents is ∆Vl(Xt)−∆Vh(Xt). We study equilibria in which the seller gets a
fixed fraction, q, of the gain from trade, in that

P (Xt) = ∆Vh(Xt)(1− q) + ∆Vl(Xt)q . (8)

This means that the seller’s bargaining power is q. Not all models of bargain-
ing allow the equilibrium bargaining outcome to depend on agents’ outside

distribution of the agents’ type is always the steady-state distribution µ on T given by
Proposition 1, (iii) agents’ type transitions are almost everywhere pair-wise independent,
and (iv) the cross-sectional distribution of types is also given by µ, almost surely, at
each time t. This result settles the issue of existence of the proposed equilibrium joint
probabilistic behavior of individual agent type processes with the proposed cross-sectional
distribution of types. This still leaves open, however, the existence of a random-matching
process supporting the proposed type processes.
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options, as we do.8 We show in Section 4.3, however, that (8) is the out-
come of an alternating-offers bargaining game, and compute q as an explicit
function of the model parameters. With a fixed q, (8) is the outcome of
Nash (1950) bargaining, and any q can be justified in equilibrium by the
simultaneous-offer bargaining game described in Kreps (1990).
Because of the assumption that X has a constant expected growth rate

and the fact that the stopping times considered are the first jump times of
counting processes with constant intensities, there exists an equilibrium in
which the value functions and prices are proportional to X. That is, there
is an equilibrium with V (Xt, σ) = vσXt and P (Xt) = pXt, for coefficients
(vho, vhn, vlo, vln, p). With this, (7)–(8) imply the following equations for the
steady-state equilibrium coefficients.

Theorem 2 There is a steady-state subgame-perfect Nash equilibrium in
which the value and price coefficients (vho, vhn, vlo, vln, p) uniquely solve

0 = rhvho − λd(vlo − vho)− 2λµln(p− vho + vhn)− (1− δ)
0 = rhvhn − λd(vln − vhn)
0 = rlvlo + λu(vlo − vho)− 1 (9)

0 = rlvln + λu(vln − vhn) + 2λµln(p− vlo + vln)
p = (vho − vhn)(1− q) + (vlo − vln)q.

These equations have a unique solution because the associated coeffi-
cient matrix is non-singular. A dynamic-programming argument found in
the appendix confirms that the proposed investor strategies constitute an
(infinite-agent, infinite-time) subgame-perfect Nash equilibrium. That is, if
two agents with gains from trade meet at time t, the potential buyer ten-
ders the price P (Xt), the potential seller tenders the same price P (Xt), and
both prefer to immediately trade at that commonly announced price. The
property that rl > c is used for “transversality.”
More generally, if we allow for non-steady state equilibria (determined

by initial masses µ(0) of agent types that are not at steady state), we may

8 Intuitively, outside options do matter here because there is a risk of a breakdown of
bargaining due to changes in discount rates (Binmore, Rubinstein, and Wolinsky (1986)),
and because the value stems in part from dividends paid during bargaining. The matter
is complicated, however, by the complex nature of the outside option, which is given by
several factors: change in discount rate, meeting another trading partner, and dividends.
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treat the coefficients (vho, vhn, vlo, vln, p) as time-dependent, and obtain the
differential equations

v̇ho = rhvho − λd(vlo − vho)− 2λµln(p− vho + vhn)− (1− δ)
v̇hn = rhvhn − λd(vln − vhn)
v̇lo = rlvlo + λu(vlo − vho)− 1 (10)

v̇ln = rlvln + λu(vln − vhn) + 2λµln(p− vlo + vln)
p = (vho − vhn)(1− q) + (vlo − vln)q,

suppressing from the notation the dependence of (v(t), p(t), µ(t)) on t. For
a given q, coupled with (1)-(6), these equations have a unique solution that
satisfies the natural boundary condition: limt→∞ e−rltv(t) = 0.
The game and equilibrium could be modified to allow for an exogenous

fractional loss of price at each trade as an administrative transactions cost,
with solutions of a similar linear form. We could also allow the discount
rates, rl and rh, to be themselves Markov chains, and get a richer class of
linear equilibria in which there are “regimes” for prices.

2.3 Walras Equilibrium

The allocation associated with the equilibrium treated in Theorem 1 is effi-
cient among all mechanisms that re-allocate the asset, pair-wise, at contact
times, but is obviously not efficient among all mechanisms that can allocate
at any time to any agents. The Walrasian competitive market equilibrium
allocation is efficient in this stronger sense. A Walrasian equilibrium is char-
acterized by a single price process at which agents may buy and sell instantly,
such that supply equals demand at each state and time. In a Walrasian allo-
cation, because it is efficient, all assets are held by agents with a low discount
rate, if there are enough such agents, which is the following condition.

Condition 1 s < λd/(λu + λd).

Our results, however, apply generally.
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Under Condition 1, the unique Walras equilibrium has agent masses

µ∗lo = s

µ∗ln =
λd

λu + λd
− s (11)

µ∗ho = 0

µ∗hn =
λu

λu + λd
.

The Walrasian price is

P ∗t = Et

[∫ ∞
0

e−rlsXt+s ds
]
= p∗Xt,

where p∗ = (rl − c)−1. The Walras equilibrium price, a version of what is
sometimes called the “Gordon dividend growth model” of valuation, is the
value of holding the asset forever for a hypothetical agent who always has a
low discount rate.
If Condition 1 is not satisfied, the marginal investor has a high discount

rate, and the Walrasian price is the expected value of holding the asset in-
definitely for a (hypothetical) agent who always has a high discount rate. In
this case µ∗ln = 0, and the other masses are determined in the obvious way.
The Walrasian equilibrium is approached by bargaining equilibria as agents

meet increasingly frequently in the following sense.

Theorem 3 Suppose that either q > 0 and Condition 1 applies, or that
q < 1 and Condition 1 does not apply. Let λk → ∞, and let (µk, pk) be the
corresponding sequence of stationary bargaining equilibria. Then (µk, pk) →
(µ∗, p∗).

The condition on q amounts to requiring that agents on the “short” side of the
market (under Condition 1, those with high discount rates) have some bar-
gaining power. Otherwise, agents on the other side have all of the bargaining
power and cannot be kept indifferent between trading and not trading.
Contrary to our result, Rubinstein and Wolinsky (1985) find, in a model

similar in spirit to ours, that the bargaining equilibrium does not converge
to the competitive equilibrium as trading frictions approach zero. In their
model, however, agents disappear after they trade, and new agents enter the
economy such that the masses, which are exogenous, of buyers and sellers
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stay constant.9 Gale (1987) argues that this failure is due to the fact that
the total mass of agents entering their economy is infinite, which makes the
competitive equilibrium of the total economy undefined. Gale (1987) shows
that if the total mass of agents is finite, then the economy (which is not
stationary) is Walrasian in the limit. He suggests that, when considering
stationary economies, one should compare the bargaining prices to those of
a “flow equilibrium” rather than a “stock equilibrium.” Our model has a
natural determination of steady-state masses, even though no agent enters
the economy. This is accomplished by letting agents switch types randomly.
Other important differences between our framework and that of Rubinstein
and Wolinsky (1985) are that we accommodate repeated trade, and that we
diminish search frictions explicitly through λ rather than implicitly through
the discount rate. See Bester (1988, 1989) for the importance of dimishing
search frictions directly.
We are able to reconcile a steady-state economy with convergence to

Walrasian outcomes in both a flow and stock sense, and both for allocations
and for prices. In Section 3.1, we shall see whether a Walrasian equilibrium
can also be approached by increasing the amount of intermediation offered
by broker-dealers.

