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Abstract

In this paper, I show that habit formation is perhaps not what it is commonly perceived to
be: an extension of preference specification for the representative agent. Rather, it captures
a dynamic interaction between aggregate financial income and aggregate labor income. I
also show that existing specifications of consumption habit can be extended to incorporate
a stochastic shock, which is interpreted as the labor income shock. As a result of these two
innovations, I show that a habit formation model can explain the equity premium, equity
volatility, and riskfree rate puzzles simultaneously, and provide an equilibrium justification
for the predictability of equity and bond returns by dividend/price ratio and term spreads —
all in terms of observable sample moments of aggregate dividend income and labor income
growth rates and reasonable values of the risk aversion coefficient and the subjective discount
rate.

To substantiate these claims, I present an extension of the Breeden-Lucas CCAPM by
incorporating a particular form of heterogeneity assumption and a particular form of limited
participation assumption. The resulting model features a richer technological specification
(from the perspective of a production economy) or a richer endowment specification (from
the perspective of an exchange economy), but retains standard assumptions of constant
relative risk aversion, complete markets, and frictionless trading from the perspective of the
marginal investor.
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1 Introduction

Consumption-based capital asset pricing models (CCAPM) developed by Lucas [1978] and
Breeden [1979] seek to explain asset returns in terms of aggregate consumption behavior.
Such models have not withstood vigorous empirical tests (see, e.g., Hansen and Singleton
[1982]). Empirical challenges to the standard CCAPM formulation often take the form of
an asset pricing puzzle or anomaly. These include the equity premium puzzle of Mehra and
Prescott [1985], the risk-free rate puzzle of Weil [1989], the equity market volatility puzzle (see,
e.g., Hansen and Jagannathan [1991] and Campbell [1999]), as well as the ability to predict
expected returns by a number of economic variables, such as term spread and dividend /price
ratio (see, e.g., Fama [1984] and Fama and Bliss [1987], and Fama and French [1989]).

In this paper, I propose an extension of CCAPM based on two basic ideas. First, at the
aggregate level, the economy consists of two fictitious agents: an investor and a worker. The
investor receives all of the financial income and no labor income, and the worker receives
all of the labor income income and no financial income. Since the nature of financial in-
come and labor income are distinctly different, this assumption provides a particular way of
capturing income heterogeneity. Second, labor income received by the worker in exchange
for participating in the risky production is implicitly determined by an ex ante risk-sharing
arrangement between the investor and the worker in such a manner that there is no further
gain for the worker from self-insurance. Since the net demand by the worker for financial
assets (for the purpose of self-insurance) is zero, the worker behaves as if he does not have
access to the financial markets: he consumes all of his labor income, no more and no less. I
refer to this behavior as a limited participation assumption.

The heterogeneity assumption is made operational by constructing a production-based,
continuous-time dynamic asset pricing model based on the optimizing behavior of the in-
vestor, taking as given a dynamic interaction between the investor’s consumption choice (i.e.,
dividend policy) and the worker’s wage demand. The limited participation assumption is
made operational by assuming that the investor invests all of her wealth in the risky pro-
duction process. In another word, the net borrowing or lending by the investor is zero. This
provides the market clearing condition required for a general equilibrium characterization of
the asset markets. Analytical tractability is accomplished by adopting the standard power
utility specification for the investor, complemented by a “linear-quadratic” specification of
the labor income process that helps preserve a homothetic structure. The behavior of asset
returns are completely determined by the joint processes of aggregate dividend income and
aggregate labor income through optimality and equilibrium restrictions. Empirical implica-
tions of the model are examined in Section 4.

The model resolves the equity premium, equity volatility, and the riskfree rate puzzle
simultaneously based on the following intuitions. First, since equities are effectively priced
by the aggregate dividend growth rate rather than the aggregate consumption growth rate,
the risk aversion parameter required to explain the observed equity premium is low. Second,
since the volatility of the labor income growth rate is an order of magnitude lower than that of
the dividend growth rate, and the labor’s share of output is high, the volatility of the dividend
growth rate is an order of magnitude higher than that of the aggregate consumption growth
rate. On average, the ratio of the two is given approximately by the operating leverage,



namely, the ratio of the aggregate consumption and the aggregate dividend income. Finally,
since the risk aversion parameter required to explain the equity premium puzzle is sufficiently
low, the elasticity of intertemporal substitution is sufficiently high. Consequently, the riskfree
rate is sufficiently low under a reasonable value of the subjective discount rate.

The model also contains a non-trivial term structure of real interest rates, with the
riskless rate being a monotonically increasing function of the (per capita) aggregate labor
income, and the market price of risk being a monotonically decreasing function of the (per
capita) aggregate labor income. Three important empirical implications are highlighted in
the paper. First, since the riskless rate is a deterministic function of the labor income, its
volatility is low. Second, since the riskless rate and the market price of risk are negatively
correlated, expected bond returns and real term spreads are positively correlated, possibly
paving the way for a resolution of the expectations puzzle. Finally, since the expected equity
returns and dividend /price ratio are also functions of the (per capita) aggregate labor income,
equity returns are predictable not only by the dividend price ratio, but also by the real term
spreads.

The model is motivated (in Section 2) and solved (in Section 3) as a production economy.
It is also possible to reformulate it as an endowment economy — with an interesting twist.
Section 5 examines some theoretical issues and provides some useful comments on the existing
asset pricing literature from this alternative perspective.

In the course of explaining asset pricing puzzle, the paper gives an economic interpretation
of consumption habit. Specifically, after a change of variables, the model can be interpreted
as a model of habit formation, with the aggregate labor income being interpreted as an (ad-
ditive) consumption habit. The similarities and differences between this model and existing
(additive) habit formation models,’ including Sundaresan [1989], Constantinides [1990], De-
temple and Zapatero [1991], and Campbell and Cochrane [1999]), will be discussed in depth
in Sections 4 and 5 in order to highlight the marginal contributions of this paper.

2 A Neoclassical Model with Limited Participation

In this section, I will outline the economic structure captured by this paper and discuss
in depth various key assumptions, and their economic motivations. This discussion sets
the stage for a parametric formulation of a general equilibrium asset pricing model and the
analytical characterization of its solution in Section 3.

Consider a closed economy with a risky production technology and a riskless storage
technology. The risky technology takes two inputs: capital and labor. Accordingly, there
are two infinitely lived agents: an investor and a worker. The investor supplies financial
capital K (t) and controls the production process, embodied in a representative production
firm. The worker supplies labor in exchange for a labor income X (t). Obviously, X (¢) is
the labor cost to the production firm. Throughout the paper, the terms “labor income” and
“labor cost” will be used interchangeably.

The state of the economy is described by the pair (K (t), X (¢)), which is assumed to be

1See Footnote 5 for a comment on models with multiplicative consumption habit.



jointly Markovian, conditional on a stochastic process Z(t):

dK = [u(K,X)K — Z) dt + 0.(K, X)K dBx, (1)
dX = v(X,Z)dt+y(X,Z)dBy, (2)

where p.(K, X) is the conditional expected return of the risky technology, o.(K, X) is the
conditional volatility of the risky return, and Z(t) is the “dividend” drawn from the financial
stock K (t) to finance current consumption by the investor.

Equation (1) is a standard budget constraint, and equation (2) describes the evolution of
the labor cost (implicitly borne by the investor) or equivalently the labor income (accruing
to the worker). From the perspective of the investor, equations (1)—(2) jointly determine
the investment environment. We refer to these equations collectively as the budget set. The
financial press is replete with reports and commentaries on how cost of labor affects a firm’s
financial performance and equity return. This budget set is one way of capturing a direct
link between labor cost and asset returns.

In principle, there are two individual optimization problems: both the investor and the
worker are rational agents maximizing expected utility. However, I will abstract away from
the worker’s problem by appealing to a limited participation assumption. Specifically, I will
assume that, as a result of an ez ante risk-sharing agreement between the worker/employee
and the investor/employer, the labor income that the worker receives is such that there is
no further gain from self-insurance through asset markets. In another word, the worker
consumes exactly X, no more and no less. A direct implication of this assumption is that
the net supply of the riskless asset and other contingent claims such as long-term bonds
from the worker are identically zero. Consequently, the net demands for these assets by the
investor must be zero.? These are precisely the market clearing conditions we need for a
general equilibrium characterization of the asset markets.

To facilitate further theoretical development, it proves useful to introduce an alternative
formulation of the budget set. To this end, let us suppose that the investor’s problem has
already been solved under the assumption of complete markets and frictionless trading, and
denote the unique state price density or pricing kernel by M (t). Using M (t), we can price
any risky security. In particular, a contingent claim paying a “dividend” stream X (¢) has
an “ex-dividend” price N(t), given by

N(t) = M(t)"'E, [ /t h M(s)X(s)ds} = N(K (1), X (t)),

where the second equality obtains because of the Markovian structure of the budget set.
For lack of better terms, we will refer to N(t) as the value of human capital. Define W =
K+ N =K+ N(K,X) = WK, X) and suppose that, given X, the function W(-, X) is

2Tn another word, the investor has no financial leverage in equilibrium, in stark contrast to the limited
participation model of Basak and Cuoco [1998]. Basak and Cuoco [1998] assume that a subset of individual
investors do not participate in the stock market, but lend money to those who do, and the resulting financial
leverage assumed by the stockholders explain the equity premium puzzle. In contrast, financial leverage as
a mechanism for resolving the equity premium puzzle is explicitly excluded in my model.




invertible, with the inverse given by K(-, X). Then the state vector (K, X) can be replaced
by the state vector (W, X) — by substituting out K everywhere by K(W¥, X).3
Throughout the paper, I will also assume that the population grows at a constant rate

of G: H(t) = H(0)e“, where H(t) is the size of the population at time ¢. Furthermore, I as-

sume that all per capita level variables are stationary. In particular, if we define w(t) = VIZ—((E))

and z(t) = Vg—((tt)), then the state vector (w(t),x(t)) is stationary. All subsequent theoretical

development is based on the per capita variables (denoted by lower case letters). In partic-
ular, the per capita financial income is denoted by z(t) = %, and the per capita value of
financial stock is denoted by k(t) = % Similarly, the per capita value of human capital is
denoted by n(t) = % All rates of returns and yields in the per capita economy are obtained
from those in the original economy by a reduction of G' and all rates of mean reversion are
obtained from the original economy by an increment of G. All contemporaneous differences
in rates of return and yields and all contemporaneous ratios such as proportional conditional
volatilities in the per capita economy are the same as those in the original economy.

In Appendix A, I show that, in terms of the state vector (w, z), the investor’s problem

can be stated as follows:

max  Ey [ /0 T u(e(0).1) dt} , (3)

a(t),z(t):t>0

subject to
dw = [a(p(w,z) —r(w,z))w+r(w,z)w— 2z — ] dt + ac(w, z)w dB,, (4)
dr = v(z,z)dt +¢(z,2)dBy, (5)

where B, and B, are standard Brownian motions with constant correlation §. Furthermore,
the market clearing condition is
at) =1, (6)

which is equivalent to the condition that the net supply of riskless asset is zero. Equa-
tions (3)—(6) constitute a generic description of the general equilibrium asset pricing model
studied in this paper. This model differs from standard permanent income models in several
important respects.

First, the labor income process in permanent income models is typically assumed to be
autonomous Markovian processes. This is not the case here. The explicit dependence of
v(z,z) and ¥(z,z) on the choice variable z captures a strategic interaction between the
investor and the worker. One of the maintained assumptions, v,(z, z) > 0, captures the idea
that the worker may be willing to offer a lower wage demand in “bad” states of the economy
(low values of z) in exchange for the investor’s willingness to accept a higher wage demand
in “good” states of the economy (high values of z). This is consistent, in spirit, with Klein

30bviously, this procedure can be done in reverse: start with primitive assumptions about the dynamics
for (W, X) and solve the model. Let the pricing kernel be M (t) and optimal control be Z* = Z(W, X).
The value of financial capital is given by K(t) = M(t) ' E, [, M(s)Z*(s)ds] = K(W,X). If K(-, X) is
invertible with inverse W(-, X), we can restate the problem in terms of the new state vector (K,X) by
substituting out W = W(K, X) everywhere.



[1950]’s wage demand function: that the wage demand is a weighted sum, or distributed
lag of past output implies that the expected growth rate of wage income is increasing with
current output.?

Second, the utility function in permanent income models is defined in terms of aggregate
consumption ¢(t) = z(t) + x(¢). This is not the case here. Since the model describes the
optimizing behavior of the investor, rather than the representative agent, it is natural to
assume that the utility function is defined in terms of the (per capita) financial income z(t).
There is no reason to believe that the worker’s consumption z(¢) should enter the investor’s
utility function, unless these two agents are one and the same.

