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Pricing Credit Derivatives with Rating Transitions

Digest

In recent years, “reduced form models” of pricing risky debt—financial engineering models that attempt
to directly describe the arbitrage-free evolution of risky debt values, without reference to an underlying
firm value process—have resulted in successful conjoint implementations of term structure models with
default models. The current paper contributes to this literature by presenting a discrete-time reduced-form
model for valuing risky debt based on an expansion of the term-structure model of Heath, Jarrow, and
Morton (1990).

As in Das and Sundaram (2000), we expand the HJM model to include risky debt by adding a “forward
spread” process to the forward rate process for (default-)risk-free bonds. Das and Sundaram (2000) only
considered a single class of defaultable debt. The current paper generalizes that to allow for multiple classes
of risky debt, and calibrates the arbitrage-free movement of all ratings classes on the same pricing lattice.
Embedding all rating categories on one pricing lattice requires conditions ensuring consistency across all
classes of debt. The additional information required to engineer this comes from the introduction of the
rating transition matrix. Thus, in our model, we are now able to price credit derivatives based on multiple

classes of debt, which was not possible using simpler models.

To understand the consistency conditions across rating classes, note that the credit rating of a corporate
borrower can improve or deteriorate during the life of its issued debt. Thus, the credit spread on its debt
contains information about the future credit spreads on debt of all possible rating classes that the borrower
could migrate to. This is true for a corporate borrower with any given rating at a point of time. This
interdependence of spreads across rating classes immediately implies that calibration of the forward spread
process for a given rating class must be undertaken simultaneously with the calibration of the forward
spread processes for all other rating classes. Formalizing this interdependence and characterizing the joint

calibration process (Proposition 3.2) is the primary contribution of this paper.

One additional aspect of our approach is worth mentioning. For each rating class, instead of modeling
the movement of the spread for that rating class directly, we focus on the process for inter-rating spreads, i.e.,
the spread for that class over the immediately superior ratings class. Thus, any credit spread is derived as the
sum of the inter-rating spreads taken over all superior classes. This approach offers analytical tractability.
No restrictions are placed on the correlation between these stochastic processes. The probability of default
at any point in time is allowed to depend on the entire history of the process to that point, and is determined
from rating transition matrices, exogenously supplied. The model is flexible to incorporate any specification

for the recovery process that is consistent with the default process and the spread processes.

Our model requires as input the government yield curve. In addition, it also uses the term structures of



credit spreads for each rating class, available from providers such as Bloomberg. The same source delivers
required interest rate and spread volatilities. The model can be efficiently implemented and lends itself most
appropriately to pricing of credit derivatives such as credit sensitive notes where the coupon payments are
linked to credit quality of the underlying corporate borrower. We provide a numerical example to illustrate

the calibration of the model and its use to price credit sensitive notes.



Pricing Credit Derivatives with Rating Transitions

Abstract

We develop a model for pricing risky debt and valuing credit derivatives that is easily calibrated to existing
variables. Our approach is based on expanding the Das and Sundaram (2000) extension of the Heath-
Jarrow-Morton (1990) term-structure model to allow for multiple ratings classes of debt. The framework
has two salient features: (i) it employs a ratings transition matrix as the driver or the default process, and
(ii) the entire set of rating categories is calibrated jointly, allowing arbitrage-free restrictions across rating
classes, as a bond migrates amongst them. We provide an illustration of the approach by applying it to

price credit-sensitive notes that have coupon payments that are linked to the rating of the underlying credit.



Pricing Credit Derivatives with Rating Transitions

Mini-Abstract

The paper develops an arbitrage-free model jointly calibrating spread processes for all rating classes.



1 Introduction

The pricing of credit derivatives is reaching a level of modeling maturity. In particular, “reduced form”
models—models that attempt to directly describe the arbitrage-free evolution of risky debt values, without
reference to an underlying firm value process—have resulted in successful conjoint implementations of term

structure models with default models.t

Although all reduced-form models share a common financial-engineering approach, there are substantial
differences in the modelling procedures actually followed. At least three branches of the literature may be
identified.

First, there is the class of models that follow Duffie and Singleton [20] and Madan and Unal [36], [37] in
taking as the starting point stochastic processes for the occurence of default and recovery. Implementation
of the model is achieved by calibrating or estimating the parameters so that spreads implied by the model

match those observed in the data.

Second, there is the approach of Das and Sundaram [11] and Schonbucher [42] in which an arbitrage-
free model is described directly for the joint evolution of riskless interest rates and spreads, taking as the
only inputs the current term-structures of riskless interest rates and spreads and the volatilities of these
quantities. This direct approach affords the advantage of simplicity in input requirements and flexibility in
implementation. In particular, the model may be “closed” in a variety of ways, by superimposing on it any

desired specification for the default process or the recovery rate process.?

Both approaches described above are models of risky debt pricing that are independent of references
to bond ratings (i.e., it is as if there is a single ratings class). The third class of reduced form models
explicitly uses ratings transition matrices as the drivers of the stochastic process for default (see, e.g.
Arvantis, Gregory and Laurent [3], Bielecki and Rutkowski [4], Das and Tufano [12], Jarrow, Lando and
Turnbull [26], Kijima [28], Kijima and Komoribayashi [29], and Lando [33]).3

In this paper, we present a discrete-time valuation model that merges the Das-Sundaram approach with

a model with multiple ratings classes. As in Das and Sundaram, our model is based on the term-structure

!Reduced-form models are so-called in contrast to the class of “structural models” which build on the work of Merton [38].
Structural models start with a model of a firm value process, and value risky debt by either endogenizing default as a failure of
the equityholders to meet the liabilities of the firm or assuming that default is triggered by firm value falling below a threshold

barrier.
2The relation between the Duffie-Singleton approach and the Das-Sundaram approach is, in a sense, analogous to that

between factor models of the term-structure (e.g., Vasicek [44]) and the Heath-Jarrow-Morton [24] approach. In particular,
implementation of factor models requires assumptions about the model’s risk-premium, or equivalently, about drifts in the
risk-neutral world. In contrast, the HIM model takes the current term-structure of riskless rates and its volatilities as the sole

inputs and describes an arbitrage-free evolution of the term-structure from this information alone.
3Qther reduced-form models are presented in Duffee [15] , Duffie and Huang [18], Duffie, et al [19], Jarrow and Turnbull [27],

and Ramaswamy and Sundaresan [40].



model of Heath, Jarrow, and Morton [24] (hereafter HIM), and extends the HJM model to include risky
debt by adding a “forward spread” process to the forward rate process for default risk-free bonds. No
restrictions are placed on the correlation between the processes, and the probability of default at any point
in time is allowed to depend on the entire history of the process to that point. Our objective is to describe

an arbitrage-free lattice for the joint evolution of riskless interest rates and spreads on the risky debt.

Das and Sundaram [11] describe the consruction of the required pricing lattice when there is only a
single class of risky debt. This is sufficient for many applications, but becomes inappropriate for pricing
credit derivatives and other instruments that are based explictly on an issuer’s ratings class.? In the current
paper, we extend the Das-Sundaram framework to modeling the joint evolution of multiple-ratings classes
on the same pricing lattice. The tricky part of this extension comes from a consistency requirement that

arises when we attempt to embed all ratings categories on a single pricing lattice.