2.4 Numerical Example

We consider an illustrative example. Table 1 contains the exogenous param-
eters, Table 2 contains the implied stationary masses, and Table 3 contains
the steady-state coefficients for the value functions and prices. For these
parameters, agents contact other agents at an expected rate of more than
once per week (λ = 60), have a “normal” discount rate of rl = 5%, and are
in financial distress, with a high discount rate of rh = 25%, 1 year out of
every 11 years, on average. An agent of type ho has a fraction qh = 0.499
of the bargaining power when bargaining with an agent of type ln. (This
bargaining power is found endogenously using the explicit bargaining model
of Section 4.3.) At any time, s = 20% of the agents have the asset.
Table 2 shows that almost all of the assets are held by agents with a

9Binmore and Herrero (1988) consider a similar model, in which they vary the mass of
agents that enters the economy. They find that prices do converge to competitive prices
when there is no entry. Gale (1986a), Gale (1986b), and McLennan and Sonnenschein
(1991) show that a bargaining game implements Walrasian outcomes in the limiting case
with no frictions (that is, no discounting) in much richer settings for preferences and goods.
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λ λu λd s rh rl c q δ

60.00 0.10 1.00 0.20 0.25 0.05 0.03 0.499 0

Table 1: Base-case parameters.

µho µhn µlo µln
0.0002 0.0907 0.1998 0.7093

Table 2: Steady-state masses corresponding to base-case parameters.

low discount rate; only about 1 unit per thousand of the asset is held by
agents with a high discount rate. That is, the allocation is “nearly efficient.”
Table 3 shows, however, that the price is discounted by almost 3% from the
Walrasian price, which has a price-dividend ratio of (0.05− 0.03)−1 = 50.
Figure 1 shows how prices increase with the contact intensity, λ, holding

other base-case parameters fixed. (We hold bargaining powers fixed as we
vary λ. Regarding this point, see Section 4.3.) We see that, as agents meet
more easily, allocations become more efficient and bargaining becomes “less
fierce,” given the outside option of quickly finding other trading partners.
A steady-state fraction of 10/11 of agents have the low discount rate,

explaining the big drop in prices shown in Figure 2 as s becomes close to this
fraction.
Figure 3 shows that prices are increasing in the seller’s bargaining power.

Figure 4 confirms the intuition that an increase in the severity of a per-
sonal liquidity shock drives down the price, although the Walrasian price is
unaffected.

vho vhn vlo vln p

48.57 0.07 48.81 0.08 48.62

Table 3: Base-case coefficients for value functions and prices.

13



25

35

45

20

30

40

40

50

60 80 100

p
ri
ce
-d
iv
id
en
d
ra
ti
o

bid and ask prices

λ

10

20

30

40

50

0.2 0.4 0.6 0.8 1

p
ri
ce
-d
iv
id
en
d
ra
ti
o

s

bid and ask prices

Figure 1: Dependence of the price-
dividend ratio, p, on the search in-
tensity, λ.

Figure 2: Dependence of the price-
dividend ratio, p, on the total asset
supply, s.
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Figure 3: Dependence of the price-
dividend ratio, p, on the seller’s bar-
gaining power, q.

Figure 4: Dependence of the price-
dividend ratio, p, on the magnitude
of the high discount rate, rh.

3 Marketmakers

This section introduces marketmakers, studying bid prices, ask prices, and
prices negotiated directly between investors. We focus on the implications of
search and bargaining, abstracting from other issues that affect marketmak-
ing behavior, such as asymmetric information, risk-aversion, and inventory
management. Section 3.1 considers a monopolistic marketmaker. Section 3.2
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addresses competing marketmakers.

3.1 Monopolistic Market Making

We suppose that investors can trade with the marketmaker only when they
meet one of the marketmaker’s non-atomic “dealers.” We assume that there
is a unit mass of such dealers who contact potential investors randomly and
pair-wise independently, letting ρ be the intensity with which a dealer con-
tacts a given agent. It would be equivalent to have a mass k of dealers with
contact intensity ρ/k, for any k > 0.
Dealers instantly balance their positions with their market-making firm,

which, as a whole, does not hold inventory. When an investor meets a dealer,
the dealer is assumed to have all of the bargaining power, and quotes an ask
price, aX, and a bid price, bX, that are, respectively, a buyer’s and a seller’s
reservation value. A marketmaker with all bargaining power affects investors’
value functions only through his effect on equilibrium masses. Hence, given
the equilibrium masses, these value functions can be computed from (9).
Pairs of investors with gains from trade, when they meet, trade at a bargained
price of pX. In equilibrium, b ≤ p ≤ a.
We now derive the equilibrium masses in the presence of the dealers.

In the case we examine, there are more agents willing to own the asset at
the dealer-market price than there are assets to be shared (the converse
obtains in the complementary case). Rationing will thus occur, but agents are
indifferent to being rationed, as monopolistic dealers quote their reservation
prices for trade. Specifically, because the steady-state fraction of low-type
agents is λd(λu + λd)

−1, we have

µln =
λd

λu + λd
− s+ µho.

Under Condition 1, this implies that the total contact rate, ρµln, of dealers
with potential buyers is strictly larger than the total contact rate, ρµho, of
dealers with potential sellers. As a result, all potential sellers trade when
in contact with dealers, while potential buyers are rationed by dealers. (To
settle the issue, one can assume random rationing.) Analogously, when Con-
dition 1 is not satisfied, the sell side is rationed.
The equilibrium is calculated as before, replacing the steady-state equi-
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librium masses with the constant solution to (1), (2), and

µ̇ho(t) = − (2λµln(t)µho(t) + ρµm(t))− λdµho(t) + λuµlo(t) (12)

µ̇ln(t) = − (2λµln(t)µho(t) + ρµm(t)) + λdµhn(t)− λuµln(t) (13)

µ̇lo(t) = (2λµln(t)µho(t) + ρµm(t)) + λdµho(t)− λuµlo(t) (14)

µ̇hn(t) = (2λµln(t)µho(t) + ρµm(t))− λdµhn(t) + λuµln(t), (15)

where µm(t) = min{µho(t), µln(t)}.10 The first terms in (12)–(15) reflect the
total rates of trade, both directly between investors and through dealers.

Proposition 4 There is a unique constant solution µ = (µho, µhn, µlo, µln) ∈
[0, 1]4 to (1), (2), and (12)-(15). From any initial condition µ(0) ∈ [0, 1]4
satisfying (1) and (2), the unique solution µ(t) to this system of equations
converges to µ as t→∞.

We now consider the effect of an increasingly large intensity ρ of market-
making.

Theorem 5 Let (ρk) be an increasing sequence of positive real numbers con-
verging to∞. The corresponding sequence (µk, bk, ak, pk) of unique stationary
bargaining equilibria converges, and the bid-ask spread, ak− bk, is increasing.

We note that the limit equilibrium coincides with the equilibrium in an econ-
omy in which the marketmaker can be approached instantly.
The bid-ask spread widens with increases in the dealer contact inten-

sity ρ because an investor’s potential “threat” to search for a direct trade
with another investor becomes increasingly less persuasive, since the mass of
investors with whom there are gains from trade shrinks.
We have seen that the existence of an effective (large-ρ) monopolistic

marketmaker leads to efficient allocations and a large profit earned by the
marketmaker. A natural question is whether a monopolistic marketmaker
can sustain this large profit in an economy in which investors have little
need for intermediation, that is, when λ is high. This question is not triv-
ial because, for any finite λ, all trades are made using the marketmaker,
provided the marketmaker can be approached instantly (ρ = +∞). The fol-
lowing theorem shows that the marketmaker’s profit indeed vanishes when
investors’ potential for bilateral trade increases, regardless of the nature of
intermediation.

