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An Approximation Algorithm for Optimal
Consumption/Investment Problems

Abstract

This article develops a simple approach to solving continuous-time portfolio choice
problems. Portfolio problems for which no closed-form solutions are available may be
handled by this technique, which substitutes the numerical solution of partial differential
equations with a non-linear numerical algorithm approximating the solution. This paper
complements the wide literature in economics on the solution of dynamic problems in
discrete time. The algorithm is parismonious, and is illustrated by solving two examples,

one, the standard Merton problem, and two, a jump-diffusion problem.



1 Introduction

The problem of optimal consumption and portfolio choice is one with a long history. Originally
formulated in continuous time by Merton [27] [28], the problem has been extended substantially
and several solution approaches have been developed. Barring the simplest problems, analytical
solutions are difficult to come by. This paper provides a simple numerical approach to solving the

optimal control problem using value function approximation.

For simpler problems, as in the original Merton formulation, closed-form solutions are achieved.
The papers by Lehoczky, Sethi and Shreve [23], Karatzas, Lehoczky, Sethi and Shreve [20],
Jacka [18], and Ocone and Karatzas [29] deal with explicit solutions, using the Bellman equation
approach. The martingale approach of Cox and Huang [8] is also a well established one now,
and has been extended to incomplete markets by He and Pearson [16] [17], Karatzas, Lehoczky,
Shreve and Xu [21] and Cvitanic and Karatzas [9]. These problems are often further complicated
by the choice of non-additive utility functions (see Duffie and Epstein [12], and more recently
Dumas, Uppal and Wang [14]). Other complications arise when transactions costs are included

in the analysis, as in Constantinides [7], Davis and Norman [10], and Dumas and Luciano [13].

In all these settings, simple versions admit either closed-form solutions or problems that
are solved by applying simple numerical procedures. For example, in the case of the Bellman
approach, if the number of state variables is low, the partial differential equation of optimality
may be solved using finite-differencing methods. If the objective function is simple, then easily
applied recursive methods may be used, as in Bertsimas, Kogan and Lo [1] where replication
in incomplete markets is undertaken for a quadratic loss function, and the resulting system is
quite tractable in low dimension. Bossaerts [2] examines a similar problem in an American option

setting.

There are many approximation methods for the solution of these problems (see the review ar-
ticle by Taylor and Uhlig [32]). A wide variety of numerical approaches is applied such as iterating
on the value function (Christiano [6]), quadrature methods (Tauchen [30] [31]), linear-quadratic

approximations for the controls (Kydland and Prescott [22]), and parameterizations of the value
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function (Marcet [25], DeHaan and Marcet [11]). In this paper, we develop an analog of the
parameterization approach in continuous-time, and demonstrate its application to a fairly general
problem in continuous-time, that of a system driven by a mixed jump-diffusion stochastic process.
More recent examples of approximation methods in the Finance literature include Campbell and

Viceira [4], [5], Viceira [33], Brandt, Goyal and Santa-Clara [3], and Longstaff [24].

In continuous-time, solving the Bellman equation is more art than science. The usual approach
involves making a clever guess as to the form of the value function, obtaining the optimal controls,
and then verifying the solution after solving the Bellman PDE subject to the guess. Solutions
have been obtained for some well-known and familiar utility functions, but whenever the number
of state variables grows, or the stochastic processes chosen are not of the common geometric
Brownian motion form, we are usually reliant on numerical schemes. This paper develops value

function approximation as a method of extending the Bellman approach in a tractable way.

The basic idea is as follows. The optimal consumption-investment problem is set up as a
Bellman control problem in the usual way. The first-order conditions provide the functional
equations for the optimal controls, subject to solving for the value function. Rather than attempt
to solve for the value function in closed form, we posit a very general polynomial form for the value
function. Thus the value function is described as a general function of a finite parameter set,
denoted 6. Substituting this functional guess into the first-order conditions gives us the optimal
controls as a function of 6. These optimal controls are then plugged back into the Bellman
equation which should hold for all possible outcomes of the state variables. This will only be true
when the guess for the value function coincides with the true value function, and for complex
problems, this is unlikely. However, if the approximation to the true value function is a good one,
then the distance between the approximate value function and the exact one should be small over
all points in the state space. Thus, our solution comprises of minimizing a “distance function”
between exact and approximate value functions, by means of finding the best-fit parameter set

0, subject to exactly satisfying the first-order conditions.