What is this consistency requirement? Since the credit quality or rating of a debt issuer can improve or
deteriorate during the life of its debt, the current credit spread on its debt depends not only on the current
rating of the issuer, but also on all possible ratings classes to which the issuer could migrate over the life of
the debt. Thus, the current spread summarizes information about future credit spreads on all possible rating
classes to which the borrower could migrate. This interdependence of spreads across rating classes implies
that calibration of the spread process for a given rating class must be undertaken simultaneously with the
calibration of the forward spread processes for all other rating classes. Formalizing this interdependence and

characterizing the joint calibration process (Proposition 3.2) is a primary contribution of this paper.

One aspect of our modeling process bears mention. We do not directly model that movement of spreads
of each rating class. Rather, we focus on the process for inter-rating spreads, i.e., the spread for that class
over the immediately superior ratings class. (Of course, the spread over the default-free rate of any given
ratings class is simply the sum of the inter-ratings spreads for that and all higher classes.) The advantage of
working with inter-ratings spreads, rather than directly with spreads over default-free rates, is that, provided
only that the inter-ratings spreads stay non-negative, spreads on lower-rated debt will always be higher than
those on superior classes of debt. This restriction on the inter-rating spread processes is easier to model

than a restriction that credit spreads for a given maturity be monotonically decreasing in credit quality.?

Finally, we note that our model requires only easily-available information as inputs. These are (i) the
(default-)risk-free yield curve, (ii) the term structures of credit spreads for each rating class, (iii) the term-
structures of volatilities of these quantities, and (iv) the (statistical) ratings transitions probability matrix.

The first three pieces of information are readily available from such providers as Bloomberg, while the

4Such as, e.g., credit-sensitive notes, where the coupon size is tied to the issuer’s credit rating.
5A model which is very close in spirit to that of ours in continuous time is developed by Bielecki and Rutkowski [4]. This

model is also based on HJM and uses information about credit spreads coupled with that of transition probabilities and recovery
rates to develop a conditionally Markovian model of credit risk. However, they model the evolution of spreads of each ratings

class directly, and not via inter-rating spreads as we do.



last—a standard input in all ratings-based models—may be computed from historical data, and is available
from Moody's and Standard & Poor.

The remainder of this paper is organized as follows. Section 2 describes the model and underlying
assumptions. Section 3 describes the derivation of the recursive representation for the risk-neutral drifts,
while Section 4 describes a recursive representation of risky bond prices in our model. Section 5 develops the
implementation approach. Sections 6 and 7 consider an actual implementation example of a credit sensitive

note that has coupon payments that are linked to corporate rating. Section 8 concludes.

2 The Model

The model is developed in discrete time, since a computer implementation for options with American features
and path-dependence is envisaged. We consider an economy on a finite time interval [0,7*]. Periods are
taken to be of length h > 0; thus, a typical time-point ¢ has the form kh for some integer k. It is assumed

that at all times ¢, a full range of default-free zero-coupon bonds trades, as does a full range of risky

zero-coupon bonds for each rating category. It is also assumed that markets are free of arbitrage, so
there exists an equivalent martingale measure ) for this economy;% all references to randomness below and

all expectations are with respect to this measure.

For any given pair of time-points (¢,7) with 0 < t < T < T*—h, let f(t,T) denote the forward rate
on the default-free bonds applicable to the period (T, + h); in words, f(¢t,T) is the rate as viewed from
time ¢ for a default-free lending/investment transaction over the interval (7,7 + h). All interest rates in
the model are taken to be expressed in continuously-compounded terms. When ¢ = T, the rate f(t,t) is
called the “short rate” and is denoted by r(¢). The forward rate curve is assumed to evolve according to

the process
ft+nT) = f(t,T)+alt,T)h+o(t, T)XoVh, (2.1)

where « is the drift of the process and o its volatility; and X is a random variable. Both a and o may
depend on other information available at ¢, such as the time—t forward rates. To keep notation simple, we

have suppressed this possible dependence.

We assume there are K + 1 rating classes, indexed by k = 1,..., K+ 1. Credit quality deteriorates from
Class 1 down to Class K +1. Class K +1 is the "default state;” it is assumed that once a bond is in default
state, it does not trade, and its price, net of any recovery upon default, is zero. For 0 <t <T <T*—h, let
o(t,T) = [e1(t,T), e, o (t, T), ..., 0 (t, T)]" denote the “forward rates” on the risky bonds implied from

5Specifically, we assume that @ is an equivalent martingale measure with respect to the money-market account B(t) defined
in (3.1) below. See Harrison and Kreps [22] or Harrison and Pliska [23] for the role of equivalent martingale measures in

securities modeling.



the spot yield curve. The forward inter-rating spreads are defined as the spreads between successive rating

categories. These comprise a vector:
s(t,T) = [s1(t,T), ..., s.(t, T), ..., s (£, T)]

where s1 = 1 — f, s2 = 2 — 1, etc. Note, of course, that the forward spreads on risky debt are related

to the inter-rating spreads as
op(t,T)=f(t,T)+ s1(¢t,T) + ... + sx(t,T), Vk. (2.2)

As long as s (t, 1)) > 0 for all k, we are assured that credit spreads are increasing as the quality level

decreases.

Next, we make assumptions concerning the evolution of the forward inter-rating spreads (and, thus, of

the forward rates on the risky bonds). We take these to follow the process
skt +1,T) = sk(t,T) + Br(t, T)h + ni(t, T)XVh, VE, (2.3)

where 3, € R and 1, € R% are the drift and volatility coefficients of the process, respectively, and X € R

are (possibly correlated) random variables. Define

B, T) = [Bi(t,T),...,5(t,T),..., 0k (t,T)] € RE
nt,T) = [m@E&T),...nt,T),...nx(t,T)] € RUxK

Note that L, the dimension of the space of diffusion factors that affect the spread processes, can, in
general, be smaller than, greater than, or equal to K. Both (3 and 1 may depend on other information
available at ¢. At this point, we place no restrictions on the joint distribution of Xy and X. When illustrating
implementation of the model in a later section, we will assume that the random variables (Xg, X) take values

on a discrete state-space.

We will denote by P(¢,T) the time—t price of a default-free zero-coupon bond of maturity 7 > ¢, and
by II(t,T) its risky counterpart in the k' rating class. Note that, by definition, we have

T/h—1
P(t,T) = expq — »_ f(t,ih)-h (2.4)
i=t/h
T/h—1
i=t/h



Default is modeled using a Markov chain that governs the transitions of each bond from one rating level

k to another, in a time period of length h. We denote this Markov chain as:

q1,1 q1,K+1
D =
dK,1 qdK,K+1
dK+1,1 -+ - 4K+4+1,K+1

Since we have taken default to be an absorbing state, we can write

q11 .- - QLK+
D=
K1 9K, K+1
0 0 .. 1

The elements of D depend, of course, on the size of the time step h. Moreover, they could be functions of
the information set as well as time. To reduce the notational burden, we suppress this dependence. The idea
of using ratings-transition matrices as a modeling input was first explored in Jarrow, Lando and Turnbull [26].
As in Jarrow, Lando and Turnbull [26], we assume that the rating transition process is independent of the

stochastic processes driving the evolution of the model's forward rates.