10The minimum operator is used to determine whether the buy or sell side is rationed.
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Theorem 6 Let (λk) be a sequence of positive real numbers such that λk →
∞, (ρk) be a sequence in [0,∞], and let (µk, bk, ak, pk) be the corresponding
sequence of stationary bargaining equilibria with a monopolistic marketmaker.
Then bk, ak, and pk converge to the Walrasian price coefficient p∗.

This highlights the importance of considering the option of investors to search
for direct trades among themselves, even though this option may not be taken
in equilibrium.

3.2 Competing Marketmakers

We now turn to the case of competing marketmakers. If marketmakers can
be approached instantly by investors, the Walrasian outcome obtains with
two or more marketmakers playing a Bertrand game.
The case in which marketmakers cannot be approached instantly is more

interesting, and captures the idea that an investor must bargain with each
marketmaker sequentially. We assume that there is a unit mass of inde-
pendent non-atomic marketmakers with a fixed intensity, ρ, of meeting an
investor. To avoid considering marketmaker inventory, we assume that there
is an inter-dealer market in which marketmakers can buy and sell instantly at
price mX, and that marketmakers do not hold inventory. Each marketmaker
has a bid price, bX, and an ask price, aX. As opposed to the monopolis-
tic case, we assume that marketmakers have a fraction, z ∈ [0, 1], of the
bargaining power when facing an investor.
An equilibrium under Condition 1 is as follows. (If Condition 1 fails, the

result is analogous.) The steady-state equilibrium investor masses, µ, are
found using (12)–(15), as for a monopolistic marketmaker. The investors’
value functions are modified for marketmakers with limited bargaining power.
This computation is analogous to that of the basic model, and is outlined in
the appendix. The inter-dealer price, mX, is equal to the ask price, aX, and
to any buyer’s reservation value, (vlo − vln)X, since both dealers and buyers
must be indifferent between trading with each other and not trading. The
bid price is bX, where b = (1 − z)m + z(vho − vhn), reflecting the power of
marketmakers to extract a fraction z of the difference between the interdealer
market price and a seller’s reservation value.
If investors have all of the bargaining power (that is, z = 0), the bid-ask

spread is zero at all times, and the equilibrium approaches the Walrasian
equilibrium, in both prices and allocations, as marketmaking becomes more
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intense (that is, for increasing ρ). This situation can be interpreted as one
in which investors meet different marketmakers at the same time.
On the other hand, if marketmarkers have all of the bargaining power

(that is, z = 1), the equilibrium is the same as the equilibrium with a mo-
nopolistic marketmaker. It might seem surprising that having many “com-
peting” non-atomic marketmakers is equivalent to having a monopolistic
marketmaker. The result follows from the fact that a search economy is
inherently un-competitive, in that each time agents meet a bilateral bar-
gaining relationship obtains. We emphasize that the monopolistic rents to
“competing” dealers depend on the credibility of their bargaining power, and
not on “collusion” among dealers.
For the natural intermediate case in which z ∈ (0, 1), there is a strictly

positive bid-ask spread, which is increasing in the marketmakers’ bargaining
power, z. As the level of intermediation increases (ρ→∞), the equilibrium
approaches the Walrasian equilibrium. This, too, may seem surprising since
an investor trades with the first marketmaker he meets, and this marketmaker
could have almost all bargaining power (z close to 1). As ρ increases, however,
the investor’s outside option when bargaining with a marketmaker improves,
because he can more easily meet another marketmaker. This results in a
better price for the investor. This effect drives prices to their Walrasian
levels as the intensity ρ approaches infinity.
The limit results stated in the previous paragraphs follow from Theorem

5 and from the next result.

Theorem 7 Let (ρk) be a sequence of positive real numbers such that ρk →
∞, and let (µk, bk, ak, pk) be the corresponding sequence of stationary search
equilibria with non-atomic (competing) marketmakers. Then µk → µ∗. If
z < 1, then bk, ak, and pk converge to p∗.

3.3 Numerical Example, Continued

We illustrate some of the effects of marketmaking discussed in this section by
extending the example of Section 2.4. We consider the exogenous parameters
of Table 1, as well as an intensity, ρ = 100, of agents meeting a marketmaker.
Figure 5 shows how the investor price and the dealer’s bid and ask prices
depend on the bargaining power of the marketmaker. We see that all prices
are decreasing in the marketmaker’s bargaining power. Moreover, the bid-ask
spread is increasing in the marketmaker’s bargaining power.
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Figure 6 shows how prices depend on the intensity, ρ, of meeting dealers
in the cases of dealer bargaining power z = 1 and z = 0.80, respectively.
Since allocations become more efficient as ρ increases, in both cases, all
prices increase with ρ. Interestingly, the spreads are increasing with ρ in
the case of z = 1, but decreasing in the case of z = 0.80. The intuition for
this difference is as follows. When the dealers’ contact intensity increases,
they execute more trades. Investors then find it more difficult to contact
other investors with whom to trade. If dealers have all of the bargaining
power, this leads to wider spreads. If dealers don’t have all of the bargaining
power, however, then higher market-maker intensity leads to a narrowing of
the spread because of any investor’s improved threat of waiting to trade with
the next marketmaker.
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Figure 5: The solid line shows the price-dividend ratio at which investors trade with
each other. The dashed lines show the bid (b) and ask (a) price coefficients used when
investors trade with a marketmaker. The horizontal axis shows the bargaining power (z)
of the marketmaker.

4 Analysis and Extensions

This section treats extensions. We endogenize the marketmakers’ search
intensities, discuss the welfare implications of the model, consider two explicit
bargaining games, and extend the model so that investors have asymmetric
information about the asset payoffs.
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Figure 6: The solid line shows the price coefficient used when investors trade with each
other. The dashed lines show the bid (b) and ask (a) price coefficients used when investors
trade with a marketmaker. The prices are functions of the intensity (ρ) with which an
investor meets a dealer. The bargaining power of the marketmaker is z = 0.8 in the left
panel, and z = 1 in the right panel.

4.1 Endogenous Marketmaker Search

Here, we investigate the search intensities that marketmakers would opti-
mally choose in the two cases considered above: a single monopolistic mar-
ketmaker and non-atomic competing marketmakers. We illustrate how mar-
ketmakers’ choices of search intensities depend on: (i) the marketmakers’
influence on the equilibrium allocations of assets, and (ii) the marketmakers’
bargaining power. We take investors’ search intensities as given. Consider-
ing the interactions arising if both investors and intermediaries choose search
levels endogenously would be an interesting issue for future research.11

Because the marketmakers’ search intensity affects the masses, µ, of in-
vestor types, it is natural to take as given the initial masses, µ(0), of in-
vestors, rather than to compare based on the different steady-state masses
corresponding to different choices of search intensities. Hence, in this section,
we are not relying on a steady-state analysis.
We assume that a marketmaker chooses one search intensity and abides

by it. This assumption is convenient, and can be motivated by interpreting
the search intensity as based on a technology that is difficult to change. A

11Relatedly, Pagano (1989) considers a one-period model in which investors choose be-
tween searching for a counterparty and trading on a centralized market.
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full dynamic analysis of the optimal control of marketmaking intensities with
small switching costs would be interesting, but seems difficult. We merely
assume that marketmakers choose ρ so as to maximize the present value,
using some discount rate that we denote r, of future marketmaking spreads,
net of the rate Γ(ρ) of technology costs, where Γ : [0,∞)→ [0,∞) is assumed
for technical convenience to be continuously differentiable, strictly convex,
with Γ(0) = 0, Γ′(0) = 0, and limρ→∞ Γ′(ρ) =∞.
The marketmaker’s trading profit, per unit of time, is the product of

the volume of trade, ρµm, and the bid-ask spread, aX − bX. Hence, a
monopolistic marketmaker who searches with an intensity of ρ has an initial
valuation of

πM(ρ) = E

[∫ ∞
0

ρµm(t, ρ) (a(t, ρ)− b(t, ρ))Xte−rt dt
]
− Γ(ρ)

r
, (16)

where µm = min{µho, µln}, and where we are using the obvious notation to
indicate dependence of the solution on ρ and t.
Any one non-atomic marketmaker does not influence the equilibrium

masses of investors, and therefore values his profit at

πC(ρ) = ρE

[∫ ∞
0

µm(t) (a(t)− b(t))Xte−rt dt
]
− Γ(ρ)

r
.

