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Abstract

This paper proposes an alternative explanation for the price impact of trades created by

information that is carried in the order ßow. Unlike models that consider information asym-

metry about the future cash ßows (or liquidation value) of the asset, the approach here

postulates uncertainty about the distribution of preferences and endowments of investors.

This �investor uncertainty� results in prices moving on trades and therefore creates a spread

between the bid and the ask. Greater investor uncertainty increases the spread, decreases

expected trading volume, and lowers the welfare of all investors in the market. Hence, all

investors are better off if market makers are expert in assessing the distribution of prefer-

ences and endowments of the investor population. The information content of the order

ßow is further investigated by applying an econometric spread decomposition procedure to

data generated by simulating the model. The results indicate that a signiÞcant adverse se-

lection component of the spread can arise solely due to the informational effects of investor

uncertainty.



Investor Uncertainty and Order Flow Information

Why do trades move prices? A leading explanation in the market microstructure litera-

ture involves information asymmetry among investors about the future cash ßows of assets.

When some investors have private information about an asset and can potentially trade

on it to make a proÞt, others attempt to infer the private information from the order ßow

and prices adjust to reßect the information. This inference problem has been analyzed in

numerous papers, mostly following general modeling frameworks developed by Glosten and

Milgrom (1985) and Kyle (1985). In these models, risk neutral and competitive market

makers receive orders from informed investors (who are endowed with information about

the liquidation payoffs of an asset) and uninformed investors. These models characterize

the manner in which information about future cash ßows is incorporated into prices, and in

particular establish information asymmetry as a cause for the price impact of trades that

creates the spread between the bid and ask prices.

This paper advances an alternative explanation for the price impact of trades: uncertainty

about the preferences and endowments of investors in the market (henceforth �investor un-

certainty�). Conceptually, an asset�s price is determined jointly by the future cash ßows

associated with the asset and the preferences and endowments of the investors who demand

the asset. Differential information about either future cash ßows or the preferences and en-

dowments of the investors can and should affect that price. The assumption of uncertainty

in the market about the distribution of investors� preferences and endowments seems rather

intuitive since these attributes of investors are inherently unobservable. In addition, different

investors arrive to Þnancial markets at different time, further complicating the task of learn-

ing about the overall distribution of preferences and endowments of the investor population.

This uncertainty about the investor population creates a problem with respect to pricing the

asset. Order ßow communicates the trading desires of investors and can be used to extract

information about the preferences and endowments of investors and hence about the value

of the asset.
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Investor uncertainty can be viewed in terms of differential information by examining

the information sets of investors. Even if at any point in time past order ßow and the

fundamentals of the asset are known to all, each investor has a piece of information only he

knows�his own preferences and endowments, and hence his optimal demand for the asset.

This creates a situation in which there are different information sets for different investors

and prices must adjust as investors arrive in the market and reveal their demand.1 The

objective of this paper is to examine how uncertainty about the preferences and endowments

of investors introduces information content into the order ßow and how it affects prices,

volume, and the welfare of investors.

In principle, uncertainty about investors in the market can reßect uncertainty about many

different attributes such as endowments, preferences, information sets, and private invest-

ment opportunities. The term �investor uncertainty� is deÞned more narrowly in this paper

to describe uncertainty about the distribution of preferences and endowments of investors to

differentiate it from the extant literature. While other papers examine how different sources

of uncertainty affect prices in the market, the driving force behind all these models is an

information imperfection about the future cash ßows of the asset. For example, Easley and

O�Hara (1992) add to the basic structure of information asymmetry also �event uncertainty,�

whereby investors do not know if an information event about the Þrm has occured. Similarly,

Avery and Zemsky (1998) add uncertainty about the proportions of traders who receive sig-

nals of different precisions about the future cash ßows of the Þrm. What sets this paper

apart is that all investors (and market makers) have the same information about the Þrm.

The uncertainty that generates the information imperfection has nothing to do with the Þrm

but rather only with attributes of investors.

I develop a simple sequential trade model with two types of investors who differ with

respect to risk aversion and endowments. Their demand for the risky stock depends on

1Yet another way to view investor uncertainty is to think about it as information about future order ßow.
The arrival of an investor can be used to make an inference about the entire population of investors like the
inference from a sample about a population. Hence, the arrival of an order provides information about the
nature of future order ßow and therefore causes a change in the price of the asset.
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their preferences, endowments, and the prevailing price when they arrive to trade. While

traditional information-asymmetry-driven sequential trade models featured market makers

with preferences over the liquidation payoff of the stock at the end of the economy, prices here

are set by market makers who care about supply and demand during the trading period.2

As Mayer (1988) notes, �In general, NYSE specialists do not take a view of where a stock

is going over time. They are in business not to maximize the value of their inventory but

to maximize the turnover of their capital� (p. 211). Market makers are therefore assumed

to search for the price that approximately equates the ßow of shares bought and sold by

investors, and behave differently from investors who hold the stock to beneÞt from its future

prospects.

I formalize this assumption by having the market makers maximize expected proÞt per

unit time subject to a constraint that their inventory has no drift. This is similar to the

speciÞcation in Garman (1976) and Brock and Kleidon (1992). With uncertainty about

the preferences and endowments of the investor population, the arrival of orders changes

the market makers� information set used for pricing the stock. For example, an investor

who submits a buy order reveals that he is less risk averse or has a smaller endowment (or

both) than an investor who submits a sell order. Market makers then update their beliefs

about the investor population and raise prices to reßect the information that there may

be more investors who are less risk averse or have small endowments. I adopt the rational

expectations requirement of the traditional information-asymmetry-driven sequential trade

models that each order is executed at a price that reßects its information content. Market

makers determine at the beginning of each trading period an equilibrium strategy that

speciÞes the prices for different incoming orders. This equilibrium strategy constitutes the

market makers� quote, where the bid price for executing an arriving sell order is lower than

the ask price for executing an arriving buy order.

2I am using the term �traditional sequential trade models� to denote the models of Glosten and Milgrom
(1985), Easley and O�Hara (1987, 1991, 1992), Diamond and Verrecchia (1987), and others who follow a
similar framework. An exception is Leach and Madhavan (1993) where market makers solve a dynamic
program maximizing total trading proÞts.
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Greater investor uncertainty is shown to cause a higher ask and a lower bid (i.e., a larger

spread). Since investors face worse prices when investor uncertainty is greater, they choose

to trade fewer shares thus expected trading volume decreases. The model provides a clear

welfare implication: greater investor uncertainty lowers the welfare of all investors in the

market. This result highlights the importance of expertise of market makers. The better

they are in assessing the nature of the investor population, the tighter is the distribution

over investors� preferences and endowments they use for pricing. This allows them to set

prices that make all investors better off and increase volume in the market.

The model is simulated to examine whether investor uncertainty alone can generate

informational effects in prices that empirical work has traditionally attributed to information

asymmetry about future cash ßows. I show that the �adverse selection� component of the

spread estimated using the methodology of Madhavan, Richardson, and Roomans (1997)

picks up information about investors. Hence, current methodologies are unable to distinguish

between information about the Þrm�s future cash ßows and information about the preferences

and endowments of investors in the market.

The uncertainty about investors modeled in this paper adversely affects liquidity.3 These

results are therefore related to the literature that investigates the effect of market participa-

tion on the prices of assets.4 In particular, Kraus and Smith (1989) stress that uncertainty

about future prices can reßect the beliefs, preferences and endowments of the participants in

the economy. They refer to this uncertainty as �market created risk� to emphasize that its

source is the investors themselves rather than the future cash ßows of a Þrm.5 The approach

taken here differs from theirs along several dimensions, among which are the sequential ar-

rival of investors and, most importantly, the recognition that information about the investor

3The implication that larger demand variability increases trading costs is also discussed in Spiegel and
Subrahmanyam (1995). They use simulations to investigate the effects of exogenous supply shocks on the
intraday risk premium.

4See Merton (1987), Pagano (1989), Allen and Gale (1994), Orosel (1997), and Shapiro (2001).
5There is also a literature that considers the effects of random preferences and endowments in Walrasian

exchange economies. See Hildenbrand (1971), Bhattacharya and Majumdar (1973), and Mendelson (1985).
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population is carried by the order ßow and is affecting prices in the market.6

A few recent papers emphasize the existence of information in Þnancial markets other

than information about future cash ßows. Madrigal (1996) studies a market in which insiders

coexist with traders who do not have information on fundamental values, but who possess

superior knowledge of the market trading process or environment. Such knowledge allows

them to estimate fundamental information from public data more accurately than the market

at large. His model differs from the approach taken here in that the source of information

in the model is still the future cash ßows of the Þrm.7

Lyons (1997) and Cao and Lyons (1999) generate private information in the foreign

exchange multiple-dealer setting. Each dealer has sole knowledge of his customers� orders,

and this inventory information gives rise to speculative trading and thus affects prices in

the market. Their models differ from the approach taken here in that they describe a

simultaneous trading game of dealers in contrast to the sequential trading of investors used

in this paper. The price effects of inventory information in their settings are temporary,

while here the price effects of investor uncertainty are or can be permanent. In addition,

since customers are not optimizing in their models, prices do not reßect the preferences of

investors, just the risk bearing capacity of dealers. While the exposition here is done in terms

of an equity market, the idea of investor uncertainty applies to other Þnancial assets as well.

In particular, the implications of the model can be used to explain informational effects in

the prices of assets like closed-end funds, bonds, futures on indexes, and foreign exchange

where postulating private information about future cash ßows is less plausible than in the

equity market.

6The investor uncertainty model also relates to papers that attempt to explain, within the framework of
rationality, how prices seem to change substantially without signiÞcant external news (e.g., Romer, 1993;
Coval and Hirshleifer, 1998). While this literature focuses on transaction costs and uncertainty about the
precision of signals, the model here can generate similar implications using uncertainty about preferences
and endowments.

7In Brown and Zhang (1997), speculators trade on future cash ßows information but dealers are able to
aggregate information from different speculators and hence can be viewed as trading on order ßow informa-
tion. This informational advantage is proÞtable and can be used to construct an equilibrium level of dealer
services.
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The rest of the paper is organized as follows. Section 1 describes the economy and estab-

lishes the existence of an equilibrium. Section 2 investigates the implications of uncertainty

about the preferences and endowments of investors vis-a-vis prices, spreads, expected vol-

ume, and the welfare of investors. Section 3 shows how econometric estimates of the adverse

selection component of the spread can arise solely from the informational effects of investor

uncertainty. Section 4 concludes with a discussion of the approach pursued in the paper,

limitations of the model, and possible extensions.