The spreads on the risky bonds represent the cost of default, and as such, depend on both the probability
of default (which depends, in turn, on the sequence of rating transitions till maturity of the bond) as well
as the amount that bond holders expect to recover in the event of default. Given that default has not
occurred up to ¢, we denote by A\y(t) = qi x+1(t), the probability of default by time ¢ + h from state &.
Concerning recovery in the event of default, we will use the "Recovery of Market Value” or RMV convention
of Duffie and Singleton [20] that expresses the recovery rate as a fraction of the market value that would
have prevailed in the absence of default. Specifically, let ®' denote the actual recovery amount in the event
of default at t. The RMV convention then states that conditional on default occurring at time ¢ + h, the

time—t expectation E*[®+"] of the amount bondholders will receive is
B = ¢p(t)EUII(t + h,T) | No Default], (2.6)

where the recovery rate ¢y (t) depends on the state k& from which default occurred. Recovery rates may be
chosen so as to be different depending on the rating class from which the bond has moved to the default
state. As with A, ¢x(t) may also depend on all information in the model up to and including period ¢. It
may also depend on the subordination level of the bond. The recovery rate may not be specific to the initial

rating class, since eventually all defaulting bonds are in the default category.



The following preliminary result relating short spreads to the default probabilities and recovery rates
under @ will come in handy in the rest of the paper:
i 1
si(t,t) = =3 [l = M(t) + M(O9x(0)), V. (2.7)
=1

J

To see (2.7), consider a risky bond at ¢ that matures at (¢ + k). By definition, its time—t price is given by

Mot t+h) = exp{—(F(t,8) + > s;(t,6) b}, V. (2.8)
j=1
Now, a one period investment in this bond fetches a cash flow of $1 at time (¢ + h) if there is no default
at t + h, and a cash flow of ¢ (t) if there is a default. When discounted at the short rate, the expected

cash flow (in the risk-neutral world) must equal the initial price of the bond, so we obtain
it t+h) = exp{—f(tORYL = Me(t) + M(B)6u ()], V. (2.9)

Expression (2.7) is an immediate consequence of (2.8) and (2.9).

The model's objective is to develop a risk-neutral lattice for pricing risky debt. This is undertaken in
several steps. First, the lattice of default-free interest rates is generated by solving for the risk-neutral
drifts so that all discounted default-free securities are martingales. Then, a lattice for credit spreads is
superimposed on the first lattice, and risk-neutral drifts are computed for the forward spread process so
that the discounted prices of risky debt are martingales. Finally, the recursive structure of the model is
used together with a specific assumption concerning the default process to illustrate implementation of the

model. We begin with identification of the risk-neutral drifts.

3 Identifying the Risk-Neutral Drifts

In this section, we derive recursive expressions for the drifts a and 3 of the forward-rate and spread processes,
respectively, in terms of the volatilities o and 7. To this end, we define B(t) to be the time—t value of a

“money-market account” that uses an initial investment of $1, and rolls the proceeds over at the default-free

short rate:
t/h—1
B(t) = exp{ > r(ih)-hy. (3.1)
i=0

We assume, without loss of generality, that the equivalent martingale measure () was defined with respect

to B(t) as numeraire; thus, under @ all asset prices in the economy discounted by B(t) will be martingales.



We first identify the risk-neutral drifts « of the default-free forward rates under ). A well-known property
of the HJM framework is that these risk-neutral drifts can be expressed entirely in terms of the forward-rate

volatilities o. To be precise:

Proposition 3.1 (Drift of the Default-Free Forward Rate Process) For any t, the following recursive

relationship holds between the drifts a and the volatilities o:

T/h—1 1 T/h—1
> altin) = 7l E'|exp{ — Y o(t,ih)Xoh? . (3.2)
i=t/h+1 i=t/h+1

Proof See Appendix A. O

The next step is to obtain an analog of Proposition 3.1 for the drifts 3(¢,T") of the forward inter-rating
spread processes in terms of their volatilities. This representation is, however, a bit trickier than for default-
free rates. A risky bond with a current rating of k& may move to a different rating class tomorrow. As such,
the current price of the bond (equivalently, the spread for its rating class) implicitly carries information
about future spreads associated with other rating classes also. This implies, in turn, the presence of
simultaneous no-arbitrage restrictions on how the drifts of different classes evolve with respect to each
other. The following result unravels this dependence and shows how the relevant drifts may be calculated

in a bootstrapping manner:

Proposition 3.2 (Drifts of the Forward Inter-Rating Spread Processes) For j = 1,..., K, let §; be
defined by 0;(t,ih) = {:1 Bi(t,ih). Then, at each t, the vector [01(t,ih),...,0k(t,ih)] must solve the

following system of K equations in K unknowns (xj,j =1,...,K):
K
Y apjbpjr;=1, k=1,.. K (3.3)
j=1
where
T T
41 (1) L o |
ap; = 1_—>\k(t)-exp — Z a(t,ih) - h* 3 -exp { — Z (pj(t,ih) — i(t,ih)) - h
i=£+1 i=g+1
(3.4)
71 j
b; = E'|exp { >y <U(t,z’h)Xo—i—Zm(t,ih)’X> “h2 % |, and (3.5)
=111 =1
h
L1
T; = exp{ — Z 0;(t,ih) - h? (3.6)
2:%—&-1



Proof See Appendix A. O

These expressions are much less forbidding than they may first appear. The system is linear in the
x; variables. At each state at time t in rating class k, the terms ag; can be computed knowing the
transition probabilities, the « drift terms, and the spread levels at that state. Similarly, the terms by, ; can
be computed by taking the expectation over the diffusion processes (X, X), as is illustrated in pseudo
code later, knowing the term structure of forward interest rate volatilities and forward inter-rating spread
volatilities. Thus, solving the above system of linear equations (using standard algorithms such as Gauss-
Seidel for example), we obtain the x; terms, which in turn yield 6; terms. Since the system is to be solved in
a bootstrap manner starting with 7' — 1, the drift terms (3;(t,-) can then be backed out from the knowledge
of 0;(-, ).

The presence of multiple ratings classes prevents this representation from providing an analytical expres-
sion for drift terms (3(¢,T'), as is obtained in the single-rating model of Das and Sundaram [11]. However,
the expectation in relation (3.5) over all possible sample-paths of the state-space for X and X can be
computed numerically using a lattice as we illustrate in this paper. This completes the derivation of the

risk-neutral drifts in terms of the volatilities.

4 A Recursive Representation of the Risky Bond Prices

The prices of a risky bond in our model, as in Das and Sundaram [11], have a recursive representation, which
leads, in turn, to a representation in terms of bond prices of short maturities, i.e. of the form Il (7,7 + h).
We describe this representation here. While in Das and Sundaram, the recursive representation entails one
level of recursion at each time step, with possible rating transitions, our representation forks into K levels

of recursion at each time step.