An equilibrium intensity, ρC , for non-atomic marketmakers is a solution to
the first-order condition

Γ′(ρC) = rE
[∫ ∞
0

µm(t, ρ
C)
(
a(t, ρC)− b(t, ρC)

)
Xte

−rt dt
]
. (17)

The following theorem characterizes equilibrium search intensities in the case
of “patient” marketmakers.

Theorem 8 There exists a marketmaking intensity ρM that maximizes πM(ρ).
There exists r̄ > 0 such that, for all r < r̄ and for each z ∈ [0, 1], there exists
a unique number ρC(z) that solves (17), satisfying: ρC(0) = 0, ρC(z) is in-
creasing in z, and ρC(1) is larger than any solution, ρM , to the monopolist’s
problem.

In addition to providing the existence of equilibrium search intensities, this
result establishes that: (i) competing marketmakers provide more market-
making services if they can capture a higher proportion of the gains from
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trade, and (ii) competing marketmakers with full bargaining power provide
more marketmaking services than a monopolistic marketmaker, since they
do not internalize the consequences of their search on the masses of investor
types. Notably, “small” marketmakers act strategically in their price set-
ting (because all interactions are bilateral), but act “competitively” when
choosing their levels of intermediation.

4.2 Welfare

We now consider the welfare implications of marketmaking in our search
economy. We adopt a notion of “social welfare,” the sum of the utilities
of investors and marketmakers, which can be interpreted as the total in-
vestor utility in the case in which the marketmaker profits are redistributed
to investors, for instance through share holdings. With our form of linear
preferences, maximizing social welfare is a meaningful concept in that it is
equivalent to requiring that utilities cannot be Pareto improved by chang-
ing allocations and by making initial consumption transfers.12 By “investor
welfare,” we mean the total of investors’ utilities, assuming that the mar-
ketmaker profits are not redistributed to investors. We take “marketmaker
welfare” to be the total valuation of marketmaking profits, net of the cost of
intermediation.
The welfare analysis is clearer if welfare losses are easily quantified. Hence,

we assume that owners with adverse preference shocks, that is, agents of type
ho, enjoy a dividend of (1 − δ)Xt < Xt, while other owners enjoy the full
dividend, Xt, and that all agents have the same discount rate, r = rl = rh.
The total “social-loss rate” is the cost rate Γ(ρ) of intermediation plus the
rate δXtµho(t) at which dividends are wasted through mis-allocation. At a
given marketmaking intensity ρ, this leaves the social welfare

wS(ρ) = E

[∫ ∞
0

(s− δµho(t))Xte−rt dt
]
− Γ(ρ)

r
.

Investor welfare is, similarly,

wI(ρ) = E

[∫ ∞
0

(s− δµho(t, ρ)− ρµm(t, ρ)(a(t, ρ)− b(t, ρ)))Xte−rt dt
]
,

12Also, this “utilitarian” social welfare function can be justified by considering the utility
of an agent “behind the veil of ignorance,” not knowing what type of agent he will become.
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and the marketmakers’ welfare is

wM(ρ) = E

[∫ ∞
0

ρµm(t, ρ)(a(t, ρ)− b(t, ρ))Xte−rt dt
]
− Γ(ρ)

r
.

We consider first the case of monopolistic marketmaking. We let ρM be
the level of intermediation optimally chosen by the marketmaker, and ρS be
the socially optimal level of intermediation. We note that the conditions
imposed on Γ imply that there exists some ρ̄ > 0, independent of other
parameters (with Γ fixed), such that wS(ρ) < 0 and wM(ρ) < 0 for all
ρ > ρ̄. The relation between the monopolistic marketmaker’s chosen level
ρM of intensity and the socially optimal intensity ρS is characterized in the
following theorem.

Theorem 9 (i) If investors cannot meet directly, that is, λ = 0, then the
investor welfare wI(ρ) is independent of ρ, and a monopolistic marketmaker
provides the socially optimal level ρS of intermediation (that is, ρM = ρS).
(ii) If λ > 0, then wI(ρ) decreases in ρ when ρ < ρ̄, and the monopolistic
marketmaker over-invests in intermediation — that is, ρM > ρS , under any
of the conditions: (a) q is 0 or 1; (b) r < r, for some r > 0 depending on
parameters other than ρ.

The idea of this result is that, if investors cannot search, then their util-
ities do not depend on the level of intermediation because the monopolist
extracts all gains from trade. In this case, because the monopolist gets
all social benefits from providing intermediation and bears all the costs, he
chooses the socially optimal level.
If, on the other hand, investors can trade directly with each other, then

the marketmaker imposes a negative externality on investors, reducing their
opportunities to trade directly with each other. Therefore, provided q is
0 or 1, investor welfare decreases with ρ. Consequently, the marketmaker’s
marginal benefit from intermediation is larger than the social benefit, so there
is too much intermediation.
If 0 < q < 1, then increasing ρ has the additional effect of changing the

relative strength of investors’ bargaining positions, because it changes their
outside options. Some investors may benefit from this in the short run. In
the long run (steady state), however, all investors are worse off with higher
ρ. If agents have low discount rates then long-run effects dominate, and we
get the result that the marketmaker over-invests in intermediation.
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We now turn to the case of non-atomic (competing) marketmakers. In
Section 4.1, we saw that the equilibrium level of intermediation of non-atomic
marketmakers depends critically on their bargaining power. If they have no
bargaining power, then they provide no intermediation. If they have all of the
bargaining power, then they search more than a monopolistic marketmaker
would.
A government may sometimes be able to affect intermediaries’ market

power, for instance through the enforcement of regulation (DeMarzo, Fish-
man, and Hagerty (2000)). Hence, we consider the following questions: How
much marketmaker market power is socially optimal? How much market
power would the intermediaries like to have? Would investors that market-
makers have market power? These questions are answered in the following
proposition, in which we let zI , zS , and zM denote the marketmaker bargain-
ing power that would be chosen by, respectively, the investors, a social-welfare
maximizing planner, and marketmakers.

Theorem 10 It holds that zI > 0. There is some r > 0 such that, provided
r < r, we have zI < zS ≤ zM = 1.

Investors in our model would prefer to enter a market in which non-atomic
marketmakers have some market power, because this gives marketmakers
an incentive to provide intermediation. The efficient level of intermediation
is achieved with a higher market power to marketmakers. Marketmakers
themselves prefer to have full bargaining power.

4.3 Explicit Bargaining Games

The setting considered here is the same as that of Section 2, with a few
exceptions. First, agents can interact only at discrete moments in time, ∆t
apart. Later, we return to continuous time by letting ∆t go to zero. Second,
the bargaining game is modeled explicitly. Third, for simplicity we assume
that there is no holding cost (δ = 0).
We follow Rubinstein and Wolinsky (1985) and others in modeling an

alternating-offers bargaining game, making the adjustments required by the
specifics of our setup. When two agents are matched, one of them is chosen
randomly, with probability 1/2, to suggest a trading price. The other either
rejects or accepts the offer, immediately. If the offer is rejected, the owner
receives the dividend from the asset during the current period. At the next
period, ∆t later, one of the two agents is chosen at random, independently,
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to make a new offer. The bargaining may, however, break down before a
counteroffer is made. A breakdown may occur because either of the agents
changes discount rate, whence there are no longer gains from trade. A break-
down may also occur if one of the agents meets yet another agent, and leaves
his current trading partner. The latter reason for breakdown is only relevant
if agents are allowed to search while engaged in negotiation.
We consider first the case in which agents cannot search while bargaining.