1 Economy

1.1 Assets

There are two assets in the economy: a risky asset (a stock) that pays �u dollars at time

T 0, where �u is normally distributed with mean θ and variance σ2, and a riskless bond that

pays R dollars at time T 0. Trading in the stock takes place in discrete intervals of time

denoted t = 1, 2, · · · , T , where trading ends before the liquidating dividend of the stock is
realized (T < T 0). As in traditional sequential trade models, each interval is long enough to

accommodate at most one trade (see Easley and O�Hara, 1992).

1.2 Investors

There is a continuum of investors in the economy with unit mass. All investors maximize

Constant Absolute Risk Aversion (CARA) expected utility of their wealth at time T 0 (when

the liquidating dividends of the assets are realized). There are two types of investors in the

population indexed by i ∈ {1, 2} who differ with respect to their endowments (X̄i of the
risky asset and M̄i of the riskless bond) and their coefficient of absolute risk aversion, αi.

The relative population weight of type 1 is q and the relative population weight of type 2 is

1−q.
As in the traditional sequential trade models, each period an investor is randomly selected

to trade from among the pool of investors. The probability that an investor who arrives to
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trade belongs to a certain type is equal to that type�s relative population weight. In other

words, the probability that an investor who arrives to trade belongs to type 1 is q and the

probability that he belongs to type 2 is 1 − q.8 Since investors are being selected from a

continuum, the probability that any individual will be selected twice is zero, and therefore an

investor who arrives to the market trades to optimally rebalance his portfolio believing that

he will not be able to return to the market to trade again. Investors behave competitively

in that they take market prices as given and decide on the fraction of their wealth to be

invested in the stock and the fraction to be invested in the riskless bond.

Under these assumptions, a type i investor who arrives to the market in period t solves

the following problem:

max
Di,t

E
h
−eαiWi,T 0

i
(1)

s.t. RMt,i + �uDi,t =Wi,T 0 (2)

Mt,i + PtDi,t = M̄i + PtX̄i (3)

where Di,t is the investor�s demand for the stock, Pt is the price at which the investor can

transact in the stock, and the price of the riskless bond is set to unity. The solution to this

problem is well known and the optimal demand is:9

D∗
i,t =

θ −RPt
αiσ2

(4)

When an investor arrives to the market, he submits an order,

Xi,t = D
∗
i,t − X̄i (5)

where Xi,t > 0 (Xi,t < 0) is interpreted as a buy (sell) order.

8Nothing changes in the results if the model is extended to allow periods without trading. I can assume
that each period an investor arrives to the market with probability δ. If an investor arrives, his type is chosen
according to the relative weights of type 1 and type 2. As it will be shown later, prices are only adjusting
when an investor arrives and his order reveals his type (in the absent of public information arrival). Unlike
in Easley and O�Hara (1992), prices here do not change in periods without trading.

9See, for example, Grossman and Stiglitz (1980).
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The focus of this paper is on the effects of uncertainty about the distribution of investors�

preferences and endowments. This investor uncertainty is modeled by assuming that no one

knows the value of the relative population weight q.

1.3 Market Makers

Like in traditional sequential trade models, trading in the market is facilitated by competitive

and risk neutral market makers. However, the traditional models deÞned market makers�

preferences over their wealth at the end of the economy, when the liquidating dividends of

the assets are realized. This forced the equilibrium price of the stock to be the conditional

expected value of the liquidating dividend. In other words, the preferences and endowments

of investors did not matter for pricing. In contrast, investor uncertainty affects prices in this

paper since market makers care about supply and demand of shares by investors.

The notion of prices that are determined by equating the ßow of shares demanded and

supplied rather than by forecasting the future cash ßows of a Þrm seems to correspond

rather well to the activity of market makers. Bagehot (1971) writes that �it is well known

that market makers of all kinds make surprisingly little use of fundamental information.

Instead, they observe the relative pressure of buy and sell orders and attempt to Þnd a

price that equilibrate these pressures� (p. 14). Mayer (1988) also notes that market makers

are not interested in taking a position in the stock based on long-term forecasts. Rather,

they are constantly searching for the prices at which the ßows of shares bought and sold

are approximately equal. Their constant search for a market clearing price keeps them in

business since their inventories do not drift without bound. This behavior sets them apart

from investors who trade infrequently to re-balance a portfolio of investments they hold for

prolonged periods of time.

I adopt a speciÞcation of a market maker�s objective similar to the one used by Gar-

man (1976) and Brock and Kleidon (1992). Each market maker in the economy maximizes

expected proÞt per unit time subject to the constraint that the expected number of shares
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bought and sold per unit time is equal to zero.10 In other words, market makers set prices

every trading period by maximizing the expected revenue from selling shares to investors

minus the expected cost of buying shares from investors subject to the constraint that the

number of shares bought and sold is the same on average.

Here is where investor uncertainty enters since it creates a problem with respect to

assessing the demand and supply of shares by investors. If no one in the economy actually

knows the distribution of the investor population, the prices set by market makers cannot

reßect that information. While the market makers� information set does not include q, I

assume that they have a prior on q at time zero denoted by f 0(q). The prior distribution

can be rather general but its support should be in [0, 1]. The prior can be interpreted as the

experience market makers develop by regularly observing the investor clientele who trades

the stock. Each time an investor arrives and submits an order, market makers use Bayes

rule to update their beliefs about the distribution of investors� preferences and endowments.

The rules of the trading game are similar to those of the traditional sequential trade

models. At the beginning of each period, market makers are required to post binding prices

and depths at which investors can trade. Then, an investor arrives, optimizes taking the

market makers� prices as given, and submits his order. The order is executed by the market

makers at the quoted price. Trading is anonymous in the sense that the only information

market makers have about an arriving investor is the order the investor submits. Since orders

convey information but the market makers have to commit to prices before they observe the

orders, the equilibrium pricing strategy of the market makers should reßect their rational

expectations about the incoming orders. Market makers post �regret-free� prices in that the

information inferred from different order sizes is used to calculate the prices at which the

orders will be executed (so that the depth that accompanies a price is equal to the order size)

before the orders arrive at the market. Since this situation is similar to the one described by

traditional sequential trade models, it will be instructive to compare the manner in which

10Amihud and Mendelson (1980) use a similar speciÞcation but impose bounds on the allowable inventory
position of the market maker instead of requiring a zero drift.
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equilibrium prices are determined in the two approaches.

1.4 Equilibrium Prices and Strategies

Traditional sequential trade models deÞne the transaction price as the equilibrium price that

reßects all information available to the market makers, including the information contained

in the transaction itself (i.e., semi-strong price efficiency when the public�s information set

is the same as the one used by market makers). In these models, the price that market

makers set to execute a transaction for a single quantity of shares, Q, is just the conditional

expectation of the liquidation payoff when the information set includes the arrival of the

order, PQ=
E[�u|Q]
R
. Hence, at any point in time there is only one equilibrium price�the price

of the most recent transaction. Looking forward, market makers can determine in advance

what prices they will set for different incoming orders. Since a buy order (B) contains

different information than a sell order (S), the equilibrium prices conditional on these orders

will be different, PB=
E[�u|B]
R

6= E[�u|S]
R

=PS. Note, however, that these two prices never exist

at the same time�each is conditional on a different information set. Nonetheless, if market

makers are asked at the beginning of a trading interval what will be the prices at which they

will execute incoming buy or sell orders, they quote these two prices. The market makers�

quote therefore describes potential equilibrium prices.

A similar situation exists in this paper. I begin by deÞning the Equilibrium Price condi-

tional on a single information set, which is the equivalent of the conditional expectation of

the liquidating dividend in the traditional sequential trade models. Then I deÞne the market

makers� Equilibrium Strategy, which is the equivalent of the pair of potential equilibrium

prices that constitute the market makers� quote in the traditional sequential trade models.

DeÞnition (Equilibrium Price): If there is trading in the economy, an Equilibrium Price

conditional on the market makers� information set Φ, P (Φ), is the unique price determined

by competitive market makers who maximize conditional expected proÞt per period subject

to the constraint that the conditional expected number of shares bought and sold in the
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period is equal to zero.

The basic problem solved by each market maker is similar to that in Garman (1976) and

Brock and Kleidon (1992):

max
{P1,P2}

E [qP1X1 + (1− q)P2X2 | Φ] (6)

s.t. E [qX1 + (1− q)X2 | Φ] = 0 (7)

where Pi is the price the market maker is quoting to an investor belonging to type i∈{1, 2}
who arrives to the market and submits an order Xi. So, each market maker maximizes

expected proÞt for the period subject to the constraint that the expected number of shares

bought and sold is the same.

The market is populated by multiple, competitive market makers.11 The convention used

here is that each arriving order is divided equally among all market makers who quote the

best price, and for simplicity of exposition I assume that there is a continuum of market

makers with unit mass. This leads to a Bertrand competition where each market maker has

an incentive to improve prices in order to capture order ßow. Note that if a market maker

quotes different prices (P1 and P2) for the different investor types, improving only one of

the prices by a small amount will capture the order ßow of one type of investors and lead

to a violation of the constraint in (7). By improving both P1 and P2, a market maker will

capture the entire order ßow and make positive expected proÞt for a small enough price

improvement. The steady state of the Bertrand competition occurs when expected proÞt is

zero. The result that price competition among market makers leads to zero expected proÞt

is shared by many other sequential trade models (see the discussions in Glosten and Milgrom

(1985), Easley and O�Hara (1987), Glosten (1989), and Madhavan (1992)).12

11Similar implications about the effects of investor uncertainty on the information content of prices can
also be derived in the model with a monopolistic market maker. The details are available from the author
upon request.
12The assumptions of risk neutrality and no capital constraints in these papers lead immediately to the

result that expected proÞts are zero. Dennert (1993) shows under a different set of assumptions (notably
that informed investors trade with all market makers while uninformed investors trade with only one market
maker) that multiple market makers can quote a larger, rather than a smaller spread.
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If I do not impose the constraint in (7), there is an inÞnite number of solutions to the

market makers� problem when expected proÞt is equal to zero. The assumption I make

in the spirit of the aforementioned quotes from Bagehot (1971) and Mayer (1988) is that

market makers� inventories cannot have either a positive or a negative drift for the entire

duration of the economy. All solutions of the unconstrained problem except for two result

in a permanent drift. In principle, however, prices in a secondary market must adjust over

sufficiently long horizons such that the number of shares bought and sold by investors is the

same (without the Þrm issuing additional shares). Market makers are needed since investors

arrive one at a time, but what market makers do is basically to balance the expected ßow

of shares bought and sold. Hence, the solutions that result in a drift in one direction for the

entire duration of the economy seem unrealistic.