It is straightforward to show (see Expression (A.10) in Appendix A) that

exp {—x(t,t) - h} - EL[TI(t + h,T) | No Default] = TIx(¢,T). (4.1)

Rearranging terms and using the fact that exp{—yx(t,t) - h} = Ik (¢,t + h), we now obtain

Oy(t,T) = Tiu(t,t+h)- EL[TI(t+h,T) | No Default] (4.2)
K
Qi)
= nk(t,tm).;mE [T (t + h,T)]. (4.3)

We can now iterate on the expression for IL;(t 4 h,T') in terms of the transition probabilities q;;(t + h)
and E'"[II;(t + h,T) | No Default], I =1,..., K.



The recursive structure of the prices of risky bonds as described in (4.3) facilitates computation of these
prices. Note that since all terms on the right hand side have the form F(7,7 + h), we can make use of

relation (2.9) to employ the forward spread components (i.e., the default and recovery rates) in this process.

5 Implementation of the Model

To be able to implement the model, we must be more precise about quantities that have so far been left
unspecified, viz., the random variables Xy and X. In this section, we describe the assumptions that we
will use in the rest of this paper. These assumptions were chosen with an eye towards simplicity both in
exposition and in implementation, but they are primarily meant to be illustrative; alternative assumptions

may, of course, be similarly handled.

We first assume that K = 2, so that the three possible states of the corporate bond are Investment Grade
(k = 1), Speculative Grade (k = 2), and Default State (k = 3). We make the discrete-time assumption
that Xy and X, i.e. Xp, X1, and X5 are binomial random variables, specifically, that each takes on the
values 1 with probability 1/2. We assume that the pairwise correlation between Xy and X is p1, between
Xo and X3 is p2 and between X7 and X5 is p3. So, the assumed joint distribution of (Xg, X1, X3) is

(+1,+1,+1),  W.p. Guuu = (1 + p1+ p2 + p3)/8
(+1,+1,-1),  w.p. quug = (1 +p1—p2—p3)/8
(+1,-1 +1)7 W.p. Gudu = (1 — p1+ p2 — p3)/8
(Xo, X1, Xa) = (+1,-1L,-1),  w.p. quaa = (1 —p1 — p2 + p3)/8 (5.1)
(— 17+1 +1),  W.p. Gauw = (1= p1 — p2+p3)/8
(=1,+1,-1),  w.p. qgug = (1 — p1+ p2 — p3)/8
(=1,-1,+1),  w.p. qaau = (1 4+ p1 — p2 — p3)/8
(=1,-1,-1),  w.p. ggaa = (1 + p1 + p2+p3)/8

We note that, in general, the correlation coefficients may not be equal to zero or even constant over
the tree. For some numerical estimates of the correlation coefficient between corporate spreads and interest

rates in general, see Das and Sundaram [11], and Das and Tufano [12].

Next, we look at the components of the forward rates, namely the default rate A\ (¢), and the recovery
rate ¢p(t). Using equation (2.7), it is clear that knowing the forward spreads s (¢,t) and either of A\g(?)
or ¢i(t,t) for all k, implies the other. Unlike Das and Sundaram [11], where an additional specification is
required linking the default rate A(¢) to the interest rate and the spread variables, in our model, A;(t)'s are

to be used based on the rating transition matrix. In particular, Ax(t) = qr rx41(t).

One last, and non-trivial, issue remains before we can discuss the engineering details of model imple-

mentation. Estimates of the probabilities provided in standard rating transition matrices (e.g. of Moody's



and Standard and Poor's) based on historical data cannot be directly used in our model, since our model
(including the probability of default A (t)) is set in the risk-neutral world. Thus, a translation from the
actual to the risk-neutral measure is required. To this end, suppose that )\]kj(t) denotes the actual probability
of default. We will make the natural assumption that the recovery rates are the same in the risk-neutral
and actual worlds, so realized cash flows coincide in the two cases. Letting £ (t) be the time—t premium
for bearing default risk corresponding to rating state k, the analog of (2.7) under the actual probabilities is

easily derived:

exp{—sp(t,1)h} = exp{—&x(t)}[1 — AL (8) + ()X (1)) (5.2)

The difference between (2.7) and (5.2) is simply that the relationship (2.7) is developed in the risk-neutral
world, where—by definition—there is no premium for bearing risk. Expression (5.2) follows the same
derivation but is set in the actual world, where we would expect that the risk-premium term & (¢) would be

positive.

Comparing (2.7) and (5.2), we may express \i(t) in terms of AF(¢) and the risk-premium & (¢):

1 —exp{—si(t,H)h}
1 —exp{—(sk(t,t) — &(t))h}] "

M(t) = AL(D) (5.3)

Expression (5.3) implies the intuitive condition that A\g > )\kp whenever the risk-premium &g is positive.

These expressions may be used in conjunction with equation (2.7) to estimate the risk-premium terms

&k(t). Specifically, we get

Pr(t) = [exp{—(sk(t, 1) — & (t))h} — 1+ AL (1)) (5.4)

In estimation, we can use ¢y(t) to be the average recovery rate observed historically for the rating class
k, ¢r(t). Thus, knowing the actual recovery rate ¢y (t), the actual default rate AP’(¢) and the actual spot
spread sg(t,t), the risk-premium terms &x(t) can be backed out using equation (5.4). Or, as in Das and
Sundaram [11], we can assume that the risk-premium terms are given by &k (¢,t) = visk(t,t) for scalar v,

and use equation (5.4) to back out implied recovery rate functions ¢(t).

An additional complication remains, which is to adjust the remaining elements of the historical transition
matrix to obtain the risk-neutral transition matrix. We make an assumption similar to that in Jarrow, Lando
and Turnbull [26], and assume that

aea(t) = 6k(t) - qiy(t), VI # K (5.5)

Qe(t) = 1+ 6(t) - g ,(t) — 1], where (5.6)
)

) = $Eay (5.7)
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Note that gy () refers to transition probabilities in the risk-neutral matrix whereas gt (t) refers to transition

probabilities in the historical matrix. Also, qf ;- 1(t) = AL (t) so that g x11(t) = Me(2).

Such a “spread” transformation, where the mass spreads from the diagonal term of the transition matrix
to the off-diagonal terms, has also been employed by Wilson [45]. Note that more sophisticated techniques
for estimation of 6 (¢) would try to minimize error over the entire transition matrix data rather than just
the default transition probability, Ax(¢), as we did in the possible estimation techniques described in the

previous paragraph.

6 Lattice Implementation

We describe in this section an implementation of our model using a lattice. The lattice has a multidimensional
structure, since it combines the evolution of interest rates and inter-rating spreads for different rating classes.
At the same time, the rating transition process is superimposed on top of this lattice. This superimposition
is straightforward since we have assumed that the rating transition process is independent of the diffusion

processes.