The algorithm works well, and we provide examples of its implementation in the paper. This



approach has several benefits. First, it may be used to handle higher-dimensional problems, as
well as problems with complex utility functions and stochastic processes. As an example, we solve
a jump-diffusion model in the paper. Second, any standard minimizer routine may be applied for
computational purposes making the problem computationally inexpensive. In fact, the illustrations
in the paper use nothing more sophisticated than the optimizer in the Excel spreadsheet. Third,
very general polynomial functions may be used to guess the value function. Thus, one may get
arbitrarily close to the true value function for the problem. Finally, examination of the numerical
solution provides hints as to the form of the true value function, which may lead to an explicit

analytical solution.

In the following sections, we provide the problem set up, and the formal presentation of the

solution method. Numerical examples are also provided with appropriate discussion.

2 Stochastic Processes

Investors face a state space that is characterized by an infinite trading interval 7' = [0, 00). The
uncertainty in the portfolio choice set emanates from a set of diffusion processes and Poisson
jump processes, with probability spaces (27, FZ Q%) and (N, FY Q") respectively. Z; € R®
represents a vector of Wiener processes defined on (7, FZ Q%) and Ny € R™ represents a
vector of orthogonal jump processes defined on (2, N QV), where t € T and m,n > 0. Each
jump process is described by a sequence of random times T@ e T such that Nii = Lysry-
The Poisson jump arrival intensities are denoted \;,7 = 1...m. We allow for the jump intensities

to vary stochastically on 7" as well as functions of {Z¢, Ny}.

We also allow for K state variables x; € R¥ which also evolve on the same jump-diffusion

probability spaces defined above. These processes are defined as follows:
dx(t) = ax(x,t)dt + ox(x,t)dZ(t) + Jx(x, t)dN(A, t) (1)

where ay(x,t) € RK, oy (x,t) € RE*? J, (x,t) € RE>*™,



The economy offers a set of L + 1 traded assets, whose values evolve stochastically on 7.
These assets comprise L risky assets (S) indexed [ = 1...L, and a riskless asset (B) which earns

a constant return r. Hence the stochastic process for this asset is
dB(t) = rB(t)dt. (2)

The remaining assets earn a random rate of return and obey the following SDE:

%it)) = a(8,x,t)dt + o(S,x,t)dZ + J(S, x,t)dN(A, t) B)

where B8 (S t) € RE, 0(S,t) € R™ and J(St) € RL*™.

si) 0 @

3 Optimal Portfolio Choice

The investor seeks to implement a consumption (¢;) and portfolio plan (wy) so as to maximize
his lifetime utility. The utility of consumption is given by the usual class of Von-Neumann
and Morgenstern utility functions, which we denote U(c,), satisfying the usual requirements of

concavity, and other technical regularity conditions.

The portfolio plan of the investor is a choice of asset weights w;,l = 1...L such that the
amount invested in the riskless asset is wy = 1 — w'1. At any time ¢, the investor chooses
how much of his current wealth W; to consume, and invests the balance in the riskless and risky
assets. Thus, the stochastic process for wealth taking into account investment and consumption

is as follows (see Merton [26] for details):
dW = {W[w'(a —rl) + 1] — ¢} dt + Ww'odZ + Ww'JdN (4)

At the initial time t = 0, we are interested in solving for the investor's optimal consumption

investment program, so as to undertake the following maximization:

0 s
?cl,%v}]on{/o e U(cs)ds} (5)



where p is the investor’'s time preference parameter, a scalar constant. The optimized function
at any time ¢ is denoted as the value function, defined recursively as a function of state variables
{W.x}

V(W,x;t) = max E:{U(c;) + VIW,x;t +dt)} . (6)

Using the method of stochastic dynamic programming (see Merton [26]), we arrive at the Bellman
equation of optimality

0 = max H(W, x) (7)

{ew}

which in full detailed form is:

