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Abstract

A number of studies have identi�ed patterns of positive correlation of returns, or

comovement, among di�erent traded securities. We distinguish three views of such co-

movement. The traditional \fundamentals" view explains the comovement of securities

through positive correlations in the rational determinants of their values, such as cash

ows or discount rates. \Category-based" comovement occurs when investors classify

di�erent securities into the same asset class and shift resources in and out of this class

in correlated ways. A related phenomenon of \habitat-based" comovement arises when

a group of investors restricts its trading to a given set of securities, and moves in and

out of that set in tandem.

We present models of each of the three types of comovement, and then assess them

empirically using data on stock inclusions into and deletions from the S&P 500 index.

Index changes are noteworthy because they change a stock's category and investor

clientele (habitat), but do not change its fundamentals. We �nd that when a stock is

added to the index, its beta and R-squared with respect to the index increase, while its

beta with respect to stocks outside the index falls. The converse happens when a stock

is deleted. These results are broadly supportive of the category and habitat views of

comovement, but not of the fundamentals view. More generally, we argue that these

non-traditional views may help explain other instances of comovement in the data.

�We thank Will Goetzmann, Mike Ryngaert and seminar participants at Yale University for helpful

comments, Bill Zhang for helpful comments and outstanding research assistance, and Rick Mendenhall and

Standard and Poor's for providing data.
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1 Introduction

Researchers studying the structure of asset returns have uncovered numerous patterns of

comovement. There is a strong common factor in the returns of small-cap stocks, for example,

and also in the returns of value stocks, closed-end funds, stocks in the same industry, and

bonds of the same rating and maturity. There is common movement within national markets

and across international markets.

Common factors such as these have attracted considerable attention because of the pos-

sible role they play in explaining average rates of return. However, little work has been done

on understanding why the common factors arise in the �rst place. Why do certain groups of

assets comove while others do not? What determines loadings, or betas, on these common

factors? In this paper, we consider three theories of comovement { one traditional, two more

novel { and present new evidence in support of the non-traditional theories.

The traditional view is that comovement in prices reects comovement in fundamental

values. This follows as a direct corollary of the eÆcient markets hypothesis. Since, under that

hypothesis, prices equal fundamental value { in other words, the sum of an asset's rationally

forecasted cash ows, discounted at a rate appropriate for their risk { any comovement in

prices must be due to comovement in fundamentals.

An asset's fundamental value can change either because of news about cash ows or

because of news about discount rates. Under the traditional view, then, correlation in returns

is either due to correlation in cash ow news or to correlation in news about discount rates.

Correlation in discount rate news can in turn arise because of news about interest rates or

risk aversion, which a�ects all discount rates simultaneously, or because of correlated news

about asset riskiness. There is little doubt that this \fundamentals" view of comovement

explains many instances of common factors in returns: stocks in the oil industry move

together because there is a common component in news about their future earnings, while

the market factor in stock returns is at least in part due to changes in interest rates.1

A number of recent papers, however, present evidence suggesting that the traditional

view of comovement is incomplete. Froot and Dabora (1999) study Siamese-twin stocks,

which are claims to the same cash ow stream, but are traded in di�erent locations. Royal

Dutch, traded primarily in the U.S., and Shell, traded primarily in the U.K., are perhaps

the best known example. If return comovement is purely a reection of comovement in news

about fundamentals, these two stocks should be perfectly correlated. In fact, as Froot and

Dabora show, Royal Dutch comoves more with the S&P 500 index of U.S. stocks than Shell

1The �ndings of Shiller (1989) illustrate the importance of accounting for changes in discount rates when

examining patterns of comovement. He shows that the U.S. and U.K. stock markets comove more than can

be explained by correlation in news about dividends alone; however, he also shows that allowing for plausible

changes in discount rates can potentially explain the residual comovement.
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does, while Shell comoves more with the FTSE index of U.K. stocks.

Hardouvelis, La Porta, and Wizman (1994) and Bodurtha, Kim, and Lee (1995) uncover

related evidence in their studies of closed-end country funds, whose assets trade in a di�erent

location from the funds themselves. Since funds and their underlying assets represent claims

to similar cash ow streams, the fundamentals view of comovement predicts that fund returns

and returns on their net assets values should be highly correlated. In fact, closed-end country

funds comove much more with the national stock market in the country where they are

traded than with the national stock market in the country where their assets are traded.

For example, a closed-end fund invested in German equities but traded in the U.S. typically

comoves more with the U.S. stock market than with the German stock market.

Fama and French (1995) investigate whether the strong common factors detected in

the returns of value stocks and small stocks by Fama and French (1993) can be traced to

common factors in the earnings of these stocks. While they do uncover a common factor in

the earnings of small stocks, as well as in the earnings of value stocks, these cash ow factors

are weaker than the factors in returns and there is little evidence that the return factors are

driven by the cash ow factors. Once again, there appears to be comovement in returns that

has little to do with comovement in news about fundamentals.

Finally, Pindyck and Rotemberg (1990) �nd strong comovement in the prices of seven

commodities { wheat, cotton, copper, gold, crude oil, lumber, and cocoa { that are chosen to

be as independent of one another as possible. They are neither complements nor substitutes,

are grown in di�erent climates and are used for di�erent purposes. Under the traditional

view of comovement, the only plausible source of price correlation is news about aggregate

demand. However, even after experimenting with a variety of forecasting models, Pindyck

and Rotemberg are unable to �nd suÆcient volatility in news about aggregate demand to

fully explain the comovement.2

These examples suggest that investor trading patterns, and not just fundamentals, may

be important determinants of return comovement. In this paper, we consider two speci�c

versions of such trading-induced comovement. The �rst version, which we label the \cat-

egory" view of comovement, was recently analyzed by Barberis and Shleifer (2000). They

argue that when making portfolio decisions, many investors �rst group assets into categories

such as small-cap stocks, oil industry stocks, or junk bonds, and then allocate funds across

these various categories. If some of the investors who use categories are noise traders with

correlated sentiment, and if their trading a�ects prices, then as they move funds from one

2Pindyck and Rotemberg (1993) uncover similar evidence in an analogous study of stock returns. They

construct groups of stocks that are in completely di�erent lines of business and �nd that even though

the stocks within each group are in di�erent industries, their returns still comove strongly. This \excess"

comovement remains even after controlling for any cash ow or discount rate correlation induced by news

about future macroeconomic conditions.
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category to another, their coordinated demand will induce common factors in the returns of

assets that happen to be classi�ed into the same category, even if these assets' cash ows

are largely uncorrelated.

Another type of trading-induced comovement, which we refer to as the \habitat" view of

comovement, starts from the observation that many investors choose to trade only a subset

of all available securities. Such preferred habitats may arise because of transaction costs,

international trading restrictions, or lack of information (Merton, 1987). As these investors'

risk aversion or sentiment changes, they alter their exposure to the securities in their habitat,

thereby inducing a common factor in the returns of these securities. In other words, this

view of comovement predicts that there will be a common factor in the returns of securities

that are the primary holdings of a speci�c subset of investors, such as individual investors.3

Trading-induced comovement is a simple way of understanding the empirical evidence

described above. If small-cap stocks and value stocks form natural categories in investors'

minds { and the large number of money managers and mutual funds focused on such stocks

suggests that they do { then the category view of comovement predicts that there will

be common factors in the returns of such stocks even if their cash ows are only weakly

correlated. Moreover, if many individual investors in the U.S. con�ne themselves to holding

domestically traded securities, then the habitat view of comovement predicts that closed-

end country funds traded in the U.S. will comove substantially with U.S. stocks even if their

holdings consist of foreign equities.

The idea that trading unrelated to news about fundamental value might generate co-

movement builds on earlier evidence that such trading a�ects prices. Some of the best-known

evidence of this type comes from stock index rede�nitions. When an index is rede�ned, in-

vestors who follow it must reduce their holdings of securities that have been downweighted

in the index and buy those whose weighting has increased. Under the eÆcient markets view,

these demand shifts should not a�ect prices, as they carry no information about fundamental

value. However, Harris and Gurel (1986), Shleifer (1986), and Lynch and Mendenhall (1997)

�nd strong price e�ects for S&P 500 inclusions, while Kaul, Mehrotra, and Morck (1999) and

Greenwood (2001) �nd similar e�ects in the Toronto Stock Exchange TSE 300 and Nikkei

225 indices, respectively.4

In this paper, we return to the S&P 500 inclusion and deletion data. The same data that

has proved useful in showing that uninformed demand can a�ect prices may also be helpful

3Other models which consider investor habitats are motivated by similar information and transaction

cost considerations as our own, but focus on di�erent issues. Merton (1987) analyses the cross-sectional

implications when investors apply standard mean-variance analysis, but only over a subset of available

assets. Our focus is on the e�ects of habitat-level demand shifts that a�ect all stocks in the habitat equally.
4Numerous other papers present evidence consistent with uninformed demand a�ecting prices. These

include French and Roll (1986), Lamont and Thaler (2000), Goetzmann and Massa (2001), Gompers and

Metrick (2001), and Mitchell, Pulvino, and Sta�ord (2002).
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in showing that such demand can generate comovement. Since addition to the S&P 500

does not a�ect fundamental value, a stock's inclusion does not change the correlation of its

cash ows with the cash ows of other stocks already in the index. Under the fundamentals

view of comovement, then, it should not change the correlation of the stock's return with

the return of the S&P. In particular, a univariate regression of a stock's return on the S&P

return both before and after the stock's inclusion should produce similar slope coeÆcients,

or S&P betas, and similar R2s.