Even though the utility function is defined in terms of z(¢), nothing prevents us from
using ¢(t) as a dummy variable in lieu of z(¢). Through a simple change of variable: z = c—ux,
the model can be rewritten as

max By { /0 T ulelt) — x(t), t) dt| (7)

a(t),c(t):t>0
subject to

dw = [a(p(w,z)—r(w,z))w+7r(w,z)w — | dt + ao(w, z)w dB,, (8)
de = v(z,c—x)dt+Y(x,c—x)dB,. (9)

This formulation suggests a different interpretation of the model: if we mistakingly think
of the marginal agent as the representative agent consuming c(t), then the agent acts as
if she develops a consumption habit z(¢). In another word, the concept of consumption
habit may simply be an outdated label for the aggregate labor income!® To hit the point
home, suppose that the following simple parameterization of the labor income process is
adopted: v(z,c — x) = bc — ax, and ¢(x,c — z) = 0, and that the investor has constant
relative risk aversion. Then the model is isomorphic to the internal habit formation model
of Constantinides [1990].
Key maintained assumptions are summarized as follows.

Assumption 1 (Wealth Independence of Riskless Rate) The riskless rate r(w,x) is
independent of w, i.e., r(w,z) = r(z).

This assumption has two motivations. First, a volatile riskless rate is a common malaise of
exchange-based asset pricing models. To get rid of this undesirable feature, Campbell and
Cochrane [1999] impose a parametric restriction so that the riskless rate is strictly constant,
which renders the term structure of interest rates trivial. This paper offers a model in which
such an extreme assumption is avoided and a realistic term structure of interest rates can

4Klein’s wage demand function also implies that the expected growth rate of wage income is decreasing
in the current level of wage income, which is consistent with another maintained assumption in my model
that v, (z,2) < 0.

5 The multiplicative habit model, proposed by Abel [1990], can also be interpreted in the same spirit. Let
s = £ = 1— % be the investor’s share of output, and y = % = .=, then the investor’s utility function can
be written as u(z,t) = u(c/y,t). Thus, there is a formal equivalence between a model with additive habit z

and a multiplicative habit y.




also be accommodated. Second, since labor income growth is known to be smooth over time,
the riskless rate also has a low volatility if it depends only the labor income.

To characterize the nature of the state-dependence of the riskless rate, I will take the view
that the riskless rate also represents the worker’s productivity when he does not participate
in the risky production. Thus, it is intimately related to the income or consumption process
when the worker pursues the outside opportunity, which is characterized below.5

Assumption 2 (Worker’s Outside Opportunity) When the worker does not participate
in the risky production (which means k = z = 0), the labor income process is deterministic
and declining over time. That is, for Vo > 0,

V(:an) = lo(ﬂ?) < Oa 1[1(117,0) = 0.
Furthermore, 1y(0) = 0 and lj(z) < 0 for z > 0.

Henceforth, the value of human capital associated with the outside opportunity, f(z) =
n(0, z), is referred to as the reservation value of human capital. When k = 0, u(w, z) = r(zx),
and equation (4) implies that df (x) = [r(z)f(x) — ] dt. This leads to the following lemma:

Lemma 1 If Assumptions 1-2 hold and the budget constraint (4) holds at k = 0 or w =
f(z), then for VY > 0,

r(z)f(z) —=

o) o)z (10)
or equivalently, (z)f'(z)
_ vt+h@)f(z)

r(z) = f(z) ' "

Given the reservation value f(z), equation (10) imposes a restriction on the labor income
growth rate given the riskless rate, and equation (11) imposes a restriction on the riskless
rate given the labor income process. If both ly(z) and r(x) are taken as given, then either of
the two equations effectively imposes a restriction on the reservation value of human capital
f(z). For an example, if lo(z) = —kz, K > 0, and r(x) = 7, where 7 is a constant, then
either equation (10) or equation (11) implies that f(x) = nz, where n = HLK

In Appendix B, I show how the reservation value f(z) emerges from a worker’s opti-
mization problem when he pursues the outside opportunity. Without prior restrictions on
the worker’s preference function, f(x) can take on arbitrary functional forms. Rather than
specifying the worker’s preference function as a primitive assumption, it is more convenient
to impose directly the following restrictions on f(z).

Assumption 3 (Reservation Value of Human Capital) For Vz > 0,

f(0)=0, f(z)>0, f(z) <0, A'(z)>0,

where A(x) = —‘”J{,Izg) <0.

6See Appendix B for an elaboration on the worker’s problem when he pursues the outside opportunity.
This problem is distinct from the worker’s “self-insurance” problem when the worker participates in the risky
production and receives a risky labor income. The latter problem has been rendered trivial by the limited
participation assumption.




The following lemma gives a strong result pertaining to the state-dependent nature of
the riskless rate.

Lemma 2 (State-dependence of r(x)) Let ly(x) = —kz, where k > 0. Suppose that
Assumption 8 holds. Then r'(x) > 0 for Vz > 0.

The proof is given in Appendix B.1. In order for r(x) to be monotonically increasing in z,
it suffices that f”(z) < 0 and A'(z) =0 (e.g., f(z) = n*===, where € > 0),
Turning to the behavior of the labor income process when the worker participates in the

risky production, I start with the following assumption.

Assumption 4 (Labor Income with Risky Production) For Vz > 0 and Vz > 0,
v(z,2) >0, ,(z,z)>0.

The monotonicity of v(z, z) in z captures two intuitions. First, in order to induce the worker
to participate in the risky production, the investor may have to offer or the worker may be
able to demand an incentive for participation, in the form of a higher rate of labor income
growth when z is higher. This can be captured by assuming that v(z, z) contains a piece
proportional to z. Second, since there is a residual labor income risk, ¥ (z, z) # 0, the worker
needs to be compensated for bearing the risk. For reasons elaborated below, this means that
v(x, z) should also contain a piece of the form: —%J}’,’((;))d)(x, z)2. The following assumption
puts more structure on the labor income process.

Assumption 5 (Expected Rate of Labor Income Growth) For Vz > 0 and Vz > 0,

1@
2 fi(z)

¥(,2)%, (12)

v(z,z) =ly(x) + l1(z)z

where Iy (x) > 0.

The linkage between the conditional mean v(z, z) and the conditional volatility ¢(x, z) of
the labor income process is induced entirely by the curvature of f(z). If the investor is not
required to compensate the worker for bearing the labor income risk, she may be tempted
to shift risk to the worker (by judicious choice of z). An appropriate amount of risk com-
pensation removes this temptation.

To illustrate ideas, suppose that the investor’s indirect utility function can be written
as V[w — f(z)], and the worker’s (reservation) indirect utility function can be written as
U(f(z)) (ignoring the time dependence for simplicity), where both V() and U(+) are at least
increasing.” Ito’s lemma implies

dVv = [ o= vz, 2)V' f(2) + %w(x, 2)? [V f(z)? — V'f"(x)}] dt + ...,

dU = [u(:c, 2)U' f'(z) + %Qﬁ(x, 2)? [U" f'(z)* + U'f”(:c)]] dt.

Tt will be shown later that the investor’s indirect utility function takes exactly the form V(w — f(z), t).
The “splitting” of the total wealth w into w — f(z) and f(x) mirrors the “splitting” of the total income or
consumption ¢ into z = ¢ — z and z. It is important to note however, when the stock value of z is positive,
i.e., k > 0, the value of human capital n(k,z) is in general different from f(z) = n(0,z), the reservation
value. An obvious conjecture is that n(k,z) > f(z) for Vk > 0, which can be explicitly verified.



A concave f(x) implies that labor income volatility can be beneficial to the investor, as the
term —1¢(z, )2V’ f"(x) is positive and can dominate the utility cost 3t (z, z)?V" f'(z)? in
some states of the world. In contrast, a concave f(z) implies that labor income volatility
unambiguously leads to a utility cost for the worker, as the term St (z, 2)?V"’ f”(z) is negative
and increases with 9 (z, z). The asymmetric effect of the concavity of f(z) is neutralized
under Assumption 5, because in both cases the third term in v(z, z) cancels exactly the term
associated with f”(x) (note that the third term in v(x, z) reduces the expected growth rate
of V' but increases the expected growth rate of U, because V decreases with f(x) and U
increases with f(x)).

Starting from Section 3, I address asset pricing issues using a parametric specification
based on a linear-quadratic structure, which obtains under the following assumption.

Assumption 6 (Volatility of Labor Income Shock) For Vz > 0 and Vz > 0,

Y(z,2) = l3()z,
where 13(0) = 0.
Assumptions 5 and 6 imply that v(z,2) = ly(x) + l1(2)z + l2(x) 2%, where

1f"(z)
2 f'(x)
Thus, ¥(z, z) is linear in z and v(z, z) is quadratic in z.

This linear-quadratic structure can be relaxed at the expense of losing analytical tractabil-
ity. A potentially interesting example outside the linear-quadratic structure is obtained by
assuming that ¢(z, z) = l3(x)/z. According to Assumption (5), the third term in v(z, z) is
also linear in z and can thus be absorbed into the second term in v(z, z). Consequently, the
labor income process is “conditionally affine”:

dz = [lo(x) + 11 (z)2] dt + I3(x)\/2dB,. (14)

lp(2) = ls(2)2. (13)

Under mild regularity conditions, this process is well-defined, as long as z is non-negative. In
a production-based setting, z is endogenously determined. Unless the model can be solved
analytically, it is difficult to characterize and impose conditions under which the optimal
control z is non-negative. This difficulty is easily circumvented in an exchange setting,
where the positivity of the endowment process z can be exogenously imposed. See Section 5
for a discussion of the endowment economy approach.

The final maintained assumption is the utility specification of the marginal agent in this
economy, namely, the investor. For simplicity and also for a direct comparison to popular
models in the existing literature, I shall adopt the CRRA specification, which is utterly
conventional.

Assumption 7 (Investor’s Utility Function) For Vz >0,

v
u(z,t) = e_”tz—,
~

where p > 0 and v < 0.



In Section 3, I will show that, under a parametric specification consistent with Assump-
tions 1-7, the model admits an analytical solution. Furthermore, in Section 5, I will show
how to formulate the model as an endowment economy. I choose to present the model
as a production economy, because the primitive assumptions are easier to motivate (as I
have tried to accomplish so far in this section) and asset pricing implications are easier to
characterize. I conclude this section by elaborating the last point.

To facilitate the discussion, I first present two general results in the form of two lemmas.
Assumptions 1-7 are sufficient, but not necessary, for these lemmas to hold.

Lemma 3 (Marginal Utility of Wealth) Suppose that the model defined by equations (3)—
(6) admits a unique equilibrium with value function V(w,x,t) and optimal policies o =
a(w,z) and z* = z(w, ).

Let G(w, z) = wo(w, z)'a(w,x). Then, the expected rate of growth of the marginal utility
of wealth, V,,, is equal to —r(w,x), if and only if

wry + G(w, x)Ay = 0. (15)

The proof is given in Appendix C. An immediate implication is that, if both the riskless
rate 7(w, z) and the Sharpe ratio A(w, z) are independent of the per capita total wealth w,
the marginal utility of wealth, V,,, can potentially be interpreted as the pricing kernel in this
economy (whose expected rate of growth is —r(w, z)). This is confirmed by the next lemma.

Lemma 4 (Pricing Kernel) Consider the model defined by equations (3)-(6). Suppose
that

1. In addition to claims to the production technology and the riskless asset, the investor
can trade a contingent claim with dividend D(t) and ex-dividend price P(t), with the
total return given by

dP(t) + D(t)dt
P(t)

where corr(By(t), By(t)) = dpw and corr(By(t), By(t)) = Ops.

= up(t)dt + op(t)dB, (1),

The contingent claim is not redundant: Opy F# 00py,.

The net supply of the contingent claim 1is zero.

rw =Ny =0, ie, r(w,z) =r(x) and Aw,z) = A(z).
5. There exists a unique equilibrium with value function V(w,z,t).
Then m(t) = V,,(w, z,t) is the unique equilibrium pricing kernel, in the sense that®

dP(t) + D(t)dt dm(t)
“’”“)‘r“):‘””< O m<t>)

(16)

for any security with dividend stream D(t) and ez-dividend price P(t) (including claims to
the production firm).

8Throughout the paper, the instantaneous covariance cov(-) is always normalized by dt.
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The proof is given in Appendix D. By design, the additional contingent claim completes the
market, thereby pinning down the unique equilibrium pricing kernel.

If conditions are met so that these two lemmas hold, then the pricing kernel is given
by m(t) = Vy(w,z,t), i.e., the marginal utility of wealth, rather than wu,(z,t), the utility
gradient (see Duffie and Skiadas [1994]). In most existing asset pricing models, including
the venerable Merton’s model and the CIR model, the equality Vi, (w,x,t) = u,(z,t) holds
and is commonly referred to as the envelope condition. In my model, this envelope condition
breaks down (because of the explicit dependence of the labor income process on the control
variable z) (except for some special cases). Lemma 4 shows that, in my model, pricing
is straightforward in the production setting, once the value function is obtained (either
analytically as in this paper or numerically in some other cases). In contrast, pricing becomes
a formidable challenge in the exchange setting.®

3 Stochastic Growth and Asset Pricing

In this section, I will present the main theoretical result of the paper: the explicit character-
ization of a unique general equilibrium of asset markets, under a particular parameterization
of the model defined by equations (3)—(6).