First, let us look only at the multidimensional structure for the interest rate and the spread processes.
We assume as before that there are only three possible rating classes: Investment Grade (denoted as I),
Speculative or Junk Grade (denoted as J), and Default State (denoted as D). Thus K = 2, and we
have two inter-rating spread processes sy and s;. Thus, along with the interest rate process, we obtain
a triple-binomial structure with eight branches emanating from each node of the lattice. This part of the
lattice looks similar to that in Das and Sundaram ([11]). Specifically, once the risk-neutral drifts a(-), 3(-)
have been computed at any ¢, the possible values of the forward rates and forward spreads one period out
are readily obtained using (2.1) and (2.3).

At each state, the current rating class is known as well. Thus, if further given the forward and spread
curves F'(1) = (f(7,-)), Si(7) = (s1(7,)), and S;(7) = (s;(7,-)) at any 7, and knowing the one-period
default probability A(7) as the default probability in one-period for the current rating class, the recovery

rate ¢(7) can be computed as described in the previous section.

So far, at each node on the lattice we have information related to all three risks involved in the valuation
of risky debt (interest rates, default probabilities, and recovery rates). However, in order to obtain the
possible one-period ahead values of risky debt, we need to superimpose the rating transition process on the

lattice. We describe this the next.

From each of the eight nodes of the triple-binomial spread lattice, three rating transitions emanate.
Thus, if the current rating class at the source node was k, then three transitions k — I, k — J, and k — D

are possible, with probabilities g 7, qx,7, and g p respectively. From each of the sixteen non-default states

11



so obtained (note that the default state D is an absorbing state), another superimposition of triple-binomial

lattice and rating transition matrix evolves.

Thus, at each node, we carry the information set (F, Sy, Sy, Ak, ¢r) where k is the current rating. As
in Das and Sundaram ([11]), we also carry at each node the state-price of the node and cumulative default
probability till the node. This provides all the information that is necessary to price a wide range of standard

credit instruments and derivatives.

Figure 1 illustrates the rating migration process superimposed on the triple-binomial lattice at one of
the nodes. The up and down states for the interest rate process, F, and Fy, correspond to Xy = +1 and

Xo = —1, respectively, with similar notation used for S; and S; as well.

The code for calibrating the tree is described in Appendix B. For simplicity, we have assumed in the
code that o(¢,T), n;(¢t,T), and n;(t,T), depend only on T. Also, as assumed all through the text, the
correlation coefficients between Xy, X1, X2 and the rating transition matrix D are assumed constant. To
consider a numerical example, we consider the calibration exercise for a tree of three periods with the
The

correlations between X and X7, and between Xy and Xo, are assumed to be identical, p; = p2 = 0.25.

following parameter specifications. X7 and X, are assumed to be perfectly correlated (p3 = 1).

The time-step in the tree is h = 0.5 (half a year). The initial values for forward risk-free rate and inter-rating
spreads, and the volatility terms of forward risk-free rate and inter-rating spread processes, are as described

in the table below:

i | f(t,t+ih) | sp(t,t +ih) | sy(t,t +ih) | o(t,t +ih) | np(t,t +ih) | ns(t,t + ih)
1 0.06 0.02 0.04 0.010 0.005 0.005
2 0.07 0.02 0.04 0.011 0.006 0.006
3 0.08 0.03 0.05 0.012 0.006 0.007

The rating transition process under the risk-neutral measure is taken to be:

0.70 0.20 0.10
D= 0.10 0.75 0.15
0 0 1

Under this parameter specification, the tree for the evolution of the risk-free forward rate and the inter-
rating forward spreads is shown in Table 1. Note that unlike Figure 1, the rating transitions are not shown
as superimposed in this tree even though the probabilities of these transitions are required for accurate

no-arbitrage calibration of the risk-neutral drifts (Proposition 3.2).

In addition, the number of branches is reduced since the two inter-rating spread processes are assumed
to be perfectly correlated. Thus at first period, there are four nodes possible, viz. uwu, ud, du, and dd,
with probabilities, (14 p), 1(1 — p), (1 — p), and (1 + p), i.e, 0.3125, 0.1875, 0.1875, and 0.3125,
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respectively. From each of these nodes, four nodes emanate again.

At each node in the tree at time ¢h (initial node being ¢ = 0), the three columns indicate the forward risk-
free rate, the forward inter-rating spread between risk-free and investment grade rating (I), and the forward
inter-rating spread between investment grade rating (I) and speculative grade rating (.J), respectively, for
maturities (i + 1)h, ..., T = 1.5 years. Using these forward rates, the tree for zero bond prices for risk-free
bond, investment grade bond, and speculative grade bond, can be readily constructed using equations (2.4)
and (2.5). This tree is shown in Table 2. The zero bond prices constitute the fundamental prices using

which other instruments can be priced.

We next illustrate this by pricing a credit-related instrument in our framework, taking the example of
Credit Sensitive Note, whose valuation requires modeling both default risk as well as rating migrations.

Other instruments can be priced analogously.

7 Example: Credit Sensitive Note

A Credit Sensitive Note (CSN) is a corporate coupon bond whose coupon is linked to the rating of the
corporate. For example, in June 1989, Enron Corp. issued $100 ml. in non-callable 9.5% Credit Sensitive
Notes, to mature on June 15, 2001. The coupon on these notes was linked to Enron’s credit rating, as
measured by either Standard & Poor's or Moody's. The coupon on the notes was structured such that,
when Enron's credit rating changed (at the time of issuance, its outstanding senior debt had ratings BBB-
and Baa3, respectively under the two rating agencies), the coupon rate changed as well. To be specific, the
coupon rate was set to drop incrementally for improvements in Enron’s ratings, and it would climb steeply

if the rating deteriorated. The exact schedule of coupon is tabulated below.”

A more recent example of a CSN comes from an issue by Olivetti, which announced on June 7th, 2000, that it plans to
link the coupon on 18 billion euros ($17 billion) of bonds sold by itself and its Tecnost SpA unit to their credit rating. Investors
will be paid off if the rating worsens, less if the grade recovers. As stated by Olivetti’s chief financial officer, Luciano La Noce
- “The coupon adjustment will be applicable to all of the outstanding issues. Going forward, we think having these sort of

volatility protection measures associated with our bonds should result in a lower capital cost.” (source: Bloomberg).
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Moody's Rating S&P rating Coupon Rate
Aaa AAA 9.20 %
Aal-Aa3 AA+ - AA— 9.30 %
Al-A3 A+ - A— 9.40 %
Baal-Baa3 BBB+ - BBB— 9.50 %
Bal BB+ 12.00 %
Ba2 BB 12.50 %
Ba3 BB— 13.00 %
B1 or lower B+ or lower 14.00 %

In our setup, we will assume that the coupon amount on a coupon payment date is linked to the corporate
rating prevailing at the previous coupon payment date. In our three rating classes model, the CSN has a
coupon of ¢; for investment grade rating and ¢ for junk grade rating. Such a note cannot be priced using
a pure spread-based model of credit or a pure intensity-based model of credit. The model described in this

paper, however, lends itself appropriately to the valuation of a CSN.

The valuation of CSN along the lattice in our model is straightforward. At each node of the lattice, the
current rating class is available in the information set at the node. This determines the coupon payment
scheduled for next coupon payment date. The “up-grading” and “down-grading” along the lattice produce
the resetting of the coupon during the life of the schedule, as per the coupon vs. rating schedule. Thus,
discounting the cashflows in default and non-default states, and moving backwards along the tree yields the
price of the CSN.