Two solutions to the unconstrained problem result in expected excess demand of zero:

one in which market makers set two different prices but all investors submit orders for zero

shares, and another where the constraint in (7) is satisÞed and in which market makers

set a single price and investors trade for risk sharing. The Þrst solution is not interesting

since there is no trading in the economy, and so this paper focuses on the second solution.

Note that in any given period only one order arrives, and therefore the realization of shares

bought or sold will not be zero. The constraint in (7) is best viewed as implementing market

clearing in expectations, and is a parsimonious way for formalizing the assumption I make

that the market makers� inventory should not have a drift.13 While this form of inventory

management may seem a bit restrictive, it is very simple and very useful for the task at

hand.14

13The issue of inventory drift is further discussed in Section 2.
14My goal here is not to examine how market makers manage their inventories. In Stoll (1978) and Ho

and Stoll (1981), inventory control is driven by risk aversion of a market maker who seeks to maintain an
optimal portfolio position. In Amihud and Mendelson (1980), the market maker must not let the level of
inventory get above or below certain bounds. Here, I abstract from speciÞc characteristics of market makers
such as their degree of risk aversion or wealth constraints since my interest is not in evaluating how these
characteristics affect pricing. Rather, I want to investigate the inßuence of uncertainty about the distribution
of preferences and endowments of the investor population on prices in a sequential trade model. Therefore,
the market maker�s problem satisÞes the simple requirement that on average, inventory will not have a drift
and so supply and demand of shares in the market will be approximately the same. While this setting
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To solve for the Equilibrium Price, we can use the constraint in (7) to write X1 in terms

of X2, and then plug it into the objective function. Then, imposing zero expected proÞt

results in the following equation:

(1−E [q | Φ])X2(P2 − P1) = 0 (8)

Hence, in every economy with trading (i.e., X2 6=0 and X1 6=0), there is a single equilibrium
price P (Φ)=P1=P2. We can plug the optimal demands of the two types of investors from

(4) and (5) into (7),

E [q | Φ]
Ã
θ −RP (Φ)
α1σ2

− X̄1
!
+ (1−E [q | Φ])

Ã
θ −RP (Φ)
α2σ2

− X̄2
!
= 0 (9)

and solve for the equilibrium price:

P (Φ) =
θ

R
− X(Φ)α1α2σ

2

Rα(Φ)
(10)

where X(Φ) = qΦX̄1 + (1− qΦ)X̄2, α(Φ) = qΦα2 + (1− qΦ)α1, and qΦ = E [q | Φ].
The equilibrium price set by the market makers has the usual structure from asset pricing

models: a risk neutral component, the mean of the asset�s payoffs divided by the risk free

rate, and a risk premium that depends on the relative population weight q. Note, however,

that since market makers do not know q, the aggregate demand and the harmonic mean

of the risk aversion coefficients are calculated using the conditional expectation of q rather

than the parameter itself. This price also preserves an important notion of optimality in

that if market makers have full information (they know q), it is equal to the competitive

equilibrium price in the economy. Hence, market makers are just a conduit through which

shares are transferred from sellers to buyers and the market price depends solely on the

characteristics of the investor population. Such a speciÞcation is therefore closer in spirit to

the usual formulation in the asset pricing literature whereby prices are determined using a

market clearing argument.

abstracts from many constraints that market makers have in the real world, it provides a powerful tool for
investigating investor uncertainty.
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With the Equilibrium Price deÞned, I turn to the Equilibrium Strategy of market makers

that represents the quote to which they commit at the beginning of each trading period (in a

manner similar to the deÞnition of quotes in traditional sequential trade models). LetMt,1

be the information set that includes the information in the next arrival of an order for X1,t

shares in addition to all public information and past order ßow at the beginning of period

t. Since market makers post their binding prices and depths schedule at the beginning of

a trading period before an investor arrives, they would like to post an Equilibrium Price to

execute an arriving order for X1,t shares that reßects the information that can be inferred

from such an order. In other words, calculating an execution price for this order conditioning

onMt,1 would result in a �regret-free� price. Similarly, letMt,2 be the information set that

includes all past information at the beginning of period t and the information in the next

arrival of an order for X2,t shares.

DeÞnition (Equilibrium Strategy): The market makers� Equilibrium Strategy is a pair of

prices and depths Pt ≡ {P (Mt,k),Xk,t}k∈{1,2} such that P(Mt,k) is an Equilibrium Price

conditional on the information set Mt,k that includes all information up to time t and the

next arrival of an order for Xk,t shares.

The Equilibrium Strategy is therefore a schedule of prices and quantities or a �quote�

that the market makers post publicly before an investor arrives in period t. It speciÞes at

which prices the market makers will execute trades for different quantities of shares. Since

there are two types of investors in the economy, it is natural to restrict attention to the order

sizes that the two types of investors will Þnd optimal.

1.5 Equilibrium

DeÞnition (Fully-Revealing Equilibrium): A Fully-Revealing Equilibrium in the market is

when:

1. At the beginning of each period, market makers commit to an Equilibrium Strategy
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assuming that they can identify an arriving investor�s type from his order.15

2. An optimizing investor belonging to type i who arrives in the market at period t

chooses to trade using the pair (P (Mt,i), Xi,t), where Xi,t is his optimal order size, and

X1,t 6= X2,t.

To simplify the exposition, assume that the parameters of the economy are such that

∆αX̄ = α1X̄1 − α2X̄2 > 0. This will result in an equilibrium where type 1 investors are

sellers and type 2 investors are buyers (since type 1 investors are more risk averse and/or have

a larger endowment of the stock then type 2 investors). The case of ∆αX̄ < 0 is completely

symmetrical, and in equilibrium type 1 are buyers and type 2 are sellers.16 This assumption

is without loss of generality since we could always rename the two types of investors.17 The

following proposition establishes the existence of a fully-revealing equilibrium:

Proposition 1 There exists a fully-revealing equilibrium where (i) the market makers� Equi-

librium Strategy is:

Pt =


θ
R
− α1α2σ2X̄(Mt,2)

R
for all orders X = X2,t

∞ for all orders X 6= X2,t, X > 0
θ
R
− α1α2σ2X̄(Mt,1)

R
for all orders X = X1,t

0 for all orders X 6= X1,t, X < 0

(11)

(ii) An arriving type 1 investor submits the order:

X1,t = −(1− q1,t)∆αX̄
α(Mt,1)

(12)

and an arriving type 2 investor submits the order:

X2,t =
q2,t∆αX̄

α(Mt,2)
(13)

15This requirement, that market makers can extract information only from the order size, makes the market
makers� problem more realistic. Modifying the problem by giving market makers additional information
about the identity of arriving investors does not materially affect the analysis.
16When ∆αX̄ = 0, investors choose not to trade for risk sharing. This is also the case in which there will

be no risk sharing among investors in an equivalent market cleared by a Walrasian auctioneer. This case is
less interesting and will not be pursued further in the paper.
17The proofs of all propositions in Section 2 (that establish the implications of the investor uncertainty

model) are done for the general case of ∆αX̄ 6= 0.
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where q1,t=E [q | Mt,1], q2,t=E [q | Mt,2], X̄(Mt,1)=q1,tX̄1+(1−q1,t)X̄2, X̄(Mt,2)= q2,tX̄1+

(1−q2,t)X̄2, α(Mt,1)=q1,tα2+(1−q1,t)α1, and α(Mt,2)=q2,tα2+(1−q2,t)α1.

All proofs are provided in the appendix. The proof of this proposition follows the standard

structure. I start by assuming that market makers can identify the type (preferences and

endowments) of an investor who arrives in the market from his optimal order. They use that

information to calculate the Equilibrium Strategy that speciÞes the prices at which investors

can transact. Then, the investors� participation and incentive compatibility conditions are

analyzed to show that an investor will in fact self-select to trade using the price and depth

that the market makers had set for investors of his type.

Proposition 1 shows that, like in traditional sequential trade models, market makers

post two prices: one at which investors can buy the stock (an �ask�) and another at which

investors can sell the stock (a �bid�). These prices depend on the information set of the

market makers and are �regret-free�. This is achieved by letting the market makers condition

on the order when they commit to the quote before the order arrives to the market, just like

in the traditional framework.

This equilibrium, however, differs from the one in traditional sequential trade models

with respect to two important attributes. First, the quantities investors trade depend on

prices and therefore change as the market makers update their prices. This means that the

welfare of investors is affected by the existence of investor uncertainty in the market and

by the expertise of market makers that is reßected in their prior beliefs about q. The next

section will develop speciÞc results that demonstrate the effects of investor uncertainty on

both market statistics such as prices and volume and on the welfare of investors. Second,

the equilibrium in the traditional framework is a partially revealing equilibrium. Market

makers do not learn all information that is known to the informed investors from the arrival

of an order. The existence of noise traders in these models enables the slow adjustment of

prices to private information about the liquidating dividends. In contrast, the equilibrium

here is fully-revealing: the order size chosen by an investor reveals to the market makers all
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the private information that the investor possesses�his own preferences and endowments.

However, this information is not sufficient to resolve all uncertainty in the economy since

no one knows the true value of the population parameter q. The orders of investors provide

market makers with pieces of information that they can use to update their beliefs about

the distribution of preferences and endowments in the population.