To begin, let us first consider the following simple parameterization of the model:

max  F [ /0 h e—Pt@dt} | (17)

a(t),2 (10
subject to the constraints
dw = [a[p(w,z)—7r()|w+r(r)w— 2z —z]dt + ao(w, 2)wdBy, (18)
de = (bz — KT + %6,327:2) dt + fzd By, (19)

where p > 0,7v<0,b>0,x >0, >0, 0 =corr(dB,,dB;) <0, and € > 0. It is easy to
verify that, if
1—kf'(x) 1—e
r(@) = —=7— f(@) =n—, (20)
fz)/z €
where n = mi% > 0 and 79 = r(0), the parametric specification satisfies Assumptions 1-7.
The model is completely specified by eight parameters: (p,,b, &, 5,9, €, 7).
Following the proof for a more general case to be given shortly, we can show that, if
wog > f(zg), then the inter-temporal optimality conditions (i.e., the Hamilton-Jacobian-
Bellman equation) and the market clearing condition @ = 1 are satisfied for the above

model, with the indirect utility function given by V(w,z,t) = e*”tqbw, where ¢ > 0.

9The consumption habit in Campbell and Cochrane [1999] is assumed to be “external”, rather than
“internal”, precisely because in their exchange setting, pricing is much more involved with an “internal”
habit. In my paper, the labor income process must be interpreted as an internal habit. Introducing stochastic
shocks to the internal habit further escalates the computational difficulty in the exchange setting.
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Furthermore, the optimal consumption policy is given by z* = h(z)(w — f(x)), and the
equilibrium return is given by

plw,z) = r(z)+ Alz) o(w, z), (21)
o(w,z) = w_Tf(x)g(x) (22)

where the real functions h(z), g(z), and A(z) are endogenously determined. Note that A(z)
is the Sharpe ratio, which is independent of w. Thus, Lemma 4 applies, and the pricing
kernel in this model is given by

m(t) = Va(w,,8) = e #(w — [(@))7 = e 7' (W) |

Since both z and x are observable, at least in principle, this model is readily testable using
the Euler equation approach. Take a time grid ¢ = 1,2,...,7, and consider a security
that pays dividend D; with ex-dividend price P;,. The one-period return of the security,

Rtﬂ = Pt*%tDt“, must satisfy the following Euler equation FE} [%&I)Rtﬂ} = 1, or more

(ﬁ h(z) >7_1 Rt—l—l

2t h($t+1)

explicitly,

E, =1. (23)

Since the expression inside the conditional expectation can be computed directly from ob-
servable macro and financial variables, the equation can be used to construct sample moment
conditions (when applied to different assets) as testable over-identifying restrictions, along
the line of Hansen and Singleton [1982].

If x were an autonomous process, the pricing kernel would be equal to the utility gradient
u, = e P2771, and the Euler equation would be given by!°

Zi+1 L
In this case, the extra state variable x, whatever its economic origin, would enter the Euler
equation only through the information set. In contrast, in my model, per capita labor
income enters the Euler equation directly through the function h(z), as well as indirectly
as a conditioning variable. This is a key distinction between this model and many existing
empirical implementations of asset pricing models.

Other asset pricing implications of the model can be readily derived in a straightforward
manner. Before we do, however, a minor technical detail must be taken care of. It can be
shown that, under the maintained sign restrictions on the model parameters, the endoge-
nously determined functions h(z), g(x), and A(z) exist only if z does not exceed a critical
value z,, > 0, beyond which h(z), g(z), and A(z) become complex-valued functions, which

E, =1. (24)

10Tt is often debated whether z in the Euler equation should be aggregate dividend or aggregate consump-
tion. In my model, the aggregate dividend is clearly the more sensible choice (ignoring other non-human
income as most asset pricing models do).
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does not make economic sense. The economic reason why this occurs is as follows. As a gen-
eral equilibrium implication, the Sharpe ratio is monotonically decreasing with labor income.
As labor income increases, the Sharpe ratio eventually becomes zero. Further increases in la-
bor income renders risky production unprofitable compared to the riskless investment, which
is always available to the investor. Thus, z,, represents the technological limit for the level
of labor income. Any labor income beyond this limit can not be sustained (the investor will
not invest for a negative expected equity premium).

The problem with the naive specification (17)—(20) is that, as long as 0 < z,,, < oo, the
volatility of the labor income growth does not vanish except when z = 0. Thus, as long
as z > 0, there is a positively probability that the labor income process will diffuse above
ZTm, which renders the model invalid. Fortunately, this defect can be easily remedied by
modifying the model slightly. The following model does the job.

Let (x) and f(x) be given by equation (20). The investor solves

max E, [ /0 h e—f’t@dt] : (25)

a(t),z(t):t>0
subject to the constraints
dw = [a[p(w,z)—7r(@)]w+r(@)w — 2z — z]dt + ao(w, 2)wdB,y, (26)
de = (bl}(w)z — KT + %6,32[3($)222) dt + Bl3(z)2dBy, € [0, Zm], (27)

where p > 0,v<0,b>0,xk >0, >0, =corr(dBy,dB;) <0, ¢ >0, and z,, > 0. In
equilibrium, a = 1.

In this model, the labor income process z stays within the interval [0, z,,]. Its boundary
behavior is regulated by two functions I;(z) and I3(z), which are assumed to be 1 in the
interval [0, z,,]|, except when z is sufficiently close to both boundaries. As z — z,,, I (x)
and [3(36) approach zero at a sufficiently fast rate. This precipitous decline in [1(x) and
Zg(l‘) toward zero as * — z,, reduces the risk that the investor is exposed to by just the
right amount so that the investor stays invested in the risky technology (when z = z,,, the
investor is not exposed to any risk, and enjoys an expected return equal to the riskless rate).

Although this specification is more general than equations (17)—(19), parameters involv-
ing the boundary behavior of {;(z) and l3(z) are largely irrelevant, except for the location
Zm of the upper boundary (we will see why z,, is an important exogenous parameter soon).
In essence, this is a nine-parameter model. A

In solving the model, I will denote bl;(z) by l;(z) and Biz(x) by l3(x) for notational
simplicity. Most results are valid for a general specification of [;(x) and /3(z). Only when we
discuss the boundary behavior will the functional forms of [, (z) and I3(x) come into play.

Proposition 1 (Partial Equilibrium) Consider the model defined by equations (25)-(27)
and equation (20). Suppose that the expected return and the conditional volatility are given
by equations (21) and (22) respectively and wy — f(xo) > 0. Then

1. The indirect utility function is given by

[w— f(@)]”

V(w,z,t) = e "¢
Y

, 9> 0. (28)
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2. The optimal portfolio allocation to the risky production technology is given by
o _ A+ (1 —7)dls(z)h(z) [ (z) w = f(z)

VT i o) v 2

3. The optimal consumption policy (for the investor) is given by'!
2" = z(w,z) = h(z)[w — f(z)], (30)

where
h(z)! 1 2 10,2 1

S =L@ @) + (0= hE)h@)f @) - (- D)@ @) (6]

4. The Sharpe ratio of the risky production technology is given by

_ : ®(z)

A(z) = (1 =) lg(z) = 6ls(z)h(z) f'(z)] - 7) (32)

where
B(r) = L) — (1 —7)ols(@)h(a) [ (@)g(x) + (),

W) = (o) - L4 ML L e o)

Proposition 2 (General Equilibrium) Consider the model defined by equations (26)-
(27) and equation (20). Suppose that the net supply of the riskless asset is zero and wqy —
f(zo) > 0. Then, the model admits an equilibrium (u(w,z),o(w,x);2*), in the sense that,
given (p(w, x),0(w,x)), 2* satisfy the optimality conditions and markets clear o = 1. Fur-
thermore,

1. The equilibrium consumption policy is given by equation (30).

2. The conditional moments of the equilibrium return, pu(w,x) and o(w,x), are given by
equations (21) and (22) respectively.

3. The equilibrium Sharpe ratio of the risky production A(x) is given by
Alz) = (1 =) [g(z) — dls(z)h(z) f' ()], (33)
where, for Vz € [0, z,,], h(z) and g(z) jointly solve equations (31) and (34):

29 (x)
l—xy

g(x)* = 20l3(z) () f' ()9 () + =0. (34)

HFor ease of exposition, I will use z = z(w, ) to denote the optimal policy z* so long as no confusion
arises.
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In order for z,, to be a proper boundary, a necessary condition is that g(:cm) =0, Wthh
implies that ¥(z,,) = 0. Since l1(z,,) = l3(zn) = 0, we also have h(z,)"™t = ¢ a
r(Tm) — 2+ = 7h(m(;”)7 0. It follows that

-1
p—r(Em)]’
_ 35
L (35)

provided that p — yr(x,,) > 0. Since the function r(z), ro = r(0), and z,, are exogenously
given, r(z,) is also exogenously determined. Thus, the above equation determines the
endogenous parameter ¢.

Given ¢ and the exogenous parameters, the functions h(z) and g(z) can be solved for
each z, in particular, when = = z, the steady-state value of x, we can solve for h = h(z)
and g = ¢(Z), both are implicit functions of ¢, and therefore z,,. Thus, the location of the
upper boundary is an important determinant of the steady-state mean, and consequently the
steady-state value of the riskless rate and equity premium. In empirical calibration exercises,
we can use the steady-state value (i.e. unconditional means) of the riskless rate or equity
premium to determine the state-steady value of the labor income Z, which in turn identifies
the upper bound z,,. Most asset pricing implications can be derived once ¥ is known. Thus,
we rarely need to solve for z,, explicitly (one exception is when we try to simulate the model).

Although the no-bankruptcy restriction is not imposed in solving the model, Corollary 1
asserts that it is not binding:

Corollary 1 (Equilibrium Wealth Process) Suppose that Proposition 2 holds. Then, in
equilibrium,

dlw— f(z)]  [r(z)—0p 2— i 2—v. e
w1 | 1=y taao @t T (U Ol @ )

9(x)dBy — l3(x)h(z) f'(x

)
If wy — f(zo) is non-negative, then w — f(z) is non-negative. Since f(z) is non-negative,
w must also be non-negative. Equation (36) is a key analytical result, from which the
equilibrium dividend and consumption processes and the pricing kernel can all be derived.
Since r(z) and A(z) are independent of w, Lemma 4 implies that the pricing kernel is
given by m(t) = V,,. This leads to the following corollary.

dB;.

Corollary 2 (Pricing Kernel) The pricing kernel m(t) is given by

dm(t) _
m(t)

where A" (x) = w“;’““’a o= (1-7)g(z) and A*(z) = ‘(}ff l3(z)z* = —(1—7)ls(z)h(x) f'(x).
Alternatively, writing B, = 6B, + V1 — 2B, , where B, 1 B,,, we have
dm(t)

ity = @4t = A@)dBu(®) — AL (2)dBL (), (38)

—r(z)dt — AP (2)dBy (t) — A®(z)dBa(t), (37)

where A(x) is given by equation (33), and

Ar(z) = =(1 = 7)V1 = 0%l5(z)h(z) f'(x). (39)
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The proof is trivial. Equation (37) or (38) can also be obtained from equation( 36), noting
that m(t) = e P'¢p(w — f(z))" .
The pricing kernel can be used to price any security. In particular, (normalizing m(0) = 1)

bwa) = E| [ sws)ae)ms)as
n(w,z) = E{ /Ooox(s)m(s)ds (0)=w,x(0):x], (41)

give the value of financial capital (stock value of z(w,z)) and the value of human capital
(stock value of z).
Summing equations (40) and (41) yields an accounting identity:

k(w, ) + n(w,z) = B [ /0 " 2(s) + 2(s)] m(s)ds

which is what we expect, since w is the stock value of the aggregate consumption ¢ = z + x.
One application of this accounting identity is the determination of the initial wealth level,
wop. Applying equation (42) to the initial values, we have

(0) = w,z(0) = x} , (40)

(0) = w,z(0) = x} =w, (42)

k(wo, o) + n(wy, xo) = wy. (43)

Since ko = k(wo, x9) and o are exogenously given, wy is endogenously determined by solving
ko + ’fl(’w(), .’EQ) = Wy-

Applying standard continuous-time asset pricing techniques (see, e.g., Duffie [1996]), we
can show that k£ and n can be determined by the following partial differential equations
(PDEs) (it suffices to solve one of them due to the accounting identity (42)):

ok  w?c(w,z)? 0%k 0%k
0=[r(z)w—z—x] 0 + (2 ) 92 + 6l3(x) 2wo (w, )
. ok I3(x)%2? 0%k
+ [lo(:c) 1 (x)z + zQ(x)f] Ok [ L@k o kw 2) + 2,

Oz 2 Ox?
or
on  w?o(w,z)? 8n 9’n
0=[r(z)w—z—x 0 + 5 907 + dl3(x)zwo (w, x) E )

La(2)222 §2
Z_Z 3(3;2) ‘ % —r(x)n(w,z) + z,
where I1(z) = l;(z) — [0A(z) + V1 — 62A, (2)]l3(x), and z = h(z)[w — f(2)].