To be more precise, using the recursive implementation discussed in Section 4, the price of the credit

sensitive note, CSNy(t,T), is given as:

CSNo(t,T) = Tip(t,t+1)- i)t (0SNG (t 4 b, T)] (7.1)

Note that IIx(¢,t + h) is already available from the zero bond price tree, ¢j represents the coupon next
period which is “set” today given the current rating 'k’, and the second term inside [ - ] represents the
value of the credit sensitive note at the nodes tomorrow after possible rating migrations. The code for this

procedure is described in Appendix B.

As an illustration, we consider a variant of the Enron CSN that has 1.5 years to maturity (three period
note with A = 0.5 year). The coupons for different ratings are: ¢; = 0.04675, and ¢; = 0.06375, which
correspond to semi-annual coupons of 9.35% and 12.75%, respectively. Using the recursive scheme described
above (or simply by reducing the scheme to a backwards induction procedure), the CSN can be priced off

the zero bond price tree. The tree for CSN prices is described in Table 3. At each node, the two columns
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represent the CSN price for investment grade and speculative grade ratings, respectively. For example, at
t = 0, the CSN price is 0.994146 if the underlying credit has investment grade rating, but the price would
be lower at 0.984822 if the underlying credit had speculative grade rating.

At t = 1.0 year, the price of the note is easy to determine since its coupon payment is “set” for maturity

at T' = 1.5 years. The price is thus simply equal to
(1.0 + ¢g) - Hg(t, t + h),

where k is the current rating of the underlying credit. Consider now the state of the world uu at ¢ = 0.5
year when the underlying credit has speculative grade rating. Its price can be computed using equation
(7.1) as:

CSN,(t=05T =1.5) = 0.93169 - [ 0.06375 +

010 .1 (0.3125)(0.980370) + (0.1875)(0.986270) + (0.1875)(0.986270) + (0.3125)(0.992206) | +
070 . 1 (0.3125)(0.968530) + (0.1875)(0.977286) + (0.1875)(0.974359) + (0.3125)(0.983168) |

] = 0.969719.

To see how the credit sensitivity of the coupon payments plays a role in the pricing of the CSN, Table
4 shows the tree for prices for a credit insensitive note that has a fixed coupon of 0.04675, irrespective of
the rating of the underlying credit. Consider the price of this note at ¢ = 0 with investment grade rating. It
is 0.985483, whereas that of the otherwise identical CSN is 0.994146. The difference in value comes from
two parts: (i) At all nodes at ¢ = 0.5 year, if the rating were to "fall” to speculative grade, the CSN would
have an upward jump in coupon payment from 0.04675 to 0.06375. (ii) At all nodes at ¢t = 0.5 year, even
if the rating were to “stay” as investment grade, the price of the CSN would be higher due to the increase
in future coupon payments whenever there is a downgrading. Both these effects are observed by comparing

t = 0.5 year prices across the trees for credit sensitive note (Table 3) and credit insensitive note (Table 4).

Instruments other than credit sensitive notes that have embedded optionality that is tied to credit quality

of the underlying can be priced analogously in a relatively simple manner using our approach.

8 Concluding Comments

This paper develops a model for the pricing of credit derivatives using observables. The model is (i)
arbitrage-free, (ii) accommodates path-dependence, (iii) allows for all rating classes in one consistent lattice

framework, and (iv) can handle a range of securities that have a credit related component. The computer
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implementation uses a recursive scheme that is convenient and seamlessly processes forward induction and
backward recursion, needed to compute more complicated derivative securities. While the model is rich and
flexible enough to price any credit-related instrument, it is particularly appropriate for pricing credit sensitive

notes that have payments linked to rating transitions.

A Proofs

Proof of Proposition 3.1: Let Z(¢,T") denote the price of the default-free bond discounted using B(t):

P(t,T)

R (A1)

Z(t,T) =

Since Z is a martingale under Q, for any ¢t < T we must have Z(t,T) = E'[Z(t + h,T)], or, equivalently,

([ Z(t+hT)]
e (A2)

Now, Z(t+h,T)/Z(t,T) = (P(t+h,T)/P(t,T))- (B(t)/B(t+h)). Using (2.4), some algebra reveals
the first term to be

purnt) ) (S o
P = P i%‘ﬂ[f(wh,m) Ftin)]-h | + ft,)h . (A3)

The second term B(t)/B(t + h) is evidently just exp{—f(¢,t)h}. Combining these, we obtain

2@ent) N NS i pin)
70T - P i:UZ};H[f(Hh, h) — f(t,ih)] - h (A4)

Using (A.4) in (A.2), the martingale condition becomes

T/h—1

E'|exp{ — Y [f(t+h,ih)— f(t,ih)]-hy| = L (A.5)
i=t/h+1

Substituting for (f(t + h,th) — f(t,ih)) from (2.1), this is the same as
T/h-1

E'|exp{ — Y a(t,ih)h? +o(t,il)Xoh*?] 3 | = 1. (A.6)
i=t/h+1
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Since a(t,-) is known at ¢, it may be pulled out of the expectation. This gives us after some rearranging

the promised recursive expression relating the risk-neutral drifts a to the volatilities o at each ¢:

T/h—1 T/h—1

. 1 .
> aft,ih) = 7l E'|exp{ — Y ot ih)Xoh? . (A7)
i=t/h+1 i=t/h+1

Proof of Proposition 3.2: Pick any ¢t < T and lets suppose that the time-t rating class of the bond is k.
Consider a one-period investment in this bond at ¢. Then, at time ¢t 4 h, there is a set of possible values
ILj(t + h,T),Vj =1,..., K + 1, since the bond may remain in its time-t rating class k, or move to any

other rating class j. Thus, we have

a5 (t)

K
t _ it

J=1

ALt +h,T)

The expectation in RHS above is over the state-space (X, X). Note that Ay(t) = gk x+1(t) and the sum

inside the expectation is over all possible rating classes at ¢ + h, conditional on no-default at ¢ + h.