2 Implications of the Investor Uncertainty Model

In this section, I show how investor uncertainty affects prices, volume, and the welfare of

investors. Before turning to the results, it will be useful to establish how market makers

update their beliefs about the distribution of preferences and endowments in the population

as investors arrive to the market and trade. More speciÞcally, the next proposition shows

that the arrival of an investor belonging to type i causes market makers to believe that there

are more investors of type i in the market.

Proposition 2

q1,t ≡ E [q | Mt,1] = qt +
Vt[q]

qt
> qt (14)

q2,t ≡ E [q | Mt,2] = qt − Vt[q]

1− qt < qt (15)

where qt = E [q | Mt], Vt[q] = E [q2 | Mt] − q2t , and Mt is the information set of market

makers at the beginning of period t, before the arrival of any investor.

This proposition holds for general priors (continuous or discrete) that the market makers

may have about the relative population weight q. Proposition 2 states that the arrival of a

type 1 (type 2) investor increases the market makers� expectation of the relative population

weight of type 1 (type 2). The intuition behind this result is that of learning from a sample

about a population. Each time an investor of type i arrives, his type is considered a random

draw from the true distribution. Bayes Rule then dictates that the market makers update

their beliefs about the population of investors giving more weight to type i. The learning is
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not about the type of the arriving investor, which is a zero-one event that is fully known to

the market makers in equilibrium when the investor submits his order. Rather, the learning

is about the true distribution of investors in the population.

Proposition 3 There exists a positive spread between the bid and ask prices:

St =
α1α2σ

2
¯̄̄
∆αX̄

¯̄̄
Vt[q]

Rα(Mt,1)α(Mt,2)qt(1− qt) (16)

In this model, like in the traditional sequential trade models, the spread is the difference

between the price at which market makers are willing to buy shares and the price at which

they are willing to sell shares. What is the intuition behind the spread? Uncertainty about

the preferences and endowments of investors harms liquidity in the market. The reason for

the illiquidity is that without knowledge of the overall demand for the asset, it is difficult

to set a price that clears the market. Market makers try to learn about the population of

investors from the arriving orders, and the updating of their beliefs is moving prices with

each order.

When market makers observe a sell order for X1,t shares, they learn that a type 1 investor

arrived to the market. We can think about it as if the private information of an investor is

his own preferences and endowments, and the order he submits results in full revelation of

his private information. Since α1X̄1>α2X̄2, a type 1 investor is more risk averse and/or has

a larger endowment of the stock than a type 2 investor. Market makers then update their

beliefs about the distribution of investors so that their expectation of q increases. Hence,

prices must decrease to reßect the information that there are more investors in the market

with large endowments and/or higher risk aversion. The arriving type 1 order suffers from a

price impact as the equilibrium price adjusts downward. Similarly, an arriving buy order will

identify the investor as belonging to type 2 and will increase the market makers� expectation

of the relative population weight of type 2 investors. This will cause an increase in the

equilibrium price to reßect the beliefs that there are more investors who are less risk averse

or who have smaller endowments. The spread is the sum of these two price impacts, much
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like in traditional sequential trade models where the spread is the sum of the price impacts

of a buy order and a sell order (both for a single quantity of shares).18

Extending the model to accommodate n > 2 types of investors who differ with respect

to their preferences and endowments is conceptually straightforward. While the proof of the

equilibrium will be much more complex due to the greater number of incentive compatability

conditions, the result will be a schedule of prices and associated depths at which investors

can trade. A larger buy order, for example, will imply that more investors are characterized

with much lower risk aversion or much smaller endowments and therefore will create a larger

price impact than a smaller buy order.

Proposition 4 Prices are decreasing functions of σ2 (the variance of the asset�s liquidation

payoff). The spread and the relative spread increase with σ2.

As is generally true in asset pricing models with risk averse investors, higher expected

return is demanded from riskier assets and hence the prices of these assets are lower. The

prediction that riskier stocks would have larger spreads can also be found in inventory models

with risk averse market makers (Ho and Stoll (1981)) and in information-asymmetry-driven

models (Copeland and Galai (1983); Easley and O�Hara (1992)).

The next Þve results examine how differences in the extent of investor uncertainty affect

the market. While market makers may have a rather general prior on the distribution of

the population parameter q, (14) and (15) show that only the Þrst two moments of that

distribution matter for pricing the stock. The extent of uncertainty about investors in the

market can therefore be represented by the variance of the market makers� beliefs about the

population parameter. The smaller Vt[q], the tighter the distribution of types around the

mean, which implies less uncertainty about the distribution of preferences and endowments
18While the result that prices move on trades may cause us to question the price taking assumption,

there is a sense in which investors do take into account their impact on the price. The price charged of
an investor is adjusted for the investor�s private information�his preferences and endowments. When the
investor arrives, he calculates his optimal demand using the price that already reßects his order. Hence,
this rational expectations feature of the prices set by the market makers creates a situation in which price
taking is consistent with a quasi-strategic behavior in which an investor�s demand reßects his impact on the
market�s price.
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in the market. The following propositions consider the effect of changing the variance of q,

holding its expected value constant.

Proposition 5 The ask price increases and the bid price decreases (i.e., the spread in-

creases) with the variance of the market makers� beliefs about q.

Higher uncertainty about demand in the market is costly to investors since it causes the

ask to be higher and the bid to be lower. This result is driven by the learning process of the

market makers. Proposition 2 shows how the larger is Vt[q], the greater is the �distance�

between the market makers� prior and posterior expectations of q. Greater revisions in the

market makers� estimate of q cause larger price impacts and therefore the ask is higher and

the bid is lower. Another implication of this result is that the volatility of transaction prices

increases with investor uncertainty. Standing at the beginning of the period, the conditional

variance of transaction prices in period t can be written as:

V
h
P trt | Mt

i
= qt

h
P (Mt,1)−E

h
P trt | Mt

ii2
+ (1− qt)

h
P (Mt,2)−E

h
P trt | Mt

ii2
= S2t qt(1− qt)

where P trt is the transaction price and E [P trt | Mt] = qtP (Mt,1) + (1− qt)P (Mt,2). There is

a sense in which part of this volatility can be viewed as a manifestation of a bid-ask bounce.

However, the larger price impact of trades when investor uncertainty is higher moves the

subsequent quote further up or down, and therefore volatility calculated from midquotes will

also be greater.

It is also interesting to note that transaction prices need not be a martingale. While mar-

tingale prices are an implication of traditional sequential trade models (due to the fact that

prices are just conditional expected values of an exogenous random variable), other market

microstructure models demonstrate how market frictions can result in non-martingale prices.

For example, Amihud and Mendelson (1980) show how inventory control considerations cause

non-martingale prices. Leach and Madhavan (1993) present a sequential trade model where
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market makers implement price experimentation to try to proÞt from discovering the private

information of traders. Prices in their model do not follow a martingale. Investor uncertainty

also creates a market imperfection that results in a similar implication.19 Hasbrouck and Ho

(1987) perform empirical tests controlling for bid-ask bounce using both transaction prices

and quote midpoints and Þnd that prices do not follow a martingale.

Proposition 6 Vt[q] decreases on average when orders arrive. Vt[q] approaches zero and the

bid and ask prices converge to a single price as T goes to inÞnity.

The decrease in investor uncertainty as orders arrive is a consequence of the Bayesian

updating. A similar learning process also takes place in traditional sequential trade models

that utilize information asymmetry about future cash ßows to generate the spread. In these

models, it is learning about the signal that informed investors observe that drives down the

spread as more orders arrive. Here, the learning is about preferences and endowments of the

investor population. In both cases informational effects in prices should disappear without

renewed uncertainty or private information. If we continue to observe the effects of investor

uncertainty in the market, it has to be the case that the trading environment is constantly

changing.

For example, one way to think about the manner in which markets operate is that every

day there is a different subset of investors who trade: some suddenly need money, others

have found the time to go over their Þnances, and so on. This subset of investors determines

the price path on that day as market makers try to learn the distribution of types. Of course,

prices that go up or down by a large amount will attract the attention of other subsets of

investors who did not plan to arrive in the market on that day. But within some bounds

on the price movement, prices are determined at every point in time by this search for the

preferences and endowments of a subset of the investor population. Another way in which

investor uncertainty arises is when the market learns about changes in tastes and income of

19In the model presented here, transaction prices will still follow a martingale if all investors have the same
coefficient of absolute risk aversion.
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the population of investors as a whole. This hierarchy of inferences, both on a subset and

on the population, creates a situation in which market makers can never stop learning from

the order ßow and the information effects of investor uncertainty are always present.20

When the bid and ask prices converge to a single price, the market makers� pricing

problem ensures that their inventories, which are absorbing the excess demand of investors,

would not drift. However, as long as market makers learn about the investor population,

their inventory can drift in one direction or the other depending on the relation between

their prior expected value of q and the true population parameter. This situation is similar

to that of market makers in traditional sequential trade models. As Glosten and Milgrom

(1985) note, the inventory of the specialist in their model would not drift only in the limit.

As long as some investors have private information and they trade on it, inventory may

drift. A positive or a negative inventory drift in the traditional models and here is due

to the assumption of risk neutrality on the part of market makers and the assumption of

no inventory carrying costs. Inventory models such as Ho and Stoll (1981) and O�Hara and

OldÞeld (1986) show how risk aversion results in the market makers adjusting prices to avoid

inventory accumulation.21

Proposition 7 Expected trading volume per period decreases with Vt[q].