The offerer suggests the price that leaves the other agent indifferent between
accepting and rejecting it. In the unique subgame perfect equilibrium, the
offer is accepted immediately (Rubinstein (1982)). The value from rejecting
is associated with the equilibrium strategies being played from then ownards.
Letting Pσ(X) = pσX be the price suggested by the agent of type σ with
σ ∈ {ho, ln}, and letting p̄ = (pho + pln)/2, we have

pln + vhn = e−(rh−c)∆t
[
∆t + e

−(λu+λd)∆t(p̄+ vhn)

+e−λd∆t(1− e−λu∆t)vho + (1− e−λd∆t)vlo
]

−pho + vlo = e−(rl−c)∆t
[
e−(λd+λu)∆t(−p̄+ vlo)

+e−λu∆t(1− e−λd∆t)vln + (1− e−λu∆t)vhn
]
.

These prices, pln and pho, have the same limit p = lim∆t→0 pln = lim∆t→0 pho.
Using (9), we obtain

p = ∆vh (1− q) + ∆vl q, (18)

where

q =
rl − c+ λd + λu + 2λµho

rl + rh − 2c+ 2(λd + λu) + 2λµho + 2λµln
. (19)

This formula (19) for the endogenous bargaining power highlights the fact
that an agent’s ability to meet alternative trading partners makes him more
impatient, decreasing his bargaining power. A high ability to meet alterna-
tive trading partners increases the outside option, however, which gives an
indirect advantage.
Suppose, instead, that agents can search for alternative trading partners

during negotiations, and that, given contact with an alternative partner,
they leave the present partner in order to negotiate with the newly found
one. This model is solved similarly to the previous one. In the limit, as
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∆t → 0, the price is given by (18), where

q =
rl − c+ λd + λu + 2λµho + 2λµln

rl + rh − 2c+ 2(λd + λu + 2λµho + 2λµln)
. (20)

Here, one agent’s intensity of meeting other trading partners influences the
bargaining power of both agents in the same way. This is because one’s
own ability to meet an alternative trading partner: (i) makes oneself more
impatient, and (ii) also increases the partner’s risk of breakdown.
One can model explicitly the interaction between marketmakers and in-

vestors in a similar alternating-offers game. For this, one must define the
marketmakers’ discount rate. We do not document the results here, since
they are quite messy and do not shed much additional light, but we remark
that the solution is of the form stipulated in Section 3.
In this section, we have found a subgame-perfect bargaining equilibrium

and derived explicit formulae for the bargaining power, q, showing that the
transaction price depends on agents’ outside options in the linear way that
we specify. (See Footnote 8 for further discussion.) Qualitatively, most of
our results with exogenous bargaining power are unchanged if the bargaining
power is endogenized as in (20), and we will not extend them here. It is
interesting to note, however, that if we use (19) to endogenize the bargaining
power, then, for instance, q approaches 0 or 1 as λ increases. Furthermore, q
tends to 0 precisely when convergence to the Walrasian equilibrium requires it
to be bounded below away from 0, that is, under Condition 1. The limiting
price as λ tends to infinity is not Walrasian in this case. (An analogous
property holds for q approaching 1.)

4.4 Asymmetric Information

It is natural that information about future dividends held privately by agents
may be transmitted through trading. If agents observe only their own trans-
actions, one would expect that the speed with which information is spread is
related to agents’ search intensities. According to this intuition, information
is always disseminated, although slowly, if search intensities are low. We
show, however, that this need not be the case. If meeting intensities are low,
agents are eager to trade when they meet since they know that failure to
trade is particularly costly. This leads to the existence of pooling equilibria
in which no information is revealed through trading. We show that such
pooling equilbria exist only for sufficiently small search intensities. We do
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not study equilibria in which information is disseminated through bargaining
interaction, as did Wolinsky (1990), although this would also be interesting.
We model asymmetric information as follows. The dividend process X

jumps with a known constant jump-arrival intensity λJ , so that at any jump
time τ , the relative jump size X(τ)(X(τ−))−1 is drawn independently of
X(τ−) and of agents’ types. The relative jump size is drawn with probabil-
ity 1 − γ from a distribution with mean J0, and with probability γ from a
distribution with mean J1 > J0. The unconditional mean relative jump size,
consequently, is Jm = γJ1 + (1 − γ)J0. Suppose further that, in the event
that the next relative jump is to be drawn with the high conditional mean,
a proportion ν ∈ [0, 1] of the agents, independently selected, are informed
of this fact immediately after the previous jump. The allocation of this in-
formation is independent of X, and of agents’ current types. In the event
that the relative jump is to be drawn with the low conditional mean, no-
body receives information regarding this fact. Thus, each agent is informed
with probability γν, and an uninformed agent expects a relative jump of
conditional mean

Ju =
γ(1− ν)J1 + (1− γ)J0

1− γν .

In order to keep our analysis relatively simple, we assume that, once two
agents meet, one of them is drawn randomly to make a take-it-or-leave-it
offer. We use the notation qσ for the probability that an agent of type σ
is the quoting agent. We are looking for conditions under which there is a
pooling equilibrium, in which sellers quote a price at which both informed
and uninformed buyers are willing to buy, rather than a more aggressive price
at which uninformed buyers would decline trade. Likewise, buyers quote
pooling prices. Before we determine these pooling prices, we point out that
our pooling equilibrium also requires that agents with no gains from trade
must not reveal information by trading with each other. This is, however,
consistent with optimal behavior. For instance, an uninformed owner with a
low discount rate does not sell to an informed agent with low discount rate,
since there are no gains from trade between the two. If such a trade took
place, then the uninformed would become informed, but the expected utility
of these agents would remain unchanged.13 Such trades are ruled out, for
instance, if there is an arbitrarily small cost of making an offer.

13We note, however, that in a partially revealing equilibrium, in which being informed
would be valuable for future behavior, there would exist strictly positive gains from such
a trade.
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We now turn to the determination of the value functions and pooling
prices. We refine the notation of Section 2.2 by appending to the value
coefficient vσ a superscript “i” if the agent is informed, and a superscript
“u” otherwise. We also define the reservation-value coefficients for each of
the four cases as follows: ∆vih = v

i
ho − vihn, ∆vuh = vuho − vuhn, ∆vil = vilo − viln,

and ∆vih = vulo − vuln. We look for equilibria in which, naturally, informed
agents have higher reservation values than those of uninformed agents, and
all efficient trade can potentially happen, that is,

∆vil ≥ ∆vul ≥ ∆vih ≥ ∆vuh . (21)

Proposition 12 in Appendix A offers mild sufficient conditions for (21). A
full equilibrium analysis, including the system of linear equations analogous
to those of Section 2.2, is found in Appendix A.
Here, we present only the necessary and sufficient conditions for a pooling

equilibrium. First, a high-discount-rate owner, whether informed or not,
must prefer to quote a price which is accepted by all non-owners with a low
discount rate, rather than quoting a more aggressive price, which would be
accepted only by informed non-owners. That is,

∆vul + v
i
hn ≥ Pr(i | i)

(
∆vil + v

i
hn

)
+ (1− Pr(i | i))viho , (22)

∆vul + v
u
hn ≥ Pr(i | u)