If the bond has defaulted in the period (t,t + h|, there is a cashflow at ¢ 4+ h due to the recovery upon
default. By RMV assumption (2.6), the expected cashflow is ¢ (t) EL[IL(¢t + h,T))]. Since the probability of
default by t + h, given rating class at time ¢ is k, is \x(t), the undiscounted expected value of the bond is

(1 — M\(t)) EL[TI(t + h,T) | No Default] + A\.(t)¢r () EL[TI(t + h, T) | No Default], Vk (A.8)
which is the same as
[1— Xe(t) + M (t)or(t)] EL[TI(t + h,T) | No Default], Vk. (A.9)

By definition of ), when discounted at the short rate r(t), this expected cash flow must equal IT(¢,T),
so we have

(1= Ae(t) + Mo (8)dr(2)] EL[TI(t + h, T) | No Default]

b exp{r (DML T)

] =1, V& (A.10)

Now, using relations (2.7) and (2.5), and the definitional relation s(t,t) = ¢(t,t) — f(t,t), we get

T
k 71
i(t, T) - exp{[r(t) + Y _s;(t,t)]h} = expq — Y  @x(t,ih)-h, and (A.11)
Jj=1 i=x+1
t ¢ = i, () L,
EL[II(t + h,T) | No Default] = E j;%)\k(t)-exp —';lsaj(wh,ih)-h
=
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Using the above two equations, we get the implicit equation for the drift terms 3(¢,T):

T
G5 (1t X , ,
E 1 _k;(k(l) expq — Y (@it +hiih) — p(t,ih)) -hp | =1, (A.13)
7=1 i=t41

Now, writing ¢;(t + h,ih) — @i(t,ih) as @;(t + h,ih) — @;(t,ih) + ¢;(t,ih) — pi(t,ih), and using
relations (2.1), (2.2), and (2.3), we can rewrite the above equation as

T
W_l
t qk,](t) ) 2 + o ) 5
E [ § )\_k(t) cexXp§ — | % 1 (a(t,zh) -h (t,Zh)XO . hQ)

J=1 :
71
expq = 30 3 (Alein) P+ m(einyX h2)
i=t411=1
h
L
exp = D (eitih) —en(tiih) -y | = 1. (A14)
=541

f 1 Bi(t,ih), and assuming independence of the rating transition process

Using the notation 6;(t,ih) =
from the diffusion processes (X, X), we get Vt, Vk, at each state, a system of K linear equations in K

unknowns (z;,7 =1,...,K):
K
Zak,j . bk,j * Ty = 1 (A15)
j=1
where
T T
i (1) — —
agj = Trmeexp = > altih) B o expq— Y (w(tiih) = er(tih) o,
L= () =141 i=L41
T h “h
(A.16)
71 j
brj = E'|expq— Y (a(t,z’h)xo+zm(t,z'h)’x>-h% , and (A.17)
i=£+1 =1
L1
(A.18)

B Implementation Pseudo-Code for Pricing a CSN
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/* Program to generate the HJM tree with rating transitions and default

risk recursively, and then to price a Credit Sensitive Note */

CRD(£f0,fsig0,s0[],ssig0[],phi[],rho[],h,coupon[],ql][],current_rating,n) {

/* Note that in our example, K = 2 */
/* n : number of periods */
/* q : assumed to be the risk-neutral transition matrix */

g_uuu = 0.25 * (1 + rho[1] + rho[2] + rho[3]) ;

g_uud = 0.25 * (1 + rho[1] + rho[2] - rho[3]) ;
g_udu = 0.25 * (1 - rho[1] + rho[2] + rho[3]) ;
q_udd = 0.25 * (1 - rho[1] + rho[2] - rho[3]) ;
g_duu = 0.25 * (1 - rho[1] - rho[2] + rho[3]) ;
g_dud = 0.25 * (1 - rho[1] - rho[2] - rho[3]) ;
g_ddu = 0.25 * (1 + rho[1] - rho[2] + rho[3]) ;
g_ddd = 0.25 * (1 + rho[1] - rho[2] - rho[3]) ;

CRVAL(level,f,fsig,s[],ssigl],phil],rating) {

/* i, j, k, m : counters; alpha, beta : arrays for drift terms */
if (level == n-1) {
result = exp(-s[rating]*h) * (1.0 + coupon[rating]) ;

}
else { /* level < n-1 */

m=n - level ;

cur_f Take[f,-m] ; /* Takes m bottom elements of the array */

/* for m timesteps upto T */

cur_s = Take[s,-m] ;

cur_fsig = Take[fsig,-m] ;

cur_ssig = Take[ssig,-m] ;
cur_phi Take[phi, -m] ;

sgh = Sqrt(h) ;

/* Determine alpha drift terms */

for (i=m; i>=1; i--) { /* Proceed in a bootstrap manner */
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if (i ==m) { /* last period forward drift */
alpha[i] = log (0.5 * (exp(-cur_fsig[i]*h*sqh) +
exp( cur_fsig[i]*h*sqh)) / (h*h) ;

}
else { /¥ 1 < m *x/
alpha[i] = log (0.5 *
(exp(-Sum[cur_fsigl[k],{k,i,m}]*h*sqh) +
exp( Sum[cur_fsig[k],{k,i,m}]*h*sqh)) / (h*h)
- Sum[alpha[k],{k,i+1,m}] ;
}

/* Determine beta drift terms */
for (i=m; i>=1 ; i--) {
for (k=1; k<K+1; k++) {
for (j=1; j<K+1; j++) {
ali,k,jl = qlk]l[j] * exp(-Sum[alpha[l],{1,i,m}]*h*h) *
exp((-Sum[Sum[cur_s[p,1],{p,1,j}]1,{1,i,m}]
+Sum[Sum[cur_s[p,1],{p,1,k}],{1,i,m}])*h) ;
Sum[cur_fsig[1],{1,i,m}] ;

sum_ssig_uu = Sum[cur_ssig[l,1l]+cur_ssig[2,1],{1,i,m}] ;

sum_fsig

sum_ssig_ud = Sum[cur_ssig[1,1]-cur_ssig[2,1],{1,i,m}] ;
sum_ssig_du = Sum[-cur_ssig[1l,1]+cur_ssig[2,1],{1,i,m}] ;
sum_ssig_dd = Sum[-cur_ssig[l,1l]-cur_ssig[2,1],{1,i,m}] ;
bli,k,j]l =
(q_uuu * exp(-h*sqh*(sum_fsig+sum_ssig_uu))
g_uud * exp(-h*sqh*(sum_fsig+sum_ssig_ud))

g_udu * exp(-h*sqh#*(sum_fsig+sum_ssig_du))

+ o+ o+ o+

g_udd * exp(-h*sqh*(sum_fsig+sum_ssig_uu))
g_duu * exp(-h*sqh*(-sum_fsig+sum_ssig_uu)) +
g_dud * exp(-h*sqgh*(-sum_fsig+sum_ssig_ud)) +
g_ddu * exp(-h*sqh*(-sum_fsig+sum_ssig_du)) +
q_ddd * exp(-h*sgh*(-sum_fsig+sum_ssig_uu))) ;

}
x[i,k] = Solve_Gauss_Seidel(al[i,k]*b[i,k],0Onel[K]) ;
if (i == m) /* Last time period */
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= - log(x[i,k]) / (h*h) ;

/* i < m *x/

thetali,k] ;

= - log(x[i,k]/x[i+1,k]) / (h*h) ;

thetal[i,k] - thetali,k-1] ;

rate plus inter-rating spread part of

cur_fsig * sqgh
cur_fsig * sqgh

cur_ssig * sqgh

cur_ssig * sqgh ;

3

b

b

/* Vector operation */

/* Vector operation */

This is the rating transition part of the lattice */

wn for "uuu" node.