On the other hand, the vast popularity of S&P-linked investment products suggests that

the index is a preferred habitat for some investors, and is viewed as a natural category by

many more. Category-based investors include investors pursuing passive portfolio strategies

through index funds as well as index arbitrageurs exploiting discrepancies between cash and

futures prices. The trading-based theories may therefore di�er from the fundamentals view

in their predictions about patterns of comovement before and after a stock's inclusion. In

particular, simple models of the category and habitat views predict that in the univariate

regression described above, the S&P beta and R2 should increase after inclusion; that in a

bivariate regression of a stock's return on both the S&P and a non-S&P 500 \rest of the

market" index, the S&P beta should rise after the stock's inclusion while the non-S&P beta

should fall; that these patterns should go in the opposite direction for deletions; and that

there should be a decrease in the correlation between S&P and non-S&P returns over time,

to the extent that the S&P becomes more widely used as a category or habitat.

Our evidence supports the trading-based theories. Over a range of data frequencies,

stocks added to the S&P increase their beta and R2 with the S&P, while in bivariate regres-

sions that control for non-S&P returns, increases in S&P beta are even more pronounced.

Signi�cant results in the opposite direction are observed when stocks are deleted from the

index. We also con�rm a signi�cant decrease in the correlation of S&P and non-S&P returns

over time.

Our univariate regression results �t well with the evidence of Vijh (1994), who investigates

whether the rise of S&P-linked products a�ects stocks' beta with respect to the overall

market. He �nds a signi�cant increase in stocks' betas after inclusion, which is consistent

with the increase in S&P beta we detect, given the dominant contribution of S&P stocks to

the value-weighted market return.

In Section 2, we present some simple models illustrating the various views of comovement,

as well as their distinct predictions. In Section 3, we test a number of these predictions using

data on S&P 500 inclusions and deletions. Section 4 concludes.
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2 Three Models of Comovement

In this section, we lay out three theories of return comovement. Our models are simple,

but they nevertheless allow us to illustrate the predictions of each theory. These predictions

motivate the empirical work in Section 3.

In all three models, the economy contains a riskless asset in perfectly elastic supply and

with a zero rate of return, and also 2n risky assets in �xed supply. Risky asset i is a claim

to a single liquidating dividend Di;T to be paid at some later time T . The eventual dividend

equals

Di;T = Di;0 + "i;1 + : : :+ "i;T ; (1)

where "i;t becomes known at time t, and where

"t = ("1;t; : : : ; "2n;t)
0 � N(0;�D); i.i.d over time.

For simplicity, we impose a one-factor structure on the cash ow shocks:

"i;t =  MfM;t+1 +
q
1�  2

Mfi;t+1; 8i; (2)

where fM;t+1 is a market-wide factor and ffi;t+1gi=1;:::;2n are idiosyncratic shocks. The fac-

tors are all distributed N(0; 1), i.i.d. over time, and are orthogonal to one another. This

immediately implies

(�D)ij � cov("i;t+1; "j;t+1) =

(
1, i = j

 2
M , i 6= j

: (3)

We use Pl;t to denote the price of a share of risky asset l at time t. The asset's return between

time t� 1 and time t is5

�Pl;t � Pl;t � Pl;t�1. (4)

2.1 Fundamentals-based Comovement

Under the fundamentals view, comovement in returns is due to comovement in news about

fundamental value. This prediction emerges from a wide range of models. We present a

simple example below.

The economy contains a large number of identical agents known as \fundamental traders."

These traders are given an amount W F to allocate at the start of each period. They have

5For simplicity, we refer to the asset's change in price as its return.
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CARA utility de�ned over the value of their invested wealth one period later, and take price

changes to be normally distributed.6 They therefore solve

max
Nt

EF
t (� exp[�(W F +Nt

0(Pt+1 � Pt))]); (5)

where

Pt = (P1;t; : : : ; P2n;t)
0

Nt = (N1;t; : : : ; N2n;t)
0:

Ni;t is the number of shares allocated to risky asset i,  governs the degree of risk aversion

and EF
t denotes fundamental trader expectations at time t.

Optimal holdings NF
t are given by

NF
t =

(V F
t )�1


(EF

t (Pt+1)� Pt); (6)

where

V F
t � varFt (Pt+1 � Pt);

with the F superscript in varFt again denoting a forecast made by fundamental traders.

If the total supply of the 2n assets is given by the vector Q, then given fundamental

trader expectations about future prices, current prices satisfy

Pt = EF
t (Pt+1)� V F

t Q: (7)

Rolling this equation forward and setting

EF
T�1(PT ) = EF

T�1(DT ) = DT�1,

where

Dt = (D1;t; : : : ; D2n;t)
0;

leads to

Pt = Dt � V F
t Q� EF

t

T�t�1X
k=1

V F
t+kQ: (8)

If fundamental traders set

V F
t = �D, 8t; (9)

equation (8) reduces to

Pt = Dt � (T � t)�DQ: (10)

6This assumption is con�rmed in equilibrium.
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This means that up to a constant

�Pt+1 = �Dt+1 = "t+1, (11)

con�rming fundamental traders' conjecture about the conditional covariance matrix of re-

turns.

Equation (11) shows that in this economy, return comovement simply reects comovement

in news about fundamental value. More speci�cally, since discount rates are constant, it

reects comovement in news about future cash ows.7 This is surely a useful model for

understanding many instances of common factors in returns. The strong market and industry

factors in returns, for example, are at least in part due to market-level and industry-level

factors in cash ow news.

2.2 Category-based Comovement

Barberis and Shleifer (2000) argue that when making their portfolio decisions, many investors

�rst group assets into categories based on some characteristic, and then allocate funds at

the level of these categories rather than at the level of individual securities. Thinking about

investments in terms of categories is particularly attractive to institutional investors who,

as �duciaries, must follow systematic rules in their portfolio allocation. Investing by cate-

gory simpli�es the investment process, and also provides a consistent way of evaluating the

performance of money managers.

In order to test any predictions that emerge from a category-based model, it is important

to have a concrete way of identifying categories. One way to do this is to look at the

labels mutual and pension fund managers use to describe their products to clients. If money

managers are responsive to client needs, they will choose labels that correspond to the

categories people like to use when thinking about investments. For example, since many

money managers o�er funds that invest in value stocks, \value stocks" may be a category in

the minds of many investors. This way of thinking suggests that Treasury bonds, junk bonds,

large stocks, small stocks, growth stocks, or stocks within a particular industry, country, or

index are also all examples of categories.

The category view of comovement argues that some of the investors who use categories

are noise traders with correlated sentiment. As their sentiment changes, they channel funds

in and out of the various categories. If these fund ows a�ect prices, they will generate

common factors in the returns of assets that happen to be classi�ed into the same category,

even if these assets' fundamental values are uncorrelated. For example, if \value stocks" is

7Discount rates are constant because the riskless rate is constant, as are investors' risk aversion and their

perception of risk.
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a popular category, then as noise traders move funds in and out of value stocks in line with

their changing sentiment about value stocks, they will create a common factor in value stock

returns even if value stock earnings are completely uncorrelated.

To see this in a formal model, suppose that there are just two such categories, X and

Y , and that risky assets 1 through n are in category X while assets n + 1 through 2n are

in Y . It may be helpful to think of X and Y as \old economy" and \new economy" stocks,

respectively. We write noise trader demand NC
i;t for shares of asset i as

8

NC
i;t =

1

n
[AX + u1;t] ; i�X (12)

NC
j;t =

1

n
[AY + u2;t] ; j�Y ,

where AX and AY are constants, and where the time t sentiment shocks u1;t and u2;t are

distributed  
u1;t
u2;t

!
� N

  
0

0

!
; �2u

 
1 �u
�u 1

!!
; i.i.d. over time.

The fact that the demand for all assets within a category is the same underscores the fact

that these investors allocate funds at the category level and do not distinguish among assets

in the same category.

This economy also contains fundamental traders whose objective function is the one in

(5). In this case, they double up as market makers, treating the noise trader demand as a

supply shock. Given their expectations about future prices, current prices are given by

Pt = EF
t (Pt+1)� V F

t (Q�NC
t ); (13)

where

NC
t = (NC

1;t; : : : ; N
C
2n;t)

0:

Rolling this equation forward, and setting EF
T�1(PT ) = DT�1, leads to

Pt = Dt � V F
t (Q�NC

t )� EF
t

T�t�1X
k=1

V F
t+k(Q�NC

t+k): (14)

Suppose that fundamental traders conjecture that the conditional covariance matrix of

returns has the form

V F
t = V = �2

 
A B

B A

!
; 8t; (15)

where

A =

0
BBBBBB@

1 �1 � � � �1

�1
. . . . . .