, oV
0 = gfviv%{U(c)—pV—i—VWW[w (a—r1)+r]—cw

1 m
5V W Woo'wt S B (4 [V (W + wIW,x) - V(W,x))

=1

1
Vi + 500V + Vigoso wW (8)

+ i EX VW, x+Jx) = V(W, X)])}

=1

where J; € R!is the jth column of matrix J € R¥™. Subscripts denote partial derivatives, i.e.
2 . . 2

Vo =28, Vipw = 25, Likewise, Vi = 25 € R¥, Vi = 20 € R and Viyx = 525 €

RX. The solution method entails taking the first-order derivatives from the equation of optimality

to arrive at the optimal controls {c, w}, as functions of V (W, x). Then, the substitution of these

values into the Bellman equation provides a second order (K + 1)-dimensional partial differential

equation in (W, x) which must be solved subject to suitably imposed boundary conditions.

The first-order condition for consumption,
U'(c) = Vi (9)

implies the optimal consumption rule: ¢* = I (2X) I =[U'] ', U’ = 2Z. Taking the first-order
oW dc g

condition for optimal portfolio weights w*, we get the (L x 1) equation system

0 = Viv(a—r1)W + Vipwoo' wW?



+§:1E (Aj [ain(Wer'JjW) —~ V(W)1D (10)

+o0l Viwx W

where 2V (W +w'J;W) € RE.

4 The Approximation Algorithm

Exact solution of the problem in Section 3 is usually hard to achieve, except in the simplest of
cases. The problem lies in the fact that the optimal controls are complicated functions of the
state variables, and value function, which itself is the solution to a high-dimensional differential
equation. The usual approach is to guess a functional form for the value function and then verify
whether it satisfies the optimality conditions of the problem. Apart from a few well-known cases,
this approach has proven rather fruitless. Alternatively, one could attempt to solve the differential
equation using numerical methods such as finite-differencing, but achieving a stable numerical

scheme with many state variables has proven to be a daunting task.

Here, we suggest an alternative approach which bypasses these problems. The idea is to
posit a polynomial function of the state variables as an approximation to the value function. We
choose a f-parameterized function V(0) = V(W,x;0), where § € R'™! is a set of parameters
{vg,v1...vp} which define the value function. If we are able to find the "best” possible value
function V*(6), then we have automatically obtained the solution to the problem, since the

controls {c,w} derive immediately. The exact solution will satisfy
0= H(W,x; V") (11

subject to satisfying the constraints from the first-order conditions, in equations (9) and (10). If
we are not able to find the optimal value function, we can find the best V' in a set of value functions
{V(0)} which may be chosen arbitrarily. To do this we compute the following optimization

program:

i i X 7 GHI (0. x(sV (0700 (12

0 ucU



subject to

w = w [V(W(u),x(u);d)], Yu
c = [VIW(u),x(u);0)], Y.

Here, U represents a discrete set of choices of state variables, i.e. a chosen state-space for
the problem. These values u = {W(u),x(u)} may be chosen to reflect the decision-makers
envisaged outcomes of the state variables. The function f(.) is the fitting function and may
be chosen from a range of popular options. For example, a least-squares approach would set
f(H) = H?%. Alternatively, a probability weighted function such as f(H) = H? x prob(u)
may be used. A simple absolute valued function f(H) = |H| is also possible. Optimization is
undertaken by choosing a specific VV(6) and then optimizing. Searching over the set {V () }will

produce the best value function.

This approach has certain advantages. First, it does not require the solution of a high-
dimensional differential equation. Second, the complexity of form of the value functional V' (9)
does not impact substantially the computational requirements of the algorithm. The number of
points in the state space U does however increase the number of constraints to be satisfied in a
linear way. But this was not found to be numerically difficult, and in fact, implementation with

a spreadsheet optimizer works almost all the time.

The following section provides illustrations of the model implementation.