In preparation for subsequent development, I conclude this section by giving a formal
definition of the “steady-state means” of some key variables.

+ [lo(m) +(2)z + zz(x)f]

Definition 1 (Steady-state Means) 1. The steady-state means of z and x, denoted by
Z and T respectively, are the solution to the following joint equations:

1
bz — kT + §€ﬁ222 = 0, (46)

Ml e+ 0 e @ = 0 )
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2. The steady-state mean of c isc =z + .

3. The steady-state mean of w is given by w = hé_c) + f(z).

4. The steady-state_mean of any function F
have ¥ = r(z), f = f(z), h = h(z), g =

etc.

,T) 48 gwen by F

(w 2
9(2), A = A(2), F

Note that Z and Z are chosen so that the expected growth rate of x and w — f(z) are zero
at ¢ = z and z = z. In general, it is not necessarily true that the expected growth rate of
a function F(w,z) is true at w = w and = = Z, because of the Jensen terms. Such Jensen
terms are typically negligible, so that the expected growth rate for each variable is close or
equal to zero at its steady-state mean.

4 Asset Pricing Puzzles Revisited

In this section, I revisit asset pricing puzzles using the model given by equations (17)—
(20). Although this model is slightly defective in terms of its boundary behavior, it is
easily remedied as shown in the previous section. The refinement dealing with the boundary
behavior of the labor income process do not affect the analytical form of the solution in the
relevant state space, i.e., where I () = [3(1') = 1. When 0 < Z < z,,, we can always assume,
without loss of generality, that I,(Z) = l3(z) = 1.

Using the dummy variable ¢ = 2z + z, we can reformulate the model as a parametric
specification of the habit formation model defined by equations (7)—(9):

max By [ /0 T ulelt) — 2(t), £) dt | (48)

a(t) (B0

subject to
dw = [o(p(w,z) —r(w,z))w+r(w,v)w—c| dt + ao(w, z)w dB,, (49)
dr = (bc —az + %6,32(0 — x)2> dt + B(c — z)dBy, (50)

where p>0,7<0,a=b+k>b>0,5>0,d =corr(dBy,dB;) <0, and € > 0, with r(z)
and f(z) given by equation (20). For convenience, I will denote this model by the acronym
SHABIT (Stochastic HABIT).

The habit formation model of Constantinides [1990] is obtained by setting both 5 = 0
and € = 0. Henceforth, this model is referred to as CHABIT (Constantinides HABIT'). An
intermediate case between SHABIT and CHABIT is obtained by letting # = 0 but keeping
€ > 0. The budget set in this model is exactly the same as CHABIT, except that the
riskless rate is state-dependent (a different technological specification). Henceforth, T will
refer to this model as DHABIT (Constantinides HABIT with a state-Dependent riskless
rate).'? Since the correlation 4 is irrelevant when 8 = 0, DHABIT has seven free parameters:

12To summarize, SHABIT stands for the full model with 8 > 0, € > 0; DHABIT stands for the intermediate
model with 8 =0, € > 0; and CHABIT stands for the most restrictive model with 8 = ¢ = 0.
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(p,7,a,b,€,79, ). When € =0, 7(x) = ro =7, and z,,, = oo (the functions h(z) and g(z)
are constant, so that there is no restriction on the state space of the labor income process).
Thus, CHABIT has five free parameters: (p,~y,a,b, ).

In examining the empirical implications of the model, T begin by using models CHABIT
and DHABIT to address the equity premium, equity volatility, and the riskfree rate puzzles.
Particular attention is given to the issue of parameter identification from both empirical
observations and model restrictions. Sample moments are obtained from the annual U.S.
data for the postwar period, including the average growth rate of aggregate consumption
G = 1.89%, the volatility of the consumption growth rate . = 1.5%, the volatility of the
dividend growth rate 5, = 11.2%, the expected real market return to equity jix = 7.85%,
the volatility of market return to equity o, = 15.9%, and the average real riskless rate
R = 0.94%. The average growth rate is used to obtain the rates and yields in the per capita
economy, where the expected equity return is fiy = fix — G = 5.96%, and the average real
riskless rate is 7 = R—G = —0.95%. Thus, for the per capita economy, there are five relevant
sample moments are (d,, ., 0k, ik, 7) = (1.5%,11.2%, 15.9%, 5.96%, —0.95%). The implied
Sharpe ratio of the equity return is given by A = 0.4341. Throughout the discussion, I will
assume that the steady-state value of a variable is equal to the sample mean of this variable.

4.1 Models CHABIT and DHABIT

Evaluated at the steady-state means z and Z, both models DHABIT and CHABIT provide
three theoretical restrictions and five moment restrictions: (i) the equilibrium restriction on
the market price of risk (33); (ii) the optimality conditions on h(z) and g(x) (31) and (34);
(iii) the conditional means of the state variables must be zero; (iv) the conditional volatilities
of the state variables must be equal to the sample volatilities; and (v) the AR(1) coefficient
of the ratio { = X is equal to one minus the mean reversion coefficient of £ 13

Specifically, using the equilibrium restriction A(z) = (1—7y)g(z) to eliminate the function
g(x), we have

-1
M~ 1), (51)
M) = 20— [r(@) - 2+ LA (52)
vy 9
_ _ 2—7v 2
0 = bz—(a—0b)x=bc—axz, (54)
A
oe) = 1, (55)
o) = —o.(a), (56)
AR(1) = 1—(a—0b)+0,(x)? (57)
13Tto’s lemma implies d¢ = (b — k(x)€) dt — 0, (x)€d By, where k(x) = (a — b) + p(z) — 0. (x)%. Thus, the

mean reversion coefficient is (@ — b) + p.(x) — o, ().
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These equations also hold for CHABIT, except that in this model, the functions r(z), f'(x),
A(z) (hence o,(x)), and h(z) are constant.

In both models, the equity premium, the equity volatility, and the riskfree rate puzzles
are resolved immediately by choosing three parameters:

e Equity Premium Puzzle: Equation (55) implies that

= = 2.7274.
1120 2T

A 04341
1— Y= —
0>
Intuitively, due to limited participation assumption, assets are priced by the dividend
growth rate, which is an order of magnitude more volatile than the consumption growth
rate. Thus, the risk aversion parameter required to fit the equity premium puzzle is
an order of magnitude smaller than the CCAPM used by Mehra and Prescott [1985].

e Equity Volatility Puzzle: Equations (54), (55) and (56) imply that

a I o,  11.2%

a—b -z o, 1.5%

=T7.4T7.

This ratio can be interpreted as the operating leverage of the risky production.'* In-
tuitively, because the labor income growth is deterministic, the investor bears all of
the production risk. The volatility of the investor’s income growth is amplified by the
operating leverage.

¢ Riskfree Rate Puzzle: Equation (53) implies that

2~y 14 2.7274
p=it ) A= _0.95% 4 — % 0.43412 = 0.1193.

2(1 — ) 2 X 2.7274

Intuitively, when the risk aversion parameter is low, the elasticity of intertemporal
substitution is high. Therefore, there is no longer a conflict between a positive discount
rate and a low riskless rate.

In fitting the three puzzles, we gave ourselves a break by not using the actual income and
consumption levels to pin down the labor’s share of income. This is in part motivated by the
fact that determining the relative level of financial and labor income involves serious mea-
surement issues, related to such questions as how to distinguish labor income and financial
income (which portion of Bill Gates’ income is due to his “labor” as a Microsoft employee,
and which portion of his income is due to his ownership of the firm?), how to sample the
population, how to account for interest income, how to account for housing and other non-
financial, non-human assets, and how to account for taxation and government spending. If
we were able to come up with an accurate measure of the labor’s share of the output, % = g,
which in all likelihood would be different from the value calibrated above, then the two mod-
els can no longer fit exactly the three puzzles simultaneously using only three parameters

"The ratio £ = 2 = 0.866 can be interpreted as the labor’s share of output, which is roughly consistent
with historical estimates (see, e.g., Ibbotson and Brinson [1987]). Heaton and Lucas [1996] assume that the

labor’s share is 85%.
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P, v, and % One way to restore the simultaneous and exact fit for these three puzzles is
to allow the labor income growth to be stochastic and correlated with the dividend income
growth, which is exactly what the model SHABIT does. In summary, because we do not
pretend to be able to measure the relative level of financial and labor income, equation (54)
does not have any empirical content, and serves only to relate the ratio of Z and ¢ to the
ratio of the parameters b and a in other restrictions.

Since the AR(1) coefficient of £ is a sample moment, the two models also share the same
value of a — b.

We are left with two unused restrictions, (51) and (52), to identify the endogenous param-
eter ¢ in CHABIT, or the three exogenous parameter (7o, €, Z,,) in DHABIT. There seems to
be an over-identification for CHABIT and an under-identification for DHABIT. Fortunately,
this is not the case. To see this, note that equation (51) and (52) imply

A? -
1_7:h(1+b7))—7, (58)
where!® n = - +i_b. On the other hand, the PDE (44) can be solved exactly, and the equity
price is given by k(w,z) = “= fb(:). Thus, the dividend/price ratio is given by Z = h(1 + bn).

Since all per capita variables are stationary with zero growth (the restrictions (53)—(54)
ensure that the state variables have zero growth rate), the capital gain in the per capita
economy is zero. Thus, the expected equity return in the per capita economy is equal to
the dividend/price ratio: jiy = £. Given these results, Equation (58) can be rewritten as

A2 _ - xa
mz,uk—r:Aak,or

ESTEN

A
Since k is a constant proportion of z, we have o, = 0,, and equation (59) is identical to
equation (55),'® which means that one of the two restrictions (51) and (52) is redundant and
¢ can be identified exactly.

Turning to the model DHABIT, all of the above discussion applies, except that, in this
model, equation (44) can no longer be solved analytically due to the state-dependence of
r(z). However, when the economy is close to the steady state, a linear approximation gives

ko~ LM
1+0bf"(z)’
where f(z) is given by equation (20). Thus, the expected equity return is approximately
given by iy, = £ = h(1 + bf'(Z)), and equation (59) still holds (approximately). With only
one remaining restriction, say equation (51), the remaining exogenous parameters e, ry, and
Zm (in this model, the endogenous parameter ¢ is deterministically related to the exogenous
parameter z,,) can not be separately identified.

5For CHABIT, € = 0. Equation (20) therefore implies that f(z) = 5z, and r(z) = % =7

16Tn the data, oy, = 15.9% # o, = 11.2%. Letting labor income growth to be stochastic and not perfectly
correlated with the dividend growth introduces a wedge between the two. Thus we can potentially use
the difference between &5, and 7, to help identify the stochastic portion of the labor income process. See
Section 4.2.
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Given rg, €x,, can be identified by equation (51), but € and z,, still can not be separately
identified. This is because in this model (due to its homothetic structure) rates of return,
yields, and proportional volatilities are independent of the overall scale of income, consump-
tion, and wealth: if we scale up the level of all income, consumption, and wealth variables
by a factor of, say, €y, the structure of the model remains the same, except that € is scaled
down by €. So long as we don’t care about the absolute level of income, consumption, and
wealth (including price) variables, scaling ¢y = € effectively normalizes € to 1. Henceforth,
we impose this normalization by setting € = 1.

If we observe the real interest rate, then ry can be identified by estimating the sensitivity
of the real riskless rate with labor income. Alternatively, if the real riskless rate is set by a
monetary authority, in the manner say r — 7 = 7(x — Z) (which is reminiscent of a Taylor
rule), then 7o can be inferred from the policy parameter 7. Under both of these scenarios,
DHABIT is completely identified (under the normalization € = 1).

The above discussion suggests that both CHABIT and DHABIT do quite a reasonable job
of explaining the equity premium, the equity volatility, and the riskfree rate puzzle, under a
judicious choice of the parameters (p, 1—7, %) The restrictions that identify these parameters
are the same for both models, and therefore the calibrated values of these parameters are
identical for both models. However, the exact nature of the fit should be interpreted with
caution. It masks the fact that some relevant empirical restrictions have been ignored. First,
the labor’s share of output in principle determines %, which would take away this degree of
freedom from both models to fit the equity volatility puzzle. Second, both models imply
that the volatility of equity return and that of the dividend growth rate are the same, which
is clearly counter-factual.

4.2 Model SHABIT

The problems associated with CHABIT and DHABIT can be resolved by allowing the labor
income process to be stochastic. This leads us to the model SHABIT. The first problem
is resolved because when the labor income growth is stochastic, the amplification of the
dividend growth depends not only on the operating leverage, but also on the volatility of
the labor income shock and the correlation between the dividend income shock and labor
income shock.!” Second, a stochastic labor income shock also introduces a wedge between
the volatility of the equity return and the volatility of the dividend growth rate, because the
expected equity return becomes state-dependent and stochastic and furthermore contains an
extra state-dependent premium arising from the hedging demand associated with the labor
income risk.