...
...

. . . . . . �1
�1 � � � �1 1

1
CCCCCCA
; B =

0
BBBBBB@

�2 � � � � � � �2
...

. . .
...

...
. . .

...

�2 � � � � � � �2

1
CCCCCCA
;

8The \C" superscript stands for Category.
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for some �2, �1, and �2.

Given this conjecture,

Pt = Dt � V (Q�NC
t )� (T � t� 1)V (Q� A); (16)

where

A = (
AX
n
; : : : ;

AX
n
;
AY
n
; : : : ;

AY
n
)0;

which means that up to a constant,

�Pt+1 = "t+1 + V�NC
t : (17)

This reduces to

�Pi;t+1 = "i;t+1 +
�u1;t+1
�1

+
�u2;t+1
�2

; i�X; (18)

�Pj;t+1 = "j;t+1 +
�u1;t+1
�2

+
�u2;t+1
�1

; j�Y;

where

�1 =
1

�2(�1 + (1� �1)=n)
; (19)

�2 =
1

�2�2
.

Equation (18) con�rms fundamental traders' conjecture about the structure of the condi-

tional covariance matrix of returns: cov(�Pi;t+1;�Pj;t+1) is constant for all distinct assets i

and j in the same category, and it is also constant for all assets i and j in di�erent categories.

We study equilibria in which the speci�c values of �2, �1, and �2 conjectured by fundamental

traders are also con�rmed by (18).9

Equation (18) shows that in this economy, there can be a common factor in the returns

of a group of stocks simply because those stocks happen to belong to the same category.

When noise traders experience a positive sentiment shock �u1;t+1 about category X, they

invest more in all securities in X, pushing the prices of these assets up together.

The intuition for why �u1;t+1 a�ects the return on stock 1 is clear enough: when noise

traders become bullish about old economy stocks, they channel funds into X, pushing the

prices of all securities in that category up. Why �u2;t+1 also a�ects the return on stock 1 is

less obvious. Suppose that noise traders become bullish about new economy stocks, pushing

up the prices of securities in Y . Fundamental traders, seeing an overvaluation, will short

stocks in Y , and hedge themselves against adverse fundamental news by buying stocks in

9It is straightforward to show that such equilibria exist for a wide range of values of the exogeneous

parameters ,  M , �2u, and �u.

10



X. In this way, the sentiment shock about category Y , �u2;t+1 is also transmitted to stocks

in X.

The fact that in our model, noise traders a�ect prices { and hence also, patterns of

comovement { relies on the assumption that fundamental traders have horizons which end

before cash ow uncertainty is resolved at time T . If fundamental traders only cared about

wealth at time T , they would be much more aggressive in countering the e�ect of noise

traders. In particular, since in the limit as n ! 1, categories X and Y are claims to the

same �nal cash ow, any di�erence in the prices of X and Y would be quickly exploited by

fundamental traders. Since these traders have a one-period horizon, they are forced to worry

about future noise trader demand, which makes them invest less aggressively. Equations

(18) and (19) show that a high risk aversion  or perceived stock volatility �2 make them

particularly reluctant to bet against the noise traders, increasing the impact of the sentiment

shocks on returns.

The idea that fundamental traders may have short horizons has been emphasized by

earlier work on limits to arbitrage (De Long, Shleifer, Summers, Waldmann 1990, Shleifer

and Vishny 1997). That such constraints might limit arbitrage capacity is supported by the

considerable empirical evidence, cited in the introduction, suggesting that demand unrelated

to news about fundamental value a�ects security prices. Moreover, Wurgler and Zhuravskaya

(2001) con�rm that arbitrageurs will be particularly wary of countering noise traders when

the risk of doing so is greater. They show that the price jump upon inclusion into an

index is much larger for stocks with poor substitutes, in other words, for those cases where

arbitrageurs face higher risk.

In order to uncover evidence of category-induced comovement, we look for testable pre-

dictions that are unique to this economy. One set of predictions describes what happens

when a stock enters a category that it was not previously a member of. Such reclassi�cation

can occur in many ways. For example, if the market capitalization of a large-cap stock

declines suÆciently, it will enter the small-cap stock category. More simply, stocks are reg-

ularly added to indices like the S&P 500 and Russell 2000 to replace stocks that have been

removed due to bankruptcy or merger.

Proposition 1: Suppose that risky asset j, previously a member of Y; is reclassi�ed into

X. Then, assuming a �xed cash ow covariance matrix �D, the OLS esimate of �j in the

univariate regression

�Pj;t = �j + �j�PX;t + vj;t; (20)

where

�PX;t =
1

n

X
l�X

�Pl;t; (21)

as well as the R2 of this regression, increase after reclassi�cation. In particular, before
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reclassi�cation, �j < 1, while after reclassi�cation, �j = 1.10

The intuition is straightforward: when asset j enters category X, it starts being bu�eted

by noise traders' ows of funds in and out of that category. This increases its covariance

with the return on category X, �PX;t, and hence also its beta loading on that return. For

simplicity, we assume that the cash ow covariance matrix remains �xed. A more general

version of the proposition would predict that beta increases more than can be explained by

any increase in cash ow correlation.

A similar intuition lies behind the following prediction:

Proposition 2: Suppose that risky asset j, previously a member of Y; is reclassi�ed as belong-

ing to X. Then assuming a �xed cash ow covariance matrix �D, the OLS estimate of �j;X
in the bivariate regression

�Pj;t = �j + �j;X�PX;t + �j;Y�PY;t + vj;t (22)

rises after reclassi�cation, while the OLS estimate of �j;Y falls. In particular, before reclas-

si�cation

�j;X = 0, �j;Y = 1;

while after reclassi�cation,

�j;X = 1; �j;Y = 0.

Proposition 2 identi�es a test that is potentially more powerful than the test in Propo-

sition 1. The essential prediction of the category view of comovement is that when a stock

enters category X, it is much more sensitive to the category X sentiment shock �u1;t+1.

Of course, �PX;t is not a clean measure of this sentiment shock; its variation comes pri-

marily from news about market-level cash ows, fM;t+1. In regression (22), �PY;t+1 can be

thought of as a control for such news, making the coeÆcient on �PX;t+1 a cleaner measure

of sensitivity to �u1;t+1.

Note that if, as in Section 2.1., there are no noise traders with demand function (12) in

the economy, or if fundamental traders are able to counteract their e�ect, Propositions 1

and 2 will not hold. In these cases, return correlation is completely determined by cash ow

correlation. Therefore if, as assumed in the propositions, the cash ow covariance matrix �D
stays constant, the correlation structure of returns will also stay constant. In other words,

�j and R
2 in Proposition 1 and �j;X and �j;Y in Proposition 2 will remain unchanged after

reclassi�cation.

One �nal prediction of the category view of comovement is the following:

10Proofs of all propositions are in the Appendix.
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Proposition 3: In the presence of noise traders with demand function (12), and in the limit

as the number of risky assets n!1, the correlation of the return on X with the return on

Y ,

corr(�PX;t;�PY;t);

is lower than it would be in an economy that contains only fundamental traders.

When the economy contains only fundamental traders, the correlation of the returns of

categories X and Y is completely determined by the correlation of the fundamentals of those

two categories. As soon as noise traders are added to the mix, they generate ows of funds

in and out of the two categories, driving the prices of securities in the two categories in

di�erent directions, and lowering the correlation between them.

Proposition 3 becomes testable in the time series if the number of noise traders with

demand functions in (12) grows over time; in that case, assuming a �xed cash ow covariance

matrix, the correlation of the two categories' returns should fall over time.

2.3 Habitat-based Comovement

The habitat view of comovement starts from the observation that many investors trade only

a subset of all available securities. Such preferred habitats may arise because of transaction

costs, international trading restrictions, or lack of information (Merton, 1987). For example,

suppose that one group of investors { \habitatX" investors { trades only securities 1 through

n, a set we again refer to as X, while another group { habitat Y investors { trades only

n + 1 through 2n, set Y . We can think of assets 1 through n as U.S. stocks, and assets

n + 1 through 2n as U.K. stocks; there are many investors in both countries who restrict

themselves to trading only domestic securities. We emphasize that X and Y play di�erent

roles here than in Section 2.2. There, they represent groups of assets that some investors

do not distinguish between when allocating their demand. Here, they represent groups of

assets that are the sole holdings of some investors.

Now suppose that habitat X investors experience an increase in risk aversion. They will

then reduce their positions in all the stocks they hold, generating a common factor in the

returns of securities in X, even if those stocks' fundamental values are uncorrelated. More

generally, the habitat view of comovement predicts a common factor in the returns of any

group of stocks that happens to be the primary holdings of a particular subset of investors.

In order to compare this view to the category-based view, suppose that habitat X in-

vestors have demand NHX
i;t for risky asset i, where

NHX
i;t =

1

n
[AX + u1;t] ; i�X (23)
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NHX
j;t = 0; j�Y:

We think of u1;t as tracking their level of risk aversion, changes in which lead them to alter

their exposure to all assets in X. Of course, u1;t can also be interpreted as an indicator of

sentiment about the future returns of assets in X, although the model does not require such

an interpretation. By de�nition, habitat X investors' demand for assets in Y is zero.