(
∆vil + v

u
hn

)
+ (1− Pr(i | u))vuho, (23)

where Pr(i | ξ) is the probability of the buyer being informed given that the
seller has information status ξ ∈ {i, u}. The left-hand side of (22) is the value
to an informed high-discount-rate owner of quoting the pooling price, ∆vul
(given that there are gains from trade with this counterparty). The right-
hand side is the value of quoting the most aggressive price, ∆vil , namely the
reservation value of an informed non-owner (again, given that there are gains
from trade with this counterparty). Similarly, (23) states that an uninformed
high-discount-rate owner prefers to quote the pooling price. We note that
(22)–(23) must be satisfied for any pooling equilibrium, regardless of the
out-of-equilibrium beliefs. One possible choice of out-of-equilibrium beliefs
is that conditional on any out-of-equilibrium price offer, the expected jump
mean of an uninformed remains Ju.
Also, a low-discount-rate non-owner, whether informed or not, must pre-

fer to buy at the pooling price with certainty rather than buying at a lower
price only from uninformed sellers, that is,

vilo −∆vih ≥ Pr(u | i)
(
vilo −∆vuh

)
+ (1− Pr(u | i))viln (24)

vulo −∆vih ≥ Pr(u | u) (vulo −∆vuh) + (1− Pr(u | u))vuln. (25)
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It turns out that only the optimality conditions of the informed seller (22),
and of the uninformed buyer (25) need to be checked. If these two condi-
tions are satisfied, the other two optimality conditions follow automatically.
(Proposition 12 in Appendix A formalizes this claim.)
For a given set of parameters, either of the necessary and sufficient op-

timality conditions, (22) and (25), may or may not hold. Intuitively, the
first condition fails when, keeping all other parameters fixed, there are “so
many” informed agents (ν is sufficiently high) that an (informed) seller would
benefit by quoting an aggressive price and risking the loss of a trade with
an uninformed agent. Similarly, the second condition fails when, keeping all
other parameters fixed, an (uninformed) buyer perceives the proportion of
uninformed agents as too large (ν is sufficiently small). When search is too
intense, there is no pooling equilibrium, and information must be revealed
through trading:

Theorem 11 For any set of parameters, there exists a search intensity λ̄
such that, for all λ > λ̄, a pooling equilibrium cannot exist.

When search is less intense, however, pooling equilibria may exist for an open
set of parameters. Figure 7 provides an illustrative numerical example. We
use the parameters of Table 1 and take J0 = 1, J1 = 1.1, λJ = 0.2, and
γ = 0.8. We compute, for a range of contact intensities (λ), the minimal and
maximal proportion of informed agents, ν, consistent with a pooling equi-
librium. We see that, as λ increases, ν is confined to a smaller and smaller
interval, depicted as the shaded region of Figure 7, until the two optimality
conditions (22) and (25) can no longer be satisfied simultaneously. One can
see that the seller’s incentive constraint for pooling is more sensitive to λ than
the buyer’s, because the buy side of the market is larger than the sell side
(Condition 1 is satisfied). Hence, as λ increases, a seller’s meeting intensity
converges to infinity, which makes it tempting for the seller to quote aggres-
sive prices. The buyer’s meeting intensity, on the other hand, is bounded as
λ increases.

A Appendix: Proofs

Proof of Propositions 1 and 4:
First note that Proposition 1 is a special case of Proposition 4 with ρ = 0.
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Figure 7: The shaded area is the set of parameters for which a pooling equilibrium
exists. The solid line shows the highest value that ν can take, while preserving pooling
condition (22) for quotation by informed sellers. The dotted line shows the lowest value
of ν consistent with the pooling condition (25) of uninformed buyers.

Let

y =
λd

λd + λu
,

and assume that y > s. (This is Condition 1.) The case y ≤ s can be treated
analogously. Setting the right-hand side of Equation 3 to zero and substitut-
ing all components of µ other than µho in terms of µho from Equations (1)
and (2) and from µho+µhn = λu(λu+λd)

−1 = 1−y, we obtain the quadratic
equation

Q(µho) = 0,

where

Q(x) = 2λx2 + (2λ(y − s) + ρ+ λd + λu)x− λus. (A.1)

It is immediate that Q has a negative root (since Q(0) < 0) and has a root
in the interval (0, 1) (since Q(1) > 0).
Since µho is the largest and positive root of a quadratic with positive

leading coefficient and with a negative root, in order to show that µho < η
for some η > 0 it suffices to show that Q(η) > 0. Thus, in order that µlo > 0
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(for, clearly, µlo < 1), it is sufficient that Q(s) > 0, which is true, since

Q(s) = 2λs2 + (λd + ρ)s.

Similarly, µhn > 0 if Q(1− y) > 0, which holds because

Q(1− y) = 2λ(1− y)2 + 2λ(y − s) + (λu + ρ)(1− s).

Finally, since µln = y − s+ µho, it is immediate that µln > 0.
We present a sketch of a proof of the claim that, from any admissible

initial condition µ(0) the system converges to the steady-state µ.
Because of the two restrictions (1) and (2), the system is reduced to two

equations, which can be thought of as equations in the unknowns µho(t) and
µh(t), where µh(t) = µho(t)+µhn(t). The equation for µh(t) does not depend
on µho(t), and admits the simple solution:

µh(t) = µh(0)e
−(λu+λd)t +

λu

(λu + λd)
(1− e−(λu+λd)t).

Define the function

G(w, x) = −2λx2− (λd+λu+2λ(1−s−w)+ρ)x+ρmax{0, s+w−1}+λus

and note that µho satisfies

µ̇ho(t) = G(µh(t), µho(t)).

The claim is proved by the steps:
1. Choose t1 high enough that 1 − s − µh(t) does not change sign for

t > t1.
2. Show that µho(t) stays in (0, 1) for all t, by verifying that G(w, 0) > 0

and G(w, 1) < 0.
3. Choose t2 (≥ t1) high enough that µh(t) changes by at most an arbi-

trarily chosen ε > 0 for t > t2.
4. Note that, for any value µho(t2) ∈ (0, 1), the equation

ẋ(t) = G(w, x(t)) (A.2)

admits a solution that converges exponentially, as t → ∞, to a positive
quantity that can be written as (−b +

√
b2 + 4ac)/2a, where only b and c

depend on w, and in an affine fashion. The convergence is uniform in µho(t2).
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5. Finally, using a comparison theorem (for instance, see Birkhoff and
Rota (1969), page 25), µho(t) is bounded by the solutions to (A.2) corre-
sponding to w taking the highest and lowest values of µh(t) for t > t2 (these
are, of course, µh(t2) and limt→∞ µh(t)). By virtue of the previous step, for
high enough t, these solutions are within O(ε) of the steady-state solution
µho.

�

Proof of Theorem 2:
We present here a sketch of the proof. The issue is to show that any agent

prefers, at any time, given all information, to play the proposed equilibrium
trading strategy, assuming that other agents do. It is enough to show that an
agent agrees to trade at the candidate equilibrium prices when contacted by
an investor with whom there are potential gains from trade. Our calculations
in Section 2, and the assumption that c < rl, already imply that the value
function is equal to the utility of the consumption process generated by the
candidate trading strategy, at the candidate prices. We must now check that
any other trading strategy generates no higher utility.
The Bellman principle, when applied at a time when the dividend rate

is x, for an agent of type ho in contact with an agent of type ln, is that:
Selling the asset, consuming the price, and attaining the candidate value of
a non-owner with a high discount rate, dominates (at least weakly) the value
of keeping the asset, consuming its dividends and collecting the discounted
expected candidate value achieved at the next time τm of a trading oppor-
tunity or at the next time τr of a change to a low discount rate, whichever
comes first. That is, for an agent of type ho,