5 Illustrative Examples

5.1 A simple implementation example

Consider the following simple problem. We begin with a single asset setting, where the asset

follows a geometric Brownian motion.

dS = aSdt + oSdZ. (13)



The notation follows from the previous section. Assume a power utility function over consumption

where U(c) = %c”. Analogous to equation (8) the Bellman equation of optimality will be:

1
0 = max {U(C) - ,OV + wa[wR + 7’] - VWc + §VWWIUQW20'2} (14)

c,w

where R = ov—r defines the equity premium/excess return. The first-order condition for consump-
tion gives U'(c) = Vi which implies that the optimal consumption is ¢* = (VW)n_il. Likewise,

the first-order condition for the portfolio weights gives the optimal investment in the risky asset

_R_Vw

o 7 o As is well known from

via the equation Viy R+ ViywwWo? = 0, implying that w* =

Merton [26], the solution to this problem provides a value function of the form V(W) = A%,

R_1
o2 (1-n)"

which implies that the optimal weights are w* =

Now suppose we did not know the value function form in advance, and made a guess as
to its form by choosing a somewhat more general function. Let V(W) = Vi + V;W"2 where
(Vo, V1, Vi) are unknown scalar constants.? Our approach then entails substituting this posited
value function into the Bellman equation and solving for the best fit values of (Vj, V3, V5) over

the state space, which comprises a range of values of W.

Let the vector of N values of W be indexed by ¢, such that we have W;,2 = 1...N. This
then defines a vector of values of the Bellman equation. Denote the optimized Bellman equation

vector as M;,7 = 1...N. Thus, we have
1
MZ' = U(C;k) - pV + Vwm[w:R + 7“] - ‘/'[/VC;k + §VWWw;<2VVZ-2(J'2, VVVZ (15)

Note here that the equation contains the optimized values (¢}, w}) from the first-order conditions.
Also, the derivatives Vjy; and Vi are functions of W; but the notation in the form V(W) has

been suppressed for expositional reasons.

Assume any unconditional distribution for ;. Denote the probability of W, as f(W;), and
SN f(W;) = 1. For the optimal value function, it must be that M; = 0,Vi. However, since we

are guessing the value function, and may not detect its exact form, the best that is possible is

1This approximation varies from other approaches using simple ploynomial forms, such as in the Galerkin

method (see Judd [19], pg 373).
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to choose (Vp, V1, V) so as to make the values of |M;|, Vi as small as possible. This suggests a
range of objective functions of which an example is provided below.

min " {MZfF(W;)} (16)

{vo,vi.Ve} i

Under the assumption of equally weighted occurences of W;, this is simply the least squares

method.

We now explore the solution in more detail. First, we can compute the analytical derivatives

of the value function. We get

A
View = Vila(Va — W2

& = (MW
B 1
)

The set of Bellman equations becomes (for every 1)

1
M = -]

VAV =V Vi
R 1
Vo—1 | %
+ViVa W, [02 a-v + 7“‘|
—ViVW T Ve
2
1 1
i Pl

S 252 '
2T, Wso=, Vi.

7

The minimization problem may be simply stated as mingy, v; 15} SN M?. Since we impose
V(W = 0) = 0, we get that Vj = 0. Further, it may easily be checked that the numerical
minimization in fact leads to the solution V; > 0, V5 = 7. This matches exactly the solutions in
Merton [28]. Hence, the technique provides the known solution. We now proceed to a numerical

illustration of a more complex model.
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5.2 An example with jump processes

We extend the process driving the risky asset to including jumps with stochastic intensity. Thus,

dS = aSdt+oSdZ + JSAN())
AN = k(0 — \)dt+ §VdY.

Thus, the jump intensity \ follows a mean-reverting square-root diffusion, and we assume that
dZ,dY are orthogonal diffusions. The value function is now extended to cover the new state
variable X in addition to wealth, so that we write it as V (W, \). From (8) we get the Bellman

equation:

1
0 = max {U(c) = V(W) + Vg W[wR + 7] = Vige + SVipwu?Wo?

c,w

VARG — \) + %VWSQ)\ FAEV(W + oW\ — V(W, )\)]}
We guess the following functional form for the value function
VW, ) = Vo + VIW"2 + VaAYs + VIV (17)
which yields the following terms

Vie = ViVaW"™ ! + Vi
Vew = WV — W™
Vi = VA 4+ VW
Van = VsV (Vy—1)a"?