Similarly, habitat Y investors' demand is

NHY
i;t = 0; i�X (24)

NHY
j;t =

1

n
[AY + u2;t] ; j�Y .

We assume  
u1;t
u2;t

!
� N

  
0

0

!
; �2u

 
1 �u
�u 1

!!
; i.i.d. over time.

As before, we close the economy with fundamental traders who behave as in (5). Given

their expectations about future prices, current prices are given by

Pt = EF
t (Pt+1)� V F

t (Q� (NH1
t +NH2

t )) (25)

= EF
t (Pt+1)� V F

t (Q�NC
t );

exactly as in (13). In other words, even though investors' demand functions are motivated

di�erently here than in the case of category-based comovement, prices are the same. Once

again, there will be a common factor in the returns of assets in X even if there is no common

factor in their fundamentals.

The equivalence in equation (25) means that Propositions 1 through 3 also hold in this

economy, withX and Y signifying investor habitats, not categories. For example, Proposition

1 should now be interpreted as predicting that if a stock becomes part of the habitat of a

speci�c group of investors, it will comove more with the other assets in that habitat than it

did before.

It is important to note that the habitat-based view of comovement depends on limits

to arbitrage, just as the category-based view does. The fact that some investors trade only

certain securities means that habitats X and Y can trade at di�erent prices, even though in

the limit as n!1, their �nal cash ows are identical. If fundamental traders were able to

wipe the discrepancy out completely, there would be no habitat-induced comovement.

3 Empirical Tests

Propositions 1 through 3 lay out predictions that hold in an economy where return comove-

ment is in part due to category-based or habitat-based trading ows, but which do not
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hold in an economy where return comovement is entirely a function of comovement in news

about fundamentals. We now test these predictions to see if we can uncover any evidence of

trading-induced comovement.

To test the propositions, we need to identify a group of securities with three characteris-

tics. First, the group must be viewed as a natural category, or must be a preferred habitat

for many investors, or both. Second, there must be clear and identi�able changes in group

membership over time. Finally, a security's inclusion or removal from the group should not

carry information about the correlation of the security's cash ows with the cash ows of

other securities in the group.

One set of securities that satis�es these requirements is the S&P 500 index. In Section

2.2., we suggested identifying categories by looking at the products money managers o�er

their clients. The immense popularity of S&P-linked products suggests that this index may

be a natural category in many investors' minds: S&P index funds and depositary receipts are

important investment vehicles for both institutions and individuals, while S&P 500 futures

are heavily traded by index arbitrageurs. The S&P 500 may also be a preferred habitat for

U.S. investors who are reluctant to invest in foreign stocks and who doubt that active fund

managers can outperform passive indices.

The S&P also has the second characteristic we require: there is clear and identi�able

turnover in its membership. In a typical year there are about 30 changes; our full sample,

which we describe in Section 3.1, includes 375 additions and 51 deletions.

Finally, inclusion in the S&P 500 does not change a stock's cash ow characteristics,

nor does it a�ect the covariance of a stock's cash ows with other stocks' cash ows. The

stated goal of Standard and Poors is to make the index representative of the U.S. economy,

not to provide signals about future cash ows. Deletions from the index, however, are

another matter. Stocks are usually removed from the index because a �rm is merging, being

taken over, or nearing bankruptcy. In these situations cash ow characteristics may well be

changing, so we exclude these cases from our deletion sample.

We therefore test Propositions 1 through 3 for the case where X is the S&P 500, and Y

is stocks outside that index. In Section 3.2., in line with Proposition 1, we test whether a

stock's beta with the S&P and the fraction of its variance explained by the index increase

(decrease) after the stock's inclusion in (removal from) the index. In Section 3.3., in line

with Proposition 2, we test whether a stock's beta with the S&P, controlling for the return of

non-S&P stocks, goes up (falls) after inclusion (deletion). Finally, in Section 3.5., motivated

by Proposition 3, we test whether the correlation of S&P and non-S&P stocks has fallen in

line with the growing importance of the S&P as a category.

Our null hypothesis, laid out in Section 2.1., is that return comovement is primarily a

15



function of comovement in news about fundamentals, so that the betas and R2 just described,

as well as the correlation of S&P and non-S&P stocks, do not change. The alternative

hypothesis is that trading ows do induce comovement, and that the betas, R2, and cross-

category correlation change as predicted in the propositions.

3.1 Data

We use S&P 500 index inclusions between September 22, 1976 and December 31, 1999 and

deletions between January 1, 1979 and December 31, 1999. Standard & Poor's did not record

announcement dates of index changes before September 1976 and we were unable to obtain

data on deletions before 1979.

There are 532 inclusion events in the inclusion sample period and 507 deletions in the

deletion sample period. Inclusion events are excluded if the new �rm is a spin-o� or a restruc-

tured version of a �rm already in the index, if the �rm is engaged in a merger or takeover

around the inclusion event, or if required return data is not available.11 Deletion events

are excluded if the �rm is involved in a merger, takeover, or bankruptcy proceeding. These

circumstances, determined by searching the NEXIS database, exclude the vast majority of

deletions. The �nal sample includes 375 inclusions and 51 deletions.12

3.2 Univariate Regressions

If category-induced or habitat-induced trading ows cause return comovement, Proposition

1 predicts that stocks which are added to (deleted from) the S&P 500 will comove more

(less) with the other members of the index after the addition or deletion event.

For each inclusion and deletion { in other words, for each event { we run the univariate

regression

Rj;t = �j + �jRS&P;t + vj;t (26)

separately for the period before the event and for the period after the event, and record the

change in slope coeÆcient, ��j, and the change in R2, �R2
j . Rj;t is the return of the stock

involved in the change between time t�1 and t, while RS&P;t is the contemporaneous return

on the S&P 500 index, obtained from CRSP.13

11This last possibility may arise if the inclusion occurs so close to the end of the sample that it prevents

us from estimating post-event betas.
12The S&P 500 inclusion and deletion data are available upon request.
13In order to avoid spurious e�ects, we remove the contribution of the stock in question from the right-

hand side variable. For addition events, this means that there are 500 stocks in the right-hand side variable

before the addition, and 499 afterward. The reverse applies for deletion events.
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Table 1 reports the change in slope coeÆcient, averaged across all events in the sample,

��, as well as the average change in R2, �R2, for three di�erent data frequencies: daily,

weekly, and monthly. With daily and weekly data, the pre-event regression is run over the 12

month period ending the month before the month of the inclusion announcement, while the

post-event regression is run over a 12 month period starting the month after the month of

the inclusion implementation. In the case of monthly data, we use a �ve year period ending

a month before the announcement month and a �ve year period starting a month after the

implementation month for the pre-event and post-event regressions, respectively.14

Table 1 also reports a quantity we call the average relative change in R2, ��R2. The

motivation for including this additional statistic is the work of Campbell, Lettau, Malkiel,

and Yu (2001), who report that the fraction of an individual stock's variance that can be

explained by movements in a diversi�ed portfolio has steadily declined over the past three

decades. In other words, the R2 in regressions like (26) has on average gone down for the full

universe of stocks. This can confound a test of trading-based comovement: when a stock is

added to the S&P, trading pressure may work to raise the R2 in (26), but this may be more

than o�set by the overall downward trend in R2 over time.

Our \relative change in R2" measure controls for the trend identi�ed by Campbell et al.

(2001). For each stock that is included or removed from the index, we compute the change

in R2 after the event minus the average change in R2 over the same time period experienced

by stocks already in the S&P 500. Finally, we compute the average of this relative change in

R2 across all events in the sample and report it in Table 1.

The standard errors in the table deserve comment. If two events are close together in

calendar time, there may be substantial overlap in the time periods covered by the regressions

associated with each event. This means that the disturbances vj;t may be correlated across

events, which in turn implies that the ��j may not be independent but rather autocorrelated

at several lags.

We use simulation methods to compute standard errors that account for this dependence.

We generate a simulated data set, consisting of an S&P return and returns on included stocks,

and set the cross-sectional correlation of the disturbance terms to whatever value generates

a �rst-order autocorrelation in the ��j's equal to that observed in our results. We then

compute �� in this sample, under the null that betas do not change after inclusion. By

generating many such data sets, we obtain the distribution of �� under the null, and hence

14Up until October 1989, inclusions and deletions were made e�ective on the day of their announcement.

Since then, the changes have been announced a few weeks in advance of their actual implementation. It

is not clear whether to view the to-be-added stock as being in the index, or not in the index during the

time between announcement and implementation; signi�cant price e�ects have been documented on both

days. To avoid these issues entirely, we do not use data from the month of the announcement or of the

implementation; these are almost always the same month.
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also, appropriate standard errors.15

Panel A of Table 1 con�rms that stocks added to the S&P 500 experience a signi�cant

increase in daily beta, while those removed experience a signi�cant decrease. In the full

sample of additions, the median increase in daily beta is 0.132. For deletions, the median

decrease in beta is -0.163. The middle and right-hand columns report that there are also

signi�cant changes in both R2 and relative R2 in the direction predicted by Proposition 1.