SHABIT also offers a much richer term structure of real interest rates. In DHABIT, the

de

7To see this, note that ¢ = z + z implies 4 = 24z 4 zdz

cz’

2 2
o'g - (]_ - f) O'z =+ (E) 0'3 + 2 (f) (]. - E) 5zz¢7za:m
c c ¢ ¢

where for y = ¢, 2, z, 0 is the conditional volatility of the growth rate d—;’, and ¢, is the correlation between
the dividend growth rate and the labor income growth rate. Given o. = 1.5%, 0. = 11.2%, if £ # 0.866,
then it must be that o, # 0.

which in turn implies:
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riskless rate is deterministic, which implies that the term structure of real interest rates is
close to being trivial (returns on long term bonds can still be stochastic because they are
affected by the production shocks). In contrast, the riskless rate is stochastic in SHABIT,
and the endogenously determined bond returns and term spreads exhibit realistic properties.
For an example, the correlation between the expected bond returns and the term spreads is
consistent with the expectations puzzle (in terms of the sign, but not necessarily the mag-
nitude). This correlation is intimately related to the the correlation between the aggregate
dividend growth rate and the aggregate labor income growth rate.

In principle, implications for equity returns and bond returns are inter-related in this
model. However, the parameters of the model corresponding to the observed economy are
such that some rough form of separation is discernible. In a nutshell, the production shock
and the associated risk premium appear to have a first order effect on equity returns (the
equity premium and volatility puzzles) but only a second order effect on bond returns (pre-
dictability of bond returns by dividend/price ratio), while the labor income shock and the
associated risk premium appear to have a second order effect on equity returns (predictabil-
ity of equity returns by term spreads) but a first order effect on bond returns (stochastic
nature of real interest rates and the expectations puzzle).

4.2.1 Parameter Identification

Compared to DHABIT, SHABIT has two additional parameters: § and §. The first param-
eter can be identified from the volatility of the labor income growth rate, and the second
can be identified from the correlation between the labor income growth rate and the div-
idend growth rate. To derive the correlation from the model, we need to characterize the
equilibrium dividend growth rate.

From equations (30) and (36), we have

d;* = (2, 2)dt + 02y (2", 2)dByy + 0.1 (2", 7)d By, (60)
where
e = By 22T+ 20 - e @
b [REUEEE | M RO K
ey = Nt
7 (10) = V= PR @) + VI 0 o),

where v(z,z) = bz —kz + 3¢622%, ¥(z, 2) = I3(x)z, l3(z) = B, A(z) is given by equation (33),
and A is given by equation (39).
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Thus, the two additional moment restrictions required to identify 8 and ¢ are given by:

_ z
Oy = Bfa
X

boe = |0ww(2,2) +0..(2,2)?] " [éozw(z, )+ V1— 6%, (3, :z)] ,

where &, is the sample volatility of the labor income growth rate, and d,, is the sample
correlation between the labor and dividend income growth rates.

Other parameters are identified as in DHABIT, except that the four moment conditions
(53)—(56) generalize to

0 = ,LLZ(Z, j)a
= v(z,2),
o, = \/Uzw(za :Z')2 +0-2J_(Z: 5)27

50 = l0(58) 4 090z 2 + [0.0(2.7) + VI— P00z 2]

for 5 # 0, and the two optimality conditions (31) and (34) contain terms related to ¢ and
(. In practice, 6 and § are identified jointly with the rest of the parameters.

4.2.2 Predictability

Lemma 2 implies that if € # 0 (for both DHABIT and SHABIT), the riskless rate must be
monotonically increasing in . We will now show that the functions h(z), g(x), and A(z)
are all state-dependent and, for sufficiently small 3, monotone.

Corollary 3 (Predictability) Suppose that Proposition 2 holds. Then, for sufficiently
small B, and Vz, such that |,(z) = l3(z) =1, h'(x) > 0, ¢'(z) <0, and A'(z) < 0.

This result means that the dividend/price ratio (related to h(x)), the conditional volatility
of dividend growth rate (related to g(z)), and the equity premium (related to both A(z) and
g(x)) are all predictable by x, and by each other.

The fact that 7/(z) > 0 and A’(z) < 0 implies that the riskless rate and the market price
of risk are negatively correlated. In a one-factor model, if r is mean reverting under the risk-
neutral measure, then it is negatively correlated with term spreads. Consequently, we expect
that the expected returns on real bonds and real term spreads are positively correlated. This
implies that the expectations hypothesis should not hold for the real term structure, and the
slope coefficients in the expectations regressions should be less than 1, and possibly negative.
To make this point formally, we need to examine how the model price real bonds.

4.2.3 Term Structure of Real Interest Rates

Since the pricing kernel is explicitly known, the term structure of real interest rates can be
readily characterized. Let Pr(w,z;t) be the price of a real zero-coupon bond with maturity
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T, and yr(w, z;t) = —F log Pr(w,z) be the continuously compounded zero yield. Without
loss of generality, we can write
dPr

—L = ypdt + 07ydBy, + 07,dB, (61)
Pr

. . 1 P
where pr is the instantaneous expected return on the bond, o1, = Uaalofnga and o, =

lg(x)zal%h. Since Pr must be priced by m(t), it follows that

pr — 1 = (0w + dorz)A(x) + V1 — 6207, A | (). (62)

In general, both production risk and labor income risk affect the expected bond returns. I
examine them separately.

1. Labor Income Risk and Expectations Puzzle
To isolate the effect of labor income risk, let § # 0, and fix z at its steady-state mean z
(effectively eliminating the effect of production risk). This produces a one-factor model of
the real term structure: r = r(z), and
e?

dr = [bZ — KT + 5 7 } dt + BzdB,, 0 <z < T, (63)

with market price of risk for B, given by A = 0A(z) + v1 — 02A (z).
This is a nonlinear model, and the riskless rate is bounded from both above and below.
Consequently, bond prices cannot be computed analytically. To facilitate the discussion, it is

convenient to take a linear approximation of this model (linearizing around the steady-state
mean of z and keeping only the lowest non-zero terms controlled by 3):

reT 4+ T(x— ), dr= k(T —z)dt+ fZdB,,

A~ [0R+ VIZ P + [oR, + VI=PAL] (2 - 2). (64)
where = bf Expressing directly in terms of r, we have
dr = k(F — r)dt + 5dB,, A= w (65)
where 6 = 7,4z, and
N =0 [5]\ + m&} — 7\ & 882ZAF, — A\ <0, o
A\ = Bz [Mw + mz_\u] ~ 68zA, > 0. (96)
The risk-neutral dynamics of the riskless rate follow immediately:
dr = &(7 — r)dt + 6dB,, (67)

where B, is a standard Brownian motion under the risk-neutral measure, K = Kk + Ay > Kk
is the mean reversion coefficient under the risk-neutral measure, and 7 = (k7 — Ag) /R is the
risk-neutral long-run mean of the riskless rate.
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The linearization makes the ubiquitous influence of labor income risk transparent. The
volatility of the riskless rate (), the constant part of the market price of risk ()g), and the
state-dependent part of the market price of risk (A;) are all proportional to 5. All else equal,
a larger B leads to a more volatile riskless rate, a steeper mean yield curve, and greater
violation of the expectations hypothesis.

When r; is interpreted as the nominal riskless rate, equation (65) is a model Dai and
Singleton [2001] propose to explain the violation of the expectations puzzle in the nominal
term structure. They show that when x > 0, A\g < 0, and A\; > 0, the model implies (i) an
upward-sloping mean yield curve (because Ay < 0); and (ii) a positive correlation between
the expected excess return on zero-coupon bonds and the term spread (hence violation of
the expectations puzzle in the correct direction). Dai and Singleton [2001] do not provide
an economic explanation for why Ay should be negative and A; should be positive.

In my model, the sign restrictions Ay < 0 and A; > 0 arise naturally. We have al-
ready shown that, under very general conditions, 7, > 0 (pro-cyclical riskless rate), Ay < 0
(counter-cyclical Sharpe ratio), Z > 0, and A > 0. Thus, the sign restrictions on )y and
A1 follow immediately from the negative correlation between the production shock and the
labor income shock, i.e., 65 < 0.

Since the expectations puzzle relates to nominal yields, and real yields are not directly
observable in the U.S. (until very recently), a case cannot be made that labor income risk is
solely responsible for violation of the expectations hypothesis, although it is certainly part
of the reason. As McCallum [1994] shows theoretically and Kugler [1997] shows empirically,
monetary policy can have a direct impact on the behavior of nominal yields. In particular,
interest rate smoothing rules can induce or modify both the mean reversion coefficient and
the market prices of risk, thereby changing at least the extent of the expectations puzzle.

2. Production Risk and the Real Term Structure

Interestingly, in the stochastic habit formation model, the real term structure can also
be influenced by production risk. The effect is subtle, however, because production risk does
not directly enter the real riskless rate — it affects only the conditional distribution of the
riskless rate.

To isolate the effect of production shock, we eliminate labor income risk by letting 5 = 0.
In this case, equation (62) reduces to

Ur — T = Oy (68)

The expected return on the bond does not vanish because it remains exposed to production
risk through the dependence of the conditional moments of 7 (or x) on the financial income
z. It can be shown, however, that the conditional volatility of the bond return and therefore
the expected excess bond return are nearly zero at both short and long ends of the maturity
range.

To see this, let f = —2%BPr he the instantaneous forward rate. Clearly,

aT
001y _ ofr
or Oalogw.

(69)
As T'— 0, we must have ur — r, and fr — r. Since r is independent of wealth w, we
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must have

8O'Tw
1. = l pry .
Jim oy 0, lim —— 0 (70)
Under reasonable assumptions (the state variables are mean reverting under the risk-neutral
measure), we expect that, as T — oo, fr — f, where f is a constant, and or,, — 0. It

follows that

li _ . 80Tw
Toyeo O W T 0, Th—>nolo oT
Equations (70) and (71) indicate that the volatility of the bond return and therefore the risk
premium induced by production risk become appreciable only in the intermediate maturities.
This is perhaps a structural reason why we observe a hump in the term structure of volatility
around two years of maturity for nominal yields.!® The size and location of the hump depends
on the parameter b, which allows z to influence the real term structure through the drift of x,
the mean reversion coefficient x, which suppresses the influence of z at long maturities, and
the risk aversion parameter 1 — ~, which determines the size of the risk premium through A
(see equation (68)).

= 0. (71)

5 Exchange Formulation of the Model

Consider the following self-insurance problem by the investor (who enjoys complete markets

and frictionless trading):
max E, [ / u(z(t),t)} ,
0

2(t):t>0

subject to the constraint that

B, / T AOymt)dt < By / " mbdt,

where 2*(t) is the endowment process, and m(t) is the pricing kernel to be determined in
equilibrium (with market clearing condition z = z*).

A simple way of introducing labor income z is to assume that the endowment process
z*(t) is given by

= (2", x)dt + o (2", x)dB,. (72)

Z*

Depending on how z is specified, the labor income can be interpreted either as an “external”
or “internal” habit.

18When inflation risk is substantial, the hump may be masked by the inflation premium. This is consistent
with the fact that a volatility hump is observed in the 80’s and 90’s in the U.S. treasury yields, when inflation
was subdued, and is not observed in the 70’s, when inflation was rampant.
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5.1 Labor Income as “External” Habit

Suppose that the labor income process is given by
dx = v(z, 2" )dt + Y (z, 2%)dB,.

In this case, the labor income is not directly controlled by the investor’s consumption policy.
Rather, it is exogenously determined by the endowment process (more precisely the labor
income process and the endowment process are jointly given exogenously). A change of
variable ¢ = z 4+ x reveals that the above model can be interpreted as a model of habit
formation, with ¢ being the aggregate consumption, and x being interpreted as an “external”
habit. Asset pricing in this model is simple, because the presence of labor income merely
enriches the exogenously specified probability distribution of the endowment process. In
particular, the equilibrium pricing kernel is given by the utility gradient evaluated at the
endowment: m(t) = u,(2(t)*,t). Thus, the riskless rate is given by

Uy + (25, ) Uy, + 207 (2%, 2)%u
T(Z*,.’IT):— 2t /'L( ) 2z 2 ( ) zzz. (73)

Uy

By imposing a joint restriction on p*(z*, z) and o*(2*, z), we can make the riskless rate con-
stant or state-dependent in any desirable way. For arbitrary specifications of the endowment
process, all endogenous variables, including the riskless rate, the Sharpe ratio, equity prices
and returns, bond prices and returns, are functions of both state variables (z*, x) in general.

A prominent example of this approach is Campbell and Cochrane [1999] (henceforth
CCHABIT) where, consistent with the interpretation of x as an “external” consumption
habit, z* is interpreted as the surplus consumption. These authors specify the joint processes

2*

for the log surplus consumption ratio, s = log Z—, and the consumption process, ¢ = z* +z,
which is is equivalent to an exogenous specification of (z*, ) after a simple change of variable.