It must be repeated for "uud"..."ddd" nodes to complete

thetali,k]
else
thetali,k]
if (k == 1)
betali,k] =
else
betali,k] =
}
}
/* This is the interest
the lattice */
fu = cur_f + alpha * h +
fd = cur_f + alpha * h -
su = cur_s + beta * h +
sd = cur_s + beta * h -
/*
/* The code below is sho
the branching. */
/* "uuu" node */
s_uuull] = sull] ;
s_uuu[2] = sul2] ;

result_uuu = 0.0 ;

for (i=1; i<K+1; i++) { /* Non-default states */

result_uuu += qlrati

ng] [1] *

(coupon[rating] + /* Credit-sensitivity of the note */

CRVAL(level+l,fu,cur_fsig,s_uuu,cur_ssig,cur_phi,i)) ;

/* Recovery of Market value in Default State */

result_uuu = result_uuu

*

(1 + glrating] [K+1] / (1 - qlrating] [K+1]) * cur_phil[rating]) ;
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/* "uud" node */

s_uud[1]
s_uud[2]

sull] ;
sd[1] ;

result = exp(-f[1]*h) *

(q_uuu
q_-uud
gq_udu
q_-udd
q_duu
q_dud
q_ddu
gq_ddd

*

*

*

*

*

} /* end if level

return result ;

¥

result_uuu
result_uud
result_udu
result_udd
result_duu

result_dud

+ 4+ o+ o+ o+ o+ o+

result_ddu
result_ddd) ;
<n-1x/

/* discount at spot short rate */

return CRVAL(0,f0,fsig0,s0,ssig0,phi,current_rating) ;
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Figure 1: Information generated at Each Node in the Combination of a Multi-dimensional Interest Rate plus

Spreads Tree and the Rating Transitions
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The figure illustrates how the multi-dimensional tree of interest rate and inter-rating spread processes
combines with the rating transitions to yield the complete lattice. The left part of the braching shows
the eight nodes that emanate from a starting rating class &k, depending upon the realizations of the
binomial variates (Xo, X1, X2). The right part of the branching shows for one of these eight nodes,
in particular the up-down-down node, the rating transitions to the three possible states I, J, and D.
The probabilities Guuu, - - - , gdda for the interest rate plus spreads lattice are given by the equation (5.1),
whereas the probabilities for the rating transitions, g 1, qx,7, and qx p, are given by the rating transition

matrix at the corresponding node. Note that Default is an absorbing state.
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Table 1: Tree for Forward Risk-free Rate and Inter-rating Spreads

This table shows a tree of forward risk-free rate and forward inter-rating spreads, calibrated as per the parameter
specification in the text. The calibration of the risk-neutral drifts is done using the results in Proposition 3.1 and

Proposition 3.2.

t=0 t=0.5 t=1.5
uu 0.092017 0.039013 0.056522
uu 0.075504 0.023003 0.043004 ud 0.092017 0.027013 0.050522
0.086013 0.033007 0.053515 du 0.080017 0.039013 0.056522

dd 0.080017 0.027013 0.050522

uu 0.092017 0.033013 0.049522

ud 0.075504 0.017002 0.037004 ud 0.092017 0.021013 0.043522

F Sy Sy 0.086013 0.027007 0.046515 du 0.080017 0.033013 0.049522

0.06 0.02 0.04 dd 0.080017 0.021013 0.043522
0.07 0.02 0.04

0.08 0.03 0.05 uu 0.080017 0.039013 0.056522

du 0.064504 0.023002 0.043004 ud 0.080017 0.027013 0.050522

0.074013 0.033007 0.053515 du 0.068017 0.039013 0.056522

dd 0.068017 0.027013 0.050522

uu 0.080017 0.033013 0.049522
dd 0.064504 0.017002 0.037004 ud 0.080017 0.021013 0.043522

0.074013 0.027007 0.046515 du 0.068017 0.033013 0.049522
dd 0.068017 0.021013 0.043522

Table 2: Tree for Risk-free, Investment Grade, and Speculative Grade Zero Bond Prices

This table shows a tree of zero bond prices for risk-free, investment grade, and speculative grade bonds. The
underlying forward rate tree is as in Table 1 and its calibration is done using the results in Proposition 3.1 and

Proposition 3.2.

t=0 t=0.5 t=1.5
uu 0.955034 0.936585 0.910487
uu 0.962952 0.951940 0.931690 ud 0.955034 0.942221 0.918718
0.922416 0.896943 0.854684 du 0.960781 0.942221 0.915966

dd 0.960781 0.947892 0.924247

uu 0.955034 0.939399 0.916424

ud 0.962952 0.954800 0.937297 ud 0.955034 0.945052 0.924709

P II; I, 0.922416 0.902341 0.865435 du 0.960781 0.945052 0.921939

0.970446 0.960789 0.941765 dd 0.960781 0.950740 0.930274
0.937067 0.918512 0.882497

0.900325 0.869358 0.818731 uu 0.960781 0.942221 0.915966

du 0.968263 0.957190 0.936829 ud 0.960781 0.947892 0.924247

0.933085 0.907317 0.864570 du 0.966563 0.947892 0.921478

dd 0.966563 0.953596 0.929809

uu 0.960781 0.945052 0.921939
dd 0.968263 0.960066 0.942466 ud 0.960781 0.950740 0.930274

0.933085 0.912778 0.875445 du 0.966563 0.950740 0.927487
dd 0.966563 0.956461 0.935873

27



Table 3: Tree for Credit Sensitive Note Prices

This table shows a tree of prices for the credit sensitive note that is to mature in 1.5 years and has the coupon
schedule: ¢; = 0.04675 and ¢y = 0.06375.

t=0 t=0.5 t=1.5
uu 0.980370 0.968530
uu 0.981175 0.969719 ud 0.986270 0.977286

du 0.986270 0.974359
dd 0.992206 0.983168

uu 0.983316 0.974846
ud 0.987674 0.981145 ud 0.989234 0.983659
CSNy CSN, du 0.989234 0.980713
dd 0.995187 0.989579
0.994146 0.984822
uu 0.986270 0.974359
du 0.992254 0.980576 ud 0.992206 0.983168
du 0.992206 0.980223
dd 0.998177 0.989084

uu 0.989234 0.980713
dd 0.998828 0.992132 ud 0.995187 0.989579
du 0.995187 0.986615
dd 1.001176 0.995534

Table 4: Tree for Credit Insensitive Note Prices

This table shows a tree of prices for the credit insensitive note that is to mature in 1.5 years and has a coupon
= 0.04675. It is identical to the credit sensitive note considered in Table 3 except that its coupon is not linked

to the rating of the underlying credit.

t=0 t=0.5 t=1.5
uu 0.980370 0.953052
uu 0.977876 0.941060 ud 0.986270 0.961668

du 0.986270 0.958787
dd 0.992206 0.967455

uu 0.983316 0.959267
ud 0.984343 0.952229 ud 0.989234 0.967939
CINy CIN; du 0.989234 0.965040
dd 0.995187 0.973764
0.985483 0.960433
uu 0.986270 0.958787
du 0.988917 0.951681 ud 0.992206 0.967455
du 0.992206 0.964557
dd 0.998177 0.973278

uu 0.989234 0.965040
dd 0.995459 0.962978 ud 0.995187 0.973764
du 0.995187 0.970848
dd 1.001176 0.979625
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