The results in the second half of the addition sample tend to be stronger than those in the

�rst half.

Panel B shows that the results are similar in weekly data. There is a signi�cant jump in

beta and R2 for additions, and a signi�cant drop in beta for deletions, although no signi�cant

decrease in R2 for deletions. Panel C shows that the results are weaker in monthly data.

In the second half of the addition sample, there are statistically signi�cant increases in beta

and in relative R2 but in the �rst half the results are signi�cant in the opposite direction.

3.3 Bivariate Regressions

The univariate regressions provide some evidence of trading-based comovement at higher

frequencies. Stronger evidence comes from tests of Proposition 2, which predicts that con-

trolling for the return of non-S&P stocks, a stock that is added to or removed from the

S&P will experience a large change in its loading on the S&P return. To test this, for each

inclusion and deletion, we run the bivariate regression

Rj;t = �j + �j;S&PRS&P;t + �j;non-S&PRnon-S&P;t + vj;t (27)

for the period before the event and the period after the event, and record the changes in

S&P and non-S&P betas, ��j;S&P and ��j;non-S&P . Rnon-S&P;t is the return on non-S&P

stocks in the NYSE, AMEX, and Nasdaq universe between time t � 1 and time t. This

last variable is inferred from index return and capitalization data using the identity that

the capitalization-weighted average return of S&P stocks and of non-S&P stocks equals the

overall CRSP value-weighted return on NYSE, AMEX, and Nasdaq stocks. The S&P return

and CRSP return are easily computed, allowing us to deduce the non-S&P return.

Table 2 reports the change in S&P beta, averaged across all events in the sample, ��S&P ,

as well as the average change in non-S&P beta, ��non-S&P . As before, we present results

for daily, weekly, and monthly frequencies. Daily and weekly regressions are run over a 12

15It turns out that at least for daily and weekly frequencies, cross-correlation of disturbances does not a�ect

the standard errors by very much. The reason is that such cross-correlation produces positive autocorrelation

in the ��j at the �rst few lags but negative autocorrelation at higher lags. As a result, the variance of ��

is only slightly higher than if the disturbances were uncorrelated.
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month period ending the month before the announcement month and over a 12 month period

starting the month after the implementation month. The monthly regressions use �ve year

periods before announcement and after implementation.

The results in Table 2 are stronger than the univariate results. At all three data frequen-

cies, S&P 500 inclusion is associated with a substantial and signi�cant increase in beta with

the S&P and a substantial and signi�cant decrease in beta with the rest of the market. For

example, daily beta with the S&P 500 goes up by a median of 0.380 and daily beta with

other stocks drops by -0.397. Large and signi�cant results obtain for most subsamples, even

in monthly data, as well as for deletion events.

Figures 1 through 3 use rolling regressions to show the dynamics of these changes. Panel

A shows how the daily betas change over event time. The solid line shows the median daily

beta with the S&P and the dashed line shows the median daily beta with the non-S&P. These

coeÆcients are re-estimated each month using the prior 12 months of daily data. Therefore

coeÆcients plotted to the left of the left vertical line use only pre-event returns. CoeÆcients

plotted to the right of the right vertical line use only post-event returns. CoeÆcients in

between use both pre- and post-event data. In terms of these �gures, the beta changes

reported in Table 2 are the average beta as of event month +12, which uses data from months

[+1, +12] minus the average beta as of event month -1, which uses data from months [-12,

-1]. There are fewer data points in the �gures than in the table, however, because the �gures

include only �rms that survived for some period after the inclusion.16

Our results on changes in S&P and non-S&P betas are consistent with the �ndings of

Vijh (1994), who studies whether the rise of S&P-linked products has a�ected the standard

measure of stock risk, namely beta with respect to the overall market return. He �nds that

over the 1975-1989 period, a stock's daily beta with the market goes up by a statistically

signi�cant 0.08, on average, after inclusion. Since a large fraction of overall market value

comes from S&P stocks, this �ts with the increase in S&P beta we detect over a similar time

period. Given our result that non-S&P beta falls signi�cantly, it also makes sense that the

rise in overall market beta should be considerably smaller than the rise in S&P beta.17

16Our bivariate regression results cast doubt on an alternative interpretation of our �ndings. Suppose

that a particular industry becomes important in the economy. Standard and Poors may then decide to add

a number of �rms in this industry to the index in rapid succession. These stocks will then comove more

with the index after inclusion simply because the index contains more stocks in the same industry after

their inclusion than it did before. However, under this interpretation, the industry would also be growing in

importance outside the S&P, predicting a rise in non-S&P beta after inclusion, rather than the decrease we

actually observe.
17Under the CAPM, an increase in overall market beta after inclusion predicts that stocks should drop

in price when they are added to the index. The fact that such stocks actually display large price increases

upon inclusion clearly rejects this prediction.
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3.4 Calendar Time Tests

The methodology we use to test Propositions 1 and 2 in Sections 3.2 and 3.3 is often called

an \event time" approach. An alternative methodology is a \calendar time" approach. This

approach requires the construction of two portfolios: a \pre-event" portfolio whose return at

time t, Rpre;t, is the equal-weighted average return at time t of all stocks that will be added

to the index within some window after time t; and a \post-event" portfolio whose return

at time t, Rpost;t, is the equal-weighted average return at time t of all stocks that have been

added to the index within some window preceeding time t. In our analyses of daily and

weekly data, we take the window to be a year, and extend it to �ve years for monthly data.

The calendar time test of Proposition 1 then calls for running two regressions:

Rpre;t = �pre + �preRS&P;t + vpre;t

and

Rpost;t = �post + �postRS&P;t + vpost;t

and checking whether �post > �pre and whether the R2 in the second regression is greater

than in the �rst.

Similarly, the calendar time test of Proposition 2 calls for running the following two

regressions,

Rpre;t = �pre + �pre;S&PRS&P;t + �pre;non�S&PRnon�S&P;t + vpre;t

and

Rpost;t = �post + �post;S&PRS&P;t + �post;non�S&PRnon�S&P;t + vpost;t

and checking whether �post;S&P > �pre;S&P and �post;non�S&P < �pre;non�S&P .

Table 3 reports the changes in slope coeÆcients and R2s. In general, the results are

supportive of trading-based comovement, but not as strongly so as the event time tests. In the

univariate regressions, signi�cant increases in beta and R2 occur only at the daily frequency.

In the bivariate regressions, the results are strongly signi�cant at the daily frequency and at

the weekly frequency, although in the latter case only in the second subsample.

One reason the results are slightly weaker here may be that the calendar time test is

less powerful than the event time test. For example, if inclusion events that generate large

increases in beta tend to cluster together, the calendar time methodology will �nd it harder

to reject the null, since it essentially treats events close together in calendar time as a single

observation.18

18Moreover, there is a sound economic argument for such clustering: if index funds do not rebalance at

times of low index turnover { because the tracking error from not rebalancing is small { but only do so when

multiple index changes occur, events with high beta increases will indeed cluster.
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3.5 Comovement Across Categories

Proposition 3 predicts that the correlation of the returns of two groups of securities will be

lower than the correlation of their fundamentals if these groups form natural categories or

habitats. This proposition is testable in the time series under the condition that the groups'

importance as categories or habitats has grown over time.

The S&P 500 satis�es this last condition: its use in various investment styles has grown

dramatically in the last few decades. Consistent with this trend, Wurgler and Zhuravskaya

(2001) �nd that the size of the inclusion price jump has grown with the volume of funds

devoted to S&P indexing, and our earlier results show increasing comovement e�ects in more

recent years.

Table 4 reports the trends in comovement between the S&P and other stocks over the

past thirty years. The left column shows that the relative size of the S&P and whole market

has remained constant. The declining correlations in the right columns show that at all

three data frequencies, the returns on the S&P 500 have grown increasingly divorced from

the returns on the rest of the market. The correlation in returns remains high today, but it

is not as high as it was prior to the advent of the S&P 500 as a category. Another interesting

pattern is that the decline in the daily correlation seems to have halted in recent years, while

the weekly and monthly correlations continue to decline.

In Table 5 we determine whether the decreasing correlation between S&P and non-S&P

stocks is statistically signi�cant, or whether the correlation between two random groups

would on average display a similar decline. We construct value-weighted returns on a random

group of 500 stocks and compute their correlation with the value-weighted returns on the

rest of the market over consecutive �ve year periods. By repeating this procedure for many

random groups of 500 stocks, we can construct sampling distributions for the change in

correlation over various intervals. We can then determine whether the decline in the S&P

correlation is unusually large.

The left columns of Table 5 report the sampling distribution of the changes in correlation

between the random 500 and the rest of the market. The correlations between random

groups of stocks have declined. Panel A shows that, from the early 1970s to the late 1990s,

the daily return correlation between random groups has fallen by a median of -0.043. For

comparison, the second column from the right reports the experience of the S&P 500. Over

this same period, Table 4 indicates that the daily return correlation between the S&P and

the rest of the market has fallen by -0.118. The last column indicates that this is a much

greater decline than expected by chance.