From the first-order condition for consumption, we obtain the optimal value of ¢
* Vo—1 L
¢ = [VVoW2= 4+ VoA]7—T. (18)

The first-order condition for the risky asset weights is

VieW R + Vigwwo?W? + \E [%V[W + wWJ]] —0. (19)
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Thus, w* is implicitly defined as the solution to the above equation. The last term requires
VIW +wWJ] = Vo + ViIW2 (1 +w])" + VA + VEW (1 4 wJ), (20)

which provides

0

a—wV[W+wWJ] =VVaW" (1 +wJ)? T + VsWAJ (21)

For the purposes of this example we assume a binary form for the jump, i.e

S { +j, w/prob 3

(22)
—j, w/prob %
which leads to
EVW,N)] = Vo +ViW" + VA" + Vs
1
E{VIW +wW LA} = Vot Vi x S [(1+wg)™ + (1 - wj) ]
VA VWA
1
E {%V[W + wW J, )\]} = §[V1V2WV2(1 +wj)2 1ty
~VVeW™ (1 = wj)** 7 j].
The first-order condition for portfolio weights may now be written as
0 = [WaW" 1+ ViA| WR+ [ViVa(Ve — W72 wo W2 (23)

1
FAZ VW (1 + w))'™ 1j = ViValV ™2 (1 — wj)™ ).

The vector of Bellman equations is now written as (i now indexes the joint space over state

variables W, \):
M; = U(e) = pV (Wi, )
+ (VAW VaA) Wil R+ 1] = (VAW + V50 ¢f
1
5 (ViVa(Ve = DWE2) wi*Wio?
+ (VaVaA "™t + Vs W) k(6 — 1)
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+= (VaVa(Va — DAY 2) 82,

1
2
1
+A; {Vo + VAW o S[(1+ wig)™ + (1= wig)?] + Ve[ + VSWMZ}
X AVo+ VI £ Vi + VWA
Since the first-order condition for portfolio weights w is an implicit equation, we solve the following
optimization problem to obtain the values (Vo, Vi, Vo, Vs, Vy, V5):
N

min M?

(Vo Vi Vo VoV e} ; ‘

subject to equations (18),(23).
This problem is solved numerically, and the results are provided below. Additionally, since the
jump-diffusion based problem nests the pure-diffusion model, we can examine the features of the
first solution from Section 5.1 as well.

5.3 Numerical results

The following parameters were chosen as a base case for the jump-diffusion model.

Parameter Description Notation Value
Relative risk aversion n 0.5
Mean return on risky asset Q@ 0.07
Riskless rate r 0.03
Subjective discount rate p 0.03
Volatility coefficient for risky asset o 0.3
Mean reversion for jump intensity () k 0.5
Mean level of A 0 7.5
Volatility coefficient of A 0 5
Jump amplitude Ji 0.1

In order to solve the problem we need to establish a state space (I, \;), Vi. We used a range

of values of W € [0, 10] and for jump intensity we assumed a two-state model where A € {5,10},
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i.e. low and high jump states. The algorithm was implemented on an Excel spreadsheet, and

converges in a few seconds. The optimal values (Vj, V1, Vs, V3, Vi, V) are:

Optimal Value Function Parameters

(Jump-diffusion model)

Voo " Vs Vs Vi Vs
0 14.1290 0.4995 -1.0231 -0.0198 -0.0021

The signs of the parameters are exactly as expected. Note that V;, V5 are greater than zero,
since indirect utility is increasing in the level of wealth. Likewise V3, Vy, Vs are less than zero,
since utility declines when jump risk increases. For the purposes of comparison, we switched
off the jump process to reduce the problem to the pure-diffusion model. To do so, we set the

parameters as follows: (k, 6,6, j, \) to zero. In this setting, the value function is:

Optimal Value Function Parameters

(Pure-diffusion model)

Voo " Vo V3 Vi Vs
0 18.0889 05000 0 O O

This solution corresponds exactly to that of the known solution in Merton [26]. Notice that
the value of V;, = 1 as required in theory. In the following table we present some of the qualitative

results from the two models, and undertake a comparison of outcomes.
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Optimal Consumption and Investment Values

Pure-diffusion model Jump-diffusion model
A=0 A=5 A=10
%4 c* w* V(W, ) c* w* V(W, ) c* w* V(W,\)