20Note that uncertainty about preferences and endowments can exist in markets even when all investors
are present. However, it is intuitively clear that such uncertainty would be greater in sequential markets
where not all investors are in the market at any given time. It is therefore reasonable to believe that
the cost of trading (manifested by this spread) is intensiÞed in sequential markets where there is greater
uncertainty about the preferences and endowments of the investor population. While a limit order book is
not modeled explicitely in this paper, it also seems reasonable to conjecture that arrival of limit orders can
provide information about preferences and endowments of investors. However, as the discussion in the text
emphasizes, investor uncertainty is constantly created in the market and therefore a limit order book could
not eliminate it.
21In a previous version of the paper, I examined how investor uncertainty produces similar implications

to those described here in the presence of inventory control. In particular, if the market makers� objective
function is replaced with one that requires that they end trading at time T with expected inventory of
zero, they will adjust prices to affect the order sizes of arriving investors so that their inventory will be
brought back to zero. Even with this alternative speciÞcation of the market makers� objective function,
uncertainty about investor preferences and endowments produces a spread that increases in the variance of
q and decreases as market makers learn about the population of investors.
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Investor uncertainty creates an inverse relation between the volume of shares traded and

illiquidity (as manifested by the price impact of trades). Volume in the market is determined

by the optimal quantities of shares, or order sizes, chosen by investors. When the variance

of the market makers� beliefs is high, a buyer is forced to transact at a high price and a seller

at a low price. Faced with worse prices, investors want to buy or sell smaller quantities of

shares and hence volume decreases.22

A major difference between the traditional sequential trade models that investigate infor-

mation asymmetry about future cash ßows and the model presented here, which generates

an information imperfection using uncertainty about investor preferences and endowments,

is the ability of the latter to examine the welfare implications of the information imperfec-

tion. The traditional models are unable to provide a welfare analysis since informed investors

proÞt at the expense of uninformed investors (and the uninformed investors in most models

do not have an explicit utility functions that can be evaluated). The investor uncertainty

model spells out a clear welfare result:

Proposition 8 The welfare of all investors in the economy is decreasing in Vt[q].

Since prices and hence optimal demands are functions of Vt[q], investor uncertainty en-

ters the indirect utility functions of both types of investors. Investor uncertainty hurts all

investors in the market. It therefore follows that design and regulation of trading venues

aimed at reducing investor uncertainty will make all investors in the market better off. In

particular, the aforementioned results suggest that market makers who are experts in assess-

ing the nature of the investor population (i.e., have tighter priors on q) can offer better prices

to investors and increase trading volume. Hence, the expertise of market makers constitutes

22This implication of the model may be difficult to test since the average transaction size when investor
uncertainty increases must be compared with the average transaction size of the same investors when investor
uncertainty is lower. However, the event that causes the increase in investor uncertainty may include the
entrance into the market of investors belonging to different types who previously where on the sideline. The
preferences and endowments of these investors may lead them trade larger quantities than the investors who
were previously in the market. Hence, just comparing the average transaction size before and after an event
that is conjectured to change the level of investor uncertainty in the market may fail to detect the effect
described in this proposition.
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a positive externality that beneÞts all investors in the market.

3 Investor Uncertainty and Spread Decomposition

The previous section showed how uncertainty about the preferences and endowments of the

investor population can introduce informational effects into prices. Market makers learn from

the order ßow about the investor population and change prices to accommodate the informa-

tion revealed by the orders. Traditional sequential trade models postulated the existence of

informed investors with private information about the future cash ßows of the Þrm. Market

makers in these models extracted information about the liquidating payoff of the stock and

adjusted prices accordingly. Hence, both types of information imperfections, investor uncer-

tainty and information asymmetry about future cash ßows, introduce informational effects

into prices.

Much empirical work in the market microstructure literature has been devoted to iden-

tifying and investigating informational effects in prices. Econometric spread decomposition

procedures were developed and used extensively to measure the �adverse selection� compo-

nent of the spread that is attributed to information asymmetry about the Þrm (e.g., Glosten

and Harris, 1988; Stoll, 1989; George, Kaul, and Nimalendran, 1991; Affleck-Graves, Hedge,

and Miller, 1994; Lin, Sanger and Booth, 1995; Krinsky and Lee, 1996; Huang and Stoll,

1997; Madhavan, Richardson and Roomans, 1997; Neal and Wheatley, 1998).23 In general,

these methodologies identify the �permanent� component of the price changes and attribute

it to information (as opposed to the temporary component that is attributed to order pro-

cessing costs and inventory costs). Since investor uncertainty generates informational effects

similar to those described by the traditional sequential trade models but for a completely

different reason, a question arises as to what these methodologies exactly capture.

This issue is illustrated in Neal and Wheatley (1998) who show that the spread of closed-

23Hasbrouck (1991) develops a variance decomposition procedure to quantify trade informativeness, and
Easley, Kiefer and O�Hara (1997a, 1997b) estimate a structural trading model that includes a measure of
information-based trading.
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end funds contains a large adverse selection (or information) component. This component

of the spread is identiÞed by established empirical methods despite the fact that there is

very little information asymmetry about the value of closed-end funds (the market value of

their holdings is published every week). Moreover, Neal and Wheatley are unable to relate

cross-sectional variation in the adverse selection component to takeover activity and closed-

end fund discounts. They end up concluding that either the methodologies that identify

the adverse selection component are misspeciÞed or that they pick up something other than

information asymmetry about the liquidation value. The investor uncertainty model can

be used to interpret the results documented by Neal and Wheatley: the spread component

they Þnd arises from information about the preferences and endowments of the investor

population carried in the order ßow.

To examine the question whether investor uncertainty effects are picked up by the �ad-

verse selection� component of the spread, I simulate the investor uncertainty model and

apply an econometric spread decomposition procedure to the simulated data. Since there

is no private information about future cash ßows in the model, any information effects that

will be picked up by the spread decomposition procedure must be due to investor uncer-

tainty. The parameters of the model that I use for the simulation are: θ=1.3, σ2=0.09,

R=1.05, α1=2, α2=1, X̄1=3, and X̄2=2. I assume that market makers start the day with

a Beta(3, 3) prior on the population parameter. The type of an arriving investor is drawn

from a Bernoulli distribution with parameter q = 0.6. The economy is in the fully-revealing

equilibrium described by Proposition 1, where market makers are setting prices according

to (11) and investors submit orders according to (12) and (13). The length of a trading day

is taken to be 100 periods, and 250 independent days are simulated (so that market makers

begin each day with the same prior on q). Panel A of Table 1 contains summary statistics

of the simulated data. The average transaction price is 0.926421 and the average spread is

0.009294 (about 1% of the price).

As a representative of the spread decomposition techniques I use Madhavan, Richard-
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son, and Roomans (1997). Let xt denote an indicator variable taking the value of 1 if the

transaction in period t is buyer initiated and −1 if it is seller initiated, and let µt denote the
post-trade expected value of a stock. Madhavan et al. specify the revision of beliefs follow-

ing a trade as the sum of the change in beliefs due to public information and the change in

beliefs due to the order ßow innovation:

µt = µt−1 + ν (xt −E[xt|xt−1]) + ²t (17)

where ν is the permanent impact of the order ßow innovation and is a measure of the degree

of information asymmetry about the Þrm (the �adverse selection� component of the half

spread), and ²t is the innovation in beliefs between times t−1 and t due to public information.
Let pt denote the transaction price at time t, and φ denote the market makers� cost per share

of supplying liquidity (compensating them for order processing costs, inventory costs, and

so on). The transaction price can then be expressed as:

pt = µt + φxt + ξt (18)

Equations (17) and (18) can be used to obtain:

ut = pt − pt−1 − (φ+ ν)xt + (φ+ ρν)xt−1 (19)

where ρ is the Þrst-order autocorrelation of the trade initiation variable. Then, the measure

of information asymmetry ν, alongside φ, ρ, and a constant δ can be estimated using GMM

applied to the following moment conditions:24

E


xtxt−1 − x2t−1ρ

ut − δ
(ut − δ)xt
(ut − δ)xt−1

 = 0 (20)

Panel B of Table 1 presents the GMM estimates from the Madhavan, Richardson, and

Roomans (1997) procedure applied to the simulated data. The estimate of ν, the information
24Madhavan et al. note that trades with prices between the bid and the ask can be viewed as both buyer

and seller initiated, and set for those xt = 0. They then estimate an additional parameter, λ, which is the
unconditional probability that a transaction occurs within the quoted spread. Since all transactions in the
model occur at the quotes, λ = 0 by construction and need not be estimated.
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component of the half spread, is large (and very signiÞcant) in comparison with the estimate

of φ, the order processing component. These estimates show that over 90% of the spread

is attributed to the permanent component of the spread.25 If we were presented with these

results without knowing which model generated the data, applying the traditional interpre-

tation we would say that there is a high degree of information asymmetry about the Þrm

in the market or that there is a high likelihood of encountering investors who are informed

about the future cash ßows of the Þrm. In this case, however, the model that generated the

data involved no information asymmetry about the Þrm. The informational effects picked

up by the procedure are therefore solely due to investor uncertainty.26

The results of this simulation suggest that spread decomposition methodologies iden-

tify an information or adverse selection component that can be either due to information

asymmetry about future cash ßows or due to uncertainty about investor preferences and en-

dowments. In fact, it is most likely that both information imperfections exist in the market

and hence the estimated information component of the spread is the sum of the spread com-

ponents they create. It follows that caution should be exercised when using the information

component of the spread as a measure of information asymmetry about future cash ßows or

the activity of informed traders, since investor uncertainty may complicate the relationship

between the measure and the information asymmetry environment.

25I also applied the two-way spread decomposition from Huang and Stoll (1997) to the simulated data,
which is essentially equivalent to the Madhavan et al. procedure if the Þrst-order autocorrelation (ρ) is
assumed to be zero. The following relationship is taken from equation (5) in Huang and Stoll (1997):

Pt − Pt−1 = S

2
(xt − xt−1) + γS

2
xt−1 + et (21)

where S is the estimated spread and γ is the fraction of the spread attributed to adverse selection (in the
absence of inventory control). When equation (21) is estimated using GMM, S is equal to 0.008059 (t-
statistic 61.92) and the estimate of γ is 0.952715 (t-statistic 174.25). The estimate of γ shows that more
than 95% of the spread is due to adverse selection.
26It is interesting to note that the estimation procedure does attribute a small portion of the spread to

order processing cost. This is a bit unsettling since the model does not include any order processing costs
and therefore we should have seen the entire spread attributed to information about investors. This result
is probably due to the discrepancy between the speciÞcation of the empirical equations and the model.
For example, the effects of buys and sells on prices in the simulated model are not symmetric while the
econometric speciÞcation assumes that they are, and therefore some informational effects are perhaps being
picked up by the order processing component.
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Attributing the estimated informational effects in prices to either investor uncertainty or

information asymmetry about future cash ßows therefore requires looking at the economic

context. In particular, the investor uncertainty model provides an alternative way of inter-

preting empirical evidence of informational effects in prices of assets that do not Þt easily into

the asymmetric information paradigm. One such example is the foreign exchange market.