In Appendix G, I show that, in the continuous-time limit, CCHABIT is essentially given by
dS* = h(S — S*)dt + (B — S*)vdB,

and
dr = (b2" — kx)dt + v(1 — B)(2" + x)dB,

— 2z

where S, B, h, b, k are constants, and S* = -5 = € can be referred to either as the surplus
consumption ratio or as the investor’s share of output.

5.2 Labor Income as “Internal” Habit
Now, consider the alternative specification for labor income:

dr = v(z, z)dt + Y (z, 2)dB;.

In this case, the labor income process is directly controlled by the investor’s consumption
policy z. A change of variable ¢ = z+z reveals that the model can be interpreted as a model
of habit formation, with = being interpreted as an “internal habit”. Asset pricing is more
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involved, because a small positive amount of saving away from equilibrium produces three
effects: (i) a reduction in current utility, captured by the utility gradient; (ii) an increase in
future utility due to payoff from the saving; and (iii) a change in future endowment, because
the current level of consumption z affects future levels of labor income (which depends on
z), which in turn affects future levels of endowment (which depends on z). The first two
effects are conventional. When the third effect is not present, an optimal trade-off between
the first two effects leads to the utility gradient characterization of the pricing kernel. The
presence of the third effect inserts a wedge between the pricing kernel and the utility gradient
(Lemma 4 shows that, in the production setting, it inserts a wedge between the marginal
utility of wealth and the marginal utility of consumption).

The production model SHABIT can be recast as an exchange model with the endowment
process given by equation (72) and a labor income process given by equation (19). If z*
is given by equation (30), then the equilibrium riskless rate is given by equation (20), and
the equilibrium return for the aggregate wealth w(t) = m(t)™'E, [ [ (2*(s) + z(s))m(s)ds]
is given by equations (21)—(22). To obtain these results from standard methods commonly
employed in dealing with exchange economies is not a trivial matter. To see this, note that
the utility gradient method of Duffie and Skiadas [1994] follows from the first order condition
of the Saddle point problem:

max L(Z),

where Z is the cumulative dividend process,

L(Z) = B, UOOO w((), )t — A /Ooo(z(t) ) )mt)dt]

and A > 0 is a constant at which the Saddle point problem has an optimal solution. The
first order condition is obtained by setting the directional or Gateaux derivative of L to zero
(see Duffie [1996]).

A standard assumption in the asset pricing literature is that the endowment process is
not affected by the control variable z(¢). In this case, the first order condition states that
that the utility gradient is equal to Am(t) (see Duffie and Epstein [1992] and Duffie and
Skiadas [1994] on how to compute the utility gradient in the presence of an internal habit).

In the current case, z*(t) is affected by the process z(t), which in turn is affected by the
control policy z(t). Thus, the directional derivative of z*(t) is not zero. This extra term
inserts a wedge between the utility gradient (which is computed as usual) and Am(t), which
in general depends on the entire history of the pricing kernel m(t). In another word, the
equilibrium pricing kernel in this case is determined by an integral equation, which is not
trivial to solve.

5.3 Models CHABIT, CCHABT, and SHABIT

I conclude this section by contrasting the models CHABIT, CCHABIT, and SHABIT from
the perspective of an endowment economy, thereby highlighting some key marginal contri-
butions of this paper.

CHABIT can be recovered in the exchange setting by assuming that x is “internal”,
B =0, u*(z,2) = p*, o*(w,x) = d*, where p* and ¢* are constant (which is equivalent
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to assuming that e = 0). In SHABIT, both p*(z*,z) and o*(z*,z) are state-dependent,
induced by the state-dependence of the riskless rate. From the perspective of an endowment
economy, the state-dependence of pu*(z*, z) and o*(z*, x) induces the state-dependence of the
riskless rate and the predictability of expected returns. SHABIT captures several important
aspects of the observed behavior of macroeconomy and asset markets that CHABIT (and
even DHABIT) can not: (i) the dividend growth rate and the labor income growth rate are
imperfectly correlated; (ii) expected bond returns and term spreads are positively correlated;
(iii) labor income risk appears to play an important role in explaining cross-sectional behavior
of equity returns.

Campbell and Cochrane [1999] focus mainly on a version of CCHABIT with B = 1, in
which case the consumption habit is deterministic, and the riskless rate is constant. Although
the underlying habit process in CCHABIT is essentially the same as that in CHABIT, the
expected returns in CCHABIT are state-dependent because aggregate consumption growth
rate is i.i.d., whereas in CHABIT, the aggregate dividend growth rate is i.i.d..

In setting B # 1, both the consumption habit and the riskless rate become stochastic
in CCHABT. This version of the model, however, has some important limitations. First,
assuming that their consumption habit can be equated with labor income, their model implies
that the dividend growth rate and the labor income growth rate are perfectly correlated; (ii)
the real interest rate is likely to be too volatile, because it depends on both z* and x. The
explicit dependence on z* can produce unintended features in the term structure of interest
rates; and (iii) in principle, the model can also generate non-zero correlations between the
expected equity and bond returns and term spreads. However, because there is really one
aggregate shock (the endowment shock and the labor income shock are perfectly correlated),
the model may produce too much or too little predictability. It is not obvious how to
relax the assumption of perfect correlation between the endowment shock and the labor
income (habit) shock. Wachter [2001] extends CCHABIT by assuming that the expected
consumption growth rate is itself a stochastic process and contains an independent shock.

An “external” version of SHABIT is obtained by assuming that the labor income process
is determined by the endowment process rather than the consumption policy. That is,

1
dr = [bz* — KX + §6ﬁ2:| dt + Bz*dB,.

This model retains several key features of SHABIT, and is computationally tractable. While
the “external” and “internal” versions of SHABIT share many features, there is an important
distinction in their cross-sectional implications of asset returns. In the “external” version,
all assets are priced by the dividend growth rate alone — even though there are two state
variables (in the same spirit as the Breeden [1979]’s point that all assets are priced by the
consumption growth rate alone in Merton [1973]’s model). In contrast, assets are priced
by both the dividend and labor income growth rates as two separate risk factors. This
distinction also appears in the Euler equation implied by each version of the model: the
“Iinternal” version is given by (23), whereas the “external” version is given by (24).
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5.4 A General Endowment Specification

We can write down an exchange model with a more general specification of the endowment
process. Let D be some suitably defined space of stochastic processes, with the property that
for any z € D, there exists a unique solution to the following bi-variate stochastic differential
equation:

dz" w (2", x, z)dt + 0", x, 2)dB,,
de = v(Z*,z,2)dt + (2", z, 2)dBy,

where z* is interpreted as the endowment to the investor, and z is the labor income to the
worker. A limited participation model obtains if the investor solves

Igleeg(Eo [[} u(z(t),t)dt} .

This setup covers Detemple and Zapatero [1991]’s model (henceforth DZHABIT). These
authors (implicitly) assume that the growth rate of the aggregate endowment ¢* = 2* + z is
not affected by z (either directly or indirectly through x). Since z (being an internal habit)
is affected by z, it must be the case that z* is affected by z. This explains why DZHABIT is
different from CHABIT (in which z* is i.i.d.). The failure by Detemple and Zapatero [1991]
to state clearly the implicit assumption mentioned above leads to a confusion over whether
the state-price density in DZHABIT is even legitimate. Chapman [1998] points out correctly
that if the growth rate of z* = ¢* — x is i.i.d., as in CHABIT, then the state-price density
in DZHABIT can be negative in some states of the world. But, the state-price density in
DZHABIT is not supposed to hold in the first place if the growth rate of z* is i.i.d.!

Incidentally, if the growth rate of ¢* is i.i.d. as in CCHABIT, and the habit process
is linear and deterministic as in CHABIT, then DZHABIT is essentially the “internal”,
continuous-time version of CCHABIT.!®

6 Conclusion

In this paper, I have shown that habit formation is perhaps not what it is commonly per-
ceived to be: an extension of preference specification for the representative agent. Rather,
it captures a dynamic interaction between aggregate financial income and aggregate labor
income. I have also shown that existing specifications of consumption habit can be extended
to incorporate a stochastic shock, which is interpreted as the labor income shock. As a result
of these two innovations, I have shown that a habit formation model can explain the equity
premium, equity volatility, and riskfree rate puzzles simultaneously, and give an equilibrium
justification for the predictability of equity and bond returns by dividend/price ratio and
term spreads. To substantiate these claims, I present an extension of the Breeden-Lucas

19See Appendix G. While Campbell and Cochrane [1999] focus on the case of constant riskless rate by
imposing a parametric restriction on the endowment process, Detemple and Zapatero [1991] focus on the
general case with a stochastic riskless rate.
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CCAPM by incorporating a particular form of heterogeneity assumption (related to Con-
stantinides and Duffie [1996] and Heaton and Lucas [1996]) and a particular form of limited
participation assumption (related to Mankiw and Zeldes [1991], Saito [1995]|, and Basak
and Cuoco [1998]). The resulting model features a richer technological specification (from
the perspective of a production economy) or a richer endowment specification (from the
perspective of an exchange economy), but retains standard assumptions of constant relative
risk aversion, complete markets, and frictionless trading from the perspective of the marginal
investor.

The model can be readily extended to incorporate state-nonseparable preferences (see,
e.g., Kreps and Porteus [1978], Epstein and Zin [1989], and Duffie and Epstein [1992]) and
consumption durability (see, e.g., Dunn and Singleton [1986], Hindy and fu Huang [1993],
and Heaton [1995]), and can be readily tested using standard econometric methods. These
theoretical extensions and a rigorous empirical analysis of the model will be elaborated and
presented in future work.
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Appendix

A Investor’s Problem in Terms of Aggregate Wealth

We begin by writing down the model in terms of financial capital k(¢) and labor income z(t).
We assume that the investor solves

Ey [/Ooou(z(t),t;k(t),x(t))dt ,

max
z(t),a(t):t>0
subject to

dk = |a(pe(k,z) —r)k +rk — 2] dt + ao.(k, )k dBy,
dr = wv(z,z)dt +Y(z,2)dB,.

Zero net supply of the riskless asset implies a(t) = 1 in equilibrium.

Suppose that the above model has already been solved under the assumption of complete
markets so that the value of human capital n(t) = n(k,z) can be computed in equilibrium.
For an arbitrary portfolio policy a(t) = a(k, z) and a consumption policy z(t) = z(k, ), we
can define two new state variables: W = a(k, z)(k+n(k,z))+ (1 —a(k,z))k and & = a(k, z)z,
which can be interpreted, respectively, as the total amount of wealth controlled by the
investor and the total amount of labor cost borne by the investor when he owns a fraction
a(t) of the risky production.

Ito’s lemma implies that the dynamics of @ and Z can be generically written as

dv = [a(p(w,z) —r(w,2)w +r(w,2)w — 2 — £] dt + awo (W, T)dB,, (74)
di = 0(&,2)dt +0(&, 2)dB,, (75)
where o = w = «(w,z) is the fraction of total wealth associated with the
investment in the risky production and Z = a(k,x)z(k,z) + (1 — a(k,z))kr(k,z) = 2(w, I).
a and Z may be viewed as the portfolio and consumption policies, respectively, in terms of
the new state variables (w, Z). Clearly, « =1 if and only if a = 1.

Replacing (k, z) by (w, ), the expected utility can be rewritten as

E[ [ 0,60, 500) = 0, 3(0) = 0.
0

where wy solves wg = ko+mn(ko, zo) in terms of the initial values of the original state variables,
ko and zy. Equations (3)—(6) are recovered by assuming that 4(2(¢), ¢; w, Z) does not depend
on the new state variables (w, ), and dropping all hats in the new state variables (w, Z),
the new control variable 2, and the utility function 4.

In equilibrium, «(t) = a(t) = 1. It follows that 2 = 2z, and 4(2,¢;0, %) = 4(z,t;w, 2) =
u(z,t; k,z). Thus, 4(Z,t;w, %) is independent of & and Z if and only if u(z,t; k, z) is inde-
pendent of £ and x.
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B The Worker’s Outside Opportunity, Riskless Rate,
and Reservation Value

We assume that the worker always has the option of abstaining from participating in risky
production. In the event that a “strike” occurs, the state of the economy switches from (&, x)
to (0,z). Consumption of the current labor income represents an investment in the human
capital, which generates a future stream of labor income. Therefore, we can think of the per
capita labor income as the worker’s endowment. In this case, the riskless rate must be equal
to the the rate of return for the investment in human capital, and can be determined in
equilibrium. To this end, let us consider the following exchange problem: the worker solves

#(t):t>0

max / a(z,t)dt,
0

subject to the budget constraint:

Amm@amﬁgémm@umm

where m(t) is the pricing kernel, and z(t) is the endowment process (the amount of consump-
tion that can be extracted from mother nature without the help of the risky technology).