0.1 | 0.0012 | 0.8888 5.72 0.0020 0.5702 3.24 0.0020 0.4200 3.25
0.9 | 0.0110 | 0.8888 | 17.16 | 0.0181 0.5697 1216 | 0.0182 0.4192  12.17
2.5 | 0.0306 | 0.8888 | 28.60 | 0.0505 0.5691  21.07 | 0.0507 0.4184  21.06
45 | 0.0550 | 0.8888 | 38.37 | 0.0910 0.5687  28.67 | 0.0916 0.4177  28.64
10.1 | 0.1235 | 0.8888 | 57.48 | 0.2052 0.5678  43.52 | 0.2071 0.4164  43.42

The table presents results from the pure-diffusion model, and the jump-diffusion model. For
varying levels of the state variables W and A\, we examine three values of interest: optimal

consumption, investment in the risky asset, and the value function.

First, we note that as the level of wealth increases, so does the value function. Second,
as jump intensity increases, investor utility decreases since additional risk is borne. The only
exception occurs when wealth is at a very low level and the jump intensity increases from 5 to 10.
This may be on account of the fact that at low levels of wealth, additional jumps cannot harm
the investor given a floor level of zero on wealth. Plus, at high levels of jump intensity, mean
reversion will lower jump risk. Third, as wealth increases, the investor consumes more. Fourth,
as jump risk increases the investor also consumes more, since investing becomes less attractive,
and consumption from the future is shifted to the present. Fifth, as jump risk increases, the
investor correspondingly invests less in the risky asset. Sixth, when there is no jump risk, the
amount invested in the risky asset is independent of wealth, as is known from the Merton model.
However, when jump risk exists, the hedging term in equation (23) comes into play, and the
choice of risky assets is no longer independent of wealth level. Finally, jump risk has a greater
effect on the investor decision when jump risk is small and increasing than when it is large and

increasing.
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6 Concluding Comments

This paper develops a simple numerical approach to solving optimal consumption and investment
problems when analytic solutions are not achievable. The Bellman problem is translated into an
econometric one, where we minimize a parameterized objective function of the Bellman equation
over the state space, based on a polynomial guess for the value function. The method is tractable,
and converges quickly. The approach offers a means to numerically guessing the form of the value

function which, if fortuitous, may lead to an analytic solution.

The algorithm may be extended to solving problems in other domains in finance, such as
asset-liability management, optimal replication of derivative securities, equilibrium problems with

incomplete markets and market micostructure games.

References

[1] BERTSIMAS, D., L. KOGAN, and A. LO (1997) “Pricing and Hedging Derivative Securities
in Incomplete Markets: An € - Arbitrage Approach,” working paper No. 6250, NBER.

[2] BOSSAERTS, P. (1989) “Simulation Estimators of Optimal Early Exercise,” working paper,

Carnegie Mellon University.

[3] BRANDT, M., A. GOYAL, and P. SANTA-CLARA (2000). “Dynamic Portfolio Choice with
Simulation Methods,” working paper, UCLA.

[4] CAMPBELL, J., and L. VICEIRA (1996) “Consumption and Portfolio Decisions when Ex-
pected returns are Time Varying,” NBER working paper no. 5857.

[5] CAMPBELL, J., and L. VICEIRA (1996) “Who should buy long-term bonds?" unpublished

paper, Harvard University.

17



[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

CHRISTIANO, L.J. (1990) “Solving the Stochastic Growth Model by Linear-Quadratic Ap-
proximation and by Value-Function Iteration,” Journal of Business and Economic Statistics,

v8(1), 23-26.

CONSTANTINIDES, G. (1986) “Capital Market Equilibrium with Transactions Costs,” Jour-
nal of Political Economy, v94, 842-862.

COX, D., and C-F. HUANG (1989) “Optimal Consumption and Portfolio Policies when Asset

Prices follow a Diffusion Process,” Journal of Economic Theory, v49, 33-83.

CVITANIC, J., and I. KARATZAS (1991) “Convex Duality in Constrained Portfolio Opti-

mization,” working paper, Columbia University.