P (x) + V (x, hn) ≥ E

[ ∫ τ
0

xecte−rht dt

+ e−rhτ
[
(V (xecτ , hn) + P (xecτ)) 1{τ=τm} + V (xe

cτ , lo)1{τ=τr}
] ]
,

where τ = min(τr, τm). There is a like Bellman inequality for an agent of
type ln. Both of these inequalities are satisfied in our candidate equilibrium.
Now, to verify the sufficiency of the Bellman equations for individual

optimality, consider any initial agent type σ0, any feasible trading strategy,
N , an adapted process whose value is 1 whenever the agent owns the asset and
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0 whenever the agent does not own the asset. The cumulative consumption
process CN associated with this trading strategy is given by

dCNt = NtXt
(
1− δ1{σ(t)=ho}

)
dt− pXt dNt. (A.3)

The type process associated with trading strategy N is denoted σN .
Following the usual verification argument for stochastic-control, for any

future time T ,

V (x, σ0) ≥ E

[∫ T
0

e−
∫ t
0 R(σ

N
s ) ds dCNt

]
+ E
[
e−
∫ T
0 R(σ

N
s ) ds V (XT , σ

N
T )
]
,

where R(hn) = R(ho) = rh and R(ln) = R(lo) = rl. (This assumes without
loss of generality that a potential trading contact does not occur at time 0.)
Letting T go to ∞ and using c < rl, we have V (x, σ0) ≥ U(CN ). Because
V (x, σ) = U(C∗), where C∗ is the consumption process associated with the
candidate equilibrium strategy, we have shown optimality.

�
Analysis of agents’ reservation values:
A simple modification of (7) allows for the treatment of the case with

non-atomic marketmakers, who have an arbitrary bargaining power, z ∈
[0, 1]. Note that, as described in Section 3.1, special cases are the case of no
marketmakers, ρ = 0, and the case of a monopolistic marketmaker, z = 1.
Here, we derive some general results that are used in the proofs below.
Note that, under Condition 1, only a proportion, µho/µln, of the agents of

type ln buy from the marketmaker, when they meet him. Let ρ′ = ρµhoµ−1ln .
The equations for the coefficients of the value functions and prices are:

vho =
(λdvlo + 2λµlnp+ ρb+ (2λµln + ρ)vhn + 1− δ)

rh + λd + 2λµln + ρ− c

vhn =
λdvln

rh + λd − c

vlo =
(λuvho + 1)

rl + λu − c

vln =
(λuvhn + (2λµho + ρ

′)vlo − 2λµhop− ρ′a)
rl + λu + 2λµho + ρ′ − c

p = (vho − vhn)(1− q) + (vlo − vln)q
a = vlo − vln
b = (vho − vhn)z + (vlo − vln)(1− z).
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Define ∆vh = vho − vhn and ∆vl = vlo − vln to be the reservation-value
coefficients. The bargaining power of a seller who interacts with a market-
maker is 1− z, while buyers pay their reservation values. Appropriate linear
combinations of the equations above yield

W1ψ = (1− δ, 1)>, (A.4)

where ψ = (∆vh,∆vl)
>, and

W1 =

[
rh − c+ λd + 2λµlnq + ρ(1− z) − (λd + 2λµlnq + ρ(1− z))

− (λu + 2λµho(1− q)) rl − c+ λu + 2λµho(1− q)

]
.

It will be used repeatedly in what follows that

∆vl −∆vh =
rh − rl + δ(rl − c)

det(W1)
> 0. (A.5)

Proof of Theorems 3 and 6:
In the context of Theorem 3, ρ = 0. In the context of Theorem 6,

z = 1, which implies that the term ρ(1 − z) is 0 (even when “ρ = ∞”, i.e.,
when marketmakers are instantaneously accessible). Equation (A.5) shows
that ∆vl − ∆vh → 0 if and only if det(W1) → ∞. The latter happens if
and only if λµlnq → ∞, since, under Condition 1, λµho(1 − q) is bounded.
That λµlnq → ∞ follows from q > 0 and µln ≥ y − s > 0 (again, under
Condition 1). Using the second row of equation (A.4), one deduces that
∆vh → (rl − c)−1 and that ∆vl → (rl − c)−1.
It is clear from (A.1) that µkho → 0, which implies that µk → µ∗.

�

Proof of Theorem 5:
It is immediate from (A.1) that, as ρ → ∞, µho → 0. The limit of ψk

is obtained from (A.4) with z = 1, µln = y − s, and µho = 0. These same
equations, (A.1) and (A.4), characterize the prices set by a monopolistic
marketmaker that can be approached instantly. Therefore, the reservation-
value coefficients, and hence the bid and ask coefficients, converge to the
monopolistic bid and ask coefficients.
In order to show that a − b increases in ρ, it suffices to prove that the

determinant of W1 decreases in ρ, which is true because the masses µln and
µho do.
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�

Proof of Theorem 7:
Since 1 − z > 0, the determinant of W1 tends to infinity as ρ increases,

whence ∆vkl − ∆vkh → 0 (by (A.5)). As in the proof of Theorem 3, the
common limit of the two sequences is the Walrasian price coefficient p∗.

�

Proof of Theorem 8:
There exists a number, ρM , that maximizes (16) since πM( · ) is continuous

and πM(ρ)→ −∞ as ρ→∞.
We are looking for a ρC ≥ 0 such that

Γ′(ρC) = rE
∫ ∞
0

µm(ρ
C)(a(ρC)− b(ρC))Xte−rt dt. (A.6)

Consider how both the left- and right-hand sides depend on ρ. The left-hand
side is 0 for ρ = 0, increasing, and tends to infinity as ρ tends to infinity. The
right-hand side (RHS) is strictly positive for ρ = 0. Further, the steady-state
value of the RHS can be seen to be decreasing, using that µm is decreasing
in ρ, and using the explicit expression for the spread given by (A.5). The
closer the discount rate r is to c, the more important the steady-state value
becomes to the determination of the sign of the integral. Therefore, the RHS
is also decreasing in ρ for any initial condition of µ if r is small enough. These
results yield the existence of a unique solution.
For z = 0, b(t, ρ) − a(t, ρ) = 0 everywhere, so the solution to (A.6) is

ρC = 0. To see that ρC > ρM when z = 1, consider the first-order conditions
that determine ρM :

Γ′(ρM) = rE

∫ ∞
0

[
µm(t, ρ

M)(a(t, ρM)− b(t, ρM)) (A.7)

+ρM
∂

∂ρM
(
µm(t, ρ

M)(a(t, ρM)− b(t, ρM ))
) ]
Xte

−rt dt.

The integral of the first integrand term on the right-hand side of (A.7) is
the same as that of (A.6), and that of the second is negative for small r.
Hence, the right-hand side of (A.7) is smaller than the right-hand side of
(A.6), implying that ρC(1) > ρM .
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To see that ρC(z) is increasing in z, we use the Implicit Function Theorem
and the dominated convergence theorem to compute the derivative of ρC(z)
with respect to z, as

rE
∫∞
0
µm(ρ

C)(az(ρ
C , z)− bz(ρC , z))Xte−rt dt

Γ′′(ρC)− rE
∫∞
0

d
dρ
µm(ρC)(a(ρC , z)− b(ρC , z))Xte−rt dt

. (A.8)

If we use the steady-state expressions for µ, a, and b, this expression is seen
to be positive because both the denominator and the numerator are positive.
Hence, it is also positive with any initial masses if we choose r small enough.

�

Proof of Theorem 9: (i) The first part of the theorem, that the monop-
olistic marketmaker’s search intensity does not affect investors when they
can’t search for each other, is obvious. Indeed, each investor’s utility is that
derived in autarky.
(ii) Letting ∆vo = vlo − vho, ∆vn = vln − vhn, and φ = ∆vo − ∆vn, we

start by proving a few general facts about the marketmaker spread, φ.
The dynamics of φ are given by the ordinary differential equation

φ̇t = (r + λu + λd + 2λ(1− q)µho + 2λqµln)φt − δ,

Let R = r + λu + λd + 2λ(1 − q)µho + 2λqµln. The equation above readily
implies that

∂φ̇t
∂ρ

= R
∂φt
∂ρ
+

(
2λ(1− q)∂µho(t)

∂ρ
+ 2λq

∂µln(t)

∂ρ

)
φt. (A.9)

A simple comparison argument immediately yields that ∂µho(t)
∂ρ
= ∂µln(t)

∂ρ
< 0,

whence ∂φ
∂ρ
> 0.