Since �inside information� in the usual sense is less relevant in the foreign exchange market,

much of the day-to-day pricing reßects the demand of different users. A foreign exchange

trader receives orders, infers the demand, and sets quotes much like the market makers in

this paper (see Lyons, 1995). Hence, we can expect that investor uncertainty would play

an important role in this market.27 Similarly, evidence of informational effects in prices of

mutual funds (Neal and Wheatley, 1998) or Treasury securities (Green, 1999) may reßect

investor uncertainty in these markets.

4 Concluding Remarks

This paper promotes the idea that uncertainty about the preferences and endowments of

investors in the market�termed investor uncertainty�introduces information into the or-

der ßow. The underlying reason for the informational effects in prices here is therefore very

different from the one promoted by traditional market microstructure models, where infor-

mation in the order ßow is due to the trading of a subset of investors with private information

about the future cash ßows of the asset. Investor uncertainty has two attractive properties

as a potential explanation for informational effects in prices. First, the preferences and en-

dowments of investors are usually unobservable, providing an intuitive appeal to the explicit

modeling of the learning process about them. Second, investor uncertainty provides a bridge

to asset pricing models with risk averse investors where prices are determined jointly by the

distribution of future cash ßows of the asset and the preferences and endowments of investors

who demand the asset. This, in contrast to the traditional sequential trade models where

27For an argument in support of the traditional form of adverse selection in the foreign exchange market
see Naranjo and Nimalendran (2000).
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the possibility that risk aversion plays a role in informational effects has not been explored.

The key insight that comes out of the model is that the process of learning about the

preferences and endowments of investors from the orders they submit causes prices in the

market to change in response to order ßow. For example, observing a buy order for a certain

quantity can indicate that the pool of investors who are interested in buying at the prevailing

price, perhaps those who are less risk averse, may be larger than previously believed. This,

in turn, causes market makers to raise prices to reßect their new beliefs about the risk

premium. While the source of the information imperfection differs substantially from that

postulated by traditional sequential trade models, the learning process of the market makers

that translates the uncertainty into price impacts is similar. In particular, it is the rational

expectations property of the market makers� equilibrium pricing strategy that creates the

price impact of trades both here and in the traditional sequential trade models.

The model shows how uncertainty about preferences and endowments in the market

creates a situation whereby prices move with the order ßow, and how this price impact

increases with the extent of the uncertainty. Furthermore, I show that the welfare of all

investors in the economy decreases with the extent of investor uncertainty. While there is

no welfare analysis in the paper that includes market makers in addition to the investor

population, it seems very likely that investor uncertainty in actual markets would lower

market makers� utility as well. This is because investor uncertainty is shown to decrease

trading volume, a variable that is tightly associated with market makers� trading revenues.

The model, therefore, provides a mechanism that relates liquidity to welfare, and shows how

investor uncertainty can cause both worsened liquidity and lower welfare.

An additional point that the paper is making has to do with the spread decomposition

procedures that are being used to estimate the extent of informed trading or adverse selection

problem in the market. Using data generated by simulating the model (which does not feature

information asymmetry about future cash ßows), I show that the adverse selection component

of the spread produced by these procedures picks up the effects of investor uncertainty. This
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raises questions as to the interpretation of the output of these econometric techniques, as

they seem to bundle information about investor preferences and endowments with private

information about the Þrm.

The approach pursued in this paper, however, is subject to several limitations. The Þrst

limitation, which is also shared by the traditional sequential trade models, is the probabilistic

selection of investors that precludes dynamic trading strategies. The second limitation has

to do with the static problem of the market makers. The model therefore does not reßect

possible intertemporal strategies market makers can adopt. This drawback is also shared by

most traditional sequential trade models, where the requirement (formalized in Glosten and

Milgrom, 1985) that the price of each trade reßects a zero expected proÞt condition results in

a convenient pricing rule but does not lend itself easily to dynamic considerations. Leach and

Madhavan (1993), for example, show how more complex patterns of price experimentation

can arise when market makers solve dynamic problems. While the simpliÞed assumptions of

the model here are helpful in the introduction of investor uncertainty and its effects on the

information content of the order ßow, I believe that the intuition behind investor uncertainty

is more general than the model itself and would hold in more complex settings.

Extending the model to consider additional features of actual markets can offer interesting

venues for future work. One could look at a market in which multiple risky assets are priced

and traded. If an investor does not rebalance his entire portfolio on a single arrival to

the market, a transaction in one stock could reveal information about the preferences and

endowments of the investor population and hence affect the values of other stocks. Another

interesting extension may involve looking at derivative securities. If investors implement

complex trading strategies in which they take offsetting positions in the underlying asset

and in the derivative security, order ßow in one market can be used to infer information

about the population of investors in the other market.

While this paper demonstrates how investor uncertainty can serve as an alternative to

the paradigm of information asymmetry about future cash ßows, these two need not be
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mutually exclusive. For example, Saar (2000) shows that when information asymmetry about

future cash ßows is introduced into the investor uncertainty model, there exists a pooling

equilibrium in which market makers learn from the arrival of orders both on the preferences

and endowments of investors and on the future cash ßows. A challenge for future work is the

construction of a more general model of information imperfections. Such a model could be

used to examine how information about investors� preferences and endowments, information

about the future cash ßows of the Þrm, and information about market conditions interact in

a market populated by different groups of investors and market professionals.
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Appendix

Proof of Proposition 1:
Assume that market makers can identify the type of an investor from his order size, and
that type 1 (type 2) investors submit orders for X1,t (X2,t) shares. First I will establish
the Equilibrium Price conditional on Mt,1. Since the same information set is used in the
objective function and in the expected market clearing constraint, I can perform the same
manipulation as in (8) and get a single equilibrium price conditional on the information that
can be inferred from the arrival of an order of a type 1 investor. P (Mt,1) can be found by
plugging the optimal orders into the expected market clearing condition in (7) as follows:

q1,t

Ã
θ −RP (Mt,1)

α1σ2
− X̄1

!
+ (1− q1,t)

Ã
θ −RP (Mt,1)

α2σ2
− X̄2

!
= 0 (22)

where q1,t = E [q | Mt,1]. Solving for P (Mt,1) we get,

P (Mt,1) =
θ

R
− X̄(Mt,1)α1α2σ

2

Rα(Mt,1)
(23)

where X̄(Mt,1)=q1,tX̄1+(1−q1,t)X̄2 and α(Mt,1)=q1,tα2+(1−q1,t)α1. The Equilibrium Price
conditional onMt,2 can be found in a similar fashion. Let q2,t=E [q | Mt,2]. Then,

P (Mt,2) =
θ

R
− X̄(Mt,2)α1α2σ

2

Rα(Mt,2)
(24)

where X̄(Mt,2)=q2,tX̄1+(1−q2,t)X̄2 and α(Mt,1)=q2,tα2+(1−q2,t)α1. Since a type 1 investor
will face the price P (Mt,1) when he arrives to trade, his optimal order is:

X1,t =
θ −RP (Mt,1)

α1σ2
− X̄1 = −(1− q1,t)∆αX̄

α(Mt,1)
< 0 (25)

Similarly, a type 2 investor will be charged the price P (Mt,2) when he will trade, and so his
optimal order is:

X2,t =
θ −RP (Mt,2)

α1σ2
− X̄2 = q2,t∆αX̄

α(Mt,2)
> 0 (26)

Market makers restrict trading in the economy to the optimal orders of the two types of
investors, and so their Equilibrium Strategy speciÞes a depth that is equal to type 1�s optimal
order as the appropriate depth for a sell order that will be executed at the price P (Mt,1).
A sell order for any other size can execute only at a price of zero. Similarly, market makers
set the depth associated with P (Mt,2) equal to the size of the type 2 buy order in (26). Any
other buy order can execute only at an inÞnite price. This Equilibrium Strategy therefore
causes investors to transact only using these two order sizes. Note that X1,t 6= X2,t (one is
a buy order and the other a sell order), and hence market makers can differentiate between
them. This completes the Þrst requirement of the fully-revealing equilibrium.
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Since investors face two prices with associated depths and are free to choose between
them, I still need to check that type 1 investors will choose (P (Mt,1), X1,t) while type 2 in-
vestors will choose (P (Mt,2), X2,t). For that consider the following participation and incentive
compatability conditions:

P.1. U1 (P (Mt,1),X1,t) ≥ U1 (P, 0)
IC.1. U1 (P (Mt,1),X1,t) ≥ U1 (P (Mt,2),X2,t)
P.2. U2 (P (Mt,2),X2,t) ≥ U2 (P, 0)
IC.2. U2 (P (Mt,2),X2,t) ≥ U2 (P (Mt,1),X1,t)

(27)

where P in the participation conditions denotes any arbitrary price. The participation
condition P.1. can be written as follows:

RM̄1 −RP (Mt,1)X1,t + (X̄1 +X1,t)θ − α1
2
(X̄1 +X1,t)

2σ2 ≥ (28)

RM̄1 −RP0 + (X̄1 + 0)θ − α1
2
(X̄1 + 0)

2σ2 (29)

which simpliÞes to:

−RP (Mt,1)X1,t +X1,t(θ − α1σ2X̄1)−
α1σ

2X2
1,t

2
≥ 0 (30)

Denote the left-hand-side of the above expression by A. Using (23) and (25):

A = X1,t

"
−R

Ã
θ

R
− α1α2X̄(Mt,1)σ

2

Rα(Mt,1)

!
+ θ − α1σ2X̄1 − α1σ

2X1,t
2

#
(31)

=
X1,tα1σ

2

2

"
2α2X̄(Mt,1)

α(Mt,1)
− 2X̄1 −X1,t

#
(32)

=
X1,tα1σ

2

2α(Mt,1)

h
(1− q1,t)(−∆αX̄)

i
=
(1− q1,t)2α1σ2(∆αX̄)2

2α(Mt,1)2
> 0 (33)

Hence, P.1. always holds. The incentive compatibility condition I.C.1. can be written as
follows:

RM̄1 −RP (Mt,1)X1,t + (X̄1 +X1,t)θ − α1
2
(X̄1 +X1,t)

2σ2 ≥ (34)

RM̄1 −RP (Mt,2)X2,t + (X̄1 +X2,t)θ − α1
2
(X̄1 +X2,t)