DAVIS, M., and A. NORMAN (1990) “Portfolio Selection with Transaction Costs,” Mathe-

matics of Operations Research, v15, 676-713.

DEN HAAN, W.J., and A. MARCET (1990) “Solving the Stochastic Growth Model by

Parameterizing Expectations,” Journal of Business and Economic Statistics, v8(1), 31-34.

DUFFIE, D., and L. EPSTEIN (1992) “Stochastic Differential Utility,” Econometrica, v60,
353-394.

DUMAS, B., and E. LUCIANO (1989) “An Exact Solution to a Dynamic Portfolio Choice
Problem with Transations Costs,” working paper, Wharton School, University of Pennsylva-

nia.

DUMAS, B., R. UPPAL and T. WANG (1997) “Efficient Intertemporal Allocations with
Recursive Utility,” working paper, HEC School of Management, and University of British

Columbia.

FLEMING, W., and R. RISHEL (1975) Deterministic and Stochastic Optimal Control, Berlin:
Springer-Verlag.

18



[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

HE, H., and N. PEARSON. (1991) “Consumption and Portfolio Policies with Incomplete

Markets: The Infinite-Dimensional Case,” Journal of Economic Theory, v54, 259-305.

HE, H., and N. PEARSON. (1991) “Consumption and Portfolio Policies with Incomplete

Markets: The Finite-Dimensional Case,” Mathematical Finance, v1, 1-10.
JACKA, S. (1984) “Optimal Consumption of an Investment,” Stochastics, v13, 45-60.
Judd, K. (1998) “Numerical Methods in Economics,” MIT Press, Cambridge, MA.

KARATZAS, 1., J. LEHOCZKY, S. SETHI and S. SHREVE (1986) “Explicit Solution of
a General Consumption/Investment Problem,” Mathematics of Operations Research, v11,

261-294.

KARATZAS, 1., J. LEHOCZKY, S. SHREVE and G-L. XU (1991) “Martingale and Duality
Methods for Utility Maximization in Incomplete Markets,” SIAM Journal of Control and
Optimization, v29, 702-730.

KYDLAND, F., and E. PRESCOTT (1982) “Time to Build and Aggregate Flucutations,”
Econometrica, v50, 1345-1370.

LEHOCZKY, J., S. SETHI, and S. SHREVE (1983) “Optimal Consumption and Investment

Policies allowing Consumption Constraints and Bankruptcy,

Research, v8, 613-636.

Mathematics of Operations

LONGSTAFF, F (2000) “Optimal Portfolio Choice and the Valuation of llliquid Securities,”

forthcoming Review of Financial Studies.

MARCET, A. (1988) “Solving Non-Linear Models by Parameterizing Expectations,” working

paper, Graduate School of Industrial Administration, Carnegie-Mellon University.
MERTON, R.C. (1992) “Continuous-Time Finance,” Basil Blackwell, New York.

MERTON, R.C. (1969) “Lifetime Portfolio Selection under Uncertainty: The Continuous-

Time Case,” Review of Economics and Statistics, vb1, 247-257.

19



[28]

[29]

[30]

[31]

[32]

[33]

MERTON, R.C. (1971) “Optimum Consumption and Portfolio Rules in a Continuous Time
Model,” Journal of Economic Theory, v3, 373-413.

OCONE, D., and I. KARATZAS (1991) “A Generalized Clark Representation Formula, with
Application to Optimal Portfolios,” Stochastics and Stochastics Reports, v34, 187-220.

TAUCHEN, G. (1987) "Quadrature-Based Methods for Obtaining Approximate Solutions to

Non-linear Asset Pricing Models,” working paper, Duke University, Dept of Economics.

TAUCHEN, G. (1990) “Solving the Stochastic Growth Model by using Quadrature Methods

and Value-Function lterations,” Journal of Business and Economic Statistics, v8(1), 49-51.

TAYLOR, J.B., and H. UHLIG (1990) “Solving Non-Linear Stochastic Growth Models: A
Comparison of Alternative Solution Methods,” Journal of Business and Economic Statistics,

v8(1), 1-17.

VICEIRA, L. (1997) “Optimal Portfolio Choice for Long-horizon Investors with Nontradeable

Income,” unpublished paper, Harvard University.

20