(a) Consider now the case q = 1, for which

v̇lo(t) = rvlo(t) + λdφt,

which, since ∂φt
∂ρ

> 0, implies that ∂vlo(t)
∂ρ

< 0. Consequently, vho(t) = vlo(t)−
φt also decreases in ρ.
If q = 0,

v̇hn(t) = rvhn(t) + λd(φt −∆vo(t)),
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and since ∆vo(t) is independent of ρ, vhn(t) decreases in ρ. Consequently,
vln(t) = vhn(t)− φt +∆vo(t) also decreases in ρ.
(b) The claim follows from the fact that the derivative with respect to ρ of

the steady-state flow to investors, δµho+µhoρφ, is negative. Using continuity
in (t, ρ), one concludes that the derivative of the flow at time t is bounded
above away from zero for all ρ < ρ̄ and t > T for some T . Consequently,
some r̄ exists with the property stated by the theorem.

�

Proof of Theorem 10:
To see that zI > 0, we note that with ρ = ρC(z),

d

dz
wI
∣∣
z=0 = −δE

∫ ∞
0

d

dρ
µho(t, ρ)Xte

−rt dt
dρC

dz
> 0,

where we have used that ρC(0) = 0, that dρ
C

dz
> 0 at z = 0 (see (A.8)), that

a− b = 0 if z = 0, and that for all t, d
dρ
µho(t, ρ) < 0.

To prove that zI < zS ≤ zM = 1, it suffices to show that the marketmaker
welfare is increasing in z, which follows from

d

dz
wM = ρ

d

dz

[
E

∫ ∞
0

µho(a− b)Xte−rt dt
]

=
ρ

r

d

dz
Γ′(ρC(z))

=
ρ

r
Γ′′(ρC(z))

dρC

dz
> 0,

suppressing the arguments t and ρ from the notation, where we have used

twice that Γ′(ρ) = rE
∫∞
0
µho(a− b)Xte−rt dt if ρ = ρC(z), and that dρ

C

dz
> 0

(Theorem 8).

�

Analysis of pooling equilibria with information: We work under con-
dition (21) in the text, which means that prices are set by the reservation
values of the informed seller and uninformed buyer, and that the bid is higher
than the ask. Under these conditions, one derives the equations:
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viho =
(
λdv

i
lo + 2λµln(p+ v

i
hn) + λJJ1(γνv

i
ho + (1− γν)vuho) + 1− δ

)
·

1

rh + λd + 2λµln + λJ − c

vihn = (λdv
i
ln + λJJ1(γνv

i
hn + (1 − γν)vuhn))

1

rh + λd + λJ − c

vilo =
(
λuv

i
ho + λJJ1(γνv

i
lo + (1− γν)vulo) + 1

) 1

rl + λu + λJ − c
viln =

(
λuv

i
hn + 2λµho(v

i
lo − p) + λJJ1(γνviln + (1 − γν)vuln)

)
·

1

rl + λu + 2λµho + λJ − c
vuho =

(
λdv

u
lo + 2λµln(p+ v

i
hn) + λJJ

u(γνviho + (1− γν)vuho) + 1− δ
)
·

1

rh + λd + 2λµln + λJ − c
(A.10)

vuhn = (λdv
u
ln + λJJ

u(γνvihn + (1 − γν)vuhn))
1

rh + λd + λJ − c

vulo =
(
λuv

u
ho + λJJ

u(γνvilo + (1 − γν)vulo) + 1
) 1

rl + λu + λJ − c
vuln =

(
λuv

u
hn + 2λµho(v

u
lo − p) + λJJu(γνviln + (1 − γν)vuln)

)
·

1

rl + λu + 2λµho + λJ − c
p = (viho − vihn)(1− q) + (vulo − vuln)q.

Here, p represents the expected price coefficient; the realized price coefficient
is viho − vihn or vulo − vuln.

Proposition 12 If J1− J0 < 1/γν, the solution to the linear system (A.10)
satisfies ∆vil ≥ ∆vul and ∆vih ≥ ∆vuh. If the solution to the linear system
(A.10) satisfies ∆vil ≥ ∆vul ≥ ∆vih ≥ ∆vuh, then conditions (22) and (25)
ensure that this solution defines a pooling equilibrium.

Proof: Let us first prove the first part of the proposition, namely that the
solution to the system above satisfies viho − vihn ≥ vuho − vuhn and vilo − viln ≥
vulo−vuln. To that end, recall the definitions ∆vih = viho−vihn, ∆vuh = vuho−vuhn,
∆vil = v

i
lo−viln, and ∆vul = vulo−vuln. Let φh = ∆vih−∆vuh and φl = ∆vil−∆vul .

By adding and subtracting appropriately the equations above, one obtains

φh(rh − c+ λd + 2λµln + λJ ) = φhγνλJ(J1 − Ju) + φlλd + λJ (J1 − Ju)∆vuh
φl(rl − c+ λu + 2λµho + λJ ) = φlγνλJ (J1 − Ju) + φhλu + λJ(J1 − Ju)∆vul .
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This system of equations is guaranteed to have a positive solution in (φh, φl)
when the operator norm of the matrix

W2 =




γνλJ (J1−Ju)
rh−c+λd+2λµln+λJ

λd
rh−c+λd+2λµln+λJ

λu
rl−c+λu+2λµho+λJ

γνλJ (J1−Ju)
rl−c+λu+2λµho+λJ




is strictly less than 1. The proof also relies on the positivity of all the
coefficients of the system, which makes Brouwer’s Theorem applicable. Since
all entries ofW2 are positive, it suffices that the sums of the elements of each
row be smaller than 1 in order to get ‖W2‖ < 1. This condition follows when
J1 is not much larger than J0; for instance, J1 − J0 < 1/γν is sufficient for
our purposes.
Let us now turn to the second claim of the proposition. Consider a seller

with information status θ ∈ {i, u}. The seller’s bargaining power does not
matter, since we assume that it is captured by an independent random draw
that determines which side makes the “take-it-or-leave-it” offer. This analysis
conditions on the event that the seller makes the offer. Equations (22) and
(23) can be written as

∆vul ≥ ∆vilPr(i | θ) + ∆vθh (1− Pr(i | θ)) .

In order to show that the constraint for θ = i is stronger than the constraint
for θ = u, it suffices to show that

∆vilPr(i | i) + ∆vihPr(u | i) ≥ ∆vilPr(i | u) + ∆vuhPr(u | u),

which is equivalent to

(∆vil −∆vih)Pr(u | i) ≤ (∆vil −∆vuh)Pr(u | u),

which in turn holds because ∆vih ≥ ∆vuh and Pr(u | i) ≤ Pr(u | u).
Analogously, one deduces that the uninformed-buyer condition is stronger

than the informed-buyer condition. Consequently, if (22) and (25) hold, then
(23) and (24) also do, whence quoting pooling prices is optimal for all agents,
given that everybody else does the same. This proves that the solution to
(A.10) defines a pooling equilibrium.

�
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Proof of Theorem 11: One shows, by considering appropriate linear com-
binations of the equations in the system (A.10), that

lim
λ→∞
∆vul = lim

λ→∞
∆vih = lim

λ→∞
∆vuh < lim

λ→∞
∆vil ,

which is inconsistent with (22). As noted in Section 4.4, (22) must be satisfied
for any pooling equilibrium.

�
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