2σ2 (35)

which simpliÞes to: "
−RP (Mt,1)X1,t +X1,t(θ − α1σ2X̄1)−

α1σ
2X2

1,t

2

#
(36)

+

"
RP (Mt,2)X2,t −X2,t(θ − α1σ2X̄1) +

α1σ
2X2

2,t

2

#
≥ 0 (37)

The Þrst term in the left-hand-side of the above expression is A that was shown to be
positive. Denote the second term by B. It can be rewritten using (24) and (26) as follows:

B = X2,t

"
R

Ã
θ

R
− α1α2X̄(Mt,2)σ

2

Rα(Mt,2)

!
− θ + α1σ2X̄1 + α1σ

2X2,t
2

#
(38)

=
X2,tα1σ

2

2α(Mt,2)

h
(2− q2,t)∆αX̄

i
=
q2,t(2− q2,t)α1σ2(∆αX̄)2

2α(Mt,2)2
> 0 (39)
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Hence, I.C.1. always holds. The participation condition P.2. can be written as follows:

RM̄2 −RP (Mt,2)X2,t + (X̄2 +X2,t)θ − α2
2
(X̄2 +X2,t)

2σ2 ≥ (40)

RM̄2 −RP0 + (X̄2 + 0)θ − α2
2
(X̄2 + 0)

2σ2 (41)

which simpliÞes to:

−RP (Mt,2)X2,t +X2,t(θ − α2σ2X̄2)−
α2σ

2X2
2,t

2
≥ 0 (42)

Denote the left-hand-side of the above expression by C. Using (24) and (26):

C =
X2,tα2σ

2

2

"
2α1X̄(Mt,2)

α(Mt,2)
− 2X̄2 −X2,t

#
(43)

=
X2,tα2σ

2

2α(Mt,2)

h
q2,t∆αX̄

i
=
q22,tα2σ

2(∆αX̄)2

2α(Mt,2)2
> 0 (44)

Hence, P.2. always holds. The incentive compatibility condition I.C.2. can be written as
follows:

RM̄2 −RP (Mt,2)X2,t + (X̄2 +X2,t)θ − α2
2
(X̄2 +X2,t)

2σ2 ≥ (45)

RM̄2 −RP (Mt,1)X1,t + (X̄2 +X1,t)θ − α2
2
(X̄2 +X1,t)

2σ2 (46)

which simpliÞes to: "
−RP (Mt,2)X2,t +X2,t(θ − α2σ2X̄2)−

α2σ
2X2

2,t

2

#
(47)

+

"
RP (Mt,1)X1,t +X1,t(θ − α2σ2X̄2)−

α2σ
2X2

1,t

2

#
≥ 0 (48)

The Þrst term in the left-hand-side of the above expression is C that was shown to be
positive. Denote the second term by D. It can be rewritten using (23) and (25) as follows:

D = X1,t

"
R

Ã
θ

R
− α1α2X̄(Mt,1)σ

2

Rα(Mt,1)

!
− θ + α2σ2X̄2 + α2σ

2X1,t
2

#
(49)

=
X1,tα2σ

2

2α(Mt,1)

h
−(1 + q1,t)∆αX̄

i
=
(1− q1,t)(1 + q1,t)α2σ2(∆αX̄)2

2α(Mt,1)2
> 0 (50)

Hence, I.C.2. always holds. These four conditions show that investors self-select to the pairs
of prices and order sizes that reveal their types to the market makers, and hence the second
requirement of the fully-revealing equilibrium is satisÞed.
Q.E.D.
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Proof of Proposition 2:
Let fMt(q) be the prior distribution of q given all public information including the order
ßow up to time t, andMt,i = {Mt, Xi} be the information set that also includes an incoming
order of type i. By Bayes Law,

fMt,1(q) =
qfMt(q)R 1

0 qf
Mt(q)dq

(51)

E [q | Mt,1] =
Z 1

0
qfMt,1(q)dq

=

R 1
0 q

2fMt(q)dqR 1
0 qf

Mt(q)dq
=
Et [q

2]

qt

=
Vt[q] + q

2
t

qt
= qt +

Vt[q]

qt
(52)

where Et [·] = E [· | Mt], qt = Et [q], and Vt[q] = Et [q
2]− q2t . Similarly,

fMt,2(q) =
(1− q)fMt(q)R 1

0 (1− q)fMt(q)dq
(53)

E [q | Mt,2] =
Z 1

0
qfMt,2(q)dq

=

R 1
0 q(1− q)fMt(q)dqR 1
0 (1− q)fMt(q)dq

=
qt − Et [q2]
1− qt

=
qt − Vt[q]− q2t

1− qt = qt − Vt[q]

1− qt (54)

Q.E.D

Proof of Proposition 3:
From (25) and (26), type 2 investors are buyers (sellers) and type 1 investors are sellers
(buyers) if and only if ∆αX̄ = α1X̄1 − α2X̄2 > 0(< 0). Hence, the spread St can be deÞned
as:

St = (P (Mt,2)− P (Mt,1))sign
³
∆αX̄

´
(55)

Using (23), (24) and Proposition 2,

St =
α1α2σ

2

R

"
X̄(Mt,1)

α(Mt,1)
− X̄(Mt,2)

α(Mt,2)

#
sign

³
∆αX̄

´
=

α1α2σ
2

Rα(Mt,1)α(Mt,2)

¯̄̄
∆αX̄

¯̄̄ ³
sign

³
∆αX̄

´´2
(q1,t − q2,t)

=
α1α2σ

2
¯̄̄
∆αX̄

¯̄̄
Vt[q]

Rα(Mt,1)α(Mt,2)qt (1− qt) > 0 (56)

Q.E.D
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Proof of Proposition 4:
Using (23), (24) and (16),

∂P (Mt,1)

∂σ2
= −α1α2X̄(Mt,1)

Rα(Mt,1)
< 0 (57)

∂P (Mt,2)

∂σ2
= −α1α2X̄(Mt,2)

Rα(Mt,2)
< 0 (58)

∂St
∂σ2

=
α1α2

¯̄̄
∆αX̄

¯̄̄
Vt[q]

Rα(Mt,1)α(Mt,2)qt (1− qt) > 0 (59)

DeÞne the relative spread as the spread divided by the mid-quote:

2St
P (Mt,1) + P (Mt,2)

=
2α1α2σ

2
¯̄̄
∆αX̄

¯̄̄
Vt[q]

qt (1− qt)
· 1h
2θα(Mt,1)α(Mt,2)− α1α2σ2

³
X̄(Mt,1)α(Mt,2) + X̄(Mt,2)α(Mt,1)

´i (60)

Then,

∂ 2St
P (Mt,1)+P (Mt,2)

∂σ2
=
4α1α2θα(Mt,1)α(Mt,2)

¯̄̄
∆αX̄

¯̄̄
Vt[q]

qt (1− qt)
· 1h
2θα(Mt,1)α(Mt,2)− α1α2σ2

³
X̄(Mt,1)α(Mt,2) + X̄(Mt,2)α(Mt,1)

´i2 > 0 (61)

Q.E.D

Proof of Proposition 5:
Using (23) and Proposition 2,

∂P (Mt,1)

∂Vt[q]
= −α1α2σ

2∆αX̄

Rα(Mt,1)2qt
(62)

Hence, if ∆αX̄ < 0 and type 1 investors are buyers, the ask increases with Vt[q]. If ∆αX̄ > 0
and type 1 investors are sellers, the bid decreases with Vt[q]. Using (24) and Proposition 2,

∂P (Mt,2)

∂Vt[q]
=

α1α2σ
2∆αX̄

Rα(Mt,2)2 (1− qt) (63)

Hence, if ∆αX̄ < 0 and type 2 investors are sellers, the bid decreases with Vt[q]. If ∆αX̄ > 0
and type 2 investors are buyers, the ask increases with Vt[q]. Using the deÞnition of the
spread from (55),

∂St
∂Vt[q]

=

"
α1α2σ

2

Rα(Mt,2)2(1− qt) +
α1α2σ

2

Rα(Mt,1)2qt

# ¯̄̄
∆αX̄

¯̄̄
> 0 (64)

Q.E.D
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Proof of Proposition 6:
These are implications of standard Bayesian results. Using the Law of Iterated Expectations,
EXi [V (q|Xi)] = V (q) − VXi [E(q|Xi)] ≤ V (q). Also, since qt converges almost surely to q,
Vt[q] goes in the limit to zero. Using Proposition 2 and the deÞnitions of X̄(Mt,1), α(Mt,1),
X̄(Mt,2), and α(Mt,2):

lim
t→∞P (Mt,1) =

θ

R
− limt→∞ X̄(Mt,1)α1α2σ

2

limt→∞Rα(Mt,1)
=
θ

R
− X̄

∗α1α2σ2

Rα∗

lim
t→∞P (Mt,2) =

θ

R
− limt→∞ X̄(Mt,2)α1α2σ

2

limt→∞Rα(Mt,2)
=
θ

R
− X̄

∗α1α2σ2

Rα∗

where X̄∗ = qX̄1 + (1− q)X̄2 and α∗ = qα2 + (1− q)α1.
Q.E.D

Proof of Proposition 7:
One way to represent expected volume per period in the market is:

V OLt = sign
³
∆αX̄

´
[qt(−X1,t) + (1− qt)X2,t]

=
¯̄̄
∆αX̄

¯̄̄ "qt(1− q1,t)
α(Mt,1)

+
(1− qt) q2,t
α(Mt,2)

#
(65)

where the last equality follows from (25) and (26). Using Proposition 2,

∂V OLt
∂Vt[q]

=
¯̄̄
∆αX̄

¯̄̄ "
− α2
(α(Mt,1))2

− α1
(α(Mt,2))2

#
< 0 (66)

Q.E.D

Proof of Proposition 8:
The indirect utility function of a type 1 investor is:

U1 = − exp
(
−α1

"
RM̄1 +RX̄1P (Mt,1) +

(θ −RP (Mt,1))
2

2α1σ2

#)
(67)

LetX(Mt) = qtX̄1+(1− qt) X̄2 and α(Mt) = qtα2+(1− qt)α1. Using (23) and Proposition 2,
P (Mt,1) can be written as:

P (Mt,1) =
θ

R
−
³
X(Mt)− Vt[q](X̄2−X̄1)

qt

´
α1α2σ

2

R
³
α(Mt) +

Vt[q](α2−α1)
qt

´ (68)

Plugging the price into the indirect utility function and differentiating with respect to Vt[q],

∂U1
∂Vt[q]

= − exp
(
−α1

"
RM̄1 +RX̄1P (Mt,1) +

(θ −RP (Mt,1))
2

2α1σ2

#)
α21α2σ

2qt(∆αX̄)
2(1− q1,t)

α(Mt,1) [qtα(Mt) + Vt[q](α2 − α1)]2
< 0 (69)
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Similarly for a type 2 investor,

P (Mt,2) =
θ

R
−
³
X(Mt) +

Vt[q](X̄2−X̄1)
1−qt

´
α1α2σ

2

R
³
α(Mt)− Vt[q](α2−α1)

1−qt
´ (70)

∂U2
∂Vt[q]

= − exp
(
−α2

"
RM̄2 +RX̄2P (Mt,2) +

(θ −RP (Mt,2))
2

2α2σ2

#)
α1α

2
2σ
2 (1− qt) (∆αX̄)2q2,t

α(Mt,2) [(1− qt)α(Mt)− Vt[q](α2 − α1)]2
< 0 (71)

Q.E.D

38



References

Affleck-Graves, J., S. P. Hedge, and R. E. Miller, 1994, �Trading Mechanisms and the Com-
ponents of the Bid-Ask Spread,� Journal of Finance, 49, 1471�1488.