Our simulation controls for the possibility that the decline in the S&P and non-S&P

return correlation is due to a general decline in the correlation of stock fundamentals. Indeed,
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the results of Campbell et al. (2001) suggest that such a decline in fundamental correlation

has occured, making it important to control for. Our simulation does not, however, rule out

the possibility that our results are due to an especially large decline in the correlation of S&P

500 stocks' fundamentals with remaining stocks' fundamentals, as compared to the decline in

the correlation of a random 500 stocks' fundamentals with remaining stocks' fundamentals.

However, we see no obvious reason why this would be the case, since the S&P 500 index has

always been constructed to be representative of the overall economy.19

4 Conclusion

In this paper, we present and examine empirically three models of comovement. The tradi-

tional model attributes comovement to correlation in news about fundamental values. The

two alternative models we consider explain comovement by correlated investor demand shifts

for securities in a given category, or by demand shifts by speci�c investor clienteles.

To assess these theories, we consider the well-studied phenomenon of stock inclusions

into, and deletions from, the S&P 500 index. While previous studies have noted signi�cant

immediate price e�ects associated with inclusions and deletions, we focus on changes in the

patterns of comovement of newly included (or deleted) stocks with stocks already in the

index. We �nd that stocks included into the index begin to comove more with other stocks

in the index, and less with stocks out of the index. The converse holds for deletions. Because

inclusion into the S&P 500 index conveys no news about fundamentals, this evidence is hard

to reconcile with the fundamentals view of comovement, but supports the theories based on

shifts in demand.

This evidence adds to the growing range of phenomena identi�ed by �nancial economists

that reveal the importance of asset classi�cation, and of demand shifts among asset classes,

for valuation. From this perspective, a security's value may depend as much on which

asset categories it belongs to, and on which investor clienteles trade it, as it does on its

fundamentals.

19Panel A of Table 4 also shows that the abrupt halt in the decline of the daily S&P correlation after 1990

is not mirrored by the random-500 correlation, while the weekly and monthly S&P correlations continue to

decline relative to the typical random-500 group. One explanation is that arbitrage has checked the decline

in the daily correlation, but has yet to stop the decline in the weekly and monthly correlations. De Long et

al. (1990) point out that long-horizon arbitrage is likely to be weaker than short-horizon arbitrage.
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5 Appendix

Proof of Propositions 1, 2, and 3: Suppose that asset n + 1 is reclassi�ed from Y into X,

and that at the same moment, asset 1 is reclassi�ed from X into Y .

Before reclassi�cation,

�PX;t+1 = "X;t+1 +
�u1;t+1
�1

+
�u2;t+1
�2

(28)

�PY;t+1 = "Y;t+1 +
�u1;t+1
�2

+
�u2;t+1
�1

�Pn+1;t+1 = "n+1;t+1 +
�u1;t+1
�2

+
�u2;t+1
�1

;

where

"k;t =
1

n

X
l�k

"l;t, k = X; Y .

This implies

cov(�Pn+1;t+1;�PX;t+1) =  2
M +

4�2u
�1�2

+ 2�2u�u(
1

�21
+

1

�22
) (29)

cov(�Pn+1;t+1;�PY;t+1) =  2
M +

1�  2
M

n
+ 2�2u(

1

�21
+

1

�22
) +

4�2u�u
�1�2

var(�PX;t+1) = var(�PY;t+1) =  2
M +

1�  2
M

n
+ 2�2u(

1

�21
+

1

�22
) +

4�2u�u
�1�2

cov(�PX;t+1;�PY;t+1) =  2
M +

4�2u
�1�2

+ 2�2u�u(
1

�21
+

1

�22
):

After reclassi�cation, �PX;t+1 and �PY;t+1 are still given by (28), but now

�Pn+1;t+1 = "n+1;t+1 +
�u1;t+1
�1

+
�u2;t+1
�2

: (30)

This implies

cov (�Pn+1;t+1;�PX;t+1) =  2
M +

1�  2
M

n
+ 2�2u(

1

�21
+

1

�22
) +

4�2u�u
�1�2

; (31)

cov (�Pn+1;t+1;�PY;t+1) =  2
M +

4�2u
�1�2

+ 2�2u�u(
1

�21
+

1

�22
);

while var(�PX;t), var(�PY;t), and cov(�PX;t+1;�PY;t+1) remain the same as before.

Since the OLS estimate of �n+1 in the regression

�Pn+1;t+1 = �n+1 + �n+1�PX;t+1 + vn+1;t+1 (32)
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is given by

�n+1 =
cov(�Pn+1;t+1;�PX;t+1)

var(�PX;t+1)
; (33)

expressions (29) and (31) taken together with

1

�21
+

1

�22
�

2

�1�2
= (

1

�1
�

1

�2
)2 � 0;

con�rm that �n+1 increases after reclassi�cation as claimed in Proposition 1. In particular,

before reclassi�cation, �n+1 < 1, while after reclassi�cation, �n+1 = 1.

The OLS estimates of �n+1;X and �n+1;Y in the regression

�Pn+1;t+1 = �n+1 + �n+1;X�PX;t+1 + �n+1;Y�PY;t+1 + vn+1;t+1 (34)

are given by

 
�n+1;X
�n+1;Y

!
=

1

VXVY � C2
XY

 
VY �CXY
�CXY VX

! 
Cn+1;X
Cn+1;Y

!
(35)

where

Vk = var(�Pk;t+1); k = X; Y

CXY = cov(�PX;t+1;�PY;t+1)

Cn+1;k = cov(�Pn+1;t+1;�Pk;t+1), k = X; Y .

Before reclassi�cation, Cn+1;X = CXY and Cn+1;Y = VY , which implies

�n+1;X = 0; �n+1;Y = 1;

while after reclassi�cation, Cn+1;X = VX and Cn+1;Y = CXY , which implies

�n+1;X = 1; �n+1;Y = 0:

Therefore �n+1;X does indeed increase after reclassi�cation, while �n+1;Y falls. This proves

Proposition 2.

Finally, given the expressions for var(�PX;t+1), var(�PY;t+1), and cov(�PX;t+1;�PY;t+1)

in equation (29), it is immediate that in the limit as n!1,

corr(�PX;t+1;�PY;t+1) <
 2
M

 2
M +

1� 2
M

n

= corr(�DX;t+1;�DY;t+1):

This proves Proposition 3.
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Table 1. Changes in comovement of stocks added to and deleted from the S&P 500 Index: Univariate results. Changes in the slope and the fit of 

regressions of returns on stocks added to and deleted from the S&P 500 Index on returns of the S&P 500 Index. The sample includes stocks added to and deleted 

from the S&P 500 between 1976 and 1998 which were not involved in mergers or related events (described in the text), and which have sufficient return data on 

CRSP. For each added stock j, the univariate model  

tjtSPjjtj RR ,,500, υβα ++=  

is separately estimated for the pre-change and post-change period. Returns on the S&P 500 (RSP500) are from the CRSP Index on the S&P 500 Universe file. 

Returns from October 1987 are excluded. The mechanical influence of the added or deleted stock is removed from the independent variable. The average 

difference between the pre-change slope and the post-change slope is denoted β∆ . The average change in regression 2R  is denoted 2R∆ . The difference-in-

difference 2R is the change between the pre-change and post-change difference between the added stock’s 2R and the average 2R of the other stocks currently 

in the Index, and the average is denoted 2R∆∆ . The pre-change and post-change estimation periods are [-12,-1] and [+1,+12] months for daily and weekly 

returns and [-60,-1] and [+1,+60] months for monthly returns. Panels A, B, and C show results for daily, weekly, and monthly returns, respectively. Standard 

errors are determined by simulation, to account for cross-correlation, and are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, 

and 10% levels in one-sided tests, respectively.  

 
  

β∆  

   
2R∆  

   
2R∆∆  

  
 
 
 

Sample 

 
 
 
 

N 
  

Mean 
(s.e.) 

 
Median 

   
Mean 
(s.e.) 

 
Median 

   
Mean 
(s.e.) 