Suppose that an equilibrium exists (with market clearing condition Z = z. Then there
exists a constant A > 0, such that

o (2, 1) = Aiin(t).

For simplicity, assume @(x,t) = e ?'ii(z). Furthermore, per Assumption 2, the endowment

process is given by
dx = ly(z)dt. (76)

Thus, the equilibrium riskless rate (noting dm(t) = —r(t)m(t)dt) is given by

lge(®, 1) 4 o (2) Uige (2, 1) u"(x)

i (z, 1) =p =@ gy =@ (77)

r(z,t) =

Thus, the riskless rate depends only z. Furthermore, the functional form is determined
entirely by the worker’s utility function % and the nature of outside opportunity (lo(z)).

From the investor’s perspective, the riskless rate is exogenous, because the worker’s be-

havior when pursuing an outside opportunity has nothing to do with the investor’s problem.
In equilibrium, the value of human capital is given by

fa)= [ e B
0
given zo = x. Alternatively, we can write
df (z) = [r(z)f(z) — =] dt. (78)

33



Consistency between equations (76) and (78) requires that

2+ (=) f'(2)
r(r) = ———-~——=. 79
(@) = (79
It follows immediately from equation (11) that

| lo(2) 5 2+ () f'(z)
p+ Alz) =r(x) = ) 80
L A) = rla) = TR (50)
where A(z) = —‘”g,’ég) is the Arrow-Pratt measure of relative risk aversion. Thus, the

function f(z) is intimately related to the utility specification.

The function f(x) will be referred to as a “reservation value”, because this is the least
that the worker can get. The worker is willing to participate in the risky production, only if
the value of human capital, n(k, ), is higher than the reservation value. This is guaranteed
by Assumption 5, which states that the worker should not only be compensated properly for
bearing the labor income risk, but should also receive an extra incentive for participation.
Obviously, when the worker participates in risky production, the expected return to human
capital should be different from the riskless rate.

B.1  Proof of Lemma 2

To illustrate the close linkage between f(z) and the utility function, let us assume that (i)
lo = —kz, where k > 0 is a constant; (ii) f(0) = 0; (iii) for z > 0, f'(z) > 0 and f"(z) <0,
so that A(z) = —w;,lzg) > 0. Under these assumptions, we can show that A’(z) > 0 implies
(z) > 0 and A’(z) < 0 for V2 > 0. This is a stronger result than Lemma 2, thus its proof
subsumes the proof for the lemma.

First, equation (80) implies that '(z) = —xA'(z). Since & > 0, it implies that if the risk-
less rate is increasing (decreasing) in x, the relative risk aversion is decreasing (increasing).

Next, differentiating equation (79) gives r'(z) = Fl(z”}"(’: )(f)F2($), where Fi(z) = f(z) —
zf'(xz) and Fy(z) = f(x)A(z) — Fi(x). It is easy to check that (i) F1(0) = F»(0) = 0; (ii)
Fl(z) = =f"(z) > 0, thus Fi(z) > 0 for x > 0; and (iii) Fy(z) = f(xz)A'(x) > 0, thus
Fy(z) > 0. It follows that 7'(z) > 0 and consequently A’(z) < 0 for z > 0.

In the equity premium literature, a conventional wisdom is that a low elasticity of in-
tertemporal substitution implies a low demand for saving, which implies a high riskless rate
(see, e.g., Kocherlakota [1996]). This means that that r/(x) and A’(z) should have the same
sign. The above proof gives a counter-example: when the endowment declines over time
(k > 0), r'(z) and A'(x) have the opposite sign. However, if the endowment is growing
(k < 0), then then /(z) and A'(x) do have the same sign.

To reconcile the above result, it must be the case that the conventional wisdom holds
only if the endowment is growing. When the endowment is declining, the worker has an urge
to borrow rather than to save. A higher intertemporal elasticity of substitution implies a
stronger urge to borrow and therefore a higher riskless rate.

34



C Proof of Lemma 3

Let V(w, z,t) be the indirect utility function. The necessary optimality conditions for the ex-

istence of an equilibrium are given by the Hamilton-Jacobian-Bellman equation (see Merton
[1969] and Merton [1971]):

0 = max [u(z,t) + V; + AY*V], (81)
where the controlled infinitesimal generator A%* is given by
1
A% = A{la(pw(w,z) — r(w,z)) + r(w,z)]w — 2z — x} Oy + 50420(111, 2)?w? Oy

1
+ v(z,2)0; + §¢(x, 2)%0pz + wao (w, )00 (x, 2) Opw-

Schematically,
5 = (u(w,z) — r(w,z))wdy, + o(w, x)*aw Oy, + wo(w, x)0%(x, 2) O,
o
0A** 0
5 = "3 + v, (x, 2)0p + Y(x, 2)V, (2, 2) Oy + wao(w, )01, (2, 2)Opuw,
z w
from which we can read off the first-order conditions: a,gzaz V =0, and u, + 3“32'z V =0.
From the first-order conditions, we can solve for the optimal portfolio policy:

o = A(w,2) " o(w,2) " [Aw, 2) — H(w, )8y (z, 2)], (82)
where A(w,z) = o(w,z) H(pu(w, z) — r(w, z)), A(w,z) = —“"‘f% is the relative risk aversion
with respect to wealth, and H(w,z) = —%z=.

Similarly, the optimal financial policy is given by
Uy = Vi — v, (2,2) Ve — (2, 2)0, (2, 2) Vaw — wao (w, )01, (2, 2) V- (83)

Evaluating the equation (81) at the optimal policies, differentiating both sides with re-
spect to w, and noting that the optimal consumption policy z* is a function of both w and
x, we have

0 .
=u, * g v a*,z . 4
0 uzw—i—Vt—i-aw[A V] (84)
Evaluating the last term explicitly and using equation (83), we have
a * ok * K 8
— [AY* V] = A"V, — w2l + —{[a*(p— 1)+ r]w— 2" =z} V,
ow ow
0 0 [a*o?a*w? (85)
+ 6—11) [’U)O! 0'5] ’l[Jwa -+ 8—11] [#} wa,
Combining equations (84) and (85) yields
th+A ’ Vw b= —wrw—QAw,
Vi
where G(w,z) = wo'a* = wA™ (A — Hévp). Thus,
Viu + A" Vo = —r, if and only if, wr, + GA, = 0. (86)

Vi
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D Proof of Lemma 4

Let 3 be the share of aggregate wealth in the contingent claim. Then, the wealth constraint
generalizes to

dw = [a(p—r)w+ B(up — r)w + rw — z — x — D] dt + awodB,, + fwopdB,.

The Hamilton-Jacobian-Bellman equation is generalized accordingly. It is easy to check that
the first-order condition with respect to 3 is given by

(:U'P - T)wvw + [ﬁw20-123 + awzao.Pépw} wa + wo—Pwépmew = 07 (87)

and the first-order conditions with respect to « and z are the same as before under the market
clearing condition § = 0. Evaluating equation (87) under the market clearing conditions
a =1 and § = 0, we obtain

pup — 1 = 0p [OpwAc + 0, H1)] . (88)
Let m(t) be a pr1c1ng kernel By deﬁmtlon any security with dividend D(t) and ex-
dividend price P(t), P ) + fo s)ds must be a martingale. Let B, = 0B, +
V1 —62B,. Then, Wrthout loss of generahty, we can write
dm(t
dmt) _ gt~ AdB, — ALdB,.
m(t)

where the drift of m(t) is determined by applying the the defining property of the pricing
kernel to a real deposit account, with zero dividend, and price process elo (s ds. and the
market price of risk for B,, is determined by applying the defining property to the aggregate
wealth process (dividend z + = and price w). According to equation (82), the equilibrium
Sharpe ratio is given by

A= Ao + 6H1. (89)
Applying the defining property to the contingent claim, we have
dP(t) + D(t)dt dm(t)
—r=— = A A
up — T cov( 20 D) 0p [OpwA + 0p A L], (90)
apraapw

where 6, = # 0. Comparing equations (88) and (90), and using equation (89), we
conclude that A 1 =+ 1—62H1. Thus, the pricing kernel is given by
dm(t)

—= = —rdt — AdBw - AJ_dB_]_ = —rdt — AGdBw — deBm
m(t)

Lemma 3 and Ito’s lemma imply that, in equilibrium,

dV, wV, V.
v Y% >dB YT hdB, = — — AodB,, — HYdB,.
v rdt + v odB,, + v YdB, rdt odB,, YdB,

Thus, m(t) = Vi, (up to a scaling constant). It is clear that m(t) is unique.
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E Proof of Proposition 1

For simplicity, I temporarily restrict the representative investor from investment in the risk-
less asset. The more general case is addressed in Appendix F, where the optimal portfolio
rule is also given.

The representative investor solves max;).0<t<oo Fo [ f - *””(t dt] subject to: (i) dw =
(u(w, z)w — z — z)dt + o(w, x)wdB,,, w(0) = wp; and (ii) dz = (lo( )+l (z)z + lo(z)2?)dt +
l3(z)2d By, £(0) = xy. This is a standard intertemporal optimization problem, with a bivari-
ate state vector (w(t), z(t)), and stochastic control z(t).

The structure of the problem suggests a conjecture as follows:

Vitws)= max E Utw e—ﬂs#ds‘w(t) = w, (1) :x} = e J(w, 7),

z(s):t<s<oo

where J(w, x) is the (time-invariant) indirect utility function. The Hamilton-Jacobi-Bellman
equation then becomes

v 1
0=max — — pJ + [w(w, 2)w — 2 — ] Jy + ia(w, 7)*w? Ty
©

1 o)
+ [lg(x) +li(z)z + lQ(ﬂ?)ZZ} Jp + 5[3(%)2Z2Jz1 + 0l3(z)o(w, 2)wzJys-
Substituting equations (20), (21), and (22) into (91), we obtain
0= max = o7+ {r(@) + Alw)a@)][w— f(@)] = 2} Ja + 5002 [0 = F@ T
(92)

+ [h(@)2 + b(2)2] Js + %lg(:v)2z2Jm + 6l3(2)g(x) [ — F(z)] 2
+lo(2) [f' (@) Jw + o -

Following the standard practice in dynamic programming, I guess a solution first, and then
verify that it satisfies all necessary and sufficient optimality conditions. The structure of
equation (92) suggests the following conjecture: The indirect utility function takes the form:

_ ¥
J(w,x) = ¢7[w /)] : (93)
Y
for some positive constant ¢.2° Under this conjecture, J, = — f’ (x)Jw, so that the last term

(one of the inhomogeneous terms) in equation (92) vanishes. It follows immediately that the
optimal financial policy is given by

7 = h(z)lw - f(z)] (94)

for some real function h(zx).
To verify that (93) and (94) constitute a solution, we need to check the optimality con-
ditions:

20Gince the felicity function has the same sign as vy, J(w, ) must also have the same sign as y. Consequently,
we must have ¢ > 0.
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1. Under z = 2%, the first-order condition for z is satisfied;

2. Equation (91) is satisfied when the right-hand side is evaluated at z = 2*;
3. The objective function in (91) is concave at z = z*;

4. The transversality condition is satisfied at z = z*.

To verify that the solution is unique, all I need to show is that the objective function in (91)
is globally concave in the admissible state space.
Before proceeding to check the optimality conditions, we note that

__ 7 _ 1y —-1) _ 0= /(=)
@t T =P T e
__ f'(@) _ =) (=D ()
T T Tt T et
Thus, equation (13) implies
Loy = 10 =1 b(@)*f (2)°
(2) o + S1s(0) T T FP (96)

Thus, the right hand side of equation (92) is homogenous in [w — f(z)].

First-Order Condition:
The first-order condition in the Hamilton-Jacobi-Bellman equation is given by

1
0 = 277" = Jy+h(x)Jy + 22 |la(2) ], + ilg(x)QJm + 0l3(z)o(w, v)wdys

= 27 = Jy+ h(@) e + (7 = Dig(2)*f'(2)? 5+ 0ls(2)g(2) (w = f(2)) Jus,

z
[w— ()]
where the second equality holds because of equations (96) and (22). Substituting (93) and
(94) into this equation, we obtain equation (31).

Bellman Optimality Principle:
Evaluating the right-hand side of equation (92) at z = 2*, and making use of equations
(96), we obtain

h(z)”  p , 1—7 2
g5 TN @ hE L@ - e

LIy (2)?h(@) £ (2)? + (1= 7)ol (2)g(2)h() f ().

0=

2

The terms associated with [w— f(x)] drop out due to the homothetic structure. Equation (32)
follows immediately from equations (31) and (97).

Global Concavity:
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The second-order derivative of the objective function in (91) is given by

(v =177 +2 |lo(2) ], + %ls(l‘)QJzz =—(1 =) [&" " + ¢ls(2)*f'(2)*[w — f(x)]"7*] <0,

where the inequality comes from the fact that v < 0 and ¢ > 0. Thus, the objective function
is globally concave. It follows that z* is not only optimal, but also unique.