Allen, F., and D. Gale, 1994, �Limited Market Participation and Volatility of Asset Prices,�
American Economic Review, 84, 933�955.

Amihud, Y., and H. Mendelson, 1980, �Dealership Market: Market-Making with Inventory,�
Journal of Financial Economics, 8, 31�53.

Bagehot, W., 1971, �The Only Game in Town,� Financial Analysts Journal, March-April,
12�14,22.

Bhattacharya, R., and M. Majumdar, 1973, �Random Exchange Economies,� Journal of
Economic Theory, 6, 37�67.

Brock, W. A., and A. W. Kleidon, 1992, �Periodic Market Closure and Trading Volume:
A Model of Intraday Bids and Asks,� Journal of Financial Dynamics and Control, 16,
451�489.

Brown, D. P., and Z. Zhang, 1997, �Market Orders and Market Efficiency,� Journal of
Finance, 52, 277�308.

Cao, H. H., and R. K. Lyons, 1999, �Inventory Information,� working paper, University of
California at Berkeley.

Copeland, T. E., and D. Galai, 1983, �Information Effects on the Bid-Ask Spread,� Journal
of Finance, 38, 1457�1469.

Coval, J. D., and D. Hirshleifer, 1998, �Trading-Generated News, Sidelined Investors, and
Conditional Patterns in Security Returns,� Manuscript.

Dennert, J., 1993, �Price Competition between Market Makers,� Review of Economic Stud-
ies, 60, 735�751.

Diamond, D. W., and R. E. Verrecchia, 1987, �Constraints on Short-Selling and Asset Price
Adjustment to Private Information,� Journal of Financial Economics, 18, 277�311.

Easley, D., N. M. Kiefer, and M. O�Hara, 1997a, �The Information Content of the Trading
Process,� Journal of Empirical Finance, 4, 159�186.

Easley, D., N. M. Kiefer, and M. O�Hara, 1997b, �One Day in the Life of a Very Common
Stock,� Review of Financial Studies, 10, 805�835.

Easley, D., and M. O�Hara, 1987, �Price, Trade Size, and Information in Securities Markets,�
Journal of Financial Economics, 19, 69�90.

39



Easley, D., and M. O�Hara, 1991, �Order Form and Information in Securities Markets,�
Journal of Finance, 46, 905�927.

Easley, D., and M. O�Hara, 1992, �Time and the Process of Security Price Adjustment,�
Journal of Finance, 47, 577�605.

Garman, M. B., 1976, �Market Microstructure,� Journal of Financial Economics, 3, 257�
275.

George, T. J., G. Kaul, and M. Nimalendran, 1991, �Estimation of the Bid-Ask Spread and
its Components: A New Approach,� Review of Financial Studies, 4, 623�656.

Glosten, L. R., 1989, �Insider Trading, Liquidity, and the Role of the Monopolist Specialist,�
Journal of Business, 62, 211�235.

Glosten, L. R., and L. E. Harris, 1988, �Estimating the Components of the Bid-Ask Spread,�
Journal of Financial Economics, 21, 123�142.

Glosten, L. R., and P. Milgrom, 1985, �Bid, Ask and Transaction Prices in a Specialist
Market with Heterogeneously Informed Traders,� Journal of Financial Economics, 14,
71�100.

Green, T. C., 1999, �News Releases, Private Information, and Intraday Price Movements in
the U.S. Treasury Market,� working paper, New York University.

Grossman, S. J., and J. E. Stiglitz, 1980, �On the Impossibility of Informationally Efficient
Markets,� American Economic Review, 70, 393�408.

Hasbrouck, J., 1991b, �The Summary Informativeness of Stock Trades: An Econometric
Analysis,� Review of Financial Studies, 4, 571�595.

Hildenbrand, W., 1971, �Random Preferences and Equilibrium Analysis,� Journal of Eco-
nomic Theory, 3, 414�428.

Ho, T., and H. R. Stoll, 1981, �Optimal Dealer Pricing Under Transactions and Return
Uncertainty,� Journal of Financial Economics, 9, 47�73.

Huang, R. D., and H. R. Stoll, 1997, �The Components of the Bid-Ask Spread: A General
Approach,� Review of Financial Studies, 10, 995�1034.

Kraus, A., and M. Smith, 1989, �Market Created Risk,� Journal of Finance, 44, 557�569.

Krinsky, I., and J. Lee, 1996, �Earnings Announcements and the Components of the Bid-Ask
Spread,� Journal of Finance, 51, 1523�1535.

Kyle, A. S., 1985, �Continuous Auctions and Insider Trading,� Econometrica, 53, 1315�1335.

Lin, J.-C., G. C. Sanger, and G. G. Booth, 1995, �Trade Size and Components of the Bid-Ask
Spread,� Review of Financial Studies, 8, 1153�1183.

40



Lyons, R. K., 1995, �Tests of Microstructural Hypotheses in the Foreign Exchange Market,�
Journal of Financial Economics, 39, 321�351.

Lyons, R. K., 1997, �A Simultaneous Trade Model of the Foreign Exchange Hot Potato,�
Journal of International Economics, 42, 275�298.

Madhavan, A., 1992, �Trading Mechanisms in Securities Markets,� Journal of Finance, 47,
607�641.

Madhavan, A., M. Richardson, and M. Roomans, 1997, �Why Do Security Prices Change? A
Transaction-Level Analysis of NYSE Stocks,� Review of Financial Studies, 10, 1035�1064.

Madrigal, V., 1996, �Non-Fundamental Speculation,� Journal of Finance, 51, 553�578.

Mayer, M., 1988, Markets, W.W. Norton & Company, New York.

Mendelson, H., 1985, �Random Competitive Exchange: Price Distributions and Gains from
Trade,� Journal of Economic Theory, 37, 254�280.

Merton, R. C., 1987, �A Simple Model of Capital Market Equilibrium with Incomplete
Information,� Journal of Finance, 42, 483�510.

Naranjo, A., and M. Nimalendran, 2000, �Government Intervention and Adverse Selection
Costs in Foreign Exchange Markets,� Review of Financial Studies, 13, 453�477.

Neal, R., and S. M. Wheatley, 1998, �Adverse Selection and Bid-Ask Spreads: Evidence
from Closed-End Funds,� Journal of Financial Markets, 1, 121�149.

Orosel, G. O., 1997, �Market Participation and Share Prices,� Mathematical Finance, 7,
375�398.

Pagano, M., 1989, �Endogenous Market Thinness and Stock Price Volatility,� Review of
Economic Studies, 56, 269�287.

Romer, D., 1993, �Rational Asset-Price Movements Without News,� American Economic
Review, 83, 1112�1130.

Saar, G., 2000b, �Prices and Spreads in Sequential Markets with Information Imperfections,�
working paper, Stern School of Business, New York University.

Shapiro, A., 2001, �The Investor Recognition Hypothesis in a Dynamic General Equilibrium:
Theory and Evidence,� Forthcoming in the Review of Financial Studies.

Spiegel, M., and A. Subrahmanyam, 1995, �On Intraday Risk Premia,� Journal of Finance,
50, 319�339.

Stoll, H. R., 1978, �The Supply of Dealer Services in Securities Markets,� Journal of Finance,
33, 1133�1151.

Stoll, H. R., 1989, �Inferring the Components of the Bid-Ask Spread: Theory and Empirical
Tests,� Journal of Finance, 44, 115�134.

41



Table 1
Spread Decomposition Applied to Simulated Data

Panel A presents summary statistics from simulating 250 trading days of the investor un-
certainty model. The parameters used for the simulation are: R=1.05, θ=1.3, σ2=0.09,α1=
2,α2=1, X̄1=3, X̄2=2, q=0.6, T=100, f

0(q)=Beta(3, 3). Panel B presents the GMM esti-
mates of the Madhavan, Richardson, and Roomans (1997) spread decomposition procedure
applied to the simulated data. ν is the permanent impact of the order ßow innovation or
the �adverse selection� component of the half spread. φ is the temporary component of the
half spread that incorporates order processing costs and inventory costs. ρ is the Þrst-order
autocorrelation of the trade initiation variable, and δ is a constant.

Panel A: Summary Statistics of Simulated Data

Trade Trade Size Bid Ask Bid-Ask

Price Sells Buys Price Price Spread

Mean 0.926421 -1.158447 1.568042 0.922618 0.931912 0.009294

Median 0.926984 -1.166667 1.573770 0.923810 0.931602 0.006091

Std. 0.024628 0.139294 0.286190 0.023737 0.024692 0.008132

Obs. 25000 14809 10191 25000 25000 25000

Panel B: Results of Spread Decomposition

Estimate t-Statistic

δ 0.005331 0.81

ρ 0.000418 17.93

φ 0.000176 5.10

ν 0.004211 58.47
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