 
Median 

 

 
Panel A. Daily Returns 

 
 

Additions 
 

1976-1998 
 

 
377 

  
0.116*** 
(0.020) 

 
0.131*** 

(0.025) 

   
0.051*** 
(0.006) 

 
0.041*** 

(0.008) 

   
0.048*** 
(0.006) 

 
0.038*** 

(0.008) 

 

  
1976-1986 

 

 
176 

 

  
0.059** 
(0.025) 

 
0.046 

(0.031) 

   
0.026*** 
(0.008) 

 
0.014 

(0.010) 

   
0.006 

(0.007) 

 
0.007 

(0.009) 

 

  
1987-1998 

 

 
201 

  
0.166*** 
(0.030) 

 
0.231*** 

(0.038) 

   
0.074*** 
(0.008) 

 
0.085*** 

(0.010) 

   
0.086*** 
(0.010) 

 
0.079*** 

(0.013) 

 

 
Deletions 

 
1976-1998 

 

 
52 

  
-0.150*** 
(0.059) 

 
-0.168** 
(0.074) 

   
-0.009 
(0.008) 

 
-0.012 

(0.010) 

   
-0.022*** 
(0.009) 

 
-0.033*** 

(0.011) 

 



 
 

Panel B. Weekly Returns 
 

 
Additions 

 
1976-1998 

 

 
377 

  
0.049* 
(0.027) 

 
0.054 

(0.034) 

   
0.029*** 

(0.009) 

 
0.037*** 

(0.011) 

   
0.036*** 

(0.010) 

 
0.042*** 

(0.013) 

 

  
1976-1986 

 

 
176 

 

  
0.011 

(0.039) 

 
0.019 

(0.049) 

   
0.016 

(0.013) 

 
0.029* 

(0.016) 

   
0.032** 

(0.016) 

 
0.024 

(0.020) 

 

 
 

 
1987-1998 

 

 
201 

  
0.083** 

(0.038) 

 
0.082 

(0.048) 

   
0.039*** 

(0.011) 

 
0.048*** 

(0.014) 

   
0.039*** 

(0.013) 

 
0.049*** 

(0.016) 

 

 
Deletions 

 
1976-1998 

 

 
52 

  
-0.260* 
(0.133) 

 
-0.211 
(0.166) 

   
-0.011 
(0.011) 

 
-0.010 
(0.014) 

   
0.018 

(0.016) 

 
0.034 

(0.020) 

 

 
Panel C. Monthly Returns 

 
 

Additions 
 

1976-1994 
 

 
213 

  
-0.029 

(0.053) 

 
-0.039 

(0.066) 

   
-0.020 

(0.020) 

 
-0.023 

(0.026) 

   
-0.015 

(0.022) 

 
0.004 

(0.028) 

 

  
1976-1986 

 

 
133 

 

  
-0.106 

(0.078) 

 
-0.134 

(0.095) 

   
-0.016 

(0.032) 

 
-0.024 

(0.039) 

   
-0.070** 

(0.034) 

 
-0.055 

(0.042) 

 

  
1987-1994 

 

 
80 

  
0.099 

(0.094) 

 
0.100 

(0.129) 

   
-0.025 

(0.041) 

 
-0.023 

(0.051) 

   
0.076* 

(0.041) 

 
0.094* 

(0.051) 

 

 
Deletions 

 
1976-1994 

 

 
21 

  
-0.147 
(0.117) 

 
-0.046 
(0.147) 

   
-0.016 
(0.034) 

 
-0.042 
(0.043) 

   
0.020 

(0.029) 

 
0.024 

(0.036) 

 



Table 2. Changes in comovement of stocks added to and deleted from the S&P 500 Index: Bivariate results. 

Changes in the slopes of regressions of returns on stocks added to and deleted from the S&P 500 Index on returns of 

the S&P 500 Index itself and returns on an index of the non-S&P 500 rest of the market. The sample includes stocks 

added to and deleted from the S&P 500 between 1976 and 1998 which were not involved in mergers or related 

events (described in the text), and which have sufficient return data on CRSP. A capitalization-weighted return 

index of non-S&P 500 stocks (RnonSP500) in the NYSE, AMEX, and Nasdaq is inferred from the identity 
 

tSP
tCRSP

tSP
tnonSP

tCRSP

tSPtCRSP
tVWCRSP R

CAP
CAP

R
CAP

CAPCAP
R ,500

1,

1,500
,500

1,

1,5001,
, 








+







 −
=

−

−

−

−− . 
 

Returns on the S&P 500 (RSP500) and total capitalization (CAPSP500) are from the CRSP Index on the S&P 500 

Universe file. Returns on the value-weighted CRSP NYSE, AMEX, and Nasdaq index (RVWCRSP) and total 

capitalization (CAPCRSP) are from the CRSP Stock Index file. Returns from October 1987 are excluded. For each 

added stock j, the bivariate model  

tjtnonSPnonSPjtSPSPjjtj RRR ,,500500,,500500,, υββα +++=  

is separately estimated for the pre-change and post-change period. The mechanical influence of the added or deleted 

stock is removed from the independent variables. The average differences between pre-change and post-change 

slopes are denoted 500SPβ∆  and 500nonSPβ∆ . The pre-change and post-change estimation periods are [-12,-1] and 

[+1,+12] months for daily and weekly returns and [-60,-1] and [+1,+60] months for monthly returns. Panels A, B, 

and C show results for daily, weekly, and monthly returns, respectively. Standard errors are determined by 

simulation, to account for cross-correlation, and are reported in parentheses. ***, **, and * denote statistical 

significance at the 1%, 5%, and 10% levels in one-sided tests, respectively.  

 

 
 

500SPβ∆  

   

500nonSPβ∆  

 
 

 

Sample 

 

 

N  
 

Mean 
(s.e.) 

 
Median 

   
Mean 
(s.e.) 

 
Median 

 

 
Panel A. Daily Returns 

 
 

Additions 
 

 
1976-1998 

 

 
377 

  
0.346*** 
(0.029) 

 
0.380*** 
(0.036) 

   
-0.355*** 
(0.035) 

 
-0.382*** 
(0.044) 

 

  
1976-1986 

 

 
176 

 

  
0.273*** 
(0.045) 

 
0.270*** 
(0.056) 

   
-0.287*** 
(0.055) 

 
-0.283*** 
(0.069) 

 

  
1987-1998 

 

 
201 

  
0.409*** 
(0.037) 

 
0.432*** 
(0.046) 

   
-0.415*** 
(0.046) 

 
-0.420*** 
(0.058) 

 

 
Deletions 

 

 
1976-1998 

 

 
52 

  
-0.633*** 
(0.140) 

 
-0.419*** 
(0.175) 

   
0.693*** 
(0.159) 

 
0.482*** 
(0.199) 

 



 
 

Panel B. Weekly Returns 
 

 
Additions 

 
1976-1998 

 

 
377 

  
0.165*** 
(0.059) 

 
0.251*** 
(0.074) 

   
-0.137** 
(0.061) 

 
-0.125* 
(0.076) 

 

  
1976-1986 

 

 
176 

 

  
0.112 

(0.102) 

 
0.233** 
(0.128) 

   
-0.127 
(0.099) 

 
-0.105  
(0.124) 

 

  
1987-1998 

 

 
201 

  
0.211*** 
(0.066) 

 
0.263*** 
(0.083) 

   
-0.145** 
(0.075) 

 
-0.139* 
(0.094) 

 

 
Deletions 

 
1976-1998 

 

 
52 

  
-0.486*** 
(0.164) 

 
-0.362** 
(0.205) 

   
0.361** 
(0.213) 

 
0.399* 
(0.266) 

 

 
Panel C. Monthly Returns 

 
 

Additions 
 

1976-1994 
 

 
213 

  
0.281*** 
(0.115) 

 
0.332*** 
(0.144) 

   
-0.248** 
(0.109) 

 
-0.368*** 
(0.136) 

 

  
1976-1986 

 

 
133 

 

  
0.204 

(0.176) 

 
0.346* 
(0.221) 

   
-0.186 
(0.162) 

 
-0.327* 
(0.203) 

 

  
1987-1994 

 

 
80 

  
0.408** 
(0.225) 

 
0.321 

(0.282) 

   
-0.352* 
(0.239) 

 
-0.404* 
(0.300) 

 

 
Deletions 

 
1976-1994 

 

 
21 

  
0.034 

(0.351) 

 
0.112 

(0.440) 

   
-0.121 
(0.342) 

 
-0.055 
(0.429) 

 



Table 3. Changes in comovement of stocks added to and deleted from the S&P 500 Index (Calendar time): 

Univariate and bivariate results.  Differences between the comovement characteristics of two portfolios of stocks: 

those about to be added to the S&P 500 and those just recently added. The sample includes stocks added to and 

deleted from the S&P 500 between 1976 and 1999 which were not involved in mergers or related events (described 

in the text), and which have sufficient return data on CRSP. A capitalization-weighted return index of non-S&P 500 

stocks (RnonSP500) in the NYSE, AMEX, and Nasdaq is inferred from the identity 
 

tSP
tCRSP

tSP
tnonSP

tCRSP

tSPtCRSP
tVWCRSP R

CAP
CAP

R
CAP

CAPCAP
R ,500

1,

1,500
,500

1,

1,5001,
, 








+







 −
=

−

−

−

−− . 
 

Returns on the S&P 500 (RSP500) and total capitalization (CAPSP500) are from the CRSP Index on the S&P 500 

Universe file. Returns on the value-weighted CRSP NYSE, AMEX, and Nasdaq index (RVWCRSP) and total 

capitalization (CAPCRSP) are from the CRSP Stock Index file. Returns from October 1987 are excluded. In daily 

data, for example, each day we form an equal-weighted portfolio of stocks that will be added to the S&P 500 within 

the next year, and a portfolio of stocks that were added within in the past year. We then run separate univariate 

regressions for each portfolio on the S&P 500 index, 

tpretSPprepretpre RR ,,500, υβα ++=   and  tposttSPpostposttpost RR ,,500, υβα ++= , 

denoting the difference in slope and fit between the “post” and “pre” regressions as β∆  and 2R∆ , respectively. 