Transversality Condition:
Applying Ito’s lemma, it is straightforward to show that, under the optimal policy,

d(w — f(z))
w— f(z)

where B, = 0B,, + v/1 — 02B,, B, is orthogonal to B,,, and

Ovw = g(x) — 8l3(x)h(z) f(2), 0L = —V1—823(x)h(x)f (2),

= ,U,Udt + O'deBw + O'UJ_dBJ_, (98)

h(z)? 1-— (99)
o = A@)g(o) + 1) — (4@ @) = £ =ML L2 02, 02
where the last equality comes from equation (33).
Applying Tto’s lemma to [V ()| = e™'|J (w(t), z(1))| = pe~r' @IS yields
d\V(t 1-—
‘L/((t))“ = =P+ Yo — y (0-12111; + G’?)L) dt + ’Yo-vdew + ’YO-’ULdBL

h(z)?
= - (z) dt + YOywdBy + Y0,1dB .

¢

Since ¢ > 0, |V (¢)| is a supermartingale. Since wy — f(zo) > 0, we have lim;_,o, Ey[|V (2)]] <
[V (0)] = | (wo, z0)| < o0

F Proof of Proposition 2

Let «(t) be the share of aggregate wealth invested in the risky technology, and 1 — «a(t) be
the riskless asset. The representative investor solves max, ) a(s):0<t<oo Eo [ Ooo *””(? dt|,
subject to (i) dw = [(a(pu(w,z) —r(x)) + r(z))w — z — z] dt + ao(w, z)wdB,,, w(0) = wo;
and (ii) dz = (lo(z) + l1(2)z + l2(z)2?)dt + 13(x)2d B, x(0) = 0.

The Hamilton-Jacobi-Bellman equation is given by

v 1
0 =max — — pJ + [a(u(w, z) — r)w+ rw — 2z — 7] Jy + =20 (W, 2) W Ty,
w7 : 2 (100)
+ (lo(z) + 11 (2)2 + lo(3)2?) T, + ilg(x)QZQJM + 6l3(z)ao(w, T)wzJys-

The first-order condition with respect to « is given by

0= (u(w,z) —r@))wly + a*o(w, z)*w? Jyy + 0l3(z)o(w, 2)wz Sy,
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Solving, we obtain the optimal portfolio allocation rule:

o A(z) + (1 = )dls(z)h(z) f'(z) w — f(z)
(1 —v)o(w,z) wo

(101)

It is easy to show that, if equations (21)—(22) hold, then the the indirect utility function and
the optimal financial policy z* remain the same as in Appendix E. It is also easy to check
that global concavity obtains, so the optimal policies (a*, z*) constitute a unique solution to
the model. Evaluating equation (100) at the optimal policies imposes a restriction on h(x),
g(x), and A(x).

What remains to be shown that when u(w,z) and o(w,z) are given by equations (21)-
(22) under a suitable choice of g(z) and A(x), the market for the riskless asset clears. This
is straightforward. Setting o = 1, equation (101) and equation (22) imply equation (33).
Moreover, at a* = 1, equation (100) evaluated at z* reduces to equation (97). Equation (34)
follows by combining equations (31) and (97). Thus, the unknown function g(z) is jointly
determined with A(x) by equations (31) and (34), whereas the unknown function A(z) is
determined by equation (33) once g(z) is determined.

F.1 Proof of Corollary 1
Tn equilibrium,
dw = (u(w,2)w — 2z — 2)dt + o(w, 2)wdB,
[(A(z)g(z) + r(2)) — h(2)] [w — f(2)]dt + (rf(z) — x)dt + g(z)[w — f(2)]dBy,
df (x) = |f'(x)(lo(x) +L(z)z + la(z)2%) + f”(:r)#z2 dt + f'(z)l3(z)2d B,
= f'(z) [(lo(z) + l1(x)2)dt + I3(x)2dBy] .
Taking the difference of the two equations, and making use of equation (11), we obtain

dfw — f(z)]

w— f(z) [A(@)g(z) +r(z) — 1+ i (z) f'(x))h(z)] dt + g(z)dB,,

— I3(z)h(z) f'(x)dB,.
Using equations (31) and (34), we can show that
Al)g(z) +r(z) — (L+ L(2)f (x))h(z)

= T AR + 1 - e o)

F.2 Derivation of Equations (44) and (45)

In equilibrium, the state process can be written as

dw = [p(w,z)w— 2" —z]dt + o(w, 2)wdB,,
dx = pgdt+ 0,(0dBy, + V1 — 62dB,),
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2), o(w, ) = g(2)=LE, py = lo(2) + Li(2)2* + b(2)2"2,
h(z)(w — f(x)). Using Ito’s lemma, I can write

dk = prdt + | opw Ok + 00— Ok dB, + V1 — 520w%dBL,
ow ox ox
where
= [pw(w, z)w — 2* — 1] ok + o(w, )"’ Ok + Ok + 2= . Ok + dogo(w, )w—an
e = AR ow 2 ow? Mor T 2022 077 dwdz’
Since k(¢ ) + f s)ds must be a martingale, we must have
e — r(z)k + 2° = Ax)o(w, x)w% + [(5A(ac) +V1- 52AL(x)] oz%.

Equation (44) follows immediately by combining the last two equations. Equation (45) is
derived similarly.

G Continuous-Time Limit of Campbell and Cochrane

In the continuous-time limit, the consumption and log surplus consumption ratio in Campbell
and Cochrane [1999] can be written as

d
FC = gdt+vdB, (102)

ds = h(5—s)dt+ \(s)vdB, (103)

where C' is the aggregate consumption, s = logS is the log surplus consumption ratio,

S = C—X is the surplus consumption ratio, and X is the consumption habit. g and v are

assumegi to be constant. A(s) = £4/1 —2(5—s) — 1, if 5 < Spae, and A(s) = 0 if s > e,
where S is the steady-state mean of S, 5 is the steady state mean of s, and s,,4, = 5 — 0.5.

Note that A(s) may be viewed as the linearization of § — 1:

1 1

—~=01-(s—3)) ~

1-2(s—s
S~z =9,

W —

where S = e5~3var(s), Thus, I will replace A(s) by g -1,
Furthermore, 5—s may be viewed as a linearization of % and accordingly equation (103)
may be viewed as a linearization of (ignoring a Jensen’s term proportional to v?)

dS = h(S — S)dt + (B — S)vdB. (104)

If we take equations (102) and (104) as the primitive assumptions, and apply Ito’s lemma
to X =C(1—S), we obtain

= [gX + bC — aX]dt + v(1 — B)CdB, (105)
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where a = h+v? and b= h(1 — S) +v2(1 — B) = a — hS — v?B.
Define ¢ = Ce ™%, x = Xe 9 and z = Ze 9, we obtain

d
- vdB,
c

dez = (bc —ax)dt+v(1 — B)cdB.
It is hard to believe that taking the continuous-time limit and applying the “reverse

approximation” to equation (103) make any material difference. Therefore, when B = 1, the
habit process implied by CC is essentially identical to that of CHABIT.

H Proof of Corollary 3

When [(z) = I3(z) = 1, li(z) = b, I3(x) = B.

First, in the limit 8 — 0, equation (31) becomes % = 1+ bf'(z). Taking the
derivative with respect to z gives (y — l)h(z();_Qh’(x) = bf"(z) < 0. Since y —1 < 0, it
follows that h'(x) > 0.

Next, in the limit 5 — 0, equations (33) and (34) imply

h(z)™
¢

2A ()N (z) = —2(1 —7) |7'(z) + (1 — ) h'(z)| < 0.

Since A(z) > 0, A'(z) < 0.

Finally, in the limit 8 — 0, ¢(z) = 22, Thus, ¢'(z) < 0.
1—y

42



References

Abel, A. B. (1990). Asset prices under habit formation and catching up with the Joneses.
American Economic Review Papers and Proceedings 80, 38—42.

Basak, S. and D. Cuoco (1998). An equilibrium model with restricted stock market par-
ticipation. Review of Financial Studies 11, 309-341.

Breeden, D. (1979). An intertemporal asset pricing model with stochastic consumption
and investment opportunities. Journal of Financial Economics 7, 265—-296.

Campbell, J. and J. Cochrane (1999). By force of habit: A consumption-based explanation
of aggregate stock market behavior. Journal of Political Economy 107(2), 205-251.

Campbell, J. Y. (1999). Handbook of Macroeconomics, Volume 1, Chapter 19. North-
Holland, Amsterdam.

Chapman, D. A. (1998, September). Notes and comments: Habit formation and aggregate
consumption. Econometrica 66 (5), 1223-1230.

Constantinides, G. (1990). Habit formation: A resolution of the equity premium puzzle.
Journal of Political Economy 98(3), 519-543.

Constantinides, G. and J. D. Duffie (1996). Asset pricing with heterogeneous consumers.
Journal of Political Economy 104, 219-240.

Dai, Q. and K. J. Singleton (2001). Expectations puzzles, time-varying risk premia, and
affine models of the term structure. Accepted for publication, Journal of Financial
Economics.

Detemple, J. B. and F. Zapatero (1991, November). Asset prices in an exchange economy
with habit formation. Econometrica 59(6), 1633-1657.

Duffie, D. (1996). Dynamic Asset Pricing Theory, 2nd edition. Princeton University Press,
Princeton, N.J.

Duffie, J. D. and L. Epstein (1992). Stochastic differential utility. Econometrica 60(2),
353-394.

Duffie, J. D. and C. Skiadas (1994). Continuous-time security pricing: A utility gradient
approach. Journal of Mathematical Economics 23, 107-131.

Dunn, K. B. and K. J. Singleton (1986). Modeling the term structure of interest rates
under non-separable utility and durability of goods. Journal of Financial Economics,
27-55.

Epstein, L. G. and S. E. Zin (1989). Substitution, risk aversion, and the temporal behavior
of consumption and asset returns: A theoretical framework. Econometrica 57, 937-969.

Fama, E. (1984). The information in the term structure. Journal of Financial Eco-
nomics 18, 509-528.

Fama, E. and R. Bliss (1987). The information in long-maturity forward rates. American
Economic Review 77(4), 680-692.

43



Fama, E. and K. French (1989). Business conditions and expected returns on stocks and
bonds. Journal of Financial Economics 25, 23—49.

Hansen, L. and K. Singleton (1982). Generalized instrumental variables estimation of
nonlinear rational expectations models. Econometrica 50, 1269-1286.

Hansen, L. P. and R. Jagannathan (1991). Implications of security market data for models
of dynamic economies. Journal of Political Economy 99(2), 225-262.

Heaton, J. (1995, May). An empirical investigation of asset pricing with temporically
dependent preference specifications. Fconometrica.

Heaton, J. and D. Lucas (1996). Evaluating the effects of incomplete markets on risk
sharing and asset pricing. Journal of Political Economy 104 (3), 443-487.

Hindy, A. and C. fu Huang (1993). Optimal consumption and portfolio rules with dura-
bility and local substitution. Econometrica 61 (1), 84-121.

Ibbotson, R. G. and G. P. Brinson (1987). Gaining he Performance Advantage: Investment
Markets. McGraw-Hill, Inc., New York.

Klein, L. R. (1950). Economic Fluctuations in the United States, 1921-1941, Cowles Com-
mission for Research in Economics, Monograph No. 11. John Wiley & Sons, New York.

Kocherlakota, N. R. (1996). The equity premium: It’s still a puzzle. Journal of Political
Literature 34 (1), 42-71.

Kreps, D. and E. Porteus (1978). Temporal resolution of uncertainty and dynamic choice
theory. Fconometrica 46, 185-200.

Kugler, P. (1997). Central bank policy reaction and expectations hypothesis of the term
structure. International Journal of Financial Economics 2, 217-224.

Lucas, R. (1978). Asset prices in an exchange economy. Econometrica 46, 1429-1445.

Mankiw, N. G. and S. P. Zeldes (1991). The consumption of stockholders and nonstock-
holders. Journal of Financial Economics 29, 97-112.

McCallum, B. T. (1994). Monetary policy and the term structure of interest rates. NBER
working paper No. 4938.

Mehra, R. and E. C. Prescott (1985, March). The equity premium: A puzzle. Journal of
Monetary Economics 15, 145-161.

Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time
case. Review of Economics and Statistics 51, 247-257.

Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time
model. Journal of Economic Theory 3, 373-413.

Merton, R. C. (1973). An intertemporal capital asset pricing model. Econometrica 41(5),
867-887.

Saito, M. (1995). Limited market participation and asset pricing. Manuscript, University
of British Columbia.

44



Sundaresan, S. M. (1989). Intertemporally dependent preferences and the volatility of
consumption and wealth. Review of Financial Studies 2, 73—88.

Wachter, J. (2001). Habit formation and returns on bonds and stocks. Working paper,
NYU.

Weil, P. (1989). The equity premium puzzle and the riskfree rate puzzle. Journal of Mon-
etary Economics 24, 401-421.

45