We also run separate bivariate regressions for each portfolio on the S&P 500 and the non-S&P500 rest of the 

market, 

tpretnonSPnonSPpretSPSPprepretpre RRR ,,500500,,500500,, υββα +++=   and 

tposttnonSPnonSPposttSPSPpostposttpost RRR ,,500500,,500500,, υββα +++= , 

denoting the difference in the slopes as 500SPβ∆  and 500nonSPβ∆ , respectively. The mechanical influence of the pre 

and post portfolio stocks is removed, as appropriate, from the independent variables. In daily and weekly data, the 

pre portfolio includes stocks that will be added within one year and the post portfolio includes stocks that were 

added in the past year. In monthly data, these windows are extended to five years. We require at least 10 stocks in 

each portfolio in order to be included in the regressions. (Since there are never at least 10 useable deletions within 

one year, there are no observations for daily and weekly deletions portfolios.) Asymptotic standard errors are 

reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels in one-sided tests, 

respectively. 



 

 
 

Univariate 
   

Bivariate 
 

 

 

Sample 

 

 
 

T  
 

 
β∆  

(s.e.) 

 
2R∆  

(s.e.) 

   

500SPβ∆  

(s.e.) 

 

500nonSPβ∆  

(s.e.) 

 

 
Panel A. Daily Returns 

 
 

Additions 
 

 
1976-1999 

 

 
3853 

  
0.126*** 
(0.013) 

 
0.101*** 
(0.007) 

   
0.357*** 
(0.022) 

 
-0.373*** 
(0.029) 

 

  
1976-1986 

 

 
1642 

 

  
0.077*** 
(0.021) 

 
0. 041*** 
(0.010) 

   
0.252*** 
(0.041) 

 
-0.262*** 
(0.050) 

 

  
1987-1999 

 

 
2211 

  
0.156*** 
(0.016) 

 
0.138*** 
(0.010) 

   
0.406*** 
(0.027) 

 
-0.426*** 
(0.035) 

 

 
Deletions 

 

 
1976-1999 

 

 
0 

  
. 

 
. 

   
. 

 
. 

 

 
Panel B. Weekly Returns 

 
 

Additions 
 

1976-1999 
 

 
796 

  
0.044* 
(0.027) 

 
0.012 

(0.014) 

   
0.090** 
(0.053) 

 
-0.072 
(0.058) 

 

  
1976-1986 

 

 
339 

 

  
0.029 

(0.043) 

 
-0.019 
(0.024) 

   
-0.050 
(0.104) 

 
0.078 

(0.108) 

 

  
1987-1999 

 

 
457 

  
0.057* 
(0.035) 

 
0.039** 
(0.022) 

   
0.149*** 
(0.061) 

 
-0.145** 
(0.069) 

 

 
Deletions 

 
1976-1999 

 

 
0 

  
. 

 
. 

   
. 

 
. 

 

 
Panel C. Monthly Returns 

 
 

Additions 
 

1976-1999 
 

 
268 

  
-0.018 
(0.031) 

 
0.042* 
(0.030) 

   
0.079 

(0.068) 

 
-0.126** 
(0.060) 

 

  
1976-1986 

 

 
116 

 

  
-0.011 
(0.043) 

 
0.021 

(0.048) 

   
0.144* 
(0.105) 

 
-0.169** 
(0.088) 

 

  
1987-1999 

 

 
152 

  
-0.020 
(0.044) 

 
0.067 

(0.067) 

   
0.076 

(0.088) 

 
-0.136* 
(0.084) 

 

 
Deletions 

 
1976-1999 

 

 
78 

  
-0.018 
(0.137) 

 
-0.110** 
(0.058) 

   
-0.047 
(0.268) 

 
0.027 

(0.250) 

 

 



Table 4. Trends in the correlation between returns on the S&P 500 and the rest of the market. The correlation 

between the S&P 500 and the rest of the market. A capitalization-weighted return index of non-S&P 500 stocks 

(RnonSP500) in the NYSE, AMEX, and Nasdaq is inferred from the identity 
 

tSP
tCRSP

tSP
tnonSP

tCRSP

tSPtCRSP
tVWCRSP R

CAP
CAP

R
CAP

CAPCAP
R ,500

1,

1,500
,500

1,

1,5001,
, 








+







 −
=

−

−

−

−− . 
 

Returns on the S&P 500 (RSP500) and total capitalization (CAPSP500) are from the CRSP Index on the S&P 500 

Universe file. Returns on the value-weighted CRSP NYSE, AMEX, and Nasdaq index (RVWCRSP) and total 

capitalization (CAPCRSP) are from the CRSP Stock Index file. Returns from October 1987 are excluded.  
 

 
 

Correlation between S&P 500 and the rest of the market 
 

 
 
 
 

Years 

 
Mean of 










tCRSP

tSP

CAP
CAP

,

,500  

 

 
Daily Returns 

 
Weekly Returns 

 
Monthly Returns 

 
1970 – 1974 

 
0.689 

 
0.941 

 
0.942 

 
0.931 

 
1975 – 1979 

 
0.685 

 
0.898 

 
0.920 

 
0.925 

 
1980 – 1984 

 
0.670 

 
0.871 

 
0.915 

 
0.929 

 
1985 – 1989 

 
0.683 

 
0.825 

 
0.864 

 
0.912 

 
1990 – 1994 

 
0.690 

 
0.817 

 
0.851 

 
0.901 

 
1995 – 1999 

 

 
0.701 

 
0.823 

 
0.810 

 
0.840 

 



Table 5. Test that the declining correlation between the S&P 500 and the rest of the market is unusual. The decline in correlation between returns on the 

S&P 500 and the rest of the market is evaluated relative to the null hypothesis that a similar decline applies to random categories of stocks. The distribution of 

changes in the correlation between the return on 500 random stocks from NYSE, AMEX, and Nasdaq and the value-weighted return on the rest of the market is 

determined by simulation. The following procedure is repeated 500 times: (i) A sample of 500 random stocks from the NYSE, AMEX, and Nasdaq is identified 

from all stocks that CRSP lists for 1970. The complementary set of stocks, i.e. the rest of the market, is also identified as of 1970. (ii) The daily, weekly, and 

monthly correlation between these two portfolios is computed and recorded each year from 1970 through 1999. If a stock drops out of the random 500 sample, it 

is replaced with a stock randomly taken from the rest of the market sample. Returns from October 1987 are excluded. (iii) These two return series represent one 

sample path, over which correlations and changes in correlations can be estimated. Panels A, B, and C show results for daily, weekly, and monthly returns, 

respectively.  
 

  
Change in correlation between random 500 

and the rest of the market 

   
Change in correlation between S&P 500  

and the rest of the market 

  
 

 
 

 
 

Years 

 
5th  

percentile 

 
10th 

percentile 

 
50th 

percentile 

 
90th 

percentile 

 
95th 

percentile 

 
 

Actual 

 
 

Prob ( Actual < X ) 

 
Panel A. Daily Returns 

 
 

1995 – 1999 vs.  
1970 – 1974  - 0.070 - 0.064 -0.043 - 0.023 - 0.019 

 
 

- 0.118 

 
 

0.002 
 

1975 – 1979 - 0.073 - 0.066 -0.045 - 0.028 - 0.024 
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Figure I. Changes in comovement of stocks added to the S&P 500 Index: Bivariate results.  Plots of 

the median slope coefficients of bivariate regressions of returns on stocks added to the S&P 500 on returns 

of the S&P 500 Index and the non-S&P 500 rest of the market. The sample includes stocks added to the 

S&P 500 which were not involved in mergers or related events (described in the text), which have complete 

returns data over the entire event horizon examined in each figure (-12 to +24 months in daily and weekly 

returns data and –60 to +120 months in monthly returns data), and which remain in the Index for the full 

post-event horizon considered in each figure. A capitalization-weighted return index of non-S&P 500 

stocks (RnonSP500) in the NYSE, AMEX, and Nasdaq is inferred from the identity 
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Returns on the S&P 500 (RSP500) and total capitalization (CAPSP500) are from the CRSP Index on the S&P 

500 Universe file. Returns on the value-weighted CRSP NYSE, AMEX, and Nasdaq index (RVWCRSP) and 

total capitalization (CAPCRSP) are from the CRSP Stock Index file. Returns from October 1987 are 

excluded. For each added stock j, the bivariate model  

tjtnonSPnonSPjtSPSPjjtj RRR ,,500500,,500500,, υββα +++=  

is then estimated in rolling regressions where the sample intervals are [-12,-1] months for daily and weekly 

returns and [-60,-1] months for monthly returns. The mechanical influence of the added stock is removed, 

as appropriate, from both independent variables. The median of each coefficient, across stocks, is plotted in 

event time. The left vertical line indicates the addition date; coefficients to the left of this line are estimated 

using only pre-event data. Coefficients to the right of the right vertical line are estimated using only post-

event data. In between the vertical lines, coefficients are estimated using both pre- and post-event data. 

Panels A, B, and C show results for daily, weekly, and monthly returns, respectively. 
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B. Weekly Returns (N = 331) 
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C. Monthly Returns (N = 126) 
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